1
|
Pan X, Kaminga AC, Wen SW, Liu A. Chemokines in hepatocellular carcinoma: a meta-analysis. Carcinogenesis 2021; 41:1682-1694. [PMID: 33300549 DOI: 10.1093/carcin/bgaa106] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/17/2020] [Accepted: 10/08/2020] [Indexed: 12/17/2022] Open
Abstract
Accumulating evidence suggests that chemokines may play an important role in the formation and mediating of the immune microenvironment of hepatocellular carcinoma (HCC). The purpose of this meta-analysis was to explore the differences in blood or tissues chemokines concentrations between HCC patients and controls. Online databases, namely PubMed, Web of Science, Embase and Cochrane Library, were systematically searched for relevant articles published on or before 15 January 2020. Standardized mean differences (SMDs) with corresponding 95% confidence intervals of the chemokines concentrations were calculated as group differences between the HCC patients and the controls. Sixty-five studies met the inclusion criteria for the meta-analysis. Altogether they consisted of 26 different chemokines compared between 5828 HCC patients and 4909 controls; and 12 different chemokines receptors compared between 2053 patients and 2285 controls. The results of meta-analysis indicated that concentrations of CCL20, CXCL8 and CXCR4 in the HCC patients were significantly higher than those in the controls (SMD of 6.18, 1.81 and 1.04, respectively). Therefore, higher concentration levels of CCL20, CXCL8 and CXCR4 may indicate the occurrence of HCC Future research should explore the putative mechanisms underlying this linkage. Meanwhile, attempts can be made to replicate the existing findings in prospective cohort populations and explore the cause-and-effect relationships pertaining to this linkage in order to develop new diagnostic and therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Xiongfeng Pan
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Atipatsa C Kaminga
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China.,Department of Mathematics and Statistics, Mzuzu University, Mzuzu, Malawi
| | - Shi Wu Wen
- OMNI Research Group, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Obstetrics and Gynaecology, University of Ottawa Faculty of Medicine, Ottawa, Ontario, Canada.,School of Epidemiology and Public Health, University of Ottawa Faculty of Medicine, Ottawa, Ontario, Canada
| | - Aizhong Liu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
2
|
Zahran AM, Hetta HF, Rayan A, Eldin AS, Hassan EA, Fakhry H, Soliman A, El-Badawy O. Differential expression of Tim-3, PD-1, and CCR5 on peripheral T and B lymphocytes in hepatitis C virus-related hepatocellular carcinoma and their impact on treatment outcomes. Cancer Immunol Immunother 2020; 69:1253-1263. [PMID: 32170378 DOI: 10.1007/s00262-019-02465-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/26/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND OBJECTIVE Activation of the immune checkpoints and expression of chemokines and chemokine receptors have been reported to promote HCC progression. This study aimed to assess the differential expression of Tim-3, PD-1, and CCR5 on peripheral blood lymphocytes from patients with HCV-related HCC and correlate their expression with the treatment outcomes. PATIENTS AND METHODS The study incorporated 40 patients with chronic HCV-related HCC and 40 healthy controls. Patients were radiologically assessed for hepatic focal lesions and portal vein thrombosis. Response to HCC treatment and overall survival (OS) outcomes were determined. The expression of Tim-3, PD-1, and CCR5 among CD19+, CD4+, and CD8+ lymphocytes was assessed by flow cytometry. RESULTS Higher frequencies of CD4+ and CD8+ cells expressing each of Tim-3 and PD-1 and PD-1+CD19+ cells were observed in the HCV-related HCC patients in comparison with controls. The highest expression of Tim-3 and PD-1 was by the CD8+ cells. Strong relations were detected among PD-1+CD19+, PD-1+CD4+ and PD-1+CD8+ cells. Elevated levels of PD-1+ lymphocytes were significantly associated with poor treatment response and shorter OS. CONCLUSION Modulation of the expression of immune checkpoints as Tim-3 and PD-1, and of CCR5 on T cells is somehow related to HCC. CD8+ T cells expressing PD-1 were the most relevant to HCC prognosis (OS and treatment response) and could represent a promising target for immune therapy against HCC. Future studies need to focus on exploring PD-1+ B cells and Tim-3+CD4+ cells, which seem to play a significant role in the pathogenesis of HCC.
Collapse
Affiliation(s)
- Asmaa M Zahran
- Clinical Pathology Department, South Egypt Cancer Institute, Assiut, Egypt
| | - Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt. .,Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Amal Rayan
- Clinical Oncology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Abeer Sharaf Eldin
- Department of Gastroenterology and Tropical Medicine, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Elham Ahmed Hassan
- Department of Gastroenterology and Tropical Medicine, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Hussein Fakhry
- Surgical Oncology Department, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Ahmed Soliman
- General Surgery Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Omnia El-Badawy
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
3
|
Lymphatic Endothelial Cell Progenitors in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1234:87-105. [PMID: 32040857 DOI: 10.1007/978-3-030-37184-5_7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Tumor lymphatics play a key role in cancer progression as they are solely responsible for transporting malignant cells to regional lymph nodes (LNs), a process that precedes and promotes systemic lethal spread. It is broadly accepted that tumor lymphatic sprouting is induced mainly by soluble factors derived from tumor-associated macrophages (TAMs) and malignant cells. However, emerging evidence strongly suggests that a subset of TAMs, myeloid-lymphatic endothelial cell progenitors (M-LECP), also contribute to the expansion of lymphatics through both secretion of paracrine factors and a self-autonomous mode. M-LECP are derived from bone marrow (BM) precursors of the monocyte-macrophage lineage and characterized by unique co-expression of markers identifying lymphatic endothelial cells (LEC), stem cells, M2-type macrophages, and myeloid-derived immunosuppressive cells. This review describes current evidence for the origin of M-LECP in the bone marrow, their recruitment tumors and intratumoral trafficking, similarities to other TAM subsets, and mechanisms promoting tumor lymphatics. We also describe M-LECP integration into preexisting lymphatic vessels and discuss potential mechanisms and significance of this event. We conclude that improved mechanistic understanding of M-LECP functions within the tumor environment may lead to new therapeutic approaches to suppress tumor lymphangiogenesis and metastasis to lymph nodes.
Collapse
|
4
|
Martín-Sierra C, Martins R, Laranjeira P, Coucelo M, Abrantes AM, Oliveira RC, Tralhão JG, Botelho MF, Furtado E, Domingues MR, Paiva A. Functional and Phenotypic Characterization of Tumor-Infiltrating Leukocyte Subsets and Their Contribution to the Pathogenesis of Hepatocellular Carcinoma and Cholangiocarcinoma. Transl Oncol 2019; 12:1468-1479. [PMID: 31425839 PMCID: PMC6712279 DOI: 10.1016/j.tranon.2019.07.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/28/2019] [Accepted: 07/29/2019] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) represent the most common primary liver malignancies whose outcome is influenced by the immune response. In the present study, we evaluated the tumor-infiltrating leukocyte (TIL) populations in 21 HCC patients and 8 CCA patients by flow cytometry immediately after the surgical procedure. Moreover, CD4+ T cells, CD8+ T cells, monocytes, and macrophages were purified by cell sorting for further analysis of gene expression by quantitative reverse-transcription polymerase chain reaction. Regarding tumor-infiltrating macrophages, we observed a significantly higher expression of markers associated with M2 phenotype and a higher expression of PD-L1 in patients with HCC in comparison to CCA. In addition, for HCC patients, we found a significant increase in the expression of CD200R in macrophages from tumors that were in grade G3-G4 as compared to tumors in grade G1-G2. Besides, a significantly higher frequency of tumor-infiltrating lymphocytes, CD8+CD56+ T cells, and natural killer cells was detected in HCC biopsies in comparison to CCA. In summary, this study has revealed functional and phenotypic differences in TIL cell subpopulations between CCA and HCC, as well as among different histopathological grades and tumor aggressiveness degrees, and it has provided evidence to better understand the tumor immune microenvironment of CCA and HCC.
Collapse
Affiliation(s)
- C Martín-Sierra
- Unidade de Gestão Operacional em Citometria, Centro Hospitalar e Universitário de Coimbra (CHUC, Portugal); Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra (Coimbra, Portugal); CNC.IBILI, University of Coimbra, Coimbra, (Portugal); Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - R Martins
- Unidade Transplantação Hepática Pediátrica e de Adultos, Centro Hospitalar e Universitário de Coimbra (UTHPA, CHUC, Portugal); Serviço de Cirurgia Geral, Unidade HBP, Centro Hospitalar e Universitário de Coimbra (CHUC, Portugal); Instituto de Biofísica, IBILI, Faculdade de Medicina, Universidade de Coimbra (Coimbra, Portugal); Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 (Coimbra, Portugal)
| | - P Laranjeira
- Unidade de Gestão Operacional em Citometria, Centro Hospitalar e Universitário de Coimbra (CHUC, Portugal); Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra (Coimbra, Portugal); CNC.IBILI, University of Coimbra, Coimbra, (Portugal); Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - M Coucelo
- Department of Clinical Haematology, Centro Hospitalar e Universitário de Coimbra (CHUC, Portugal)
| | - A M Abrantes
- Instituto de Biofísica, IBILI, Faculdade de Medicina, Universidade de Coimbra (Coimbra, Portugal); Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 (Coimbra, Portugal)
| | - R C Oliveira
- Instituto de Biofísica, IBILI, Faculdade de Medicina, Universidade de Coimbra (Coimbra, Portugal); Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 (Coimbra, Portugal); Serviço de Anatomia Patológica, Centro Hospitalar e Universitário de Coimbra (CHUC, Portugal)
| | - J G Tralhão
- Unidade Transplantação Hepática Pediátrica e de Adultos, Centro Hospitalar e Universitário de Coimbra (UTHPA, CHUC, Portugal); Serviço de Cirurgia Geral, Unidade HBP, Centro Hospitalar e Universitário de Coimbra (CHUC, Portugal); Instituto de Biofísica, IBILI, Faculdade de Medicina, Universidade de Coimbra (Coimbra, Portugal); Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 (Coimbra, Portugal)
| | - M F Botelho
- Instituto de Biofísica, IBILI, Faculdade de Medicina, Universidade de Coimbra (Coimbra, Portugal); Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 (Coimbra, Portugal)
| | - E Furtado
- Unidade Transplantação Hepática Pediátrica e de Adultos, Centro Hospitalar e Universitário de Coimbra (UTHPA, CHUC, Portugal)
| | - M R Domingues
- Mass Spectrometry Centre, Department of Chemistry & QOPNA, University of Aveiro, Campus Universitário de Santiago (Aveiro, Portugal)
| | - A Paiva
- Unidade de Gestão Operacional em Citometria, Centro Hospitalar e Universitário de Coimbra (CHUC, Portugal); Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra (Coimbra, Portugal); CNC.IBILI, University of Coimbra, Coimbra, (Portugal); Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal; Instituto Politécnico de Coimbra, ESTESC-Coimbra Health School, Ciências Biomédicas Laboratoriais, (Portugal).
| |
Collapse
|
5
|
CD40 controls CXCR5-induced recruitment of myeloid-derived suppressor cells to gastric cancer. Oncotarget 2016; 6:38901-11. [PMID: 26462153 PMCID: PMC4770745 DOI: 10.18632/oncotarget.5644] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/29/2015] [Indexed: 12/24/2022] Open
Abstract
To explore the mechanisms of MDSC trafficking and accumulation during tumor progression. In this study, we report significant CD40 upregulation in tumor-infiltrating MDSC when compared with splenic MDSC. Microarray analyses comparing CD40(high) and CD40l(ow) MDSC revealed 1872 differentially expressed genes, including CD83, CXCR5, BTLA, CXCL9, TLR1, FLT3, NOD2 and CXCL10. In vivo experiments comparing wild-type (WT) and CD40 knockout (KO) mice demonstrated that CD40 critically regulates CXCR5 expression. Consistently, the transwell analysis confirmed the essential role of CXCR5-CXCL13 crosstalk in the migration of CD40+ MDSC toward gastric cancer. Furthermore, more MDSC accumulated in the gastric cancers of WT mice when compared with KO mice, and the WT tumors mostly contained CD40+ cells. Functionally, tumors grew faster in WT than KO mice. In conclusion, we demonstrate that CD40 expression upregulates the chemokine receptor CXCR5 and promotes MDSC migration toward and accumulation within cancer. Therefore, this study provides preliminary evidence that CD40 may stimulate tumor growth by enabling immune evasion via MDSC recruitment and inhibition of T cell expansion.
Collapse
|
6
|
Chheda ZS, Sharma RK, Jala VR, Luster AD, Haribabu B. Chemoattractant Receptors BLT1 and CXCR3 Regulate Antitumor Immunity by Facilitating CD8+ T Cell Migration into Tumors. THE JOURNAL OF IMMUNOLOGY 2016; 197:2016-26. [PMID: 27465528 DOI: 10.4049/jimmunol.1502376] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 06/26/2016] [Indexed: 12/29/2022]
Abstract
Immunotherapies have shown considerable efficacy for the treatment of various cancers, but a multitude of patients remain unresponsive for various reasons, including poor homing of T cells into tumors. In this study, we investigated the roles of the leukotriene B4 receptor, BLT1, and CXCR3, the receptor for CXCL9, CXCL10, and CXCL11, under endogenous as well as vaccine-induced antitumor immune response in a syngeneic murine model of B16 melanoma. Significant accelerations in tumor growth and reduced survival were observed in both BLT1(-/-) and CXCR3(-/-) mice as compared with wild-type (WT) mice. Analysis of tumor-infiltrating leukocytes revealed significant reduction of CD8(+) T cells in the tumors of BLT1(-/-) and CXCR3(-/-) mice as compared with WT tumors, despite their similar frequencies in the periphery. Adoptive transfer of WT but not BLT1(-/-) or CXCR3(-/-) CTLs significantly reduced tumor growth in Rag2(-/-) mice, a function attributed to reduced infiltration of knockout CTLs into tumors. Cotransfer experiments suggested that WT CTLs do not facilitate the infiltration of knockout CTLs to tumors. Anti-programmed cell death-1 (PD-1) treatment reduced the tumor growth rate in WT mice but not in BLT1(-/-), CXCR3(-/-), or BLT1(-/-)CXCR3(-/-) mice. The loss of efficacy correlated with failure of the knockout CTLs to infiltrate into tumors upon anti-PD-1 treatment, suggesting an obligate requirement for both BLT1 and CXCR3 in mediating anti-PD-1 based antitumor immune response. These results demonstrate a critical role for both BLT1 and CXCR3 in CTL migration to tumors and thus may be targeted to enhance efficacy of CTL-based immunotherapies.
Collapse
Affiliation(s)
- Zinal S Chheda
- James Graham Brown Cancer Center, University of Louisville Health Sciences, Louisville, KY 40202; Department of Microbiology and Immunology, University of Louisville Health Sciences, Louisville, KY 40202
| | - Rajesh K Sharma
- James Graham Brown Cancer Center, University of Louisville Health Sciences, Louisville, KY 40202; Division of Medical Oncology, Department of Medicine, University of Louisville Health Sciences, Louisville, KY 40202; and
| | - Venkatakrishna R Jala
- James Graham Brown Cancer Center, University of Louisville Health Sciences, Louisville, KY 40202; Department of Microbiology and Immunology, University of Louisville Health Sciences, Louisville, KY 40202
| | - Andrew D Luster
- Division of Rheumatology, Allergy and Immunology, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02139
| | - Bodduluri Haribabu
- James Graham Brown Cancer Center, University of Louisville Health Sciences, Louisville, KY 40202; Department of Microbiology and Immunology, University of Louisville Health Sciences, Louisville, KY 40202;
| |
Collapse
|
7
|
Liang CM, Chen L, Hu H, Ma HY, Gao LL, Qin J, Zhong CP. Chemokines and their receptors play important roles in the development of hepatocellular carcinoma. World J Hepatol 2015; 7:1390-1402. [PMID: 26052384 PMCID: PMC4450202 DOI: 10.4254/wjh.v7.i10.1390] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/08/2014] [Accepted: 04/07/2015] [Indexed: 02/06/2023] Open
Abstract
The chemokine system consists of four different subclasses with over 50 chemokines and 19 receptors. Their functions in the immune system have been well elucidated and research during the last decades unveils their new roles in hepatocellular carcinoma (HCC). The chemokines and their receptors in the microenvironment influence the development of HCC by several aspects including: inflammation, effects on immune cells, angiogenesis, and direct effects on HCC cells. Regarding these aspects, pre-clinical research by targeting the chemokine system has yielded promising data, and these findings bring us new clues in the chemokine-based therapies for HCC.
Collapse
|
8
|
Hong YP, Li ZD, Prasoon P, Zhang Q. Immunotherapy for hepatocellular carcinoma: From basic research to clinical use. World J Hepatol 2015; 7:980-992. [PMID: 25954480 PMCID: PMC4419101 DOI: 10.4254/wjh.v7.i7.980] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/10/2014] [Accepted: 02/09/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common cancer worldwide with a poor prognosis. Few strategies have been proven efficient in HCC treatment, particularly for those patients not indicated for curative resection or transplantation. Immunotherapy has been developed for decades for cancer control and is attaining more attention as a result of encouraging outcomes of new strategies such as chimeric antigen receptor T cells and immune checkpoint blockade. Right at the front of the new era of immunotherapy, we review the immunotherapy in HCC treatment, from basic research to clinical trials, covering anything from immunomodulators, tumor vaccines and adoptive immunotherapy. The mechanisms, efficacy and safety as well as the approach particulars are unveiled to assist readers to gain a concise but extensive understanding of immunotherapy of HCC.
Collapse
|
9
|
Sun C, Sun H, Zhang C, Tian Z. NK cell receptor imbalance and NK cell dysfunction in HBV infection and hepatocellular carcinoma. Cell Mol Immunol 2015; 12:292-302. [PMID: 25308752 PMCID: PMC4654321 DOI: 10.1038/cmi.2014.91] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/25/2014] [Accepted: 08/26/2014] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is currently the third leading cause of cancer mortality and a common poor-prognosis malignancy due to postoperative recurrence and metastasis. There is a significant correlation between chronic hepatitis B virus (HBV) infection and hepatocarcinogenesis. As the first line of host defense against viral infections and tumors, natural killer (NK) cells express a large number of immune recognition receptors (NK receptors (NKRs)) to recognize ligands on hepatocytes, liver sinusoidal endothelial cells, stellate cells and Kupffer cells, which maintain the balance between immune response and immune tolerance of NK cells. Unfortunately, the percentage and absolute number of liver NK cells decrease significantly during the development and progression of HCC. The abnormal expression of NK cell receptors and dysfunction of liver NK cells contribute to the progression of chronic HBV infection and HCC and are significantly associated with poor prognosis for liver cancer. In this review, we focus on the role of NK cell receptors in anti-tumor immune responses in HCC, particularly HBV-related HCC. We discuss specifically how tumor cells evade attack from NK cells and how emerging understanding of NKRs may aid the development of novel treatments for HCC. Novel mono- and combination therapeutic strategies that target the NK cell receptor-ligand system may potentially lead to successful and effective immunotherapy in HCC.Cellular & Molecular Immunology advance online publication, 6 October 2014; doi:10.1038/cmi.2014.91.
Collapse
Affiliation(s)
- Cheng Sun
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Haoyu Sun
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Cai Zhang
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Zhigang Tian
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|
10
|
Sharma RK, Chheda ZS, Jala VR, Haribabu B. Regulation of cytotoxic T-Lymphocyte trafficking to tumors by chemoattractants: implications for immunotherapy. Expert Rev Vaccines 2014; 14:537-49. [PMID: 25482400 DOI: 10.1586/14760584.2015.982101] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cancer immunotherapy has recently emerged as an important treatment modality. FDA approval of provenge, ipilimumab and pembrolizumab has started to deliver on the long awaited promise of cancer immunotherapy. Many new modalities of immunotherapies targeting cytotoxic T lymphocytes (CTLs) responses, such as adoptive cell therapies and vaccines, are in advanced clinical trials. In all these immunotherapies, migration of CTLs to the tumor site is a critical step for achieving therapeutic efficacy. However, inefficient infiltration of activated CTLs into established tumors is increasingly being recognized as one of the major hurdles limiting efficacy. Mechanisms that control migration of CTLs to tumors are poorly defined. In this review, the authors discuss the chemoattractants and their receptors that have been implicated in endogenous- or immunotherapy-induced CTL recruitment to tumors and the potential for targeting these pathways for therapeutic efficacy.
Collapse
Affiliation(s)
- Rajesh K Sharma
- James Graham Brown Cancer Center, University of Louisville Health Sciences, Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
11
|
Kirkwood JM, Butterfield LH, Tarhini AA, Zarour H, Kalinski P, Ferrone S. Immunotherapy of cancer in 2012. CA Cancer J Clin 2012; 62:309-35. [PMID: 22576456 PMCID: PMC3445708 DOI: 10.3322/caac.20132] [Citation(s) in RCA: 314] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The immunotherapy of cancer has made significant strides in the past few years due to improved understanding of the underlying principles of tumor biology and immunology. These principles have been critical in the development of immunotherapy in the laboratory and in the implementation of immunotherapy in the clinic. This improved understanding of immunotherapy, enhanced by increased insights into the mechanism of tumor immune response and its evasion by tumors, now permits manipulation of this interaction and elucidates the therapeutic role of immunity in cancer. Also important, this improved understanding of immunotherapy and the mechanisms underlying immunity in cancer has fueled an expanding array of new therapeutic agents for a variety of cancers. Pegylated interferon-α2b as an adjuvant therapy and ipilimumab as therapy for advanced disease, both of which were approved by the United States Food and Drug Administration for melanoma in March 2011, are 2 prime examples of how an increased understanding of the principles of tumor biology and immunology have been translated successfully from the laboratory to the clinical setting. Principles that guide the development and application of immunotherapy include antibodies, cytokines, vaccines, and cellular therapies. The identification and further elucidation of the role of immunotherapy in different tumor types, and the development of strategies for combining immunotherapy with cytotoxic and molecularly targeted agents for future multimodal therapy for cancer will enable even greater progress and ultimately lead to improved outcomes for patients receiving cancer immunotherapy.
Collapse
Affiliation(s)
- John M Kirkwood
- Melanoma and Skin Cancer Program, University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Tsai HT, Yang SF, Chen DR, Chan SE. CCL5-28, CCL5-403, and CCR5 genetic polymorphisms and their synergic effect with alcohol and tobacco consumptions increase susceptibility to hepatocellular carcinoma. Med Oncol 2012; 29:2771-9. [PMID: 22374185 DOI: 10.1007/s12032-012-0189-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 02/06/2012] [Indexed: 12/20/2022]
Abstract
The aim of this study was to estimate the relationship between gene polymorphisms of CCL5-28, CCL5-403, and CCR5 to the susceptibility of hepatocellular carcinoma (HCC). A total of 449 subjects, including 347 healthy controls and 102 patients with HCC, were recruited in this study and subjected to polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) to investigate the impact of these two polymorphic variants on HCC. A significant association between HCC susceptibility and genetic polymorphism, CG heterozygotes of CCL5-28 (AOR=2.35; 95% CI=1.27-4.33, p=0.006), AA homozygotes of CCL5-403 (AOR=5.18; 95% CI=2.25-11.91, p=0.0001), and AA homozygotes of CCR5 (AOR=2.47; 95% CI=1.24-4.90, p=0.009), was found compared with wild genotype after adjusting for other confounders. It was detected that synergistic effect between gene-to-gene polymorphisms increased the risk to have HCC among individuals with CG or GG of CCL5-28, and GA or AA of CCL-403, and GA or AA of CCR5 (AOR=3.42; 95% CI=1.39-8.38, p=0.007) compared to individuals with wild genotypes of CCL5-28, CCL-403, and CCR5. Also, alcohol or tobacco consumption increased the risk to have HCC among subjects with CG heterozygotes of CCL5-28 (alcohol: p=0.001; tobacco: p=0.006), AA homozygotes (alcohol: p=0.0004; tobacco: p≤0.0001) or GA heterozygotes (tobacco: p=0.03) of CCL5-403, and AA homozygotes of CCR5 (alcohol: p=0.02; tobacco: p=0.02), respectively. Gene polymorphisms of CCL5-28, CCL5-403, and CCR5 play an important factor for the susceptibility of HCC, respectively. The synergic effects of these two gene polymorphisms to tobacco or alcohol consumption significantly increase the risk to develop HCC.
Collapse
Affiliation(s)
- Hsiu-Ting Tsai
- School of Nursing, Chung Shan Medical University, 110, Section 1, Chien-Kuo N. Road, Taichung, Taiwan, ROC.
| | | | | | | |
Collapse
|
13
|
A Th1 cytokine-enriched microenvironment enhances tumor killing by activated T cells armed with bispecific antibodies and inhibits the development of myeloid-derived suppressor cells. Cancer Immunol Immunother 2011; 61:497-509. [PMID: 21971587 DOI: 10.1007/s00262-011-1116-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Accepted: 09/13/2011] [Indexed: 12/16/2022]
Abstract
In this study, we investigated whether activated T cells (ATC) armed with bispecific antibodies (aATC) can inhibits tumor growth and MDSC development in a Th1 cytokine-enriched (IL-2 and IFN-γ) microenvironment. Cytotoxicity mediated by aATC was significantly higher (P < 0.001) against breast cancer cell lines in the presence of Th1 cytokines as compared with control co-cultures. In the presence of aATC, CD33+ /CD11b+ /CD14- /HLA-DR- MDSC population was reduced significantly under both control (P < 0.03) and Th1-enriched (P < 0.036) culture conditions. Cytokine analysis in the culture supernatants showed high levels of MDSC suppressive chemokines CXCL9 and CXCL10 in Th1-enriched culture supernatants with highly significant increase (P < 0.001) in the presence of aATC. Interestingly, MDSC recovered from co-cultures without aATC showed potent ability to suppress activated T-cell-mediated cytotoxicity (P < 0.001), IFN-γ production (P < 0.01) and T-cell proliferation (P < 0.05) compared to those recovered from aATC-containing co-cultures. These data suggest that aATC can mediate enhanced killing of tumor cells and may suppress MDSC and T(reg) differentiation, and presence of Th() cytokines potentiates aATC-induced suppression of MDSC, suggesting that Th1-enriching immunotherapy may be beneficial in cancer treatment.
Collapse
|
14
|
Xu D, Wang FS. Are non-traditional CD4(+) CD69(+) CD25(-) regulatory T cells involved in disease progression of human hepatocellular carcinoma? J Gastroenterol Hepatol 2011; 26:1469-70. [PMID: 21950742 DOI: 10.1111/j.1440-1746.2011.06845.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Zhu J, Feng A, Sun J, Jiang Z, Zhang G, Wang K, Hu S, Qu X. Increased CD4(+) CD69(+) CD25(-) T cells in patients with hepatocellular carcinoma are associated with tumor progression. J Gastroenterol Hepatol 2011; 26:1519-26. [PMID: 21557772 DOI: 10.1111/j.1440-1746.2011.06765.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIM A new subset of Treg cells, CD4(+) CD69(+) CD25(-) T cells, has been identified in mice. Herein, we aimed to identify this subset of T cells and to evaluate its function in patients with hepatocellular carcinoma (HCC). METHODS We detected CD4(+) CD69(+) CD25(-) T cells and its expression of CCR6 and transforming growth factor-β1 (TGF-β1) in peripheral blood of 91 HCC patients, 38 chronic hepatitis patients and 34 healthy donors by flow cytometry. CD4(+) CD69(+) CD25(-) T cells in HCC tissues were also analyzed. RESULTS CD4(+) CD69(+) CD25(-) T cells were significantly increased in peripheral blood of HCC patients compared with healthy persons and chronic hepatitis patients (8.74% ± 0.42% vs 4.55% ± 0.33% and 5.15% ± 0.36%, P < 0.0001). The percentage of peripheral CD4(+) CD69(+) CD25(-) T cells was significantly higher in HCC patients with Tumor Node Metastasis (TNM) stage III plus IV (P < 0.05). Patients with large tumor size and tumor vascular invasion were inclined to obtain high percentage of CD4(+) CD69(+) CD25(-) T cells (P < 0.05). The frequency of membrane-bound TGF-β1 positive cells in CD4(+) CD69(+) CD25(-) T cells from HCC patients was higher than that from the other two groups (P < 0.0001). A considerable proportion of CD4(+) CD69(+) CD25(-) T cells were present in HCC tissues, which has significant correlation with tumor size and TNM stage. Few CD4(+) CD69(+) CD25(-) T cells express CCR6 both in peripheral blood and tumor tissues from HCC patients. CONCLUSIONS Increased CD4(+) CD69(+) CD25(-) T cells in HCC patients are significantly correlated with tumor size, vascular invasion and TNM stage. Thus, increased CD4(+) CD69(+) CD25(-) T cells exert a critical role in HCC progression and might be a clinically aggressive phenotype of HCC.
Collapse
Affiliation(s)
- Jiankang Zhu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Monnier J, Boissan M, L'Helgoualc'h A, Lacombe ML, Turlin B, Zucman-Rossi J, Théret N, Piquet-Pellorce C, Samson M. CXCR7 is up-regulated in human and murine hepatocellular carcinoma and is specifically expressed by endothelial cells. Eur J Cancer 2011; 48:138-48. [PMID: 21778049 DOI: 10.1016/j.ejca.2011.06.044] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 06/10/2011] [Accepted: 06/20/2011] [Indexed: 02/07/2023]
Abstract
Development of hepatocellular carcinoma (HCC) is a complex and progressive disease that involves cycles of liver cell death, inflammation, and tissue regeneration/remodelling. Chemokines and chemokine receptors play numerous and integral roles in the disease progression of HCC. Here we investigated the novel chemokine receptor CXCR7/RDC1 in HCC progression, its two known ligands CXCL12 and CXCL11, as well as the other CXCL12 receptor, CXCR4. Our results show that in a cohort of 408 human HCCs, CXCR7 and CXCL11 were significantly higher in tumours compared to normal liver controls (5- and 10-fold, respectively). Immunohistochemical (IHC) staining on human HCC sections confirmed that both CXCL11 and CXCR7 were much higher in cancer tissues. Furthermore, IHC staining revealed that CXCR7 protein was only expressed in endothelial cells whereas CXCL11 exhibited a much broader tissue expression. At the cellular level we observed that in vitro, human microvascular endothelial cells (HMEC-1) up-regulated CXCR7 under hypoxic and acidic pH conditions, which are well known characteristics of the HCC tumour micro-environment. As for its ligand, we observed that IFNγ robustly induced CXCL11 in hepatic stellate cells, hepatocytes, and HMEC-1s. In addition, in the mouse Diethylnitrosamine model of hepatocarcinogenesis we observed a very strong induction of CXCR7 and CXCL11 transcripts, confirming that CXCR7/CXCL11 up-regulation is conserved between human and mice liver cancer. Altogether, our results strongly support the hypothesis that the CXCL11/CXCR7 pathway is involved HCC progression.
Collapse
Affiliation(s)
- Justin Monnier
- EA 4427 SeRAIC-IRSET, Université de Rennes 1, IFR 140 Rennes, France
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Maeda M, Nishimura Y, Hayashi H, Kumagai N, Chen Y, Murakami S, Miura Y, Hiratsuka JI, Kishimoto T, Otsuki T. Decreased CXCR3 expression in CD4+ T cells exposed to asbestos or derived from asbestos-exposed patients. Am J Respir Cell Mol Biol 2011; 45:795-803. [PMID: 21357438 DOI: 10.1165/rcmb.2010-0435oc] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Asbestos causes malignant tumors such as lung cancer and malignant mesothelioma (MM). To determine whether asbestos exposure causes reduction of antitumor immunity, we established an in vitro T-cell line model of low-dose and continuous exposure to asbestos using an human adult T-cell leukemia virus-1 immortalized human polyclonal T-cell line, MT-2, and revealed that MT-2 cells exposed continuously to asbestos showed resistance to asbestos-induced apoptosis. In addition, the cells presented reduction of surface CXCR3 chemokine receptor expression and IFN-γ production. In this study, to confirm that these findings are suitable for clinical translation, surface CXCR3 and IFN-γ expression were analyzed using freshly isolated human CD4(+) T cells derived from healthy donors and patients with pleural plaque (PP) or MM. The results revealed that CXCR3 and IFN-γ expression in the ex vivo model were reduced in some cases. Additionally, CXCR3 expression in CD4(+) T cells from PPs and MMs was significantly reduced compared with that from healthy donors, and CD4(+) T cells from patients with MMs exhibited a marked reduction in IFN-γ mRNA levels after stimulation in vitro. Moreover, CD4(+)CXCR3(+) T cells in lymphocytes from MMs showed a tendency for an inverse correlation with its ligand CXCL10/IP10 in plasma. These findings show reduction of antitumor immune function in asbestos-exposed patients and indicate that CXCR3, IFN-γ, and CXCL10/IP10 may be candidates to detect and monitor disease status.
Collapse
Affiliation(s)
- Megumi Maeda
- Department of Hygiene, Kawasaki Medical School, Okayama, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Gene expression profiles of T cells from hepatitis E virus infected patients in acute and resolving phase. J Clin Immunol 2011; 31:498-508. [PMID: 21287396 DOI: 10.1007/s10875-010-9506-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 12/28/2010] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND AIMS Approximately 50% of acute viral hepatitis in young adults and in pregnant women is due to hepatitis E virus (HEV) infection in developing countries. T cell-mediated immune injury probably plays a key role in the pathogenesis of acute hepatitis illness. However, there is a paucity of data on the global gene expression programs activated on T cells, which are subsequently responsible for T cell recruitment to the liver and triggering of immune injury. PATIENTS AND METHODS We performed a flow cytometric analysis of T cells in individuals with acute hepatitis E (AVH-E; n=10), resolving phase of HEV (n=9), and ten healthy controls (HC). Further transcriptional profiling analysis was performed using Affymetrix GeneChip DNA microarrays to identify the genes that were differentially expressed in AVH-E and HC. RESULTS Patients with AVH-E showed higher frequencies of CD8+ (27 ± 4%; P=0.02) and activated CD38+ CD69+ T cells (25% ± 3%; P=0.04) than in resolving phase patients (20 ± 2% and 9.1 ± 4%, respectively), who in turn exhibited higher CCR9 expression than cells from patients in active phase. The naïve T cell population (CD3+ CD45RA+) was decreased upon HEV infection (29 ± 4% in AVH-E vs. 53.1 ± 3.2% in HC; P=0.05); however, the CD11a high subpopulation within CD4+ CD45RA+ cells was increased in both AVH-E (6.1%) and resolving phase (7.7%) patients. Gene ontology analysis suggested that during AVH-E infection, there is in CD4+ T cells an activation of genes involved in pro-inflammatory responses. Additional RT-PCR analysis confirmed that in cells from AVH-E patients, there is an increased expression of CCR5, CCR9, CXCR3, CXCR4, STAT1, IRF-9, IFN-α, and TNF-α, together with a down-regulation of IL-2, SOCS3, and IL-10, with respect to cells from resolving phase patients. CONCLUSIONS Our findings suggest the involvement of a circulating CD45RA+ CD11a high population with CCR5 expression in the pathogenesis processes of AVH-E. The obtained results help to understand the underlying inflammatory process occurring in HEV infection, which can lead to either resolution or immunopathology.
Collapse
|
19
|
The analysis of CD45 isoforms expression on HBV-specific T cells after liver transplantation. Med Oncol 2011; 29:899-908. [DOI: 10.1007/s12032-011-9833-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 01/10/2011] [Indexed: 01/12/2023]
|
20
|
Kollmar O, Menger MD, Schilling MK. Role of CXC Chemokines and Receptors in Liver Metastasis – Impact on Liver Resection-Induced Engraftment and Tumor Growth. CANCER METASTASIS - BIOLOGY AND TREATMENT 2011:129-154. [DOI: 10.1007/978-94-007-0292-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
21
|
Qian S, Fan J, Qiu SJ, Xiao YS, Lu L. Natural killer cells in the liver. NATURAL KILLER CELLS 2010:345-357. [DOI: 10.1016/b978-0-12-370454-2.00026-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
22
|
Bricard G, Cesson V, Devevre E, Bouzourene H, Barbey C, Rufer N, Im JS, Alves PM, Martinet O, Halkic N, Cerottini JC, Romero P, Porcelli SA, Macdonald HR, Speiser DE. Enrichment of human CD4+ V(alpha)24/Vbeta11 invariant NKT cells in intrahepatic malignant tumors. THE JOURNAL OF IMMUNOLOGY 2009; 182:5140-51. [PMID: 19342695 DOI: 10.4049/jimmunol.0711086] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Invariant NKT cells (iNKT cells) recognize glycolipid Ags via an invariant TCR alpha-chain and play a central role in various immune responses. Although human CD4(+) and CD4(-) iNKT cell subsets both produce Th1 cytokines, the CD4(+) subset displays an enhanced ability to secrete Th2 cytokines and shows regulatory activity. We performed an ex vivo analysis of blood, liver, and tumor iNKT cells from patients with hepatocellular carcinoma and metastases from uveal melanoma or colon carcinoma. Frequencies of Valpha24/Vbeta11 iNKT cells were increased in tumors, especially in patients with hepatocellular carcinoma. The proportions of CD4(+), double negative, and CD8alpha(+) iNKT cell subsets in the blood of patients were similar to those of healthy donors. However, we consistently found that the proportion of CD4(+) iNKT cells increased gradually from blood to liver to tumor. Furthermore, CD4(+) iNKT cell clones generated from healthy donors were functionally distinct from their CD4(-) counterparts, exhibiting higher Th2 cytokine production and lower cytolytic activity. Thus, in the tumor microenvironment the iNKT cell repertoire is modified by the enrichment of CD4(+) iNKT cells, a subset able to generate Th2 cytokines that can inhibit the expansion of tumor Ag-specific CD8(+) T cells. Because CD4(+) iNKT cells appear inefficient in tumor defense and may even favor tumor growth and recurrence, novel iNKT-targeted therapies should restore CD4(-) iNKT cells at the tumor site and specifically induce Th1 cytokine production from all iNKT cell subsets.
Collapse
Affiliation(s)
- Gabriel Bricard
- Division of Clinical Onco-Immunology, Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Hu K, Xiong J, Ji K, Sun H, Wang J, Liu H. Recombined CC chemokine ligand 2 into B16 cells induces production of Th2-dominant [correction of dominanted] cytokines and inhibits melanoma metastasis. Immunol Lett 2007; 113:19-28. [PMID: 17868906 DOI: 10.1016/j.imlet.2007.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 06/24/2007] [Accepted: 07/01/2007] [Indexed: 11/20/2022]
Abstract
This study is aimed to verify whether CCL2 can induce Th2 polarization in vivo and subsequently inhibit tumor metastasis. B16 cells (a murine melanoma cell line) highly expressing CCL2 (CCL2-B16 cells) were obtained by transfection with recombinant plasmid CCL2-pcDNA3. Primary thymocytes were co-cultured with CCL2-B16 cells and STAT-6-mediated Th2 polarization was noticed after co-culture. Caudal vein injection of CCL2-B16 cells effectively inhibited pulmonary metastasis in C57BL/6 mice, but not in nude mice, indicating that T cells play a role in CCL2-induced inhibition of tumor metastasis. We found that high level of CCL2 up-regulated the expression of Th2-related cytokine (IL-4) in tumor microenvironment and increased CD4+, CD8+, and CD45RB+ cells in the peripheral blood and tumor tissues. We also demonstrated that inoculation of mice with CCL2-B16 cells prolonged mice survival time when they were reinjected with wildtype B16 cells, implying that CCL2 can activate immuno-memory in mice. It is concluded that high expression of CCL2 can induce Th2 polarization in tumor microenvironment and can effectively inhibit tumor metastasis, which casts new lights on the role of chemokines in reconstruction of immune surveillance in patients suffering from tumors.
Collapse
Affiliation(s)
- Kaimeng Hu
- Research Center of Developmental Biology and Department of Histology and Embryology, Second Military Medical University, Shanghai 200433, PR China
| | | | | | | | | | | |
Collapse
|
24
|
Wald O, Weiss ID, Galun E, Peled A. Chemokines in hepatitis C virus infection: Pathogenesis, prognosis and therapeutics. Cytokine 2007; 39:50-62. [PMID: 17629707 DOI: 10.1016/j.cyto.2007.05.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Revised: 05/20/2007] [Accepted: 05/25/2007] [Indexed: 12/20/2022]
Abstract
Hepatitis C virus infection and its associated liver inflammatory disease is a major global health problem affecting over 170 million people worldwide. Following viral infection, multiple pro-inflammatory mediators contribute to recruitment of immune cells to the liver and to the generation of an anti-viral immune response. However, when this vigorous immune response fails to eliminate the virus, chronic infection is established. This in turn, results in an ongoing process of inflammation, regeneration and fibrosis that in many cases leads to the development of cirrhosis and of hepatocellular carcinoma. Multiple recent publications mark chemokines and their receptors as key players in leukocyte recirculation through the inflamed liver. Furthermore, chemokines may also be involved in liver regeneration, fibrosis, and in malignant transformation, which is induced by the persistence of inflammation. Accumulating data indicates that distinct chemokines and chemokine receptors may be associated with different stages of the chronic hepatitis C virus infection-associated liver disease. Multiple small molecules and peptide antagonizing chemokines and their receptors are in advanced phase 3 and phase 2 clinical trials. In the near future, such drugs are expected to enter clinical use raising the question whether they may be applicable for the treatment of chronic viral infection-associated liver disease. In this review, recent advances in understanding the role of chemokines and their receptors in the pathogenesis of chronic viral infection-associated liver disease are presented. Furthermore, the clinical implications of these novel findings, which mark chemokines as prognostic markers and therapeutic targets for immune-modulation during chronic liver viral infection, are documented.
Collapse
Affiliation(s)
- Ori Wald
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, P.O. Box 12000, Jerusalem 91120, Israel.
| | | | | | | |
Collapse
|
25
|
Yu J. Targeting chemokines as a therapeutic option for hepatocellular carcinoma: a reality or just a fantasy? J Gastroenterol Hepatol 2007; 22:611-2. [PMID: 17444845 DOI: 10.1111/j.1440-1746.2007.04970.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
26
|
Rubie C, Frick VO, Wagner M, Weber C, Kruse B, Kempf K, König J, Rau B, Schilling M. Chemokine expression in hepatocellular carcinoma versus colorectal liver metastases. World J Gastroenterol 2006; 12:6627-33. [PMID: 17075975 PMCID: PMC4125667 DOI: 10.3748/wjg.v12.i41.6627] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate and compare the expression profiles of CXCL12 (SDF-1), CCL19 (MIP-3β), CCL20 (MIP-3α) and CCL21 (6Ckine, Exodus2) and their receptors on RNA and protein levels in hepatocellular carcinoma (HCC) versus colorectal liver metastases (CRLM) and to elucidate their impact on the carcinogenesis and progression of malignant liver diseases.
METHODS: Chemokine expression was analyzed by RT-PCR and ELISA in 11 cases of HCC specimens and in 23 cases of CRLM and corresponding adjacent non-tumorous liver tissues, respectively. Expressions of their receptors CXCR4, CCR6 and CCR7 were analyzed by RT-PCR and Western blot analysis in the same cases of HCC and CRLM.
RESULTS: Significant up-regulation for CCL20/CCR6 was detected in both cancer types. Moreover, CCL20 demonstrated significant overexpression in CRLM in relation to the HCC tissues. Being significantly up-regulated only in CRLM, CXCR4 displayed an aberrant expression pattern with respect to the HCC tissues.
CONCLUSION: Correlation of CXCR4 expression with CRLM suggests CXCR4 as a potential predictive factor for CRLM. High level expression of CCL20 and its receptor CCR6 in HCC and CRLM with marked up-regulation of CCL20 in CRLM in relation to HCC tissues indicates involvement of the CCL20/CCR6 ligand-receptor pair in the carcinogenesis and progression of hepatic malignancies.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Chemokine CCL20
- Chemokine CXCL12
- Chemokines/genetics
- Chemokines/metabolism
- Chemokines, CC/genetics
- Chemokines, CC/metabolism
- Chemokines, CXC/genetics
- Chemokines, CXC/metabolism
- Colorectal Neoplasms/genetics
- Colorectal Neoplasms/metabolism
- Colorectal Neoplasms/pathology
- Female
- Gene Expression Regulation, Neoplastic/genetics
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/secondary
- Macrophage Inflammatory Proteins/genetics
- Macrophage Inflammatory Proteins/metabolism
- Male
- Middle Aged
- Neoplasm Metastasis/genetics
- Neoplasm Metastasis/pathology
- Predictive Value of Tests
- Receptors, CCR6
- Receptors, CXCR4/genetics
- Receptors, CXCR4/metabolism
- Receptors, Chemokine/genetics
- Receptors, Chemokine/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Claudia Rubie
- Department of General-, Visceral-, Vascular- and Paediatric Surgery, Universitatsklinikum des Saarlandes, Chirurgische Klinik, Gebaude 57, Homburg/Saar 66421, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Rubie C, Frick VO, Wagner M, Rau B, Weber C, Kruse B, Kempf K, Tilton B, König J, Schilling M. Enhanced expression and clinical significance of CC-chemokine MIP-3 alpha in hepatocellular carcinoma. Scand J Immunol 2006; 63:468-77. [PMID: 16764701 DOI: 10.1111/j.1365-3083.2006.001766.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most frequent visceral neoplasms worldwide. Using RT-PCR, ELISA, microdissection and immunohistochemistry, we investigated the expression profiles of CCL19, CCL20, CCL21 and CXCL12 and their receptors in tumourous and tumour neighbouring tissues from patients with HCC and in nonmalignant liver lesions, respectively. All chemokines were found to be expressed in normal liver and HCC tissues, yet CCL20 was the only chemokine showing significant upregulation in HCC tissues. Clinicopathological analysis revealed a distinct increase in CCL20 expression rates in HCC tissues of grade III tumours in comparison to HCC tissues from grade II tumours. On mRNA level, only chemokine receptor CCR6 revealed significant upregulation in HCC tissues. However, immunohistochemical studies indicated a marked CCR6 expression accumulated in a streak of normal cells along the tumour invasion front in all our HCC specimens which could provide a stimulative signal for the tumour to further expand. The present findings show significant overexpression of CCL20 in the tumour tissues and marked overexpression of the corresponding receptor CCR6 in the tumour invasion front of HCC patients in comparison to normal liver. Moreover, CCL20 expression was found to correlate with tumour grade and therefore, we suggest that the CCL20/CCR6 system may be involved in hepatocarcinogenesis.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/biosynthesis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/physiology
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Chemokine CCL20
- Chemokines, CC/biosynthesis
- Chemokines, CC/genetics
- Chemokines, CC/physiology
- Female
- Humans
- Liver Neoplasms/immunology
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Macrophage Inflammatory Proteins/biosynthesis
- Macrophage Inflammatory Proteins/genetics
- Macrophage Inflammatory Proteins/physiology
- Male
- Middle Aged
- Receptors, CCR6
- Receptors, Chemokine/physiology
Collapse
Affiliation(s)
- C Rubie
- Department of General-, Visceral-, Vascular- and Paediatric Surgery, University of the Saarland, Homburg/Saar, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Matsuyoshi H, Hirata S, Yoshitake Y, Motomura Y, Fukuma D, Kurisaki A, Nakatsura T, Nishimura Y, Senju S. Therapeutic effect of alpha-galactosylceramide-loaded dendritic cells genetically engineered to express SLC/CCL21 along with tumor antigen against peritoneally disseminated tumor cells. Cancer Sci 2005; 96:889-96. [PMID: 16367909 PMCID: PMC11160062 DOI: 10.1111/j.1349-7006.2005.00123.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The close cooperation of both innate and acquired immunity is essential for the induction of truly effective antitumor immunity. We tested a strategy to enhance the cross-talk between NKT cells and conventional antigen-specific T cells with the use of alpha GalCer-loaded dendritic cells genetically engineered to express antigen plus chemokine, attracting both conventional T cells and NKT cells. DC genetically engineered to express a model antigen, OVA, along with SLC/CCL21 or monokine induced by IFN-gamma/CXCL9, had been generated using a method based on in vitro differentiation of DC from mouse ES cells. The ES-DC were loaded with alpha-GalCer and transferred to mice bearing MO4, an OVA-expressing melanoma, and their capacity to evoke antitumor immunity was evaluated. In vivo transfer of either OVA-expressing ES-DC, stimulating OVA-reactive T cells, or alpha-GalCer-loaded non-transfectant ES-DC, stimulating NKT cells, elicited a significant but limited degree of protection against the i.p. disseminated MO4. A more potent antitumor effect was observed when alpha-GalCer was loaded to ES-DC expressing OVA before in vivo transfer, and the effect was abrogated by the administration of anti-CD8, anti-NK1.1 or anti-asialo GM1 antibody. alpha-GalCer-loaded double transfectant ES-DC expressing SLC along with OVA induced the most potent antitumor immunity. Thus, alpha-GalCer-loaded ES-DC expressing tumor-associated antigen along with SLC can stimulate multiple subsets of effector cells to induce a potent therapeutic effect against peritoneally disseminated tumor cells. The present study suggests a novel way to use alpha-GalCer in immunotherapy for peritoneally
Collapse
Affiliation(s)
- Hidetake Matsuyoshi
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|