1
|
Meng LJ, Clinthorne NH. Small-Animal SPECT, SPECT/CT, and SPECT/MRI. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
2
|
Xu T, Xu X, Yang L, Chen X, Ju S. Noninvasive Visualization of Obesity-Boosted Inflammation in Orthotopic Pancreatic Ductal Adenocarcinoma Using an Octapod Iron Oxide Nanoparticle. ACS APPLIED BIO MATERIALS 2020; 3:6408-6418. [PMID: 35021772 DOI: 10.1021/acsabm.0c00841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tumor-associated macrophages (TAMs) are the most abundant immune cells in the tumor microenvironment and promote the progression of tumors, including pancreatic ductal adenocarcinoma (PDAC). Obesity is a metabolic disease and a significant factor that affects tumor immunity and immunotherapy, contributing to a poorer tumor prognosis. However, TAMs as the link between obesity and poorer tumor prognosis has been less addressed and remains unclear. The current study aimed to noninvasively determine the effect of obesity on TAMs in orthotopic PDAC animal models, leptin-deficient transgenic obese (ob/ob) mice. Iron oxide nanoparticles, Octapod-30, with ultra high r2 values, were utilized for in vivo consecutive T2-weighted MR imaging. After Octapod-30 injection, the T2-weighted signal intensity of the tumor area of both lean wild-type (WT) and ob/ob mice decreased rapidly, and the signal intensity significantly decreased as early as 0.5 h after injection compared with preinjection. The signal intensity continually decreased until 2 h and sustained for 4 h. In addition, the quantified signal intensity in obese ob/ob mice bearing PDAC significantly decreased compared with that in lean WT mice. Further histopathological analysis demonstrated that CD68-marked TAMs were highly colocalized with Prussian blue-stained Octapod-30, which were significantly more infiltrated in the tumor tissue of ob/ob mice than in the WT group, in parallel with larger size of tumor, higher levels of Ki67-marked proliferation and CD31-marked angiogenesis. Our results suggested that obesity increased TAMs infiltration and Octopad-30 can rapidly noninvasively detect TAMs in vivo in orthotopic PDAC with high spatial resolution and temporal resolution. Furthermore, the application of ultra high r2 octagonal iron oxide nanoparticles with powerful clinical conversion potential could allow noninvasive and efficient quantitative analysis of TAMs in PDAC with or without obesity, providing a promising inspection approach for early detection, treatment management, and efficacy evaluation of tumors for clinical application.
Collapse
Affiliation(s)
- Tingting Xu
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Xiaoxuan Xu
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Lijiao Yang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Shenghong Ju
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| |
Collapse
|
3
|
Mukherjee S, Sonanini D, Maurer A, Daldrup-Link HE. The yin and yang of imaging tumor associated macrophages with PET and MRI. Am J Cancer Res 2019; 9:7730-7748. [PMID: 31695797 PMCID: PMC6831464 DOI: 10.7150/thno.37306] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/27/2019] [Indexed: 12/14/2022] Open
Abstract
Tumor associated macrophages (TAM) are key players in the cancer microenvironment. Molecular imaging modalities such as MRI and PET can be used to track and monitor TAM dynamics in tumors non-invasively, based on specific uptake and quantification of MRI-detectable nanoparticles or PET-detectable radiotracers. Particular molecular signatures can be leveraged to target anti-inflammatory TAM, which support tumor growth, and pro-inflammatory TAM, which suppress tumor growth. In addition, TAM-directed imaging probes can be designed to include immune modulating properties, thereby leading to combined diagnostic and therapeutic (theranostic) effects. In this review, we will discuss the complementary role of TAM-directed radiotracers and iron oxide nanoparticles for monitoring cancer immunotherapies with PET and MRI technologies. In addition, we will outline how TAM-directed imaging and therapy is interdependent and can be connected towards improved clinical outcomes
Collapse
|
4
|
Cao Q, Huang Q, Mohan C, Li C. Small-Animal PET/CT Imaging of Local and Systemic Immune Response Using 64Cu-αCD11b. J Nucl Med 2019; 60:1317-1324. [PMID: 30796172 DOI: 10.2967/jnumed.118.220350] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/23/2019] [Indexed: 01/05/2023] Open
Abstract
Current noninvasive imaging methods for monitoring immune response were largely developed for interrogation of the local reaction. This study developed the radiotracer 64Cu-labeled anti-CD11b (64Cu-αCD11b) for longitudinal assessment of local and systemic immune response involving mobilization of CD11b+ myeloid cells by small-animal PET/CT. Methods: Acute or chronic inflammation in the ears of BALB/c mice was induced by 12-o-tetradecanoylphorbol-13-acetate. Acute lung inflammation was induced by intratracheal lipopolysaccharide inoculation. αCD11b was conjugated with p-SCN-Bn-DOTA followed by labeling with 64Cu. PET/CT and biodistribution were evaluated at different times after intravenous injection of 64Cu-αCD11b. Cell populations from bone marrow (BM) and spleen were analyzed by flow cytometry. Results: 64Cu-αCD11b was primarily taken up by BM and spleen in control mice. In comparison, 64Cu-αCD11b uptake was significantly reduced in the BM and spleen of CD11b-knockout mice, indicating that 64Cu-αCD11b selectively homed to CD11b+ myeloid cells in vivo. In mice with ear inflammation, for the local inflammatory response, 64Cu-αCD11b PET/CT revealed significantly higher 64Cu-αCD11b uptake in the inflamed ears in the acute inflammation phase than the chronic phase, consistent with markedly increased infiltration of CD11b+ cells into the inflammatory lesions at the acute phase. Moreover, imaging of 64Cu-αCD11b also showed the difference in mouse systemic response for different inflammatory stages. Compared with uptake in control mice, BM 64Cu-αCD11b uptake in mice with ear inflammation was significantly lower in the acute phase and higher in the chronic phase, reflecting an initial mobilization of CD11b+ cells from the BM to the inflammatory foci followed by a compensatory regeneration of CD11b+ myeloid cells in the BM. Similarly, in mice with lung inflammation, 64Cu-αCD11b PET/CT readily detected acute lung inflammation and recruitment of CD11b+ myeloid cells from the BM. Immunohistochemistry staining and flow cytometry results confirmed the noninvasive imaging of PET/CT. Conclusion: 64Cu-αCD11b PET/CT successfully tracked ear and pulmonary inflammation in mice and differentiated acute from chronic inflammation at the local and systemic levels. 64Cu-αCD11b PET/CT is a robust quantitative method for imaging of local and systemic immune responses.
Collapse
Affiliation(s)
- Qizhen Cao
- Department of Cancer Systems Imaging, The University of Texas M.D. Anderson Cancer Center, Houston, Texas; and
| | - Qian Huang
- Department of Cancer Systems Imaging, The University of Texas M.D. Anderson Cancer Center, Houston, Texas; and
| | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston, Texas
| | - Chun Li
- Department of Cancer Systems Imaging, The University of Texas M.D. Anderson Cancer Center, Houston, Texas; and
| |
Collapse
|
5
|
Abstract
The process of discovering and developing a new pharmaceutical is a long, difficult, and risky process that requires numerous resources. Molecular imaging techniques such as PET have recently become a useful tool for making decisions along a drug candidate's development timeline. PET is a translational, noninvasive imaging technique that provides quantitative information about a potential drug candidate and its target at the molecular level. Using this technique provides decisional information to ensure that the right drug candidate is being chosen, for the right target, at the right dose within the right patient population. This review will focus on small molecule PET tracers and how they are used within the drug discovery process. PET provides key information about a drug candidate's pharmacokinetic and pharmacodynamic properties in both preclinical and clinical studies. PET is being used in all phases of the drug discovery and development process, and the goal of these studies are to accelerate the process in which drugs are developed.
Collapse
Affiliation(s)
- David J Donnelly
- Bristol-Myers Squibb Pharmaceutical Research and Development, Princeton, NJ.
| |
Collapse
|
6
|
David Jebaraj D, Utsumi H, Milton Franklin Benial A. Low-frequency ESR studies on permeable and impermeable deuterated nitroxyl radicals in corn oil solution. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 56:257-264. [PMID: 29205482 DOI: 10.1002/mrc.4686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/13/2017] [Accepted: 11/16/2017] [Indexed: 06/07/2023]
Abstract
Low-frequency electron spin resonance studies were performed for 2 mM concentration of deuterated permeable and impermeable nitroxyl spin probes, 3-methoxycarbonyl-2,2,5,5-tetramethyl-pyrrolidine-1-oxyl and 3-carboxy-2,2,5,5,-tetramethyl-1-pyrrolidinyloxy in pure water and various concentrations of corn oil solution. The electron spin resonance parameters such as the line width, hyperfine coupling constant, g factor, rotational correlation time, permeability, and partition parameter were estimated. The broadening of line width was observed for nitroxyl radicals in corn oil mixture. The rotational correlation time increases with increasing concentration of corn oil, which indicates the less mobile nature of spin probe in corn oil mixture. The membrane permeability and partition parameter values were estimated as a function of corn oil concentration, which reveals that the nitroxyl radicals permeate equally into the aqueous phase and oil phase at the corn oil concentration of 50%. The electron spin resonance spectra demonstrate the permeable and impermeable nature of nitroxyl spin probes. From these results, the corn oil concentration was optimized as 50% for phantom studies. In this work, the corn oil and pure water mixture phantom models with various viscosities correspond to plasma membrane, and whole blood membrane with different hematocrit levels was studied for monitoring the biological characteristics and their interactions with permeable nitroxyl spin probe. These results will be useful for the development of electron spin resonance and Overhauser-enhanced magnetic resonance imaging modalities in biomedical applications.
Collapse
Affiliation(s)
- D David Jebaraj
- Department of Physics, The American College, Madurai, Tamil Nadu, 625 002, India
| | - Hideo Utsumi
- Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, 812-8582, Japan
| | | |
Collapse
|
7
|
Sharifian S, Homaei A, Hemmati R, B Luwor R, Khajeh K. The emerging use of bioluminescence in medical research. Biomed Pharmacother 2018; 101:74-86. [PMID: 29477474 DOI: 10.1016/j.biopha.2018.02.065] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 02/13/2018] [Accepted: 02/15/2018] [Indexed: 01/01/2023] Open
Abstract
Bioluminescence is the light produced by a living organism and is commonly emitted by sea life with Ca2+-regulated photoproteins being the most responsible for bioluminescence emission. Marine coelenterates provide important functions involved in essential purposes such as defense, feeding, and breeding. In this review, the main characteristics of marine photoproteins including aequorin, clytin, obelin, berovin, pholasin and symplectin from different marine organisms will be discussed. We will focused on the recent use of recombinant photoproteins in different biomedical research fields including the measurement of Ca2+ in different intracellular compartments of animal cells, as labels in the design and development of binding assays. This review will also outline how bioluminescent photoproteins have been used in a plethora of analytical methods including ultra-sensitive assays and in vivo imaging of cellular processes. Due to their unique properties including elective intracellular distribution, wide dynamic range, high signal-to-noise ratio and low Ca2+-buffering effect, recombinant photoproteins represent a promising future analytical tool in several in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Sana Sharifian
- Department of Marine Biology, Faculty of Sciences, University of Hormozgan, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Biochemistry, Faculty of Sciences, University of Hormozgan, Bandar Abbas, Iran.
| | - Roohullah Hemmati
- Department of Biology, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Rodney B Luwor
- Department of Surgery, Level 5, Clinical Sciences Building, The University of Melbourne, The Royal Melbourne Hospital, Grattan Street, Parkville, VIC 3050, Australia
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
8
|
Targeted Superparamagnetic Iron Oxide Nanoparticles for In Vivo Magnetic Resonance Imaging of T-Cells in Rheumatoid Arthritis. Mol Imaging Biol 2017; 19:233-244. [PMID: 27572293 DOI: 10.1007/s11307-016-1001-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE The purpose of the study is to develop a targeted nanoparticle platform for T cell labeling and tracking in vivo. PROCEDURES Through carboxylation of the polyethylene glycol (PEG) surface of SPION, carboxylated-PEG-SPION (IOPC) was generated as a precursor for further conjugation with the targeting probe. The IOPC could readily cross-link with a variety of amide-containing molecules by exploiting the reaction between 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide and N-hydroxysuccinimide. The subsequent conjugation of monoclonal anti-CD3 antibody with IOPC made it possible to construct a magnetic resonance imaging (MRI) contrast agente (CA) that targets T cells, named IOPC-CD3. RESULTS IOPC-CD3 was found to have high transverse relaxivity, good targeting selectivity, and good safety profile in vitro. The utility of this newly synthesized CA was explored in an in vivo rodent collagen-induced arthritis (CIA) model of rheumatoid arthritis. Serial MRI experiments revealed a selective decrease in the signal-to-noise ratio of the femoral growth plates of CIA rats infused with IOPC-CD3, with this finding being consistent with immunohistochemical results showing the accumulation of T cells and iron oxide nanoparticles in the corresponding region. CONCLUSIONS Together with the abovementioned desirable features, these results indicate that IOPC-CD3 offers a promising prospect for a wide range of cellular and molecular MRI applications.
Collapse
|
9
|
Drug Discovery by Molecular Imaging and Monitoring Therapy Response in Lymphoma. Int J Mol Sci 2017; 18:ijms18081639. [PMID: 28749424 PMCID: PMC5578029 DOI: 10.3390/ijms18081639] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/23/2017] [Accepted: 07/23/2017] [Indexed: 12/12/2022] Open
Abstract
Molecular imaging allows a noninvasive assessment of biochemical and biological processes in living subjects. Treatment strategies for malignant lymphoma depend on histology and tumor stage. For the last two decades, molecular imaging has been the mainstay diagnostic test for the staging of malignant lymphoma and the assessment of response to treatment. This technology enhances our understanding of disease and drug activity during preclinical and clinical drug development. Here, we review molecular imaging applications in drug development, with an emphasis on oncology. Monitoring and assessing the efficacy of anti-cancer therapies in preclinical or clinical models are essential and the multimodal molecular imaging approach may represent a new stage for pharmacologic development in cancer. Monitoring the progress of lymphoma therapy with imaging modalities will help patients. Identifying and addressing key challenges is essential for successful integration of molecular imaging into the drug development process. In this review, we highlight the general usefulness of molecular imaging in drug development and radionuclide-based reporter genes. Further, we discuss the different molecular imaging modalities for lymphoma therapy and their preclinical and clinical applications.
Collapse
|
10
|
Sharifian S, Homaei A, Hemmati R, Khajeh K. Light emission miracle in the sea and preeminent applications of bioluminescence in recent new biotechnology. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 172:115-128. [DOI: 10.1016/j.jphotobiol.2017.05.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/16/2017] [Indexed: 02/08/2023]
|
11
|
Meenakumari V, Utsumi H, Jawahar A, Franklin Benial AM. Concentration dependence of nitroxyl spin probes in liposomal solution: electron spin resonance and overhauser-enhanced magnetic resonance studies. J Liposome Res 2016; 28:87-96. [PMID: 27892752 DOI: 10.1080/08982104.2016.1264960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In this work, the detailed studies of electron spin resonance (ESR) and overhauser-enhanced magnetic resonance imaging (OMRI) were carried out for permeable nitroxyl spin probe, MC-PROXYL as a function of agent concentration in liposomal solution. In order to compare the impermeable nature of nitroxyl radical, the study was also carried out only at 2 mM concentration of carboxy-PROXYL. The ESR parameters were estimated using L-band and 300 MHz ESR spectrometers. The line width broadening was measured as a function of agent concentration in liposomal solution. The estimated rotational correlation time is proportional to the agent concentration, which indicates that less mobile nature of nitroxyl spin probe in liposomal solution. The partition parameter and permeability values indicate that the diffusion of nitroxyl spin probe distribution into the lipid phase is maximum at 2 mM concentration of MC-PROXYL. The dynamic nuclear polarization (DNP) parameters such as DNP factor, longitudinal relaxivity, saturation parameter, leakage factor and coupling factor were estimated for 2 mM MC-PROXYL in 400 mM liposomal dispersion. The spin lattice relaxation time was shortened in liposomal solution, which leads to the high relaxivity. Reduction in coupling factor is due to less interaction between the electron and nuclear spins, which causes the reduction in enhancement. The leakage factor increases with increasing agent concentration. The increase in DNP enhancement was significant up to 2 mM in liposomal solution. These results paves the way for choosing optimum agent concentration and OMRI scan parameters used in intra and extra membrane water by loading the liposome vesicles with a lipid permeable nitroxyl spin probes in OMRI experiments.
Collapse
Affiliation(s)
- V Meenakumari
- a Department of Physics , NMSSVN College , Madurai , Tamilnadu India
| | - Hideo Utsumi
- b Innovation Center for Medical Redox Navigation, Kyushu University , Fukuoka , Japan , and
| | - A Jawahar
- c Department of Chemistry , NMSSVN College , Madurai , Tamilnadu , India
| | | |
Collapse
|
12
|
Meenakumari V, Utsumi H, Jawahar A, Milton Franklin Benial A. ESR line width and line shape dependence of Overhauser-enhanced magnetic resonance imaging. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2016; 54:874-879. [PMID: 27432403 DOI: 10.1002/mrc.4489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 07/10/2016] [Accepted: 07/13/2016] [Indexed: 06/06/2023]
Abstract
Electron spin resonance and Overhauser-enhanced magnetic resonance imaging studies were carried out for various concentrations of 14 N-labeled 3-carbamoyl-2,2,5,5-tetramethyl-pyrrolidine-1-oxyl in pure water. Overhauser-enhancement factor attains maxima in the range of 2.5-3 mm concentration. The leakage factor showed an asymptotic increase with increasing agent concentration. The coupling parameter showed the interaction between the electron and nuclear spins to be mainly dipolar in origin. The electron spin resonance parameters, such as the line width, line shape and g-factor, were determined. The line width analysis confirms that the line broadening is proportional to the agent concentration, and also the agent concentration is optimized in the range of 2.5-3 mm. The line shape analysis shows that the observed electron spin resonance line shape is a Voigt line shape, in which the Lorentzian component is dominant. The contribution of Lorentzian component was estimated using the winsim package. The Lorentzian component of the resonance line attains maxima in the range of 2.5-3 mm concentration. Therefore, this study reveals that the agent concentration, line width and Lorentzian component are the important factors in determining the Overhauser-enhancement factor. Hence, the agent concentration was optimized as 2.5-3 mm for in vivo/in vitro electron spin resonance imaging and Overhauser-enhanced magnetic resonance imaging phantom studies. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- V Meenakumari
- Department of Physics, NMSSVN College, Madurai, Tamil Nadu, India
| | - Hideo Utsumi
- Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, Japan
| | - A Jawahar
- Department of Chemistry, NMSSVN College, Madurai, Tamil Nadu, India
| | | |
Collapse
|
13
|
Abstract
Positron emission tomography (PET) is a powerful noninvasive imaging technique able to measure distinct biological processes in vivo by administration of a radiolabeled probe. Whole-body measurements track the probe accumulation providing a means to measure biological changes such as metabolism, cell location, or tumor burden. PET can also be applied to both preclinical and clinical studies providing three-dimensional information. For immunotherapies (in particular understanding T cell responses), PET can be utilized for spatial and longitudinal tracking of T lymphocytes. Although PET has been utilized clinically for over 30 years, the recent development of additional PET radiotracers have dramatically expanded the use of PET to detect endogenous or adoptively transferred T cells in vivo. Novel probes have identified changes in T cell quantity, location, and function. This has enabled investigators to track T cells outside of the circulation and in hematopoietic organs such as spleen, lymph nodes, and bone marrow, or within tumors. In this review, we cover advances in PET detection of the antitumor T cell response and areas of focus for future studies.
Collapse
|
14
|
In Vivo nonlinear optical imaging of immune responses: tissue injury and infection. Biophys J 2015; 107:2436-43. [PMID: 25418312 DOI: 10.1016/j.bpj.2014.09.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 08/24/2014] [Accepted: 09/09/2014] [Indexed: 12/25/2022] Open
Abstract
In this study, we demonstrate a noninvasive imaging approach based on multimodal nonlinear optical microscopy to in vivo image the responses of immune cells (neutrophils) to the tissue injury and bacterial infection in a zebrafish model. Specifically, the second harmonic generation from myosin thick filaments in sarcomere enabled a clear visualization of the muscle injury and infection. Two-photon excited fluorescence was used to track the behavior of the neutrophils that were transgenically labeled by red fluorescent protein. The corresponding reduced nicotinamide adenine dinucleotide (NADH) two-photon excited fluorescence images revealed a detailed morphological transformation process of individual neutrophils during muscle tissue injury and bacterial infection. The analysis of time-resolved NADH signals from the neutrophils provided important biological insights of the cellular energy metabolism during the immune responses. We found a significant increase of free/protein-bound NADH ratios in activated neutrophils in bacterial-infected tissue. In this study, we also discovered that, under 720 nm excitation, two wild-type strains (DH5? and BL21) of bacteria Escherichia coli emitted distinct endogenous fluorescence of double-peak at ?450 and ?520 nm, respectively. We demonstrated that the double-peak fluorescence signal could be used to differentiate the E. coli from surrounding tissues of dominant NADH signals, and to achieve label-free tracking of E. coli bacteria in vivo.
Collapse
|
15
|
Thurman JM, Serkova NJ. Non-invasive imaging to monitor lupus nephritis and neuropsychiatric systemic lupus erythematosus. F1000Res 2015; 4:153. [PMID: 26309728 PMCID: PMC4536614 DOI: 10.12688/f1000research.6587.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/26/2015] [Indexed: 01/18/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that can affect multiple different organs, including the kidneys and central nervous system (CNS). Conventional radiological examinations in SLE patients include volumetric/ anatomical computed tomography (CT), magnetic resonance imaging (MRI) and ultrasound (US). The utility of these modalities is limited, however, due to the complexity of the disease. Furthermore, standard CT and MRI contrast agents are contraindicated in patients with renal impairment. Various radiologic methods are currently being developed to improve disease characterization in patients with SLE beyond simple anatomical endpoints. Physiological non-contrast MRI protocols have been developed to assess tissue oxygenation, glomerular filtration, renal perfusion, interstitial diffusion, and inflammation-driven fibrosis in lupus nephritis (LN) patients. For neurological symptoms, vessel size imaging (VSI, an MRI approach utilizing T2-relaxing iron oxide nanoparticles) has shown promise as a diagnostic tool. Molecular imaging probes (mostly for MRI and nuclear medicine imaging) have also been developed for diagnosing SLE with high sensitivity, and for monitoring disease activity. This paper reviews the challenges in evaluating disease activity in patients with LN and neuropsychiatric systemic lupus erythematosus (NPSLE). We describe novel MRI and positron-emission tomography (PET) molecular imaging protocols using targeted iron oxide nanoparticles and radioactive ligands, respectively, for detection of SLE-associated inflammation.
Collapse
Affiliation(s)
- Joshua M Thurman
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Natalie J Serkova
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| |
Collapse
|
16
|
Kubo H, Otani T, Otsuka H, Harada M. The impact of self-shielded cyclotron operation on small-animal PET/CT equipment installed nearby, on the floor just above. THE JOURNAL OF MEDICAL INVESTIGATION 2014; 61:46-52. [PMID: 24705748 DOI: 10.2152/jmi.61.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
PURPOSE The purpose of this study was to evaluate the impact of a cyclotron on small-animal PET equipment installed directly above the cyclotron. METHODS The cyclotron equipment was HM-12, which has two targets, and the PET/CT equipment was Inveon. The equipment was installed in conformity to Japanese law and regulations. Before installation of the PET/CT equipment, the radiation dose, radio waves, and static and fluctuating magnetic fields were measured at the position where it would be placed, both when the cyclotron was in use and when it was not in use. After installation of the PET/CT, natural background and emission counts were measured at the same place under the same conditions. RESULTS An increase of radiation dose was observed when the target nearest the PET equipment was used. There were no distinct effects of radio waves or static and fluctuating magnetic fields. A significant increase of emission counts, approximately 300 cpm, was observed when the nearest target was used. CONCLUSIONS Though radio waves and static and fluctuating magnetic fields generated by running cyclotron had no influence, a significant increase in emission count was observed. Careful attention should be paid to this influence when very low-radioactivity PET measurements are done.
Collapse
Affiliation(s)
- Hitoshi Kubo
- Departments of Medical Imaging, Institute of Health Biosciences, the University of Tokushima Graduate School
| | | | | | | |
Collapse
|
17
|
Min Y, Li J, Liu F, Padmanabhan P, Yeow EKL, Xing B. Recent Advance of Biological Molecular Imaging Based on Lanthanide-Doped Upconversion-Luminescent Nanomaterials. NANOMATERIALS 2014; 4:129-154. [PMID: 28348288 PMCID: PMC5304614 DOI: 10.3390/nano4010129] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/23/2014] [Accepted: 01/27/2014] [Indexed: 11/16/2022]
Abstract
Lanthanide-doped upconversion-luminescent nanoparticles (UCNPs), which can be excited by near-infrared (NIR) laser irradiation to emit multiplex light, have been proven to be very useful for in vitro and in vivo molecular imaging studies. In comparison with the conventionally used down-conversion fluorescence imaging strategies, the NIR light excited luminescence of UCNPs displays high photostability, low cytotoxicity, little background auto-fluorescence, which allows for deep tissue penetration, making them attractive as contrast agents for biomedical imaging applications. In this review, we will mainly focus on the latest development of a new type of lanthanide-doped UCNP material and its main applications for in vitro and in vivo molecular imaging and we will also discuss the challenges and future perspectives.
Collapse
Affiliation(s)
- Yuanzeng Min
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.
| | - Jinming Li
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.
| | - Fang Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.
| | - Parasuraman Padmanabhan
- The Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Drive, Research Techno Plaza, Singapore 637553, Singapore.
| | - Edwin K L Yeow
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.
| |
Collapse
|
18
|
Leech JM, Sharif-Paghaleh E, Maher J, Livieratos L, Lechler RI, Mullen GE, Lombardi G, Smyth LA. Whole-body imaging of adoptively transferred T cells using magnetic resonance imaging, single photon emission computed tomography and positron emission tomography techniques, with a focus on regulatory T cells. Clin Exp Immunol 2013; 172:169-77. [PMID: 23574314 DOI: 10.1111/cei.12087] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2013] [Indexed: 01/03/2023] Open
Abstract
Cell-based therapies using natural or genetically modified regulatory T cells (T(regs)) have shown significant promise as immune-based therapies. One of the main difficulties facing the further advancement of these therapies is that the fate and localization of adoptively transferred T(regs) is largely unknown. The ability to dissect the migratory pathway of these cells in a non-invasive manner is of vital importance for the further development of in-vivo cell-based immunotherapies, as this technology allows the fate of the therapeutically administered cell to be imaged in real time. In this review we will provide an overview of the current clinical imaging techniques used to track T cells and T(regs) in vivo, including magnetic resonance imaging (MRI) and positron emission tomography (PET)/single photon emission computed tomography (SPECT). In addition, we will discuss how the finding of these studies can be used, in the context of transplantation, to define the most appropriate T(reg) subset required for cellular therapy.
Collapse
Affiliation(s)
- J M Leech
- Medical Research Council, Centre for Transplantation, King's College London, King's Health Partners, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
The discovery of naturally occurring, heavy-chain only antibodies in Camelidae, and their further development into small recombinant nanobodies, presents attractive alternatives in drug delivery and imaging. Easily expressed in microorganisms and amenable to engineering, nanobody derivatives are soluble, stable, versatile, and have unique refolding capacities, reduced aggregation tendencies, and high-target binding capabilities. This review outlines the current state of the art in nanobodies, focusing on their structural features and properties, production, technology, and the potential for modulating immune functions and for targeting tumors, toxins, and microbes.
Collapse
Affiliation(s)
- Christina G Siontorou
- Department of Industrial Management and Technology, University of Piraeus, Piraeus, Greece
| |
Collapse
|
20
|
In vivo molecular imaging in retinal disease. J Ophthalmol 2012; 2012:429387. [PMID: 22363836 PMCID: PMC3272829 DOI: 10.1155/2012/429387] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 12/01/2011] [Indexed: 01/10/2023] Open
Abstract
There is an urgent need for early diagnosis in medicine, whereupon effective treatments could prevent irreversible tissue damage. The special structure of the eye provides a unique opportunity for noninvasive light-based imaging of ocular fundus vasculature. To detect endothelial injury at the early and reversible stage of adhesion molecule upregulation, some novel imaging agents that target retinal endothelial molecules were generated. In vivo molecular imaging has a great potential to impact medicine by detecting diseases or screening disease in early stages, identifying extent of disease, selecting disease and patient-specific therapeutic treatment, applying a directed or targeted therapy, and measuring molecular-specific effects of treatment. Current preclinical findings and advances in instrumentation such as endoscopes and microcatheters suggest that these molecular imaging modalities have numerous clinical applications and will be translated into clinical use in the near future.
Collapse
|
21
|
Jiang T, Xing B, Rao J. Recent developments of biological reporter technology for detecting gene expression. Biotechnol Genet Eng Rev 2011; 25:41-75. [PMID: 21412349 DOI: 10.5661/bger-25-41] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Reporter gene assay is an invaluable tool for both biomedical and pharmaceutical researches to monitor cellular events associated with gene expression, regulation and signal transduction. On the basis of the alternations in reporter gene activities mediated by attaching response elements to these reporter genes, one sensitive, reliable and convenient assay can be provided to efficiently report the activation of particular messenger cascades and their effects on gene expression and regulations inside cells or living subjects. In this review, we introduce the current status of several commonly used reporter genes such as chloramphenicol acetyltransferase (CAT), alkaline phosphatase (AP), β-galactosidase (β-gal), luciferases, green fluorescent protein (GFP), and β-lactamase. Their applications in monitoring gene expression and regulations in vitro and in vivo will be summarized. With the development of advanced technology in gene expression and optical imaging modalities, reporter genes will become increasingly important in real-time detection of the gene expression at the single-cell level. This synergy will make it possible to understand the molecular basis of diseases, track the effectiveness of pharmaceuticals, monitor the response to therapies and evaluate the development process of new drugs.
Collapse
Affiliation(s)
- Tingting Jiang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
| | | | | |
Collapse
|
22
|
Imaging stem cell-derived persistent foci after in vivo selection of lentiviral MGMT-P140K transduced murine bone marrow cells. Mol Ther 2011; 19:1342-52. [PMID: 21304493 DOI: 10.1038/mt.2010.315] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The engraftment of hematopoietic stem cells (HSCs) after drug resistance gene transfer and drug selection may recapitulate stress response hematopoiesis, but the processes remain elusive. Homing, trafficking, and localization of transduced cells and the impact of insertion site on focal expansion have not been well characterized. With the goal of optimizing and understanding these processes under conditions of low multiplicity of infection (MOI) lentiviral gene transfer, we used drug resistance gene O(6)-methylguanine-DNA methyltransferase (MGMT)-P140K and in vivo selection to enrich for transduced and transgene-expressing HSCs. To systemically monitor homing, trafficking, and expansion after transplantation and drug selection over time, we linked MGMT-P140K to the firefly luciferase gene in lentiviral self-inactivating vectors. Periodic bioluminescence imaging (BLI) of transplanted recipients was followed for up to 9 months after both primary and secondary transplantation. Initial dispersion and widespread early homing and engraftment were transient, followed by detection of persistent and discrete foci at stable tissue sites after in vivo drug selection. From these studies, we concluded that drug resistance gene transfer followed by early or late drug selection can result in stable gene expression and cell expansion in persistent foci of transduced bone marrow cells that often remain in fixed sites for extended periods of time.
Collapse
|
23
|
Li M, Zhang Y, Bai J. In Vivo Diffuse Optical Tomography and Fluorescence Molecular Tomography. JOURNAL OF HEALTHCARE ENGINEERING 2010. [DOI: 10.1260/2040-2295.1.3.477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Eloot L, Buls N, Covens P, Willekens I, Lahoutte T, de Mey J. Quality control of micro-computed tomography systems. RADIATION PROTECTION DOSIMETRY 2010; 139:463-467. [PMID: 20223850 DOI: 10.1093/rpd/ncq088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The rapid proliferation of micro-computed tomography (micro-CT) scanners in preclinical small animal studies has created a need for a method on scanner performance evaluation and scan parameter optimisation. The purpose of this study was to investigate the performance of the scanner with a dedicated micro-CT phantom. The phantom was developed with different independent sections that allow for measurement of major scanner characteristics such as uniformity, linearity, contrast response, dosimetry and resolution. The results of a thorough investigation are discussed.
Collapse
Affiliation(s)
- L Eloot
- Department of Radiology, UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|
25
|
Reumann MK, Weiser MC, Mayer-Kuckuk P. Musculoskeletal molecular imaging: a comprehensive overview. Trends Biotechnol 2010; 28:93-101. [PMID: 20045210 DOI: 10.1016/j.tibtech.2009.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 10/26/2009] [Accepted: 11/12/2009] [Indexed: 01/01/2023]
Abstract
Molecular imaging permits non-invasive visualization and measurement of molecular and cell biology in living subjects, thereby complementing conventional anatomical imaging. Herein, we review the emerging application of molecular imaging for the study of musculoskeletal biology. Utilizing mainly bioluminescence and fluorescence techniques, molecular imaging has enabled in-vivo studies of (i) the activity of osteoblasts, osteoclasts, and hormones, (ii) the mechanisms of pathological cartilage and bone destruction, (iii) skeletal gene and cell therapy with and without biomaterial support, and (iv) the cellular processes in osteolysis and osteomyelitis. In these applications, musculoskeletal molecular imaging demonstrated feasibility for research in a myriad of musculoskeletal conditions ranging from bone fracture and arthritis to skeletal cancer. Importantly, these advances herald great potential for innovative clinical imaging in orthopedics, rheumatology, and oncology.
Collapse
Affiliation(s)
- Marie K Reumann
- Bone Cell Biology and Imaging Laboratory, Caspary Research Building, Rm. 623, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA
| | | | | |
Collapse
|
26
|
Sista AK, Knebel RJ, Tavri S, Johansson M, DeNardo DG, Boddington SE, Kishore SA, Ansari C, Reinhart V, Coakley FV, Coussens LM, Daldrup-Link HE. Optical imaging of the peri-tumoral inflammatory response in breast cancer. J Transl Med 2009; 7:94. [PMID: 19906309 PMCID: PMC2780997 DOI: 10.1186/1479-5876-7-94] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 11/11/2009] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Peri-tumoral inflammation is a common tumor response that plays a central role in tumor invasion and metastasis, and inflammatory cell recruitment is essential to this process. The purpose of this study was to determine whether injected fluorescently-labeled monocytes accumulate within murine breast tumors and are visible with optical imaging. MATERIALS AND METHODS Murine monocytes were labeled with the fluorescent dye DiD and subsequently injected intravenously into 6 transgenic MMTV-PymT tumor-bearing mice and 6 FVB/n control mice without tumors. Optical imaging (OI) was performed before and after cell injection. Ratios of post-injection to pre-injection fluorescent signal intensity of the tumors (MMTV-PymT mice) and mammary tissue (FVB/n controls) were calculated and statistically compared. RESULTS MMTV-PymT breast tumors had an average post/pre signal intensity ratio of 1.8+/- 0.2 (range 1.1-2.7). Control mammary tissue had an average post/pre signal intensity ratio of 1.1 +/- 0.1 (range, 0.4 to 1.4). The p-value for the difference between the ratios was less than 0.05. Confocal fluorescence microscopy confirmed the presence of DiD-labeled cells within the breast tumors. CONCLUSION Murine monocytes accumulate at the site of breast cancer development in this transgenic model, providing evidence that peri-tumoral inflammatory cell recruitment can be evaluated non-invasively using optical imaging.
Collapse
Affiliation(s)
- Akhilesh K Sista
- Department of Radiology and Biomedical Engineering, University of California, San Francisco, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Zangani M, Carlsen H, Kielland A, Os A, Hauglin H, Blomhoff R, Munthe LA, Bogen B. Tracking early autoimmune disease by bioluminescent imaging of NF-kappaB activation reveals pathology in multiple organ systems. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:1358-67. [PMID: 19286564 DOI: 10.2353/ajpath.2009.080700] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
It is desirable to have an early and sensitive detection marker of autoimmune disease in intact animals. Nuclear factor (NF)-kappaB is a transcription factor that is associated with inflammatory responses and immune disorders. Previously, we demonstrated that so-called idiotypic-driven T-B cell collaboration in mice doubly transgenic for paired immunoglobulin and T cell receptor transgenes resulted in a systemic autoimmune disease with systemic lupus erythematosus-like features. Here, we investigated NF-kappaB activation by including an NF-kappaB-responsive luciferase reporter transgene in this animal model. Triply transgenic mice developed bioluminescence signals from diseased organs before onset of clinical symptoms and autoantibody production, and light emissions correlated with disease progression. Signals were obtained from secondary lymphoid organs, inflamed intestines, skin lesions, and arthritic joints. Moreover, bioluminescence imaging and immunohistochemistry demonstrated that a minority of mice suffered from an autoimmune disease of the small intestine, in which light emissions correlated with antibodies against tissue transglutaminase and gliadin. Detection of luciferase by immunohistochemistry revealed NF-kappaB activation in collaborating B and T cells, as well as in macrophages. These results demonstrate that bioluminescent in vivo imaging of NF-kappaB activation can be used for early and sensitive detection of autoimmune disease in an experimental mouse model, offering new possibilities for the evaluation of anti-inflammatory drugs.
Collapse
Affiliation(s)
- Michael Zangani
- Centre for Immune Regulation, Institute of Immunology, University of Oslo and Rikshospitalet Medical Centre, N0027 Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Tavri S, Jha P, Meier R, Henning TD, Müller T, Hostetter D, Knopp C, Johansson M, Reinhart V, Boddington S, Sista A, Wels WS, Daldrup-Link HE. Optical Imaging of Cellular Immunotherapy against Prostate Cancer. Mol Imaging 2009. [DOI: 10.2310/7290.2009.00002] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
29
|
Shu CJ, Radu CG, Shelly SM, Vo DD, Prins R, Ribas A, Phelps ME, Witte ON. Quantitative PET reporter gene imaging of CD8+ T cells specific for a melanoma-expressed self-antigen. Int Immunol 2008; 21:155-65. [PMID: 19106231 PMCID: PMC2638874 DOI: 10.1093/intimm/dxn133] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Adoptive transfer (AT) T-cell therapy provides significant clinical benefits in patients with advanced melanoma. However, approaches to non-invasively visualize the persistence of transferred T cells are lacking. We examined whether positron emission tomography (PET) can monitor the distribution of self-antigen-specific T cells engineered to express an herpes simplex virus 1 thymidine kinase (sr39tk) PET reporter gene. Micro-PET imaging using the sr39tk-specific substrate 9-[4-[(18)F]fluoro-3-(hydroxymethyl)-butyl]guanine ([(18)F]FHBG) enabled the detection of transplanted T cells in secondary lymphoid organs of recipient mice over a 3-week period. Tumor responses could be predicted as early as 3 days following AT when a >25-fold increase of micro-PET signal in the spleen and 2-fold increase in lymph nodes (LNs) were observed in mice receiving combined immunotherapy versus control mice. The lower limit of detection was approximately 7 x 10(5) T cells in the spleen and 1 x 10(4) T cells in LNs. Quantification of transplanted T cells in the tumor was hampered by the sr39tk-independent trapping of [(18)F]FHBG within the tumor architecture. These data support the feasibility of using PET to visualize the expansion, homing and persistence of transferred T cells. PET may have significant clinical utility by providing the means to quantify anti-tumor T cells throughout the body and provide early correlates for treatment efficacy.
Collapse
Affiliation(s)
- Chengyi J Shu
- Department of Microbiology, Immunology and Molecular Genetics, University of California at Los Angeles, Los Angeles, CA 90095-1662, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Molecular imaging can allow the non-invasive assessment of biological and biochemical processes in living subjects. Such technologies therefore have the potential to enhance our understanding of disease and drug activity during preclinical and clinical drug development, which could aid decisions to select candidates that seem most likely to be successful or to halt the development of drugs that seem likely to ultimately fail. Here, with an emphasis on oncology, we review the applications of molecular imaging in drug development, highlighting successes and identifying key challenges that need to be addressed for successful integration of molecular imaging into the drug development process.
Collapse
|
31
|
|
32
|
Abstract
Multimodality molecular imaging continues to rapidly expand and is impacting many areas of biomedical research as well as patient management. Reporter-gene assays have emerged as a very general strategy for indirectly monitoring various intracellular events. Furthermore, reporter genes are being used to monitor gene/cell therapies, including the location(s), time variation, and magnitude of gene expression. This chapter reviews reporter gene technology and its major pre-clinical and clinical applications to date. The future appears quite promising for the continued expansion of the use of reporter genes in many evolving biomedically related arenas.
Collapse
Affiliation(s)
- Jung-Joon Min
- Department of Nuclear Medicine, Chonnam National University Medical School, 160 Ilsimri, Hwasun, Jeonnam 519-809, Republic of Korea.
| | | |
Collapse
|
33
|
Hildebrandt IJ, Su H, Weber WA. Anesthesia and Other Considerations for in Vivo Imaging of Small Animals. ILAR J 2008; 49:17-26. [DOI: 10.1093/ilar.49.1.17] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
34
|
Lisy MR, Hartung A, Lang C, Schüler D, Richter W, Reichenbach JR, Kaiser WA, Hilger I. Fluorescent Bacterial Magnetic Nanoparticles as Bimodal Contrast Agents. Invest Radiol 2007; 42:235-41. [PMID: 17351430 DOI: 10.1097/01.rli.0000255832.44443.e7] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The purpose of this study was to assess whether fluorochrome-coupled bacterial magnetic nanoparticles can be used as bimodal contrast agent for both magnetic resonance imaging (MRI) and near-infrared fluorescence optical (NIRF) imaging of cultured macrophages. MATERIALS AND METHODS Bacterial magnetic nanoparticles (magnetosomes, particle diameter: 42 nm) were harvested from Magnetospirillum gryphiswaldense and characterized by using MRI. After covalent coupling to the fluorescent dye DY-676 (lambdaabs./lambdaem.= 676 nm/701 nm, Dyomics, Jena, Germany), the fluorescent magnetosomes were analyzed by fluorescence-activated cell sorting. Subsequently, murine macrophages J774 were incubated with the bimodal contrast agent (3 hours) and examined by a whole-body near infrared small animal imaging system as well as by using a 1.5 T clinical MR system. Moreover, labeled cells were characterized using confocal laser scanning microscopy (CLSM) and ultrathin section transmission electron microscopy. RESULTS Characterization of the nanoparticles by MRI revealed R1 and R2 relaxivities of 3.2 mMs and 526 mMs, respectively. Fluorochrome-coupled magnetosomes exhibited increased fluorescence intensities at wavelengths >670 nm. Macrophages that were incubated with the contrast agent showed a significant fluorescence emission in the near infrared range as imaged with a whole body NIR imaging system, FACS analysis and CLSM. Moreover, CLSM data showed the greatest fluorescence intensities within intracellular compartments and colocalized with the magnetosomes. With MRI, both T1 and T2 relaxation times were substantially shortened at concentrations greater than 600 cells/microL. DISCUSSION AND CONCLUSION Macrophages could be labeled with fluorescent magnetosomes, and they were successfully imaged using both a 1.5 T MR scanner as well as with NIRF optical methods. The use of this bimodal contrast agent for diagnostic purposes may benefit from the excellent spatial resolution of the MRI and the high sensitivity of the fluorescence imaging.
Collapse
Affiliation(s)
- Marcus-René Lisy
- Institute for Diagnostic and Interventional Radiology, Friedrich-Schiller-University Jena, Jena, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Watching Immune Cells in Action. Biol Blood Marrow Transplant 2007. [DOI: 10.1016/j.bbmt.2006.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
36
|
Duda J, Karimi M, Negrin RS, Contag CH. Methods for Imaging Cell Fates in Hematopoiesis. BONE MARROW AND STEM CELL TRANSPLANTATION 2007; 134:17-34. [PMID: 17666740 DOI: 10.1007/978-1-59745-223-6_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Modern imaging technologies that allow for in vivo monitoring of cells in intact research subjects have opened up broad new areas of investigation. In the field of hematopoiesis and stem cell research, studies of cell trafficking involved in injury repair and hematopoietic engraftment have made great progress using these new tools. Multiple imaging modalities are available, each with its own advantages and disadvantages, depending on the specific application. For mouse models, clinically validated technologies such as magnetic resonance imaging (MRI) and positron emission tomography (PET) have been joined by optical imaging techniques such as in vivo bioluminescence imaging (BLI) and fluorescence imaging, and all have been used to monitor bone marrow and stem cells after transplantation into mice. Each modality requires that the cells of interest be marked with a distinct label that makes them uniquely visible using that technology. For each modality, there are several labels to choose from. Finally, multiple methods for applying these different labels are available. This chapter provides an overview of the imaging technologies and commonly used labels for each, as well as detailed protocols for gene delivery into hematopoietic cells for the purposes of applying these labels. The goal of this chapter is to provide adequate background information to allow the design and implementation of an experimental system for in vivo imaging in mice.
Collapse
Affiliation(s)
- Jennifer Duda
- Program in Molecular Imaging at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | |
Collapse
|
37
|
Benial AMF, Ichikawa K, Murugesan R, Yamada KI, Utsumi H. Dynamic nuclear polarization properties of nitroxyl radicals used in Overhauser-enhanced MRI for simultaneous molecular imaging. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2006; 182:273-82. [PMID: 16875854 DOI: 10.1016/j.jmr.2006.06.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Revised: 06/14/2006] [Accepted: 06/26/2006] [Indexed: 05/11/2023]
Abstract
DNP parameters relevant to Overhauser-enhanced magnetic resonance imaging (OMRI) are reported for a few nitroxyl radicals and their corresponding (15)N and (2)H enriched analogues, used in simultaneous imaging by OMRI. DNP enhancement was measured at 14.529 mT, using a custom-built scanner operating in a field-cycled mode, for different concentrations, ESR irradiation times and RF power levels. DNP enhancements increased with agent concentration up to 2.5 mM and decreased above 3 mM, in tune with ESR line broadening measured at X-band as a function of the agent concentration. The proton spin-lattice relaxation times (T(1)) measured at very low Zeeman field (14.529 mT) and the longitudinal relaxivity parameters were estimated. The relaxivity parameters were in good agreement with those independently computed from the linear region of the concentration dependent enhancement. The leakage factor showed an asymptotic increase with increasing agent concentration. The coupling parameters of (14)N- and (15)N-labeled carbamoyl-PROXYL showed the interaction between the electron and nuclear spins to be mainly dipolar in origin. Upon (2)H labeling, about 70% and 40% increases in enhancement for (15)N- and (14)N-labeled nitroxyl agents were observed, respectively. It is envisaged that the results reported here may enable better understanding of the factors determining DNP enhancement to design suitable 'beacons' for simultaneous molecular imaging by OMRI.
Collapse
Affiliation(s)
- A Milton Franklin Benial
- Department of Bio-functional Science, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | |
Collapse
|
38
|
Rome C, Couillaud F, Moonen CTW. Gene expression and gene therapy imaging. Eur Radiol 2006; 17:305-19. [PMID: 16967261 DOI: 10.1007/s00330-006-0378-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 06/14/2006] [Accepted: 06/23/2006] [Indexed: 10/24/2022]
Abstract
The fast growing field of molecular imaging has achieved major advances in imaging gene expression, an important element of gene therapy. Gene expression imaging is based on specific probes or contrast agents that allow either direct or indirect spatio-temporal evaluation of gene expression. Direct evaluation is possible with, for example, contrast agents that bind directly to a specific target (e.g., receptor). Indirect evaluation may be achieved by using specific substrate probes for a target enzyme. The use of marker genes, also called reporter genes, is an essential element of MI approaches for gene expression in gene therapy. The marker gene may not have a therapeutic role itself, but by coupling the marker gene to a therapeutic gene, expression of the marker gene reports on the expression of the therapeutic gene. Nuclear medicine and optical approaches are highly sensitive (detection of probes in the picomolar range), whereas MRI and ultrasound imaging are less sensitive and require amplification techniques and/or accumulation of contrast agents in enlarged contrast particles. Recently developed MI techniques are particularly relevant for gene therapy. Amongst these are the possibility to track gene therapy vectors such as stem cells, and the techniques that allow spatiotemporal control of gene expression by non-invasive heating (with MRI guided focused ultrasound) and the use of temperature sensitive promoters.
Collapse
Affiliation(s)
- Claire Rome
- Laboratory for Molecular and Functional Imaging: from Physiology to Therapy ERT CNRS, Université Victor Segalen, Bordeaux 2, Bordeaux, France
| | | | | |
Collapse
|
39
|
Abstract
Dendritic cells (DCs) play important roles in the initiation of adaptive immune responses. The transport of antigen from the infection site to the draining lymph node by DCs is a crucial component in this process. Accordingly, immunotherapeutic applications of in vitro-generated DCs require reliable methods experimentally in mice and clinically in patients to monitor the efficiency of their successful lymph node homing after injection. Recent developments of new methods to follow DC migration by non-invasive imaging modalities such as scintigraphy, PET, MRI, or bioluminescence imaging, have gained attraction because of their potential clinical applicability. The current state of the literature and a comparative evaluation of the methods are reported in this review.
Collapse
Affiliation(s)
- Dirk Baumjohann
- Department of Dermatology, University Hospital Erlangen, Hartmannstr. 14, 91052 Erlangen, Germany
| | | |
Collapse
|
40
|
Germain RN, Miller MJ, Dustin ML, Nussenzweig MC. Dynamic imaging of the immune system: progress, pitfalls and promise. Nat Rev Immunol 2006; 6:497-507. [PMID: 16799470 DOI: 10.1038/nri1884] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Both innate and adaptive immunity are dependent on the migratory capacity of myeloid and lymphoid cells. Effector cells of the innate immune system rapidly enter infected tissues, whereas sentinel dendritic cells in these sites mobilize and transit to lymph nodes. In these and other secondary lymphoid tissues, interactions among various cell types promote adaptive humoral and cell-mediated immune responses. Recent advances in light microscopy have allowed direct visualization of these events in living animals and tissue explants, which allows a new appreciation of the dynamics of immune-cell behaviour. In this article, we review the basic techniques and the tools used for in situ imaging, as well as the limitations and potential artefacts of these methods.
Collapse
Affiliation(s)
- Ronald N Germain
- Lymphocyte Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
41
|
Lucignani G, Ottobrini L, Martelli C, Rescigno M, Clerici M. Molecular imaging of cell-mediated cancer immunotherapy. Trends Biotechnol 2006; 24:410-8. [PMID: 16870284 DOI: 10.1016/j.tibtech.2006.07.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Revised: 06/08/2006] [Accepted: 07/13/2006] [Indexed: 02/05/2023]
Abstract
New strategies based on the activation of a patient's immune response are being sought to complement present conventional exogenous cancer therapies. Elucidating the trafficking pathways of immune cells in vivo, together with their migratory properties in relation to their differentiation and activation status, is useful for understanding how the immune system interacts with cancer. Methods based on tissue sampling to monitor immune responses are inadequate for repeatedly characterizing the responses of the immune system in different organs. A solution to this problem might come from molecular and cellular imaging - a branch of biomedical sciences that combines biotechnology and imaging methods to characterize, in vivo, the molecular and cellular processes involved in normal and pathologic states. The general concepts of noninvasive imaging of targeted cells as well as the technology and probes applied to cell-mediated cancer immunotherapy imaging are outlined in this review.
Collapse
Affiliation(s)
- Giovanni Lucignani
- Institute of Radiological Sciences, University of Milan, Via Di Rudini 8, 20142 Milan, Italy.
| | | | | | | | | |
Collapse
|
42
|
Negrin RS, Contag CH. In vivo imaging using bioluminescence: a tool for probing graft-versus-host disease. Nat Rev Immunol 2006; 6:484-90. [PMID: 16724101 DOI: 10.1038/nri1879] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Immunological reactions have a key role in health and disease and are complex events characterized by coordinated cell trafficking to specific locations throughout the body. Clarification of these cell-trafficking events is crucial for improving our understanding of how immune reactions are initiated, controlled and recalled. As we discuss here, an emerging modality for revealing cell trafficking is bioluminescence imaging, which harnesses the light-emitting properties of enzymes such as luciferase for quantification of cells and uses low-light imaging systems. This strategy could be useful for the study of a wide range of biological processes, such as the pathophysiology of graft-versus-host and graft-versus-leukaemia reactions.
Collapse
Affiliation(s)
- Robert S Negrin
- Department of Medicine, Center for Clinical Research Building, 269 West Campus Drive, Stanford University, Stanford, California 94305, USA.
| | | |
Collapse
|
43
|
Hsieh CH, Liu RS, Wang HE, Hwang JJ, Deng WP, Chen JC, Chen FD. In vitro evaluation of herpes simplex virus type 1 thymidine kinase reporter system in dynamic studies of transcriptional gene regulation. Nucl Med Biol 2006; 33:653-60. [PMID: 16843840 DOI: 10.1016/j.nucmedbio.2006.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Revised: 04/03/2006] [Accepted: 04/10/2006] [Indexed: 11/20/2022]
Abstract
The herpes simplex virus type 1 thymidine kinase (HSV1-TK) reporter system is being used to directly and indirectly monitor therapeutic gene expression, immune cell trafficking and protein-protein interactions in various living animals. However, the issues of HSV1-TK enzyme stability in living cells and whether this reporter system is optimal for dynamic studies of gene expression events in genetic imaging have not be addressed. The purpose of the present study was to evaluate the application of this reporter system in dynamic studies of transcriptional gene regulation. To achieve this purpose, we established two tetracycline-inducible murine sarcoma cell lines, tetracycline-turn-off HSV1-tk-expressing cell line (NG4TL4/tet-off-HSV1-tk) and tetracycline-turn-off Luc-expressing cell line (NG4TL4/tet-off-Luc), to create an artificially regulated gene expression model in vitro. The dynamic transcriptional events mediating a series of doxycycline (Dox) inductions were monitored by HSV1-TK or by the firefly luciferase reporter gene using HSV1-TK enzyme activity assay and luciferase assay, respectively. The results of dynamic gene expression studies showed that the luciferase gene is an optimal reporter gene for monitoring short-timescale, dynamic transcriptional events mediating a series of Dox inductions, whereas the HSV1-tk is not optimal to achieve this purpose. Furthermore, the enzyme half-life of HSV1-TK in NG4TL4 cells is about 35 h after cycloheximide-induced protein inhibition. On the other hand, the results of an efflux assay of [(131)I] FIAU and [(3)H] GCV revealed that the molecular probe phosphorylated by HSV1-TK can be trapped long term within HSV1-TK stably transformed cells. Therefore, a long half-life radionuclide is not suitable for dynamic gene expression studies. Based on these results, we suggest that the HSV1-TK reporter system is not optimal for monitoring short-timescale dynamic processes such as kinetic gene expression controlled by inducible promoters or a less stable protein with a more rapid turnover due to the limitations of the half-life of the HSV1-TK enzyme and the cellular retention time of their phosphorylated molecular probes.
Collapse
Affiliation(s)
- Chia-Hung Hsieh
- Department of Medical Radiation Technology and Institute of Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Adoptive therapy involves the transfer of ex vivo expanded immune effector cells to patients as a means of augmenting the antitumor immune response. In general, this transfer is accomplished by harvesting cells from the peripheral blood, tumor sites, or draining lymph nodes and expanding effector cells in a specific or nonspecific fashion for adoptive transfer. This article describes the rationale for adoptive T-cell therapy, the developments that have led to the translational application of this strategy for the treatment of cancer, the challenges that have been addressed, and future approaches to the development of adoptive therapy as a treatment modality.
Collapse
Affiliation(s)
- Cassian Yee
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| |
Collapse
|
45
|
Otto-Duessel M, Khankaldyyan V, Gonzalez-Gomez I, Jensen MC, Laug WE, Rosol M. In Vivo Testing ofRenillaLuciferase Substrate Analogs in an Orthotopic Murine Model of Human Glioblastoma. Mol Imaging 2006. [DOI: 10.2310/7290.2006.00006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Maya Otto-Duessel
- Saban Research Institute of Childrens Hospital Los Angeles and the University of Southern California Keck School of Medicine, Los Angeles, USA
| | - Vazgen Khankaldyyan
- Saban Research Institute of Childrens Hospital Los Angeles and the University of Southern California Keck School of Medicine, Los Angeles, USA
| | - Ignacio Gonzalez-Gomez
- Saban Research Institute of Childrens Hospital Los Angeles and the University of Southern California Keck School of Medicine, Los Angeles, USA
| | | | - Walter E. Laug
- Saban Research Institute of Childrens Hospital Los Angeles and the University of Southern California Keck School of Medicine, Los Angeles, USA
| | - Michael Rosol
- Saban Research Institute of Childrens Hospital Los Angeles and the University of Southern California Keck School of Medicine, Los Angeles, USA
| |
Collapse
|
46
|
Taschereau R, Chow PL, Chatziioannou AF. Monte carlo simulations of dose from microCT imaging procedures in a realistic mouse phantom. Med Phys 2006; 33:216-24. [PMID: 16485428 PMCID: PMC3005289 DOI: 10.1118/1.2148333] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The purpose of this work was to calculate radiation dose and its organ distribution in a realistic mouse phantom from micro-computed tomography (microCT) imaging protocols. CT dose was calculated using GATE and a voxelized, realistic phantom. The x-ray photon energy spectra used in simulations were precalculated with GATE and validated against previously published data. The number of photons required per simulated experiments was determined by direct exposure measurements. Simulated experiments were performed for three types of beams and two types of mouse beds. Dose-volume histograms and dose percentiles were calculated for each organ. For a typical microCT screening examination with a reconstruction voxel size of 200 microm, the average whole body dose varied from 80 mGy (at 80 kVp) to 160 mGy (at 50 kVp), showing a strong dependence on beam hardness. The average dose to the bone marrow is close to the soft tissue average. However, due to dose nonuniformity and higher radiation sensitivity, 5% of the marrow would receive an effective dose about four times higher than the average. If CT is performed longitudinally, a significant radiation dose can be given. The total absorbed radiation dose is a function of milliamperes-second, beam hardness, and desired image quality (resolution, noise and contrast). To reduce dose, it would be advisable to use the hardest beam possible while maintaining an acceptable contrast in the image.
Collapse
Affiliation(s)
- Richard Taschereau
- The Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California School of Medicine, 700 Westwood Boulevard, Los Angeles, California 90095, USA.
| | | | | |
Collapse
|
47
|
Utsumi H, Yamada KI, Ichikawa K, Sakai K, Kinoshita Y, Matsumoto S, Nagai M. Simultaneous molecular imaging of redox reactions monitored by Overhauser-enhanced MRI with 14N- and 15N-labeled nitroxyl radicals. Proc Natl Acad Sci U S A 2006; 103:1463-8. [PMID: 16432234 PMCID: PMC1345719 DOI: 10.1073/pnas.0510670103] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Indexed: 11/18/2022] Open
Abstract
MRI has provided significant clinical utility in the diagnosis of diseases and will become a powerful tool to assess phenotypic changes in genetically engineered animals. Overhauser enhanced MRI (OMRI), which is a double resonance technique, creates images of free radical distributions in small animals by enhancing the water proton signal intensity by means of the Overhauser effect. Several studies have demonstrated noninvasive assessment of reactive oxygen species generation in small animals by using low frequency electron spin resonance (ESR) spectroscopy/imaging and nitroxyl radicals. In vivo ESR signal intensities of nitroxyl radicals decrease with time after injection; and the decreases are enhanced by reactive oxygen species, generated in oxidative disease models in a site-specific manner. In this study, we show images of nitroxyl radicals with different isotopes by changing the external magnetic field for ESR irradiation between (14)N and (15)N nuclei in field-cycled OMRI. OMRI simultaneously obtained dual images of two individual chemical processes. Oxidation and reduction were monitored in a rate-dependent manner at nanometer scale by labeling membrane-permeable and -impermeable nitroxyl radicals with (14)N and (15)N nuclei. Phantom objects containing ascorbic acid-encapsulated liposomes with membrane-permeable radicals but not membrane-impermeable ones show a time-dependent decrease of the OMRI image intensity. The pharmacokinetics in mice was assessed with OMRI after radical administration. This OMRI technique with dual probes should offer significant applicability to nanometer scale molecular imaging and simultaneous assessment of independent processes in gene-modified animals. Thus, it may become a powerful tool to clarify mechanisms of disease and to monitor pharmaceutical therapy.
Collapse
Affiliation(s)
- Hideo Utsumi
- Department of Bio-Functional Science, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan.
| | | | | | | | | | | | | |
Collapse
|
48
|
Ozawa T. Designing split reporter proteins for analytical tools. Anal Chim Acta 2006; 556:58-68. [PMID: 17723331 DOI: 10.1016/j.aca.2005.06.026] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 06/01/2005] [Accepted: 06/08/2005] [Indexed: 11/25/2022]
Abstract
A current focus of biological research is to quantify and image cellular processes in living cells and animals. To detect such cellular processes, genetically-encoded reporters have been extensively used. The most common reporters include firefly luciferase, renilla luciferase, green fluorescent protein (GFP) and its variants with various spectral properties. This review describes novel design of split-GFP and luciferase reporters based on protein splicing, and highlights some potential applications with the reporters to study protein-protein interactions, protein localization, intracellular protein dynamics, and protein activity in living cells and animals.
Collapse
Affiliation(s)
- Takeaki Ozawa
- Department of Molecular Structure, Institute for Molecular Science, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan.
| |
Collapse
|
49
|
Shu CJ, Guo S, Kim YJ, Shelly SM, Nijagal A, Ray P, Gambhir SS, Radu CG, Witte ON. Visualization of a primary anti-tumor immune response by positron emission tomography. Proc Natl Acad Sci U S A 2005; 102:17412-7. [PMID: 16293690 PMCID: PMC1283986 DOI: 10.1073/pnas.0508698102] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Current methodologies that monitor immune responses rely on invasive techniques that sample tissues at a given point in time. New technologies are needed to elucidate the temporal patterns of immune responses and the spatial distribution of immune cells on a whole-body scale. We describe a noninvasive, quantitative, and tomographic approach to visualize a primary anti-tumor immune response by using positron emission tomography (PET). Bone marrow chimeric mice were generated by engraftment of hematopoietic stem and progenitor cells transduced with a trifusion reporter gene encoding synthetic Renilla luciferase (hRluc), EGFP, and Herpes virus thymidine kinase (sr39TK). Mice were challenged with the Moloney murine sarcoma and leukemia virus complex (M-MSV/M-MuLV), and the induced immune response was monitored by using PET. Hematopoietic cells were visualized by using 9-[4-[(18)F]fluoro-3-(hydroxymethyl)butyl]guanine ([(18)F]FHBG), a radioactive substrate specific for the sr39TK PET reporter protein. Immune cell localization and expansion were seen at the tumor and draining lymph nodes (DLNs). 2-[(18)F]fluoro-2-deoxy-D-glucose ([(18)F]FDG), which is sequestered in metabolically active cells, was used to follow tumor growth and regression. Elevated glucose metabolism was also seen in activated lymphocytes in the DLNs by using the [(18)F]FDG probe. When M-MSV/M-MuLV-challenged mice were treated with the immunosuppressive drug dexamethasone, activation and expansion of immune cell populations in the DLNs could no longer be detected with PET imaging. The method we describe can be used to kinetically measure the induction and therapeutic modulations of cell-mediated immune responses.
Collapse
Affiliation(s)
- Chengyi J Shu
- Department of Microbiology, Immunology, and Molecular Genetics, Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Biological research has been accelerated by the development of noninvasive imaging techniques and by use of genetically engineered mice to model human diseases and normal development. Because these mice can be expensive, noninvasive imaging techniques, such as high-resolution positron emission tomography (PET), that permit longitudinal studies of the same animals are very attractive. Such studies reduce the number of animals used, reduce intersubject variability, and improve the accuracy of biological models. PET provides quantitative measurements of the spatiotemporal distribution of radiotracers and is an extremely powerful tool in using molecular imaging to study biology, to monitor disease intervention, and to establish pharmacokinetics for new drugs. The design of animal PET scanners has improved significantly in the past decade and can provide adequate image resolution and sensitivity to study transgenic mice. This article reviews the fundamental and technical challenges of small-animal PET imaging, with a particular focus on the latest developments and future directions of detector technologies and system design.
Collapse
Affiliation(s)
- Yuan-Chuan Tai
- Department of Radiology, Washington University, Saint Louis, MO 63110, USA.
| | | |
Collapse
|