1
|
Zheng XQ, Wang DB, Jiang YR, Song CL. Gut microbiota and microbial metabolites for osteoporosis. Gut Microbes 2025; 17:2437247. [PMID: 39690861 DOI: 10.1080/19490976.2024.2437247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/13/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024] Open
Abstract
Osteoporosis is an age-related bone metabolic disease. As an essential endocrine organ, the skeletal system is intricately connected with extraosseous organs. The crosstalk between bones and other organs supports this view. In recent years, the link between the gut microecology and bone metabolism has become an important research topic, both in preclinical studies and in clinical trials. Many studies have shown that skeletal changes are accompanied by changes in the composition and structure of the gut microbiota (GM). At the same time, natural or artificial interventions targeting the GM can subsequently affect bone metabolism. Moreover, microbiome-related metabolites may have important effects on bone metabolism. We aim to review the relationships among the GM, microbial metabolites, and bone metabolism and to summarize the potential mechanisms involved and the theory of the gut‒bone axis. We also describe existing bottlenecks in laboratory studies, as well as existing challenges in clinical settings, and propose possible future research directions.
Collapse
Affiliation(s)
- Xuan-Qi Zheng
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Ding-Ben Wang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Yi-Rong Jiang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Chun-Li Song
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| |
Collapse
|
2
|
van Hooff MC, Werner E, van der Meer AJ. Treatment in primary biliary cholangitis: Beyond ursodeoxycholic acid. Eur J Intern Med 2024; 124:14-21. [PMID: 38307734 DOI: 10.1016/j.ejim.2024.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/04/2024]
Abstract
Primary biliary cholangitis (PBC) is a rare cholestatic immune-mediated liver disease. The clinical course varies from mild to severe, with a substantial group of patients developing cirrhosis within a decade. These patients are at risk of hepatocellular carcinoma, decompensation and liver failure. First line Ursodeoxycholic acid (UDCA) treatment improves the cholestatic surrogate markers, and was recently associated with a favorable survival free of liver transplantation, even in case of an incomplete biochemical response. However, despite adequate UDCA therapy, patients remain at risk of liver disease progression. Therefore, on-treatment multifactor-based risk stratification is necessary to identify patients in need of additional therapy. This requires a personalized approach; especially as recent studies suggest that complete biochemical normalization as most stringent response criterion might be preferred in selected patients to optimize their outcome. Today, stricter biochemical goals might actually be reachable with the addition of farnesoid X receptor or peroxisome proliferator-activated receptor agonists, or, in highly-selected cases, use of corticosteroids. Randomized controlled trials showed improvements in the key biochemical surrogate markers with the addition of these drugs, which have also been associated with improved clinical outcome. Considering this evolving PBC landscape, with more versatile treatment options and treatment goals, this review recapitulates the recent insight in UDCA therapy, the selection of patients with a residual risk of liver disease progression and the results of the currently available second line treatment options.
Collapse
Affiliation(s)
- M C van Hooff
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, NA building, Floor 6, Rotterdam 3015 GD, the Netherlands
| | - E Werner
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, NA building, Floor 6, Rotterdam 3015 GD, the Netherlands
| | - A J van der Meer
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, NA building, Floor 6, Rotterdam 3015 GD, the Netherlands.
| |
Collapse
|
3
|
Sun Y, Zhang L, Jiang Z. The role of peroxisome proliferator-activated receptors in the regulation of bile acid metabolism. Basic Clin Pharmacol Toxicol 2024; 134:315-324. [PMID: 38048777 DOI: 10.1111/bcpt.13971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 12/06/2023]
Abstract
Bile acids are synthesized from cholesterol in the liver. Dysregulation of bile acid homeostasis, characterized by excessive accumulation in the liver, gallbladder and blood, can lead to hepatocellular damage and the development of cholestatic liver disease. Nuclear receptors play a crucial role in the control of bile acid metabolism by efficiently regulating bile acid synthesis and transport in the liver. Among these receptors, peroxisome proliferator-activated receptor (PPAR), a ligand-activated transcription factor belonging to the nuclear hormone receptor superfamily, controls the expression of genes involved in adipogenesis, lipid metabolism, inflammation and glucose homeostasis and has emerged as a potential therapeutic target for the treatment of the metabolic syndrome in the past two decades. Emerging evidence suggests that PPAR activation holds promise as a therapeutic target for cholestatic liver disease, as it affects both bile acid production and transport. This review provides a comprehensive overview of recent advances in elucidating the role of PPAR in the regulation of bile acid metabolism, highlighting the current position of PPAR agonists in the treatment of primary biliary cholangitis. By summarizing the specific regulatory effects of PPAR on bile acids, this review contributes to the exploration of novel therapeutic strategies for cholestatic liver diseases.
Collapse
Affiliation(s)
- Yuqing Sun
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, Pharmaceutical Animal Experimental Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Luyong Zhang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, Pharmaceutical Animal Experimental Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhenzhou Jiang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, Pharmaceutical Animal Experimental Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
4
|
Feng Z, Xiang J, Sun G, Liu H, Wang Y, Liu X, Feng J, Xu Q, Wen X, Yuan H, Sun H, Dai L. Discovery of the First Subnanomolar PPARα/δ Dual Agonist for the Treatment of Cholestatic Liver Diseases. J Med Chem 2023. [PMID: 37243609 DOI: 10.1021/acs.jmedchem.2c02123] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Peroxisome proliferator-activator receptors α/δ (PPARα/δ) are considered as potential drug targets for cholestatic liver diseases (CLD) via ameliorating hepatic cholestasis, inflammation, and fibrosis. In this work, we developed a series of hydantoin derivatives as potent PPARα/δ dual agonists. Representative compound V1 exhibited PPARα/δ dual agonistic activity at the subnanomolar level (PPARα EC50 = 0.7 nM; PPARδ EC50 = 0.4 nM) and showed excellent selectivity over other related nuclear receptors. The crystal structure revealed the binding mode of V1 and PPARδ at 2.1 Å resolution. Importantly, V1 demonstrated excellent pharmacokinetic (PK) properties and a good safety profile. Notably, V1 showed potent anti-CLD and antifibrotic effects in preclinical models at very low doses (0.03 and 0.1 mg/kg). Collectively, this work provides a promising drug candidate for treating CLD and other hepatic fibrosis diseases.
Collapse
Affiliation(s)
- Zhiqi Feng
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jiehao Xiang
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Gang Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Hui Liu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yanyan Wang
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xin Liu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jin Feng
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Qinglong Xu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoan Wen
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Haoliang Yuan
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Hongbin Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| | - Liang Dai
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
5
|
Nyholm I, Hukkinen M, Pihlajoki M, Davidson JR, Tyraskis A, Lohi J, Heikkilä P, Hänninen S, Andersson N, Eloranta K, Carpén O, Heikinheimo M, Davenport M, Pakarinen MP. Serum FGF19 predicts outcomes of Kasai portoenterostomy in biliary atresia. Hepatology 2023; 77:1263-1273. [PMID: 36692476 PMCID: PMC10026978 DOI: 10.1097/hep.0000000000000048] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND AND AIMS Outcomes after Kasai portoenterostomy (KPE) for biliary atresia remain highly variable for unclear reasons. As reliable early biomarkers predicting KPE outcomes are lacking, we studied the prognostic value of FGF19. APPROACH AND RESULTS Serum and liver specimens, obtained from biliary atresia patients (N=87) at KPE or age-matched cholestatic controls (N=26) were included. Serum concentration of FGF19 and bile acids, liver mRNA expression of FGF19 , and key regulators of bile acid synthesis were related to KPE outcomes and liver histopathology. Immunohistochemistry and in situ hybridization were used for the localization of liver FGF19 expression. Serum levels (223 vs. 61 pg/mL, p <0.001) and liver mRNA expression of FGF19 were significantly increased in biliary atresia. Patients with unsuccessful KPE (419 vs. 145 pg/mL, p =0.047), and those subsequently underwent liver transplantation (410 vs. 99 pg/mL, p =0.007) had significantly increased serum, but not liver, FGF19, which localized mainly in hepatocytes. In Cox hazard modeling serum FGF19 <109 pg/mL predicted native liver survival (HR: 4.31, p <0.001) also among patients operated <60 days of age (HR: 8.77, p =0.004) or after successful KPE (HR: 6.76, p =0.01). Serum FGF19 correlated positively with increased serum primary bile acids ( R =0.41, p =0.004) and ductular reaction ( R =0.39, p =0.004). CONCLUSIONS Increased serum FGF19 at KPE predicted inferior long-term native liver survival in biliary atresia and was associated with unsuccessful KPE, elevated serum primary bile acids, and ductular reaction.
Collapse
Affiliation(s)
- Iiris Nyholm
- Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Section of Pediatric Surgery, Pediatric Liver and Gut Research Group, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Maria Hukkinen
- Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Section of Pediatric Surgery, Pediatric Liver and Gut Research Group, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Marjut Pihlajoki
- Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Joseph R. Davidson
- Department of Pediatric Surgery, GOS-UCL Institute of Child Health, London, UK
- Department of Pediatric Surgery, King’s College Hospital, London, UK
| | | | - Jouko Lohi
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Päivi Heikkilä
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Satu Hänninen
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Noora Andersson
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Katja Eloranta
- Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Olli Carpén
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Markku Heikinheimo
- Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children’s Hospital, St. Louis, Missouri, USA
| | - Mark Davenport
- Department of Pediatric Surgery, King’s College Hospital, London, UK
| | - Mikko P. Pakarinen
- Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Section of Pediatric Surgery, Pediatric Liver and Gut Research Group, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Women’s and Children’s Health, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
6
|
Davenport M, Kronfli R, Makin E. Advances in understanding of biliary atresia pathogenesis and progression - a riddle wrapped in a mystery inside an enigma. Expert Rev Gastroenterol Hepatol 2023; 17:343-352. [PMID: 36908275 DOI: 10.1080/17474124.2023.2191188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
INTRODUCTION Biliary atresia is a potentially fatal condition of the bile ducts - both intra- and extrahepatic, for which we have no cure. Though principally a cholestatic condition, much of its pathology stems from its tendency to aggressively induce liver fibrosis and ultimately cirrhosis, only partially restrained by the portoenterostomy. AREAS COVERED This review is based on the current literature exploring the heterogeneous nature of biliary atresia. Thus, there are various phenotypes or variants of biliary atresia, each potentially with different etiological backgrounds caused by a number of hypothetical pathological mechanisms thought to be important in the genesis of the condition. Search methodology: the review (Oct. - Nov. 2022) is based on a search of PubMed (NLM) using main keyword 'biliary atresia' with supplementary searches using 'fibrosis'; 'inflammation'; 'BASM'; 'genetics'; 'surgery'; 'experimental'; 'etiology'; 'virology'; 'cases'; and 'syndromes.' EXPERT OPINION Future developments will be made on matching clinical variants with a more distinct pathophysiological discrimination and those pathways linking the initial cholestatic phase of biliary atresia to the early stages of fibrosis.
Collapse
Affiliation(s)
- Mark Davenport
- Department of Paediatric Surgery, Kings College Hospital, London, UK
| | - Rania Kronfli
- Department of Paediatric Surgery, Kings College Hospital, London, UK
| | - Erica Makin
- Department of Paediatric Surgery, Kings College Hospital, London, UK
| |
Collapse
|
7
|
Yu L, Liu Y, Wang S, Zhang Q, Zhao J, Zhang H, Narbad A, Tian F, Zhai Q, Chen W. Cholestasis: exploring the triangular relationship of gut microbiota-bile acid-cholestasis and the potential probiotic strategies. Gut Microbes 2023; 15:2181930. [PMID: 36864554 PMCID: PMC9988349 DOI: 10.1080/19490976.2023.2181930] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/09/2023] [Indexed: 03/04/2023] Open
Abstract
Cholestasis is a condition characterized by the abnormal production or excretion of bile, and it can be induced by a variety of causes, the factors of which are extremely complex. Although great progress has been made in understanding cholestasis pathogenesis, the specific mechanisms remain unclear. Therefore, it is important to understand and distinguish cholestasis from different etiologies, which will also provide indispensable theoretical support for the development of corresponding therapeutic drugs. At present, the treatment of cholestasis mainly involves several bile acids (BAs) and their derivatives, most of which are in the clinical stage of development. Multiple lines of evidence indicate that ecological disorders of the gut microbiota are strongly related to the occurrence of cholestasis, in which BAs also play a pivotal role. Recent studies indicate that probiotics seem to have certain effects on cholestasis, but further confirmation from clinical trials is required. This paper reviews the etiology of and therapeutic strategies for cholestasis; summarizes the similarities and differences in inducement, symptoms, and mechanisms of related diseases; and provides information about the latest pharmacological therapies currently available and those under research for cholestasis. We also reviewed the highly intertwined relationship between gut microbiota-BA-cholestasis, revealing the potential role and possible mechanism of probiotics in the treatment of cholestasis.
Collapse
Affiliation(s)
- Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
| | - Yaru Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shunhe Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qingsong Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Arjan Narbad
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
- Gut Health and Microbiome Institute Strategic Programme, Quadram Institute Bioscience, Norwich, UK
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
8
|
Lu ZN, He HW, Zhang N. Advances in understanding the regulatory mechanism of organic solute transporter α-β. Life Sci 2022; 310:121109. [DOI: 10.1016/j.lfs.2022.121109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/09/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022]
|
9
|
Rausch M, Samodelov SL, Visentin M, Kullak-Ublick GA. The Farnesoid X Receptor as a Master Regulator of Hepatotoxicity. Int J Mol Sci 2022; 23:ijms232213967. [PMID: 36430444 PMCID: PMC9695947 DOI: 10.3390/ijms232213967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
The nuclear receptor farnesoid X receptor (FXR, NR1H4) is a bile acid (BA) sensor that links the enterohepatic circuit that regulates BA metabolism and elimination to systemic lipid homeostasis. Furthermore, FXR represents a real guardian of the hepatic function, preserving, in a multifactorial fashion, the integrity and function of hepatocytes from chronic and acute insults. This review summarizes how FXR modulates the expression of pathway-specific as well as polyspecific transporters and enzymes, thereby acting at the interface of BA, lipid and drug metabolism, and influencing the onset and progression of hepatotoxicity of varying etiopathogeneses. Furthermore, this review article provides an overview of the advances and the clinical development of FXR agonists in the treatment of liver diseases.
Collapse
|
10
|
Buchanan-Peart KA, Levy C. Novel Therapies in Primary Biliary Cholangitis: What Is in the Pipeline? Clin Liver Dis 2022; 26:747-764. [PMID: 36270727 DOI: 10.1016/j.cld.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Primary biliary cholangitis is a chronic autoimmune disease characterized by inflammation and the progressive destruction of small intrahepatic bile ducts. Current first-line treatment includes ursodeoxycholic acid; however, a significant number of patients have an inadequate response to therapy. These patients are at risk of liver failure requiring liver transplantation and experience a poor quality of life due to refractory symptoms. This manuscript aims to shed light on the current and prospective treatment options that may slow disease progression and improve these patients' symptoms.
Collapse
Affiliation(s)
- Keri-Ann Buchanan-Peart
- Division of Digestive Health and Liver Diseases, University of Miami Miller School of Medicine, 1500 Northwest 12th Avenue, Suite 1101-E, Miami, FL 33136, USA; Department of Internal Medicine, Jackson Memorial Hospital, 1611 NW 12th Avenue, Miami, FL 33136, USA
| | - Cynthia Levy
- Division of Digestive Health and Liver Diseases, Schiff Center for Liver Diseases, University of Miami Miller School of Medicine, 1500 Northwest 12th Avenue, Suite 1101-E, Miami, FL 33136, USA.
| |
Collapse
|
11
|
Yu H, Liu C, Wang J, Han J, Zhang F, Zhou X, Wen Y, Shen T. miRNA and miRNA target genes in intervention effect of Zhuyu pill on cholestatic rat model. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114709. [PMID: 34626777 DOI: 10.1016/j.jep.2021.114709] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/23/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zhuyu pill (ZYP), an effective prescription of traditional Chinese medicine, is composed of Coptis chinensis Franch. and Tetradium ruticarpum (A. Jussieu) T. G. Hartley and has shown potential anticholestatic effects. However, its mechanism of action in treating cholestasis remains unclear. Since post-transcriptional control of mRNA by micro-RNAs (miRNAs) represents an important mechanism of gene regulation, it is promising to explore this in relation to ZYP and cholestasis. AIM OF THE STUDY To confirm the anticholestatic effect of ZYP and to explore its potential biological mechanism. MATERIALS AND METHODS In this study, a cholestasis rat model was induced by α-naphthyl-isothiocyanate (ANIT, 50 mg/kg) and treated with ZYP (low dose: 0.6 g/kg, high dose: 1.2 g/kg). Serum biochemistry indices and liver histopathology were used to evaluate the model and efficacy, and miRNA sequencing was used to measure differences in miRNA expression in the liver between the control, model, low-dose ZYP, and high-dose ZYP groups. To verify the accuracy of sequencing results and explore the potential anti-cholestasis mechanism of ZYP, RT-PCR was used to identify differentially expressed miRNAs and their target genes. RESULTS Both high- and low-dose ZYP exhibited significant anticholestatic effects, with the high-dose showing better effects than low-dose ZYP. Additionally, four differentially expressed miRNAs, rno-miR-147, rno-miR-20b-5p, rno-miR-29b-3p, and rno-miR-3586-3p, were found to be upregulated in cholestasis and downregulated after ZYP intervention. Eight target genes of the above miRNAs, including ABCG8, CLOCK, PLEC, SLC4A2, NEB, ADAMTS12, TTN and FAM174B were inhibited in cholestatic rats, exhibiting up-regulated expression tendencies after ZYP intervention, and the expression tendencies were significant negatively correlated with serum biochemical indices. CONCLUSIONS ZYP can significantly reduce liver biochemical indices and improve liver tissue damage in cholestasis rats through the regulation of miRNA expression in the liver, producing a positive regulatory effect on bile excretion-related genes.
Collapse
Affiliation(s)
- Han Yu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chao Liu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianfei Wang
- Department of Nephrology, South of Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun Han
- Department of Reader Service and Culture Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fenghua Zhang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Zhou
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yueqiang Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Tao Shen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
12
|
Wang C, Peng F, Zhong B, Shi Y, Wang X, Jin X, Niu J. Metabolomic Analysis Reveals the Therapeutic Effects of MBT1805, a Novel Pan-Peroxisome Proliferator-Activated Receptor Agonist, on α-Naphthylisothiocyanate-Induced Cholestasis in Mice. Front Pharmacol 2021; 12:732478. [PMID: 34776958 PMCID: PMC8585842 DOI: 10.3389/fphar.2021.732478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/27/2021] [Indexed: 11/23/2022] Open
Abstract
Background and Aims: Therapeutic drugs that are used to treat cholestatic liver disease are limited; however, the results of clinical trials on primary biliary cholangitis treatment targeting peroxisome proliferator-activated receptors (PPARs) are encouraging. In this study, we aimed to identify the effects of MBT1805, a novel balanced PPARα/γ/δ agonist, on cholestasis induced by α-naphthylisothiocyanate (ANIT) and elucidate the underlying mechanisms through untargeted and bile acid-targeted metabolomic analysis. Methods: Levels of serum biochemical indicators (transaminase, aspartate transaminase, alkaline phosphatase, and total bilirubin) and liver histopathology were analyzed to evaluate the therapeutic effects of MBT1805 on ANIT-induced cholestasis in C57BL/6 mice. Untargeted and bile acid-targeted metabolomic analysis of liver tissues was performed using ultrahigh-performance liquid chromatography-triple quadrupole mass spectrometry (UPLC-MC/MC). qRT-PCR and Western blot analysis were carried out to measure the expression of key enzymes and transporters regulating bile acid synthesis, biotransformation, and transport. Results: MBT1805 significantly improved abnormal levels of liver biochemical indicators and gallbladder enlargement induced by ANIT. Histopathological analysis showed that MBT1805 effectively relieved ANIT-induced necrosis, vacuolation, and inflammatory infiltration. Untargeted metabolomic analysis identified 27 metabolites that were involved in the primary biliary acid biosynthesis pathway. In addition, bile acid-targeted metabolomics showed that MBT1805 could alleviate the abnormal bile acid content and composition induced by ANIT. Furthermore, qRT-PCR and Western blot results confirmed that MBT1805 could effectively regulate bile acid synthesis, biotransformation, and transport which helps relieve cholestasis. Conclusions: MBT1805 is a potential candidate drug for cholestasis, with a balanced PPARα/γ/δ activation effect.
Collapse
Affiliation(s)
- Chang Wang
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin, China.,Key Laboratory of Zoonosis Research, Ministry Education, Changchun, Jilin, China
| | - Fei Peng
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin, China.,Key Laboratory of Zoonosis Research, Ministry Education, Changchun, Jilin, China
| | - Bohua Zhong
- Beijing JK HuaYuan Med Tech Company LTD, Beijing, China
| | - Ying Shi
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin, China.,Key Laboratory of Zoonosis Research, Ministry Education, Changchun, Jilin, China
| | - Xiaomei Wang
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin, China.,Key Laboratory of Zoonosis Research, Ministry Education, Changchun, Jilin, China
| | - Xueyuan Jin
- International Center for Liver Disease Treatment, Fifth Medical Center of China PLA General Hospital, Beijing, China
| | - Junqi Niu
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin, China.,Key Laboratory of Zoonosis Research, Ministry Education, Changchun, Jilin, China
| |
Collapse
|
13
|
Predicting Target Genes of San-Huang-Chai-Zhu Formula in Treating ANIT-Induced Acute Intrahepatic Cholestasis Rat Model via Bioinformatics Analysis Combined with Experimental Validation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5320445. [PMID: 34512777 PMCID: PMC8429011 DOI: 10.1155/2021/5320445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022]
Abstract
Background San-Huang-Chai-Zhu formula (SHCZF) has been used to improve cholestasis for many years. This study aims to predict the possible gene targets of SHCZF in treating acute intrahepatic cholestasis (AIC) in rats. Materials and Methods Eighteen SD rats were randomly assigned to the normal group, ANIT group, and ANIT + SHCZF group. Alpha-naphthylisothiocyanate (ANIT) was used to induce AIC. Serum biochemical indexes were detected in each group. After treatment, the livers were collected and used to extract RNA. The library was constructed by TruSeq RNA, sequenced by Illumina, and analyzed by various bioinformatics methods. qRT-PCR was used to verify the target genes related to the efficacy of SHCZF. Results Serum ALT, AST, ALP, and TBIL were significantly higher in the ANIT group than in the normal group. Serum ALT and AST levels in the ANIT + SHCZF group were substantially lower than those in the ANIT group. A total of 354 intersected genes were screened by expression level correlation and PCA analysis, GO and KEGG pathway enrichment analysis, and WGCNA and STEM analysis. Then, 4 overlapping genes were found by pathway/BP/gene network construction. SHCZF reversed the downregulation of expression of CYP4A1 and HACL1 and the upregulation of expression of DBI and F11R induced by ANIT. In addition, the qRT-PCR result showed that mRNA expression of CYP4A1, HACL1, and F11R genes in the liver was consistent with the prediction result of bioinformatics analysis. Conclusion CYP4A1, HACL1, and F11R are genes related to the occurrence of ANIT-induced AIC in rats and may be considered as targets of SHCZF for the treatment of AIC.
Collapse
|
14
|
Feedback Signaling between Cholangiopathies, Ductular Reaction, and Non-Alcoholic Fatty Liver Disease. Cells 2021; 10:cells10082072. [PMID: 34440841 PMCID: PMC8391272 DOI: 10.3390/cells10082072] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022] Open
Abstract
Fatty liver diseases, such as non-alcoholic fatty liver disease (NAFLD), are global health disparities, particularly in the United States, as a result of cultural eating habits and lifestyle. Pathological studies on NAFLD have been mostly focused on hepatocytes and other inflammatory cell types; however, the impact of other biliary epithelial cells (i.e., cholangiocytes) in the promotion of NAFLD is growing. This review article will discuss how cholestatic injury and cholangiocyte activity/ductular reaction influence NAFLD progression. Furthermore, this review will provide informative details regarding the fundamental properties of cholangiocytes and bile acid signaling that can influence NAFLD. Lastly, studies relating to the pathogenesis of NAFLD, cholangiopathies, and ductular reaction will be analyzed to help gain insight for potential therapies.
Collapse
|
15
|
Sultana H, Komai M, Shirakawa H. The Role of Vitamin K in Cholestatic Liver Disease. Nutrients 2021; 13:nu13082515. [PMID: 34444675 PMCID: PMC8400302 DOI: 10.3390/nu13082515] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 12/13/2022] Open
Abstract
Vitamin K (VK) is a ligand of the pregnane X receptor (PXR), which plays a critical role in the detoxification of xenobiotics and metabolism of bile acids. VK1 may reduce the risk of death in patients with chronic liver failure. VK deficiency is associated with intrahepatic cholestasis, and is already being used as a drug for cholestasis-induced liver fibrosis in China. In Japan, to treat osteoporosis in patients with primary biliary cholangitis, VK2 formulations are prescribed, along with vitamin D3. Animal studies have revealed that after bile duct ligation-induced cholestasis, PXR knockout mice manifested more hepatic damage than wild-type mice. Ligand-mediated activation of PXR improves biochemical parameters. Rifampicin is a well-known human PXR ligand that has been used to treat intractable pruritus in severe cholestasis. In addition to its anti-cholestatic properties, PXR has anti-fibrotic and anti-inflammatory effects. However, because of the scarcity of animal studies, the mechanism of the effect of VK on cholestasis-related liver disease has not yet been revealed. Moreover, the application of VK in cholestasis-related diseases is controversial. Considering this background, the present review focuses on the effect of VK in cholestasis-related diseases, emphasizing its function as a modulator of PXR.
Collapse
Affiliation(s)
- Halima Sultana
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan; (H.S.); (M.K.)
| | - Michio Komai
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan; (H.S.); (M.K.)
| | - Hitoshi Shirakawa
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan; (H.S.); (M.K.)
- International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan
- Correspondence: ; Tel.: +81-22-757-4402
| |
Collapse
|
16
|
Xie J, Fan Y, Jia R, Yang F, Ma L, Li L. Yes-associated protein regulates the hepatoprotective effect of vitamin D receptor activation through promoting adaptive bile duct remodeling in cholestatic mice. J Pathol 2021; 255:95-106. [PMID: 34156701 DOI: 10.1002/path.5750] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/13/2021] [Accepted: 06/19/2021] [Indexed: 12/31/2022]
Abstract
Mounting clinical evidence has revealed that the vitamin D receptor (VDR) is associated with cholestatic liver injury, although the functions of VDR in this condition remain largely unexplored. Here, we investigated the effects of VDR activation on bile duct ligation (BDL) mice, and the underlying mechanisms were further investigated. A low-calcemic VDR agonist, paricalcitol (PAL, 200 ng/kg), was intraperitoneally injected into BDL mice every other day for 5 days or 28 days. Liver histology, liver function indicators, cholangiocyte proliferation, fibrosis scores, and inflammation were evaluated. Mice treated with PAL were rescued from the decreased survival rate induced by BDL and liver damage was reduced. Mechanistically, PAL promoted cholangiocyte proliferation, which was likely conducive to proliferating bile duct maturation and increased branching of bile ducts. PAL treatment also increased the expression of Yes-associated protein (YAP) and its target protein epithelial cell adhesion molecule (EpCam) and decreased the level of inactive cytoplasmic phosphorylated YAP. YAP knockdown abrogated PAL-induced primary bile duct epithelial cell proliferation, confirmed with YAP inhibitor administration. In addition, BDL-induced liver fibrosis and inflammatory cell infiltration were reduced by PAL treatment at both day 5 and day 28 post-BDL. In conclusion, VDR activation mitigates cholestatic liver injury by promoting adaptive bile duct remodeling through cholangiocytic YAP upregulation. Because PAL is an approved clinical drug, it may be useful for treatment of cholestatic liver disease. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jing Xie
- Department of Cell Biology, School of Medicine, Taizhou University, Taizhou, PR China
| | - Yonggang Fan
- Institute of Health Sciences, Key Laboratory of Medical Cell Biology of the Ministry of Education, China Medical University, Shenyang, PR China
| | - Rongjun Jia
- Department of Cell Biology, Jinzhou Medical University, Jinzhou, PR China
| | - Fan Yang
- Department of Cell Biology, Jinzhou Medical University, Jinzhou, PR China
| | - Liman Ma
- Department of Cell Biology, School of Medicine, Taizhou University, Taizhou, PR China
| | - Lihua Li
- Department of Cell Biology, School of Medicine, Taizhou University, Taizhou, PR China
| |
Collapse
|
17
|
Wang D, Yu H, Li Y, Xu Z, Shi S, Dou D, Sun L, Zheng Z, Shi X, Deng X, Zhong X. iTRAQ-based quantitative proteomics analysis of the hepatoprotective effect of melatonin on ANIT-induced cholestasis in rats. Exp Ther Med 2021; 22:1014. [PMID: 34373700 PMCID: PMC8343461 DOI: 10.3892/etm.2021.10446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 04/28/2021] [Indexed: 11/15/2022] Open
Abstract
The therapeutic effects of melatonin on cholestatic liver injury have received widespread attention recently. The aim of the present study was to investigate the mechanisms of the anti-cholestatic effects of melatonin against α-naphthyl isothiocyanate (ANIT)-induced liver injury in rats and to screen for potential biomarkers of cholestasis through isobaric tags for relative and absolute quantitation (iTRAQ) proteomics. Rats orally received melatonin (100 mg/kg body weight) or an equivalent volume of 0.25% carboxymethyl cellulose sodium salt 12 h after intraperitoneal injection of ANIT (75 mg/kg) and were subsequently sacrificed at 36 h after injection. Liver biochemical indices were determined and liver tissue samples were stained using hematoxylin-eosin staining, followed by iTRAQ quantitative proteomics to identify potential underlying therapeutic mechanisms and biomarkers. The results suggested that the expression levels of alanine transaminase, aspartate aminotransferase, total bilirubin and direct bilirubin were reduced in the rats treated with melatonin. Histopathological observation indicated that melatonin was effective in the treatment of ANIT-induced cholestasis. iTRAQ proteomics results suggested that melatonin-mediated reduction in ANIT-induced cholestasis may be associated with enhanced antioxidant function and relieving abnormal fatty acid metabolism. According to pathway enrichment analysis using the Kyoto Encyclopedia of Genes and Genomes, the major metabolic pathways for the metabolism of melatonin are fatty acid degradation, the peroxisome proliferator-activated receptor signaling pathway, fatty acid metabolism, chemical carcinogenesis, carbon metabolism, pyruvate metabolism, fatty acid biosynthesis and retinol metabolism, as well as drug metabolism via cytochrome P450. Malate dehydrogenase 1 and glutathione S-transferase Yb-3 may serve as potential targets in the treatment of ANIT-induced cholestasis with melatonin.
Collapse
Affiliation(s)
- Dingnan Wang
- Synopsis of Golden Chamber Department, Chinese Medicine College, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Han Yu
- Synopsis of Golden Chamber Department, Chinese Medicine College, Beijing University of Chinese Medicine, Beijing 100029, P.R. China.,Formulas of Chinese Medicine, Basic Medical College of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Yunzhou Li
- Synopsis of Golden Chamber Department, Chinese Medicine College, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Zongying Xu
- Synopsis of Golden Chamber Department, Chinese Medicine College, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Shaohua Shi
- Synopsis of Golden Chamber Department, Chinese Medicine College, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Dou Dou
- Synopsis of Golden Chamber Department, Chinese Medicine College, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Lili Sun
- Synopsis of Golden Chamber Department, Chinese Medicine College, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Zhili Zheng
- Department of Pharmacology, Chinese Medicine College, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Xinghua Shi
- Department of Pharmacology, Chinese Medicine College, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Xiulan Deng
- Department of Pharmacology, Chinese Medicine College, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Xianggen Zhong
- Synopsis of Golden Chamber Department, Chinese Medicine College, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| |
Collapse
|
18
|
Xiang J, Yang G, Ma C, Wei L, Wu H, Zhang W, Tao X, Jiang L, Liang Z, Kang L, Yang S. Tectorigenin alleviates intrahepatic cholestasis by inhibiting hepatic inflammation and bile accumulation via activation of PPARγ. Br J Pharmacol 2021; 178:2443-2460. [PMID: 33661551 DOI: 10.1111/bph.15429] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 02/07/2021] [Accepted: 02/21/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Increasing evidence suggests that human cholestasis is closely associated with the accumulation and activation of hepatic macrophages. Research indicates that activation of PPARγ exerts liver protective effects in cholestatic liver disease (CLD), particularly by ameliorating inflammation and fibrosis, thus limiting disease progression. However, existing PPARγ agonists, such as troglitazone and rosiglitazone, have significant side effects that prevent their clinical application in the treatment of CLD. In this study, we found that tectorigenin alleviates intrahepatic cholestasis in mice by activating PPARγ. EXPERIMENTAL APPROACH Wild-type mice were intragastrically administered α-naphthylisothiocyanate (ANIT) or fed a diet containing 0.1% 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) to simultaneously establish an experimental model of intrahepatic cholestasis and tectorigenin intervention, followed by determination of intrahepatic cholestasis and the mechanisms involved. In addition, PPARγ-deficient mice were administered ANIT and/or tectorigenin to determine whether tectorigenin exerts its liver protective effect by activating PPARγ. KEY RESULTS Treatment with tectorigenin alleviated intrahepatic cholestasis by inhibiting the recruitment and activation of hepatic macrophages and by promoting the expression of bile transporters via activation of PPARγ. Furthermore, tectorigenin increased expression of the bile salt export pump (BSEP) through enhanced PPARγ binding to the BSEP promoter. In PPARγ-deficient mice, the hepatoprotective effect of tectorigenin during cholestasis was blocked. CONCLUSION AND IMPLICATIONS In conclusion, tectorigenin reduced the recruitment and activation of hepatic macrophages and enhanced the export of bile acids by activating PPARγ. Taken together, our results suggest that tectorigenin is a candidate compound for cholestasis treatment.
Collapse
Affiliation(s)
- Jiaqing Xiang
- Department of Endocrinology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Guangyan Yang
- Department of Endocrinology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Chuanrui Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Lingling Wei
- Institute of Agricultural Economics and Information, Jiangxi Academy of Agricultural Sciences, Jiangxi, China
| | - Han Wu
- Department of Endocrinology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiuhua Tao
- Institute of Vegetables and Flowers, Jiangxi Academy of Agricultural Sciences, Jiangxi, China
| | - Lingyun Jiang
- Department of Endocrinology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Zhen Liang
- Department of Endocrinology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Lin Kang
- Department of Endocrinology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Shu Yang
- Department of Endocrinology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| |
Collapse
|
19
|
He L, Vatsalya V, Ma X, Zhang J, Yin X, Kim S, Feng W, McClain CJ, Zhang X. Metabolic Profiling of Bile Acids in the Urine of Patients with Alcohol-Associated Liver Disease. Hepatol Commun 2021; 5:798-811. [PMID: 34027270 PMCID: PMC8122376 DOI: 10.1002/hep4.1671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/02/2020] [Accepted: 12/17/2020] [Indexed: 12/19/2022] Open
Abstract
Bile acids (BAs) play important functions in the development of alcohol-associated liver disease (ALD). In the current study, urine BA concentrations in 38 patients with well-described alcohol-associated hepatitis (AH) as characterized by Model for End-Stage Liver Disease (MELD), 8 patients with alcohol-use disorder (AUD), and 19 healthy controls (HCs) were analyzed using liquid chromatography-mass spectrometry. Forty-three BAs were identified, and 22 BAs had significant changes in their abundance levels in patients with AH. The potential associations of clinical data were compared to candidate BAs in this pilot proof-of-concept study. MELD score showed positive correlations with several conjugated BAs and negative correlations with certain unconjugated BAs; taurine-conjugated chenodeoxycholic acid (CDCA) and MELD score showed the highest association. Cholic acid, CDCA, and apocholic acid had nonsignificant abundance changes in patients with nonsevere ALD compared to HCs but were significantly increased in those with severe AH. Receiver operating characteristic analysis showed that the differences in these three compounds were sufficiently large to distinguish severe AH from nonsevere ALD. Notably, the abundance levels of primary BAs were significantly increased while most of the secondary BAs were markedly decreased in AH compared to AUD. Most importantly, the amount of total BAs and the ratio of primary to secondary BAs increased while the ratio of unconjugated to conjugated BAs decreased as disease severity increased. Conclusion: Abundance changes of specific BAs are closely correlated with the severity of AH in this pilot study. Urine BAs (individually or as a group) could be potential noninvasive laboratory biomarkers for detecting early stage ALD and may have prognostic value in AH morbidity.
Collapse
Affiliation(s)
- Liqing He
- Department of ChemistryUniversity of LouisvilleLouisvilleKYUSA.,Alcohol Research CenterUniversity of LouisvilleLouisvilleKYUSA.,Hepatobiology and Toxicology ProgramUniversity of LouisvilleLouisvilleKYUSA.,Center for Regulatory and Environmental Analytical MetabolomicsUniversity of LouisvilleLouisvilleKYUSA
| | - Vatsalya Vatsalya
- Alcohol Research CenterUniversity of LouisvilleLouisvilleKYUSA.,Department of MedicineUniversity of LouisvilleLouisvilleKYUSA.,Robley Rex Louisville Veterans Affairs Medical CenterLouisvilleKYUSA
| | - Xipeng Ma
- Department of ChemistryUniversity of LouisvilleLouisvilleKYUSA.,Alcohol Research CenterUniversity of LouisvilleLouisvilleKYUSA.,Hepatobiology and Toxicology ProgramUniversity of LouisvilleLouisvilleKYUSA.,Center for Regulatory and Environmental Analytical MetabolomicsUniversity of LouisvilleLouisvilleKYUSA
| | - Jiayang Zhang
- School of DentistryUniversity of LouisvilleLouisvilleKYUSA
| | - Xinmin Yin
- Department of ChemistryUniversity of LouisvilleLouisvilleKYUSA.,Center for Regulatory and Environmental Analytical MetabolomicsUniversity of LouisvilleLouisvilleKYUSA
| | - Seongho Kim
- Department of OncologyUniversity of LouisvilleLouisvilleKYUSA.,Biostatistics Core, Karmanos Cancer InstituteWayne State UniversityDetroitMIUSA
| | - Wenke Feng
- Alcohol Research CenterUniversity of LouisvilleLouisvilleKYUSA.,Hepatobiology and Toxicology ProgramUniversity of LouisvilleLouisvilleKYUSA.,Department of MedicineUniversity of LouisvilleLouisvilleKYUSA.,Department of Pharmacology and ToxicologyUniversity of LouisvilleLouisvilleKYUSA
| | - Craig J McClain
- Alcohol Research CenterUniversity of LouisvilleLouisvilleKYUSA.,Hepatobiology and Toxicology ProgramUniversity of LouisvilleLouisvilleKYUSA.,Department of MedicineUniversity of LouisvilleLouisvilleKYUSA.,Robley Rex Louisville Veterans Affairs Medical CenterLouisvilleKYUSA.,Biostatistics Core, Karmanos Cancer InstituteWayne State UniversityDetroitMIUSA
| | - Xiang Zhang
- Department of ChemistryUniversity of LouisvilleLouisvilleKYUSA.,Alcohol Research CenterUniversity of LouisvilleLouisvilleKYUSA.,Hepatobiology and Toxicology ProgramUniversity of LouisvilleLouisvilleKYUSA.,Center for Regulatory and Environmental Analytical MetabolomicsUniversity of LouisvilleLouisvilleKYUSA.,Department of Pharmacology and ToxicologyUniversity of LouisvilleLouisvilleKYUSA
| |
Collapse
|
20
|
Paraiso IL, Tran TQ, Magana AA, Kundu P, Choi J, Maier CS, Bobe G, Raber J, Kioussi C, Stevens JF. Xanthohumol ameliorates Diet-Induced Liver Dysfunction via Farnesoid X Receptor-Dependent and Independent Signaling. Front Pharmacol 2021; 12:643857. [PMID: 33959012 PMCID: PMC8093804 DOI: 10.3389/fphar.2021.643857] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
The farnesoid X receptor (FXR) plays a critical role in the regulation of lipid and bile acid (BA) homeostasis. Hepatic FXR loss results in lipid and BA accumulation, and progression from hepatic steatosis to nonalcoholic steatohepatitis (NASH). This study aimed to evaluate the effects of xanthohumol (XN), a hop-derived compound mitigating metabolic syndrome, on liver damage induced by diet and FXR deficiency in mice. Wild-type (WT) and liver-specific FXR-null mice (FXRLiver−/−) were fed a high-fat diet (HFD) containing XN or the vehicle formation followed by histological characterization, lipid, BA and gene profiling. HFD supplemented with XN resulted in amelioration of hepatic steatosis and decreased BA concentrations in FXRLiver−/− mice, the effect being stronger in male mice. XN induced the constitutive androstane receptor (CAR), pregnane X receptor (PXR) and glucocorticoid receptor (GR) gene expression in the liver of FXRLiver−/− mice. These findings suggest that activation of BA detoxification pathways represents the predominant mechanism for controlling hydrophobic BA concentrations in FXRLiver−/− mice. Collectively, these data indicated sex-dependent relationship between FXR, lipids and BAs, and suggest that XN ameliorates HFD-induced liver dysfunction via FXR-dependent and independent signaling.
Collapse
Affiliation(s)
- Ines L Paraiso
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States.,Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, United States
| | - Thai Q Tran
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, United States
| | - Armando Alcazar Magana
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States.,Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, United States.,Department of Chemistry, Oregon State University, Corvallis, OR, United States
| | - Payel Kundu
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Claudia S Maier
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
| | - Gerd Bobe
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States.,Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, United States
| | - Jacob Raber
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, United States.,Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States.,Department of Neurology, Psychiatry and Radiation Medicine, Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Portland, OR, United States
| | - Chrissa Kioussi
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, United States
| | - Jan F Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States.,Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
21
|
Zhao YY, Yao XP, Jiao TY, Tian JN, Gao Y, Fan SC, Chen PP, Jiang YM, Zhou YY, Chen YX, Yang X, Huang M, Bi HC. Schisandrol B promotes liver enlargement via activation of PXR and YAP pathways in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 84:153520. [PMID: 33662920 DOI: 10.1016/j.phymed.2021.153520] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/28/2021] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Schisandrol B (SolB) is one of the bioactive components from a traditional Chinese medicine Schisandra chinensis or Schisandra sphenanthera. It has been demonstrated that SolB exerts hepatoprotective effects against drug-induced liver injury and promotes liver regeneration. It was found that SolB can induce hepatomegaly but the involved mechanisms remain unknown. PURPOSE This study aimed to explore the mechanisms involved in SolB-induced hepatomegaly. METHODS Male C57BL/6 mice were injected intraperitoneally with SolB (100 mg/kg) for 5 days. Serum and liver samples were collected for biochemical and histological analyses. The mechanisms of SolB were investigated by qRT-PCR and western blot analyses, luciferase reporter gene assays and immunofluorescence. RESULTS SolB significantly increased hepatocyte size and proliferation, and then promoted liver enlargement without liver injury and inflammation. SolB transactivated human PXR, activated PXR in mice and upregulated hepatic expression of its downstream proteins, such as CYP3A11, CYP2B10 and UGT1A1. SolB also significantly enhanced nuclear translocation of PXR and YAP in human cell lines. YAP signal pathway was activated by SolB in mice. CONCLUSION These findings demonstrated that SolB can significantly induce liver enlargement, which is associated with the activation of PXR and YAP pathways.
Collapse
Affiliation(s)
- Ying-Yuan Zhao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xin-Peng Yao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ting-Ying Jiao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jia-Ning Tian
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yue Gao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shi-Cheng Fan
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Pan-Pan Chen
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yi-Ming Jiang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yan-Ying Zhou
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yi-Xin Chen
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiao Yang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Min Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Hui-Chang Bi
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
22
|
Abstract
Neonatal cholestasis is characterized by conjugated hyperbilirubinemia in the newborn and young infant and is a sign common to over 100 hepatobiliary and/or metabolic disorders. A timely evaluation for its etiology is critical in order to quickly identify treatable causes such as biliary atresia, many of which benefit from early therapy. An expanding group of molecularly defined disorders involving bile formation, canalicular transporters, tight junction proteins and inborn errors of metabolism are being continuously discovered because of advances in genetic testing and bioinformatics. The advent of next generation sequencing has transformed our ability to test for multiple genes and whole exome or whole genome sequencing within days to weeks, enabling rapid and affordable molecular diagnosis for disorders that cannot be directly diagnosed from standard blood tests or liver biopsy. Thus, our diagnostic algorithms for neonatal cholestasis are undergoing transformation, moving genetic sequencing to earlier in the evaluation pathway once biliary atresia, "red flag" disorders and treatable disorders are excluded. Current therapies focus on promoting bile flow, reducing pruritus, ensuring optimal nutrition, and monitoring for complications, without addressing the underlying cause of cholestasis in most instances. Our improved understanding of bile formation and the enterohepatic circulation of bile acids has led to emerging therapies for cholestasis which require appropriate pediatric clinical trials. Despite these advances, the cause and optimal therapy for biliary atresia remain elusive. The goals of this review are to outline the etiologies, diagnostic pathways and current and emerging management strategies for neonatal cholestasis.
Collapse
Affiliation(s)
- Amy G. Feldman
- Pediatric Liver Center, Digestive Health Institute, Children’s Hospital Colorado, Section of Pediatric Gastroenterology, Hepatology and Nutrition, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Ronald J. Sokol
- Pediatric Liver Center, Digestive Health Institute, Children’s Hospital Colorado, Section of Pediatric Gastroenterology, Hepatology and Nutrition, University of Colorado School of Medicine, Aurora, Colorado, USA,Colorado Clinical and Translational Sciences Institute, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA,Corresponding Author: Ronald J. Sokol, Digestive Health Institute, Children’s Hospital Colorado, Box B290, 13123 E. 16th Ave., Aurora, Colorado, 80045, USA Phone: 720-777-6669, Fax: 720-777-7277,
| |
Collapse
|
23
|
Dysregulation of Circulating FGF19 and Bile Acids in Primary Biliary Cholangitis-Autoimmune Hepatitis Overlap Syndrome. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1934541. [PMID: 32626734 PMCID: PMC7306076 DOI: 10.1155/2020/1934541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/19/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022]
Abstract
Background Primary biliary cholangitis-autoimmune hepatitis overlap syndrome (PBC-AIH OS), which exhibits features between autoimmune hepatitis and cholestasis, is a common condition and usually shows a progressive course toward cirrhosis and liver failure without adequate treatment. Synthesis of bile acids (BAs) plays an important role in liver injury in cholestasis, and the process is regulated by fibroblast growth factor 19 (FGF19). The overall role of circulating FGF19 in BA synthesis and PBC-AIH OS requires further investigation. Methods We analyzed BA synthesis and correlated clinical parameters with serum BAs and FGF19 in 35 patients with PBC-AIH OS. Serum concentrations of 7alpha-hydroxycholest-4-en-3-one (C4) were used to quantify the synthesis of BA directly. Results Serum FGF19 levels were higher, while C4 levels were substantially lower in PBC-AIH OS patients than those in healthy controls. Circulating FGF19 levels strongly correlated with C4 (r = −0.695, p < 0.0001), direct bilirubin (r = 0.598, p = 0.0001), and total bile acids (r = 0.595, p = 0.002). Moreover, circulating FGF19 levels strongly correlated with the model for end-stage liver disease score (r = 0.574, p = 0.0005) and Mayo risk score (r = 0.578, p = 0.001). Conclusions Serum FGF19 is significantly increased in patients with PBC-AIH OS, while BA synthesis is suppressed. Circulating FGF19 primarily controls the regulation of BA synthesis in response to cholestasis and under cholestatic conditions. Therefore, modulation of circulating FGF19 could provide a promising targeted therapy for patients with PBC-AIH OS.
Collapse
|
24
|
Tardelli M, Bruschi FV, Fuchs CD, Claudel T, Auer N, Kunczer V, Baumgartner M, A.H.O. Ronda O, Verkade HJ, Stojakovic T, Scharnagl H, Habib A, Zimmermann R, Lotersztajn S, Trauner M. Monoacylglycerol Lipase Inhibition Protects From Liver Injury in Mouse Models of Sclerosing Cholangitis. Hepatology 2020; 71:1750-1765. [PMID: 31505038 PMCID: PMC7317927 DOI: 10.1002/hep.30929] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/29/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS Monoacylglycerol lipase (MGL) is the last enzymatic step in triglyceride degradation, hydrolyzing monoglycerides into glycerol and fatty acids (FAs) and converting 2-arachidonoylglycerol into arachidonic acid, thus providing ligands for nuclear receptors as key regulators of hepatic bile acid (BA)/lipid metabolism and inflammation. We aimed to explore the role of MGL in the development of cholestatic liver and bile duct injury in mouse models of sclerosing cholangitis, a disease so far lacking effective pharmacological therapy. APPROACH AND RESULTS To this aim we analyzed the effects of 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) feeding to induce sclerosing cholangitis in wild-type (WT) and knockout (MGL-/- ) mice and tested pharmacological inhibition with JZL184 in the multidrug resistance protein 2 knockout (Mdr2-/- ) mouse model of sclerosing cholangitis. Cholestatic liver injury and fibrosis were assessed by serum biochemistry, liver histology, gene expression, and western blot characterization of BA and FA synthesis/transport. Moreover, intestinal FAs and fecal microbiome were analyzed. Transfection and silencing were performed in Caco2 cells. MGL-/- mice were protected from DDC-induced biliary fibrosis and inflammation with reduced serum liver enzymes and increased FA/BA metabolism and β-oxidation. Notably, pharmacological (JZL184) inhibition of MGL ameliorated cholestatic injury in DDC-fed WT mice and protected Mdr2-/- mice from spontaneous liver injury, with improved liver enzymes, inflammation, and biliary fibrosis. In vitro experiments confirmed that silencing of MGL decreases prostaglandin E2 accumulation in the intestine and up-regulates peroxisome proliferator-activated receptors alpha and gamma activity, thus reducing inflammation. CONCLUSIONS Collectively, our study unravels MGL as a metabolic target, demonstrating that MGL inhibition may be considered as potential therapy for sclerosing cholangitis.
Collapse
Affiliation(s)
- Matteo Tardelli
- Hans Popper Laboratory of Molecular HepatologyDivision of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Francesca V. Bruschi
- Hans Popper Laboratory of Molecular HepatologyDivision of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Claudia D. Fuchs
- Hans Popper Laboratory of Molecular HepatologyDivision of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Thierry Claudel
- Hans Popper Laboratory of Molecular HepatologyDivision of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Nicole Auer
- Hans Popper Laboratory of Molecular HepatologyDivision of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Victoria Kunczer
- Hans Popper Laboratory of Molecular HepatologyDivision of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Maximilian Baumgartner
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Onne A.H.O. Ronda
- Center for Liver, Digestive and Metabolic DiseasesDepartments of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Henk Jan Verkade
- Center for Liver, Digestive and Metabolic DiseasesDepartments of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Tatjana Stojakovic
- Clinical Institute of Medical and Chemical Laboratory DiagnosticsUniversity Hospital GrazGrazAustria
| | - Hubert Scharnagl
- Clinical Institute of Medical and Chemical Laboratory DiagnosticsMedical University of GrazGrazAustria
| | - Aida Habib
- Université de ParisCentre de Recherche sur l'InflammationINSERMUMR1149CNRSERL 8252ParisFrance
- Department of Biochemistry and Molecular GeneticsAmerican University of BeirutBeirutLebanon
| | | | - Sophie Lotersztajn
- Université de ParisCentre de Recherche sur l'InflammationINSERMUMR1149CNRSERL 8252ParisFrance
| | - Michael Trauner
- Hans Popper Laboratory of Molecular HepatologyDivision of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| |
Collapse
|
25
|
Quantitative proteomics analysis of Fructus Psoraleae-induced hepatotoxicity in rats. Chin J Nat Med 2020; 18:123-137. [PMID: 32172948 DOI: 10.1016/s1875-5364(20)30013-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Indexed: 01/08/2023]
Abstract
Fructus Psoraleae, which is commonly consumed for the treatment of osteoporosis, bone fracture, and leucoderma, induces liver injury. This study investigated the pathogenesis of the ethanol extract of Fructus Psoraleae (EEFP)-induced liver injury in rats. EEFP (1.35, 1.80, and 2.25 g·kg-1) was administrated to Sprague Dawley (SD) rats for 30 d. We measured liver chemistries, histopathology, and quantitative isobaric tags for relative and absolute quantitation (iTRAQ)-based protein profiling. EEFP demonstrated parameters suggestive of liver injury with changes in bile secretion, bile flow rate, and liver histopathology. iTRAQ analysis showed that a total of 4042 proteins were expressed in liver tissues of EEFP-treated and untreated rats. Among these proteins, 81 were upregulated and 32 were downregulated in the treatment group. KEGG pathway analysis showed that the drug metabolic pathways of cytochrome P450, glutathione metabolism, glycerolipid metabolism, and bile secretion were enriched with differentially expressed proteins. The expression of key proteins related to the farnesoid X receptor (FXR), i.e., the peroxisome proliferators-activated receptor alpha (PPAR-α), were downregulated, and multidrug resistance-associated protein 3 (MRP3) was upregulated in the EEFP-treated rats. Our results provide evidence that EEFP may induce hepatotoxicity through various pathways. Furthermore, our study demonstrates changes in protein regulation using iTRAQ quantitative proteomics analysis.
Collapse
|
26
|
Gijbels E, Vilas-Boas V, Annaert P, Vanhaecke T, Devisscher L, Vinken M. Robustness testing and optimization of an adverse outcome pathway on cholestatic liver injury. Arch Toxicol 2020; 94:1151-1172. [PMID: 32152650 DOI: 10.1007/s00204-020-02691-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/25/2020] [Indexed: 02/07/2023]
Abstract
Adverse outcome pathways (AOPs) have been recently introduced as tools to map the mechanisms underlying toxic events relevant for chemical risk assessment. AOPs particularly depict the linkage between a molecular initiating event and an adverse outcome through a number of intermediate key events. An AOP has been previously introduced for cholestatic liver injury. The objective of this study was to test the robustness of this AOP for different types of cholestatic insult and the in vitro to in vivo extrapolation. For this purpose, in vitro samples from human hepatoma HepaRG cell cultures were exposed to cholestatic drugs (i.e. intrahepatic cholestasis), while in vivo samples were obtained from livers of cholestatic mice (i.e. extrahepatic cholestasis). The occurrence of cholestasis in vitro was confirmed through analysis of bile transporter functionality and bile acid analysis. Transcriptomic analysis revealed inflammation and oxidative stress as key events in both types of cholestatic liver injury. Major transcriptional differences between intrahepatic and extrahepatic cholestatic liver insults were observed at the level of cell death and metabolism. Novel key events identified by pathway analysis included endoplasmic reticulum stress in intrahepatic cholestasis, and autophagy and necroptosis in both intrahepatic as extrahepatic cholestasis. This study demonstrates that AOPs constitute dynamic tools that should be frequently updated with new input information.
Collapse
Affiliation(s)
- Eva Gijbels
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Vânia Vilas-Boas
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Pieter Annaert
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, O&N2, Herestraat 49-box 921, 3000, Leuven, Belgium
| | - Tamara Vanhaecke
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Lindsey Devisscher
- Basic and Applied Medical Sciences, Gut-Liver Immunopharmacology Unit, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000, Ghent, Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| |
Collapse
|
27
|
Li T, Xu L, Zheng R, Wang X, Li L, Ji H, Hu Q. Picroside II protects against cholestatic liver injury possibly through activation of farnesoid X receptor. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 68:153153. [PMID: 32018210 DOI: 10.1016/j.phymed.2019.153153] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/13/2019] [Accepted: 12/15/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUD Cholestasis, accompanied by the accumulation of bile acids in body, may ultimately cause liver failure and cirrhosis. There have been limited therapies for cholesteric disorders. Therefore, development of appropriate therapeutic drugs for cholestasis is required. Picroside II is a bioactive component isolated from Picrorhiza scrophulariiflora Pennell, its mechanistic contributions to the anti-cholestasis effect have not been fully elucidated, especially the role of picroside II on bile acid homeostasis via nuclear receptors remains unclear. PURPOSE This study was designed to investigate the hepatoprotective effect of picroside II against alpha-naphthylisothiocyanate (ANIT)-induced cholestatic liver injury and elucidate the mechanisms in vivo and in vitro. METHODS The ANIT-induced cholestatic mouse model was used with or without picroside II treatment. Serum and bile biochemical indicators, as well as liver histopathological changes were examined. siRNA, Dual-luciferase reporter, quantitative real-time PCR and Western blot assay were used to demonstrate the farnesoid X receptor (FXR) pathway in the anti-cholestasis effects of picroside II in vivo and in vitro. RESULTS Picroside II exerted hepatoprotective effect against ANIT-induced cholestasis by impaired hepatic function and tissue damage. Picroside II increased bile acid efflux transporter bile salt export pump (Bsep), uptake transporter sodium taurocholate cotransporting polypeptide (Ntcp), and bile acid metabolizing enzymes sulfate transferase 2a1 (Sult2a1) and UDP-glucuronosyltransferase 1a1 (Ugt1a1), whereas decreased the bile acid synthesis enzymes cholesterol 7α-hydroxylase (Cyp7a1) and oxysterol 12α-hydroxylase (Cyp8b1). In addition, expression of FXR and the target gene Bsep was increased, whereas aryl hydrocarbon receptor (AhR), pregnane X receptor (PXR), peroxisome proliferator-activated receptor alpha (PPARα) and their corresponding target genes were not significantly influenced by picroside II under cholestatic conditions. Furthermore, regulation of transporters and enzymes involved in bile acid homeostasis by picroside II were abrogated by FXR silencing in mouse primary cultured hepatocytes. Dual-luciferase reporter assay performed in HepG2 cells demonstrated FXR activation by picroside II. CONCLUSION Our findings demonstrate that picroside II exerts protective effect on ANIT-induced cholestasis possibly through FXR activation that regulates the transporters and enzymes involved in bile acid homeostasis. Picroside II might be an effective approach for the prevention and treatment of cholestatic liver diseases.
Collapse
Affiliation(s)
- Tingting Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lijie Xu
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Rongyao Zheng
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xinjie Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Liwen Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Hui Ji
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Qinghua Hu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
28
|
Emerging therapies in primary sclerosing cholangitis: pathophysiological basis and clinical opportunities. J Gastroenterol 2020; 55:588-614. [PMID: 32222826 PMCID: PMC7242240 DOI: 10.1007/s00535-020-01681-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/05/2020] [Indexed: 02/04/2023]
Abstract
Primary sclerosing cholangitis (PSC) is a progressive liver disease, histologically characterized by inflammation and fibrosis of the bile ducts, and clinically leading to multi-focal biliary strictures and with time cirrhosis and liver failure. Patients bear a significant risk of cholangiocarcinoma and colorectal cancer, and frequently have concomitant inflammatory bowel disease and autoimmune disease manifestations. To date, no medical therapy has proven significant impact on clinical outcomes and most patients ultimately need liver transplantation. Several treatment strategies have failed in the past and whilst prescription of ursodeoxycholic acid (UDCA) prevails, controversy regarding benefits remains. Lack of statistical power, slow and variable disease progression, lack of surrogate biomarkers for disease severity and other challenges in trial design serve as critical obstacles in the development of effective therapy. Advances in our understanding of PSC pathogenesis and biliary physiology over recent years has however led to a surge of clinical trials targeting various mechanistic compartments and currently raising hopes for imminent changes in patient management. Here, in light of pathophysiology, we outline and critically evaluate emerging treatment strategies in PSC, as tested in recent or ongoing phase II and III trials, stratified per a triad of targets of nuclear and membrane receptors regulating bile acid metabolism, immune modulators, and effects on the gut microbiome. Furthermore, we revisit the UDCA trials of the past and critically discuss relevant aspects of clinical trial design, including how the choice of endpoints, alkaline phosphatase in particular, may affect the future path to novel, effective PSC therapeutics.
Collapse
|
29
|
Samant H, Manatsathit W, Dies D, Shokouh-Amiri H, Zibari G, Boktor M, Alexander JS. Cholestatic liver diseases: An era of emerging therapies. World J Clin Cases 2019; 7:1571-1581. [PMID: 31367616 PMCID: PMC6658370 DOI: 10.12998/wjcc.v7.i13.1571] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 06/05/2019] [Accepted: 06/10/2019] [Indexed: 02/05/2023] Open
Abstract
Recently the field of cholestasis has expanded enormously reflecting an improved understanding of the molecular mechanisms underlying bile secretion and its perturbation in chronic cholestatic disease. Novel anti-cholestatic therapeutic options have been developed for patients not favorably responding to ursodeoxycholic acid (UDCA), the current standard treatment for cholestatic liver disease. Important novel treatment targets now also include nuclear receptors involved in bile acid (BA) homoeostasis like farnesoid X receptor and G protein-coupled receptors e.g., the G-protein-coupled BA receptor "transmembrane G coupled receptor 5". Fibroblast growth factor-19 and enterohepatic BA transporters also deserve attention as additional drug targets as does the potential treatment agent norUDCA. In this review, we discuss recent and future promising therapeutic agents and their potential molecular mechanisms in cholestatic liver disorders.
Collapse
Affiliation(s)
- Hrishikesh Samant
- Division of Gastroenterology and Hepatology, Department of medicine, LSU health, Shreveport, LA 71103, United States
- John C McDonald Transplant Center, Willis Knighton Medical Center, Shreveport, LA 71103, United States
| | - Wuttiporn Manatsathit
- Division of Gastroenterology and Hepatology, University of Nebraska, Omaha, NE 68194, United States
| | - David Dies
- John C McDonald Transplant Center, Willis Knighton Medical Center, Shreveport, LA 71103, United States
| | - Hosein Shokouh-Amiri
- John C McDonald Transplant Center, Willis Knighton Medical Center, Shreveport, LA 71103, United States
| | - Gazi Zibari
- John C McDonald Transplant Center, Willis Knighton Medical Center, Shreveport, LA 71103, United States
| | - Moheb Boktor
- Division of Gastroenterology and Hepatology, Department of medicine, LSU health, Shreveport, LA 71103, United States
| | - Jonathan Steve Alexander
- Department of Molecular and Cellular Physiology, Louisiana State University, School of Medicine, Shreveport, LA 71103, United States
| |
Collapse
|
30
|
Lickteig AJ, Zhang Y, Klaassen CD, Csanaky IL. Effects of Absence of Constitutive Androstane Receptor (CAR) on Bile Acid Homeostasis in Male and Female Mice. Toxicol Sci 2019; 171:132-145. [PMID: 31225615 PMCID: PMC6735724 DOI: 10.1093/toxsci/kfz143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 05/22/2019] [Accepted: 05/28/2019] [Indexed: 01/05/2023] Open
Abstract
Accumulation of BAs in hepatocytes has a role in liver disease and also in drug-induced liver injury. The Constitutive Androstane Receptor (CAR) has been shown to protect against BA-induced liver injury. The polymorphism of CAR has recently been shown to modify the pharmacokinetics and pharmacodynamics of various drugs. Thus it was hypothesized that polymorphism of CAR may also influence BA homeostasis. Using CAR-null and WT mice, this study modeled the potential consequences of CAR polymorphism on BA homeostasis. Our previous study showed that chemical activation of CAR decreases the total BA concentrations in livers of mice. Surprisingly the absence of CAR also decreased the BA concentrations in livers of mice, but to a lesser extent than in CAR-activated mice. Neither CAR activation nor elimination of CAR altered the biliary excretion of total BAs, but CAR activation increased the proportion of 6-OH BAs (TMCA), whereas the lack of CAR increased the excretion of TCA, TCDCA and TDCA. Serum BA concentrations did not parallel the decrease in BA concentrations in the liver in either the mice after CAR activation or mice lacking CAR. Gene expression of BA synthesis, transporter and regulator genes were mainly similar in livers of CAR-null and WT mice. In summary, CAR activation decreases primarily the 12-OH BA concentrations in liver, whereas lack of CAR decreases the concentrations of 6-OH BAs in liver. In bile, CAR activation increases the biliary excretion of 6-OH BAs, whereas absence of CAR increases the biliary excretion of 12-OH BAs and TCDCA.
Collapse
Affiliation(s)
- Andrew J Lickteig
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Youcai Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P. R. China
| | - Curtis D Klaassen
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Iván L Csanaky
- Division of Clinical Pharmacology, Toxicology, and Therapeutic Innovation, Division of Gastroenterology, Children's Mercy Hospital, Kansas City, Missouri, USA.,Department of Pediatrics, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
31
|
Feldman AG, Sokol RJ. Neonatal cholestasis: emerging molecular diagnostics and potential novel therapeutics. Nat Rev Gastroenterol Hepatol 2019; 16:346-360. [PMID: 30903105 DOI: 10.1038/s41575-019-0132-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neonatal cholestasis is a group of rare disorders of impaired bile flow characterized by conjugated hyperbilirubinaemia in the newborn and young infant. Neonatal cholestasis is never physiological but rather is a sign of hepatobiliary and/or metabolic disorders, some of which might be fatal if not identified and treated rapidly. A step-wise timely evaluation is essential to quickly identify those causes amenable to treatment and to offer accurate prognosis. The aetiology of neonatal cholestasis now includes an expanding group of molecularly defined entities with overlapping clinical presentations. In the past two decades, our understanding of the molecular basis of many of these cholestatic diseases has improved markedly. Simultaneous next-generation sequencing for multiple genes and whole-exome or whole-genome sequencing now enable rapid and affordable molecular diagnosis for many of these disorders that cannot be directly diagnosed from standard blood tests or liver biopsy. Unfortunately, despite these advances, the aetiology and optimal therapeutic approach of the most common of these disorders, biliary atresia, remain unclear. The goals of this Review are to discuss the aetiologies, algorithms for evaluation and current and emerging therapeutic options for neonatal cholestasis.
Collapse
Affiliation(s)
- Amy G Feldman
- Pediatric Liver Center, Digestive Health Institute, Children's Hospital Colorado, Section of Pediatric Gastroenterology, Hepatology and Nutrition, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ronald J Sokol
- Pediatric Liver Center, Digestive Health Institute, Children's Hospital Colorado, Section of Pediatric Gastroenterology, Hepatology and Nutrition, University of Colorado School of Medicine, Aurora, CO, USA. .,Colorado Clinical and Translational Sciences Institute, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
32
|
Gijbels E, Vilas-Boas V, Deferm N, Devisscher L, Jaeschke H, Annaert P, Vinken M. Mechanisms and in vitro models of drug-induced cholestasis. Arch Toxicol 2019; 93:1169-1186. [PMID: 30972450 DOI: 10.1007/s00204-019-02437-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/02/2019] [Indexed: 12/12/2022]
Abstract
Cholestasis underlies one of the major manifestations of drug-induced liver injury. Drug-induced cholestatic liver toxicity is a complex process, as it can be triggered by a variety of factors that induce 2 types of biological responses, namely a deteriorative response, caused by bile acid accumulation, and an adaptive response, aimed at removing the accumulated bile acids. Several key events in both types of responses have been characterized in the past few years. In parallel, many efforts have focused on the development and further optimization of experimental cell culture models to predict the occurrence of drug-induced cholestatic liver toxicity in vivo. In this paper, a state-of-the-art overview of mechanisms and in vitro models of drug-induced cholestatic liver injury is provided.
Collapse
Affiliation(s)
- Eva Gijbels
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Vânia Vilas-Boas
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Neel Deferm
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, O&N2, Herestraat 49, Bus 921, 3000, Leuven, Belgium
| | - Lindsey Devisscher
- Basic and Applied Medical Sciences, Gut-Liver Immunopharmacology Unit, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000, Ghent, Belgium
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Boulevard, MS 1018, Kansas City, KS, 66160, USA
| | - Pieter Annaert
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, O&N2, Herestraat 49, Bus 921, 3000, Leuven, Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| |
Collapse
|
33
|
Nielsen J, Christensen VB, Borgwardt L, Rasmussen A, Østrup O, Kjær MS. Prognostic molecular markers in pediatric liver disease – Are there any? Biochim Biophys Acta Mol Basis Dis 2019; 1865:577-586. [DOI: 10.1016/j.bbadis.2018.12.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/06/2018] [Accepted: 12/19/2018] [Indexed: 02/07/2023]
|
34
|
Kittayaruksakul S, Sawasvirojwong S, Noitem R, Pongkorpsakol P, Muanprasat C, Chatsudthipong V. Activation of constitutive androstane receptor inhibits intestinal CFTR-mediated chloride transport. Biomed Pharmacother 2019; 111:1249-1259. [PMID: 30841439 DOI: 10.1016/j.biopha.2019.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 01/04/2019] [Accepted: 01/06/2019] [Indexed: 11/18/2022] Open
Abstract
Constitutive androstane receptor (CAR) belonging to the nuclear receptor superfamily plays an important role in the xenobiotic metabolism and disposition. It has been reported that CAR regulates the expression of the ATP-binding cassette (ABC) transporters in the intestine, such as multidrug resistance protein 1 (MDR1) and multidrug resistance-associated protein 2/3 (MRP2 and MRP3). In this study, we investigated the role of CAR in the regulation of cystic fibrosis transmembrane conductance regulator (CFTR)-mediated chloride transport in T84 human colonic epithelial cells and mouse intestinal tissues. Treatments of T84 cell monolayers with specific CAR agonists (CITCO and phenytoin at concentrations of 1 μM and 5 μM, respectively) for 24 h decreased transepithelial Cl- secretion in response to cAMP-dependent agonist. This inhibition was abolished by coincubation of CITCO with a CAR antagonist, CINPA1. We confirmed that an inhibitory effect of CAR agonists was not due to their cytotoxicity. Basolateral membrane permeabilization experiments also revealed that activation of CAR decreased apical Cl- current stimulated by both CPT-cAMP and genistein (a direct CFTR activator). Such activation also reduced both mRNA and protein expression of CFTR. Furthermore, CITCO decreased cholera toxin (CT)-induced Cl- secretion across T84 cell monolayers. In ICR mice, administration of TCPOBOP (3 mg/kgBW), a murine-specific CAR agonist, for 7 days produced significant decreases in CFTR mRNA and protein expressions in intestinal tissues. Interestingly, TCPOBOP also inhibited CT-induced intestinal fluid accumulation in mice. This is the first evidence showing that CFTR was downregulated by CAR activation in the intestine. Our findings suggest that CAR has potential as a new drug target for treatment of condition with hyperactivity/ hyperfunction of CFTR especially secretory diarrheas.
Collapse
Affiliation(s)
- Suticha Kittayaruksakul
- Department of Basic Medical Science, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| | - Sutthipong Sawasvirojwong
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Rattikarn Noitem
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Pawin Pongkorpsakol
- Translational Medicine Graduate Program, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Chatchai Muanprasat
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand; Excellent Center for Drug Discovery, Thailand Center of Excellence for Life Sciences (TCELS), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Varanuj Chatsudthipong
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand; Research Center of Transport Protein for Medical Innovation, Faculty of Science, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
35
|
Abstract
Cholestasis can be defined as any situation of impaired bile secretion with concomitant accumulation of bile acids in the liver or in the systemic circulation. A variety of factors may evoke cholestasis, including genetic disorders, metabolic pathologies, infectious diseases, immunogenic stimuli, and drugs. Drug-induced cholestasis is a mechanistically complex process. At least three triggering factors of drug-induced cholestasis have been described, including effects on drug transporters, various hepatocellular changes, and altered bile canaliculi dynamics. These stimuli induce two cellular responses, each typified by a number of key events, namely a deteriorative response activated by bile acid accumulation and an adaptive response aimed at decreasing the uptake and increasing the export of bile acids into and from the liver, respectively. The mechanistic scenario of drug-induced cholestasis is described in this chapter.
Collapse
Affiliation(s)
- Eva Gijbels
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
36
|
Kim KH, Choi JM, Li F, Dong B, Wooton-Kee CR, Arizpe A, Anakk S, Jung SY, Hartig SM, Moore DD. Constitutive Androstane Receptor Differentially Regulates Bile Acid Homeostasis in Mouse Models of Intrahepatic Cholestasis. Hepatol Commun 2018; 3:147-159. [PMID: 30620001 PMCID: PMC6312660 DOI: 10.1002/hep4.1274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/03/2018] [Indexed: 12/14/2022] Open
Abstract
Bile acid (BA) homeostasis is tightly regulated by multiple transcription factors, including farnesoid X receptor (FXR) and small heterodimer partner (SHP). We previously reported that loss of the FXR/SHP axis causes severe intrahepatic cholestasis, similar to human progressive familial intrahepatic cholestasis type 5 (PFIC5). In this study, we found that constitutive androstane receptor (CAR) is endogenously activated in Fxr:Shp double knockout (DKO) mice. To test the hypothesis that CAR activation protects DKO mice from further liver damage, we generated Fxr;Shp;Car triple knockout (TKO) mice. In TKO mice, residual adenosine triphosphate (ATP) binding cassette, subfamily B member 11 (ABCB11; alias bile salt export pump [BSEP]) function and fecal BA excretion are completely impaired, resulting in severe hepatic and biliary damage due to excess BA overload. In addition, we discovered that pharmacologic CAR activation has different effects on intrahepatic cholestasis of different etiologies. In DKO mice, CAR agonist 1,4‐bis[2‐(3,5‐dichloropyridyloxy)]benzene (TCPOBOP; here on TC) treatment attenuated cholestatic liver injury, as expected. However, in the PFIC2 model Bsep knockout (BKO) mice, TC treatment exhibited opposite effects that reflect increased BA accumulation and liver injury. These contrasting results may be linked to differential regulation of systemic cholesterol homeostasis in DKO and BKO livers. TC treatment selectively up‐regulated hepatic cholesterol levels in BKO mice, supporting de novo BA synthesis. Conclusion: CAR activation in DKO mice is generally protective against cholestatic liver injury in these mice, which model PFIC5, but not in the PFIC2 model BKO mice. Our results emphasize the importance of the genetic and physiologic background when implementing targeted therapies to treat intrahepatic cholestasis.
Collapse
Affiliation(s)
- Kang Ho Kim
- Department of Molecular and Cellular Biology Baylor College of Medicine Houston TX
| | - Jong Min Choi
- Department of Molecular and Cellular Biology Baylor College of Medicine Houston TX
| | - Feng Li
- Department of Molecular and Cellular Biology Baylor College of Medicine Houston TX.,Center for Drug Discovery Baylor College of Medicine Houston TX
| | - Bingning Dong
- Department of Molecular and Cellular Biology Baylor College of Medicine Houston TX
| | | | - Armando Arizpe
- School of Natural Science University of Texas Austin Austin TX
| | - Sayeepriyadarshini Anakk
- Department of Molecular and Integrative Physiology University of Illinois at Urbana-Champaign Urbana IL
| | - Sung Yun Jung
- Department of Molecular and Cellular Biology Baylor College of Medicine Houston TX.,Verna and Marrs McLean Department of Biochemistry and Molecular Biology Baylor College of Medicine Houston TX
| | - Sean M Hartig
- Department of Molecular and Cellular Biology Baylor College of Medicine Houston TX.,Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine Baylor College of Medicine Houston TX
| | - David D Moore
- Department of Molecular and Cellular Biology Baylor College of Medicine Houston TX
| |
Collapse
|
37
|
Fernández-Murga ML, Petrov PD, Conde I, Castell JV, Goméz-Lechón MJ, Jover R. Advances in drug-induced cholestasis: Clinical perspectives, potential mechanisms and in vitro systems. Food Chem Toxicol 2018; 120:196-212. [PMID: 29990576 DOI: 10.1016/j.fct.2018.07.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/05/2018] [Accepted: 07/06/2018] [Indexed: 12/12/2022]
Abstract
Despite growing research, drug-induced liver injury (DILI) remains a serious issue of increasing importance to the medical community that challenges health systems, pharmaceutical industries and drug regulatory agencies. Drug-induced cholestasis (DIC) represents a frequent manifestation of DILI in humans, which is characterised by an impaired canalicular bile flow resulting in a detrimental accumulation of bile constituents in blood and tissues. From a clinical point of view, cholestatic DILI generates a wide spectrum of presentations and can be a diagnostic challenge. The drug classes mostly associated with DIC are anti-infectious, anti-diabetic, anti-inflammatory, psychotropic and cardiovascular agents, steroids, and other miscellaneous drugs. The molecular mechanisms of DIC have been investigated since the 1980s but they remain debatable. It is recognised that altered expression and/or function of hepatobiliary membrane transporters underlies some forms of cholestasis, and this and other concomitant mechanisms are very likely in DIC. Deciphering these processes may pave the ways for diagnosis, prognosis and prevention, for which currently major gaps and caveats exist. In this review, we summarise recent advances in the field of DIC, including clinical aspects, the potential mechanisms postulated so far and the in vitro systems that can be useful to investigate and identify new cholestatic drugs.
Collapse
Affiliation(s)
- M Leonor Fernández-Murga
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Petar D Petrov
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Isabel Conde
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Jose V Castell
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Spain
| | - M José Goméz-Lechón
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain.
| | - Ramiro Jover
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Spain.
| |
Collapse
|
38
|
Goldstein J, Levy C. Novel and emerging therapies for cholestatic liver diseases. Liver Int 2018; 38:1520-1535. [PMID: 29758112 DOI: 10.1111/liv.13880] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 05/01/2018] [Indexed: 02/06/2023]
Abstract
While bile acids are important for both digestion and signalling, hydrophobic bile acids can be harmful, especially when in high concentrations. Mechanisms for the protection of cholangiocytes against bile acid cytotoxicity include negative feedback loops via farnesoid X nuclear receptor (FXR) activation, the bicarbonate umbrella, cholehepatic shunting and anti-inflammatory signalling, among others. By altering or overwhelming these defence mechanisms, cholestatic diseases such as primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC) can further progress to biliary cirrhosis, end-stage liver disease and death or liver transplantation. While PBC is currently treated with ursodeoxycholic acid (UDCA) and obeticholic acid (OCA), many fail treatment, and we have yet to find an effective therapy for PSC. Novel therapies under evaluation target nuclear and surface receptors including FXR, transmembrane G-protein-coupled receptor 5 (TGR5), peroxisome proliferator-activated receptor (PPAR) and pregnane X receptor (PXR). Modulation of these receptors leads to altered bile composition, decreased cytotoxicity, decreased inflammation and improved metabolism. This review summarizes our current understanding of the role of bile acids in the pathophysiology of cholestatic liver diseases, presents the rationale for already approved medical therapies and discusses novel pharmacologic therapies under investigation.
Collapse
Affiliation(s)
- Jordan Goldstein
- Division of Internal Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Cynthia Levy
- Division of Hepatology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
39
|
Brandl K, Hartmann P, Jih LJ, Pizzo DP, Argemi J, Ventura-Cots M, Coulter S, Liddle C, Ling L, Rossi SJ, DePaoli AM, Loomba R, Mehal WZ, Fouts DE, Lucey MR, Bosques-Padilla F, Mathurin P, Louvet A, Garcia-Tsao G, Verna EC, Abraldes JG, Brown RS, Vargas V, Altamirano J, Caballería J, Shawcross D, Stärkel P, Ho SB, Bataller R, Schnabl B. Dysregulation of serum bile acids and FGF19 in alcoholic hepatitis. J Hepatol 2018; 69:396-405. [PMID: 29654817 PMCID: PMC6054564 DOI: 10.1016/j.jhep.2018.03.031] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS The degree of cholestasis is an important disease driver in alcoholic hepatitis, a severe clinical condition that needs new biomarkers and targeted therapies. We aimed to identify the largely unknown mechanisms and biomarkers linked to cholestasis in alcoholic hepatitis. METHODS Herein, we analyzed a well characterized cohort of patients with alcoholic hepatitis and correlated clinical and histological parameters and outcomes with serum bile acids and fibroblast growth factor 19 (FGF19), a major regulator of bile acid synthesis. RESULTS We found that total and conjugated bile acids were significantly increased in patients with alcoholic hepatitis compared with controls. Serum FGF19 levels were strongly increased and gene expression of FGF19 was induced in biliary epithelial cells and ductular cells of patients with alcoholic hepatitis. De novo bile acid synthesis (CYP7A1 gene expression and C4 serum levels) was significantly decreased in patients with alcoholic hepatitis. Importantly, total and conjugated bile acids correlated positively with FGF19 and with disease severity (model for end-stage liver disease score). FGF19 correlated best with conjugated cholic acid, and model for end-stage liver disease score best with taurine-conjugated chenodeoxycholic acid. Univariate analysis demonstrated significant associations between FGF19 and bilirubin as well as gamma glutamyl transferase, and negative correlations between FGF19 and fibrosis stage as well as polymorphonuclear leukocyte infiltration, in all patients with alcoholic hepatitis. CONCLUSION Serum FGF19 and bile acids are significantly increased in patients with alcoholic hepatitis, while de novo bile acid synthesis is suppressed. Modulation of bile acid metabolism or signaling could represent a promising target for treatment of alcoholic hepatitis in humans. LAY SUMMARY Understanding the underlying mechanisms that drive alcoholic hepatitis is important for the development of new biomarkers and targeted therapies. Herein, we describe a molecule that is increased in patients with alcoholic hepatitis. Modulating the molecular pathway of this molecule might lead to promising targets for the treatment of alcoholic hepatitis.
Collapse
Affiliation(s)
- Katharina Brandl
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego
| | - Phillipp Hartmann
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA,Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Lily J. Jih
- Department of Pathology, University of California San Diego, La Jolla, CA, USA,Department of Pathology, VA San Diego Healthcare System, San Diego, CA, USA
| | - Donald P. Pizzo
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Josepmaria Argemi
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh Liver Research Center, Pittsburgh, Pennsylvania, USA
| | - Meritxell Ventura-Cots
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh Liver Research Center, Pittsburgh, Pennsylvania, USA
| | - Sally Coulter
- Storr Liver Centre, Westmead Institute for Medical Research and Sydney Medical School, University of Sydney, Australia
| | - Christopher Liddle
- Storr Liver Centre, Westmead Institute for Medical Research and Sydney Medical School, University of Sydney, Australia
| | - Lei Ling
- NGM Bio, South San Francisco, CA, USA
| | | | | | - Rohit Loomba
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Wajahat Z. Mehal
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA, and Section of Digestive Diseases, VA-CT Healthcare System, West Haven, CT, USA
| | | | - Michael R. Lucey
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, WI, USA
| | - Francisco Bosques-Padilla
- Hospital Universitario, Departamento de Gastroenterología, Universidad Autonoma de Nuevo Leon, Monterrey, México
| | - Philippe Mathurin
- Service des Maladies de L’appareil Digestif et Unité INSERM, Hôpital Huriez, Lille, France
| | - Alexander Louvet
- Service des Maladies de L’appareil Digestif et Unité INSERM, Hôpital Huriez, Lille, France
| | - Guadalupe Garcia-Tsao
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA, and Section of Digestive Diseases, VA-CT Healthcare System, West Haven, CT, USA
| | - Elizabeth C. Verna
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - Juan G. Abraldes
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Robert S. Brown
- Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, NY, USA
| | - Victor Vargas
- Liver Unit, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain,Centro de Investigación en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Jose Altamirano
- Liver Unit, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juan Caballería
- Centro de Investigación en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain,Liver Unit, Hospital Clinic, Barcelona, Spain
| | - Debbie Shawcross
- Institute of Liver Studies, King’s College London School of Medicine at King’s College Hospital, King’s College Hospital, London, UK
| | - Peter Stärkel
- St. Luc University Hospital, Université Catholique de Louvain, Brussels, Belgium
| | - Samuel B. Ho
- Department of Medicine, University of California San Diego, La Jolla, CA, USA,Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| | - Ramon Bataller
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh Liver Research Center, Pittsburgh, Pennsylvania, USA
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA; Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
40
|
Petrov PD, Fernández-Murga ML, López-Riera M, Goméz-Lechón MJ, Castell JV, Jover R. Predicting drug-induced cholestasis: preclinical models. Expert Opin Drug Metab Toxicol 2018; 14:721-738. [PMID: 29888962 DOI: 10.1080/17425255.2018.1487399] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION In almost 50% of patients with drug-induced liver injury (DILI), the bile flow from the liver to the duodenum is impaired, a condition known as cholestasis. However, this toxic response only appears in a small percentage of the treated patients (idiosyncrasy). Prediction of drug-induced cholestasis (DIC) is challenging and emerges as a safety issue that requires attention by professionals in clinical practice, regulatory authorities, pharmaceutical companies, and research institutions. Area covered: The current synopsis focuses on the state-of-the-art in preclinical models for cholestatic DILI prediction. These models differ in their goal, complexity, availability, and applicability, and can widely be classified in experimental animals and in vitro models. Expert opinion: Drugs are a growing cause of cholestasis, but the progress made in explaining mechanisms and differences in susceptibility is not growing at the same rate. We need reliable models able to recapitulate the features of DIC, particularly its idiosyncrasy. The homogeneity and the species-specific differences move animal models away from a fair predictability. However, in vitro human models are improving and getting closer to the real hepatocyte phenotype, and they will likely be the choice in the near future. Progress in this area will not only need reliable predictive models but also mechanistic insights.
Collapse
Affiliation(s)
- Petar D Petrov
- a Instituto de Investigación Sanitaria La Fe (IIS La Fe) , Unidad de Hepatología Experimental , Valencia , Spain.,b Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD) , Madrid , Spain
| | - M Leonor Fernández-Murga
- a Instituto de Investigación Sanitaria La Fe (IIS La Fe) , Unidad de Hepatología Experimental , Valencia , Spain
| | - Mireia López-Riera
- a Instituto de Investigación Sanitaria La Fe (IIS La Fe) , Unidad de Hepatología Experimental , Valencia , Spain
| | - M José Goméz-Lechón
- a Instituto de Investigación Sanitaria La Fe (IIS La Fe) , Unidad de Hepatología Experimental , Valencia , Spain.,b Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD) , Madrid , Spain
| | - Jose V Castell
- a Instituto de Investigación Sanitaria La Fe (IIS La Fe) , Unidad de Hepatología Experimental , Valencia , Spain.,b Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD) , Madrid , Spain.,c Departamento de Bioquímica y Biología Molecular, Facultad de Medicina , Universidad de Valencia , Valencia , Spain
| | - Ramiro Jover
- a Instituto de Investigación Sanitaria La Fe (IIS La Fe) , Unidad de Hepatología Experimental , Valencia , Spain.,b Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD) , Madrid , Spain.,c Departamento de Bioquímica y Biología Molecular, Facultad de Medicina , Universidad de Valencia , Valencia , Spain
| |
Collapse
|
41
|
Tebbens JD, Azar M, Friedmann E, Lanzendörfer M, Pávek P. Mathematical Models in the Description of Pregnane X Receptor (PXR)-Regulated Cytochrome P450 Enzyme Induction. Int J Mol Sci 2018; 19:ijms19061785. [PMID: 29914136 PMCID: PMC6032247 DOI: 10.3390/ijms19061785] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 02/06/2023] Open
Abstract
The pregnane X receptor (PXR) is a drug/xenobiotic-activated transcription factor of crucial importance for major cytochrome P450 xenobiotic-metabolizing enzymes (CYP) expression and regulation in the liver and the intestine. One of the major target genes regulated by PXR is the cytochrome P450 enzyme (CYP3A4), which is the most important human drug-metabolizing enzyme. In addition, PXR is supposed to be involved both in basal and/or inducible expression of many other CYPs, such as CYP2B6, CYP2C8, 2C9 and 2C19, CYP3A5, CYP3A7, and CYP2A6. Interestingly, the dynamics of PXR-mediated target genes regulation has not been systematically studied and we have only a few mechanistic mathematical and biologically based models describing gene expression dynamics after PXR activation in cellular models. Furthermore, few indirect mathematical PKPD models for prediction of CYP3A metabolic activity in vivo have been built based on compartmental models with respect to drug–drug interactions or hormonal crosstalk. Importantly, several negative feedback loops have been described in PXR regulation. Although current mathematical models propose these adaptive mechanisms, a comprehensive mathematical model based on sufficient experimental data is still missing. In the current review, we summarize and compare these models and address some issues that should be considered for the improvement of PXR-mediated gene regulation modelling as well as for our better understanding of the quantitative and spatial dynamics of CYPs expression.
Collapse
Affiliation(s)
- Jurjen Duintjer Tebbens
- Department of Biophysics and Physical Chemistry, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic.
| | - Malek Azar
- Department of Biophysics and Physical Chemistry, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic.
| | - Elfriede Friedmann
- Department of Applied Mathematics, Faculty of Mathematics and Computer Sciences, Mathematikon, University Heidelberg, Im Neuenheimer Feld 205, D-69120 Heidelberg, Germany.
| | - Martin Lanzendörfer
- Institute of Hydrogeology, Engineering Geology and Applied Geophysics, Faculty of Science, Charles University, Albertov 6, 128 43 Praha 2, Czech Republic.
| | - Petr Pávek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic.
| |
Collapse
|
42
|
N-3 Polyunsaturated Fatty Acids Stimulate Bile Acid Detoxification in Human Cell Models. Can J Gastroenterol Hepatol 2018; 2018:6031074. [PMID: 29850457 PMCID: PMC5907406 DOI: 10.1155/2018/6031074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/07/2018] [Indexed: 01/16/2023] Open
Abstract
Cholestasis is characterized by the accumulation of toxic bile acids (BAs) in liver cells. The present study aimed to evaluate the effects of n-3 polyunsaturated fatty acids (n-3 PUFAs), such as docosahexaenoic (DHA) and eicosapentaenoic (EPA) acids, on BA homeostasis and toxicity in human cell models. The effects of EPA and/or DHA on the expression of genes involved in the maintenance of BA homeostasis were analyzed in human hepatoma (HepG2) and colon carcinoma (Caco-2) cells, as well as in primary culture of human intestinal (InEpC) and renal (RPTEC) cells. Extracellular BA species were quantified in culture media using LC-MS/MS. BA-induced toxicity was evaluated using caspase-3 and flow cytometry assays. Gene expression analyses of HepG2 cells reveal that n-3 PUFAs reduce the expression of genes involved in BA synthesis (CYP7A1, CYP27A1) and uptake (NTCP), while activating genes encoding metabolic enzymes (SULT2A1) and excretion transporters (MRP2, MRP3). N-3 PUFAs also generate a less toxic BA pool and prevent the BA-dependent activation of apoptosis in HepG2 cells. Conclusion. The present study reveals that n-3 PUFAs stimulate BA detoxification.
Collapse
|
43
|
Palmer M, Jennings L, Silberg DG, Bliss C, Martin P. A randomised, double-blind, placebo-controlled phase 1 study of the safety, tolerability and pharmacodynamics of volixibat in overweight and obese but otherwise healthy adults: implications for treatment of non-alcoholic steatohepatitis. BMC Pharmacol Toxicol 2018; 19:10. [PMID: 29548345 PMCID: PMC5857122 DOI: 10.1186/s40360-018-0200-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 03/07/2018] [Indexed: 12/13/2022] Open
Abstract
Background Accumulation of toxic free cholesterol in hepatocytes may cause hepatic inflammation and fibrosis. Volixibat inhibits bile acid reuptake via the apical sodium bile acid transporter located on the luminal surface of the ileum. The resulting increase in bile acid synthesis from cholesterol could be beneficial in patients with non-alcoholic steatohepatitis. This adaptive dose-finding study investigated the safety, tolerability, pharmacodynamics, and pharmacokinetics of volixibat. Methods Overweight and obese adults were randomised 3:1 to double-blind volixibat or placebo, respectively, for 12 days. Volixibat was initiated at a once-daily dose of 20 mg, 40 mg or 80 mg. Based on the assessment of predefined safety events, volixibat dosing was either escalated or reduced. Other dose regimens (titrations and twice-daily dosing) were also evaluated. Assessments included safety, tolerability, stool hardness, faecal bile acid (FBA) excretion, and serum levels of 7α-hydroxy-4-cholesten-3-one (C4) and lipids. Results All 84 randomised participants (volixibat, 63; placebo, 21) completed the study, with no serious adverse events at doses of up to 80 mg per day (maximum assessed dose). The median number of daily bowel evacuations increased from 1 (range 0–4) to 2 (0–8) during volixibat treatment, and stool was looser with volixibat than placebo. Volixibat was minimally absorbed; serum levels were rarely quantifiable at any dose or sampling time point, thereby precluding pharmacokinetic analyses. Mean daily FBA excretion was 930.61 μmol (standard deviation [SD] 468.965) with volixibat and 224.75 μmol (195.403) with placebo; effects were maximal at volixibat doses ≥20 mg/day. Mean serum C4 concentrations at day 12 were 98.767 ng/mL (standard deviation, 61.5841) with volixibat and 16.497 ng/mL (12.9150) with placebo. Total and low-density lipoprotein cholesterol levels decreased in the volixibat group, with median changes of − 0.70 mmol/L (range − 2.8 to 0.4) and − 0.6990 mmol/L (− 3.341 to 0.570), respectively. Conclusions This study indicates that maximal inhibition of bile acid reabsorption, as assessed by FBA excretion, occurs at volixibat doses of ≥20 mg/day in obese and overweight adults, without appreciable change in gastrointestinal tolerability. These findings guided dose selection for an ongoing phase 2 study in patients with non-alcoholic steatohepatitis. Trial registration ClinicalTrials.gov identifier: NCT02287779 (registration first received 6 November 2014). Electronic supplementary material The online version of this article (10.1186/s40360-018-0200-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Melissa Palmer
- Global Development Lead Hepatology, Shire, 300 Shire Way, Lexington, MA, 02421, USA.
| | - Lee Jennings
- Global Development Lead Hepatology, Shire, 300 Shire Way, Lexington, MA, 02421, USA
| | - Debra G Silberg
- Shire International GmbH, Zahlerweg 10, 6301, Zug, Switzerland
| | - Caleb Bliss
- Global Development Lead Hepatology, Shire, 300 Shire Way, Lexington, MA, 02421, USA
| | - Patrick Martin
- Global Development Lead Hepatology, Shire, 300 Shire Way, Lexington, MA, 02421, USA
| |
Collapse
|
44
|
Frisch K, Alstrup AKO. On the Evolution of Bile Salts and the Farnesoid X Receptor in Vertebrates. Physiol Biochem Zool 2018; 91:797-813. [DOI: 10.1086/695810] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
45
|
Wang F, Wu Y, Xie X, Sun J, Chen W. Essential role of nuclear receptors for the evaluation of the benefits of bioactive herbal extracts on liver function. Pharmacotherapy 2018; 99:798-809. [DOI: 10.1016/j.biopha.2018.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/29/2017] [Accepted: 01/03/2018] [Indexed: 02/07/2023]
|
46
|
Durchschein F, Krones E, Pollheimer MJ, Zollner G, Wagner M, Raufman JP, Fickert P. Genetic loss of the muscarinic M 3 receptor markedly alters bile formation and cholestatic liver injury in mice. Hepatol Res 2018. [PMID: 28635176 DOI: 10.1111/hepr.12928] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
AIM Hepatic innervation represents a potentially underestimated regulator of liver function and regeneration. The muscarinic 3 receptor (M3 -R) is the primary cholangiocyte receptor for the afferent parasympathetic innervation of bile ducts. We aimed to determine the specific role of the M3 -R in bile formation and models for cholestatic liver disease in mice. METHODS We compared bile flow and composition in M3 -R knock-out mice (M3 -R-/- ) and wild type littermates (WT). Furthermore, we compared liver inury of M3 -R-/- and WT mice after 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) feeding, a well-characterized preclinical model of cholestatic liver disease. To analyze the possible role of the M3 -R as a therapeutic target, we treated 4-week-old Mdr2-/- mice, a preclinical model for sclerosing cholangitis, with the M3 -R agonist bethanechol for 4 weeks. RESULTS M3 -R-/- mice showed significantly reduced bile flow compared to WT mice, most likely due to decreased biliary HCO3- secretion. However, even aged M3 -R-/- mice did not spontaneously develop liver injury or cholestasis. Challenging M3 -R-/- and WT littermates with DDC feeding showed substantially aggravated liver injury in M3 -R-/- mice. After 4 weeks bethanechol treatment, Mdr2-/- mice showed less liver injury compared to controls. CONCLUSION Our experimental findings suggest that M3 -R-signalling significantly influences bile formation. Loss of the M3 -R increases susceptibility to cholestatic injury in DDC-fed mice. Since treatment of Mdr2-/- mice with a M3 -R agonist decreases liver injury, M3-R signaling may represent a therapeutic target in specific cholangiopathies.
Collapse
Affiliation(s)
- Franziska Durchschein
- Research Unit for Experimental and Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Austria
| | - Elisabeth Krones
- Research Unit for Experimental and Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Austria
| | | | - Gernot Zollner
- Research Unit for Experimental and Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Austria
| | - Martin Wagner
- Research Unit for Experimental and Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Austria
| | - Jean-Pierre Raufman
- Division of Gastroenterology and Hepatology, Department of Medicine, School of Medicine, University of Maryland, USA
| | - Peter Fickert
- Research Unit for Experimental and Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Austria
| |
Collapse
|
47
|
Abstract
Emerging evidence points to a strong association between the gut microbiota and the risk, development and progression of gastrointestinal cancers such as colorectal cancer (CRC) and hepatocellular carcinoma (HCC). Bile acids, produced in the liver, are metabolized by enzymes derived from intestinal bacteria and are critically important for maintaining a healthy gut microbiota, balanced lipid and carbohydrate metabolism, insulin sensitivity and innate immunity. Given the complexity of bile acid signalling and the direct biochemical interactions between the gut microbiota and the host, a systems biology perspective is required to understand the liver-bile acid-microbiota axis and its role in gastrointestinal carcinogenesis to reverse the microbiota-mediated alterations in bile acid metabolism that occur in disease states. An examination of recent research progress in this area is urgently needed. In this Review, we discuss the mechanistic links between bile acids and gastrointestinal carcinogenesis in CRC and HCC, which involve two major bile acid-sensing receptors, farnesoid X receptor (FXR) and G protein-coupled bile acid receptor 1 (TGR5). We also highlight the strategies and cutting-edge technologies to target gut-microbiota-dependent alterations in bile acid metabolism in the context of cancer therapy.
Collapse
Affiliation(s)
- Wei Jia
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology & Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
- University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, Hawaii 96813, USA
| | - Guoxiang Xie
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology & Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
- University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, Hawaii 96813, USA
| | - Weiping Jia
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology & Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| |
Collapse
|
48
|
Dolezelova E, Prasnicka A, Cermanova J, Carazo A, Hyrsova L, Hroch M, Mokry J, Adamcova M, Mrkvicova A, Pavek P, Micuda S. Resveratrol modifies biliary secretion of cholephilic compounds in sham-operated and cholestatic rats. World J Gastroenterol 2017; 23:7678-7692. [PMID: 29209109 PMCID: PMC5703928 DOI: 10.3748/wjg.v23.i43.7678] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/15/2017] [Accepted: 09/05/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the effect of resveratrol on biliary secretion of cholephilic compounds in healthy and bile duct-obstructed rats.
METHODS Resveratrol (RSV) or saline were administered to rats by daily oral gavage for 28 d after sham operation or reversible bile duct obstruction (BDO). Bile was collected 24 h after the last gavage during an intravenous bolus dose of the Mdr1/Mrp2 substrate azithromycin. Bile acids, glutathione and azithromycin were measured in bile to quantify their level of biliary secretion. Liver expression of enzymes and transporters relevant for bile production and biliary secretion of major bile constituents and drugs were analyzed at the mRNA and protein levels using qRT-PCR and Western blot analysis, respectively. The TR-FRET PXR Competitive Binding Assay kit was used to determine the agonism of RSV at the pregnane X receptor.
RESULTS RSV increased bile flow in sham-operated rats due to increased biliary secretion of bile acids (BA) and glutathione. This effect was accompanied by the induction of the hepatic rate-limiting transporters for bile acids and glutathione, Bsep and Mrp2, respectively. RSV also induced Cyp7a1, an enzyme that is crucial for bile acid synthesis; Mrp4, a transporter important for BA secretion from hepatocytes to blood; and Mdr1, the major apical transporter for xenobiotics. The findings were supported by increased biliary secretion of azithromycin. The TR-FRET PXR competitive binding assay confirmed RSV as a weak agonist of the human nuclear receptor PXR, which is a transcriptional regulator of Mdr1/Mrp2. RSV demonstrated significant hepatoprotective properties against BDO-induced cirrhosis. RSV also reduced bile flow in BDO rats without any corresponding change in the levels of the transporters and enzymes involved in RSV-mediated hepatoprotection.
CONCLUSION Resveratrol administration for 28 d has a distinct effect on bile flow and biliary secretion of cholephilic compounds in healthy and bile duct-obstructed rats.
Collapse
Affiliation(s)
- Eva Dolezelova
- Department of Biological and Medical Sciences, Charles University, Faculty of Pharmacy in Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Alena Prasnicka
- Department of Pharmacology, Charles University, Faculty of Medicine in Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Jolana Cermanova
- Department of Pharmacology, Charles University, Faculty of Medicine in Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Alejandro Carazo
- Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy in Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Lucie Hyrsova
- Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy in Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Milos Hroch
- Department of Medical Biochemistry, Charles University, Faculty of Medicine in Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Jaroslav Mokry
- Department of Histology and Embryology, Charles University, Faculty of Medicine in Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Michaela Adamcova
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Alena Mrkvicova
- Department of Medical Biochemistry, Charles University, Faculty of Medicine in Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy in Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Stanislav Micuda
- Department of Pharmacology, Charles University, Faculty of Medicine in Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| |
Collapse
|
49
|
Gabbia D, Pozza AD, Albertoni L, Lazzari R, Zigiotto G, Carrara M, Baldo V, Baldovin T, Floreani A, Martin SD. Pregnane X receptor and constitutive androstane receptor modulate differently CYP3A-mediated metabolism in early- and late-stage cholestasis. World J Gastroenterol 2017; 23:7519-7530. [PMID: 29204052 PMCID: PMC5698245 DOI: 10.3748/wjg.v23.i42.7519] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/18/2017] [Accepted: 10/17/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To ascertain whether cholestasis affects the expression of two CYP3A isoforms (CYP3A1 and CYP3A2) and of pregnane X receptor (PXR) and constitutive androstane receptor (CAR).
METHODS Cholestasis was induced by bile duct ligation in 16 male Wistar rats; whereas 8 sham-operated rats were used as controls. Severity of cholestasis was assessed on histological examination of liver sections, and serum concentrations of albumin, AST, ALT, GGT, ALPK and bilirubin. Gene and protein expressions of PXR, CAR, CYP3A1 and CYP3A2 were assessed by means of qRT-PCR and Western blot, respectively. Alterations in CYP3A activity were measured by calculating the kinetic parameters of 4-OH and 1’-OH-midazolam hydroxylation, marker reactions for CYP3A enzymes.
RESULTS The mRNA and protein expression of CYP3A1 increased significantly in mild cholestasis (P < 0.01). At variance, mRNA and protein expression of CYP3A2 didn’t change in mild cholestasis, whereas the expression and activity of both CYP3A1 and CYP3A2 decreased dramatically when cholestasis became severe. Consistently with these observations, the nuclear expression of both PXR and CAR, which was measured because they both translocate into the cell nucleus after their activation, virtually disappeared in the late stage of cholestatic injury, after an initial increase. These results indicate that early- and late-stage cholestasis affects CYP3A-mediated drug metabolism differently, probably as consequence of the different activation of PXR and CAR.
CONCLUSION Early- and late-stage cholestasis affects CYP3A-mediated drug metabolism differently. PXR and CAR might be targeted therapeutically to promote CYP3A-mediated liver detoxification.
Collapse
Affiliation(s)
- Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova 35131, Italy
| | - Arianna Dalla Pozza
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova 35131, Italy
| | - Laura Albertoni
- Department of Medicine, General Pathology and Cytopathology Unit, University of Padova, Padova 35131, Italy
| | - Roberta Lazzari
- Department of Cardiac, Thoracic, and Vascular Sciences, Hygiene and Public Health Unit, University of Padova, Padova 35131, Italy
| | - Giorgia Zigiotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova 35131, Italy
| | - Maria Carrara
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova 35131, Italy
| | - Vincenzo Baldo
- Department of Cardiac, Thoracic, and Vascular Sciences, Hygiene and Public Health Unit, University of Padova, Padova 35131, Italy
| | - Tatjana Baldovin
- Department of Cardiac, Thoracic, and Vascular Sciences, Hygiene and Public Health Unit, University of Padova, Padova 35131, Italy
| | - Annarosa Floreani
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova 35131, Italy
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova 35131, Italy
| |
Collapse
|
50
|
Jia WJ, Sun SQ, Huang LS, Tang QL, Qiu YD, Mao L. Reduced triglyceride accumulation due to overactivation of farnesoid X receptor signaling contributes to impaired liver regeneration following 50% hepatectomy in extra‑cholestatic liver tissue. Mol Med Rep 2017; 17:1545-1554. [PMID: 29138817 DOI: 10.3892/mmr.2017.8025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 09/27/2017] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the role of triglyceride metabolism in the effect of obstructive cholestasis on liver regeneration following 50% partial hepatectomy (PH). Obstructive cholestatic rat models were achieved via ligation of the common bile duct (BDL). Following comparisons between hepatic pathological alterations with patients with perihilar cholangiocarcinoma, rats in the 7 day post‑BDL group were selected as the BDL model for subsequent experiments. Liver weight restoration, proliferating cell nuclear antigen labeling index, cytokine and growth factor expression levels, and hepatic triglyceride content were evaluated to analyze liver regeneration post‑PH within BDL and control group rats. The results of the present study revealed that obstructive cholestasis impaired liver mass restoration, which occurred via inhibition of early stage hepatocyte proliferation. In addition, reduced triglyceride content and inhibited expression of fatty acid β‑oxidation‑associated genes, peroxisome proliferator activated receptor α and carnitine palmitoyltransferase, were associated with an insufficient energy supply within the BDL group post‑PH. Notably, the expression levels of fatty acid synthesis‑associated genes, including sterol‑regulatory element‑binding protein‑1c, acetyl‑coA carboxylase 1 and fatty acid synthase were also reduced within the BDL group, which accounted for the reduced triglyceride content and fatty acid utilization. Further investigation revealed that overactivated farnesoid X receptor (FXR) signaling may inhibit fatty acid synthesis within BDL group rats. Collectively, the role of triglycerides in liver regeneration following PH in extra‑cholestatic livers was identified in the present study. Additionally, the results indicated that overactivated FXR signaling‑induced triglyceride reduction is associated with insufficient energy supply and therefore contributes to the extent of impairment of liver regeneration following PH within extra‑cholestatic livers.
Collapse
Affiliation(s)
- Wen-Jun Jia
- Department of Hepatopancreatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Shi-Quan Sun
- Department of Hepatopancreatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Luo-Shun Huang
- Department of Hepatopancreatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Qiao-Li Tang
- Ministry of Education Key Laboratory of Model Animal for Disease Study, School of Medicine and Model Animal Research Center, Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Yu-Dong Qiu
- Department of Hepatopancreatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Liang Mao
- Department of Hepatopancreatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|