1
|
Li X, Wang W, Wang J, Jiang M, He J, Tan S. Identification of HPV-E7 specific TCRs for tumor immunotherapy. Mol Immunol 2024; 171:56-65. [PMID: 38795685 DOI: 10.1016/j.molimm.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/23/2024] [Accepted: 05/15/2024] [Indexed: 05/28/2024]
Abstract
The oncogenic protein E7 of the Human Papillomavirus (HPV) is constitutionally expressed in HPV-associated tumors and has the potential to be targeted in T cell receptor (TCR)-based immunotherapy. Adoptive transfer of TCR-engineered T (TCR-T) cells has shown promise as a therapeutic approach for HPV-induced tumors. This study aimed to identify HPV-E7 specific TCRs from HLA-A11:01 transgenic mice through single-cell sorting and sequencing facilitated by E789-97/HLA-A11:01 tetramer. Two dominant TCRs were identified, which exhibited specific binding to E789-97 presented in the context of HLA-A*11:01. TCR-T cells were prepared by infecting primary T cells with lentiviruses containing the TCR genes, and the two TCRs demonstrated substantial responsiveness and showed CD8+ dependent cytokine secretion characteristics. Further analyses of the cytokine profiles revealed that the two TCRs were capable of exerting polyfunctional responses upon specific stimulation. These findings suggest that the two TCRs represent promising candidates for the development of future therapeutic drugs targeting HPV-E7 in the context of HLA-A*11:01 for tumor immunotherapy.
Collapse
Affiliation(s)
- Xiaowen Li
- Institute of Physical Science and Information, Anhui University, Hefei, Anhui, China; CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wenling Wang
- Institute of Physical Science and Information, Anhui University, Hefei, Anhui, China; CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jie Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Min Jiang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Juanhua He
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Shuguang Tan
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China; Shenzhen Children's Hospital, Shenzhen, Guangdong, China.
| |
Collapse
|
2
|
Solé P, Parras D, Yamanouchi J, Garnica J, Garabatos N, Moro J, Montaño J, Mondal D, Fandos C, Yang Y, Serra P, Santamaria P. Transcriptional re-programming of insulin B-chain epitope-specific T-follicular helper cells into anti-diabetogenic T-regulatory type-1 cells. Front Immunol 2023; 14:1177722. [PMID: 37153608 PMCID: PMC10154693 DOI: 10.3389/fimmu.2023.1177722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/27/2023] [Indexed: 05/09/2023] Open
Abstract
Systemic delivery of nanoparticles (NPs) coated with mono-specific autoimmune disease-relevant peptide-major histocompatibility complex class II (pMHCII) molecules can resolve organ inflammation in various disease models in a disease-specific manner without impairing normal immunity. These compounds invariably trigger the formation and systemic expansion of cognate pMHCII-specific T-regulatory type 1 (TR1) cells. By focusing on type 1 diabetes (T1D)-relevant pMHCII-NP types that display an epitope from the insulin B-chain bound to the same MHCII molecule (IAg7) on three different registers, we show that pMHCII-NP-induced TR1 cells invariably co-exist with cognate T-Follicular Helper (TFH)-like cells of quasi-identical clonotypic composition and are oligoclonal, yet transcriptionally homogeneous. Furthermore, these three different TR1 specificities have similar diabetes reversal properties in vivo despite being uniquely reactive against the peptide MHCII-binding register displayed on the NPs. Thus, pMHCII-NP treatment using nanomedicines displaying different epitope specificities results in the simultaneous differentiation of multiple antigen-specific TFH-like cell clones into TR1-like cells that inherit the fine antigenic specificity of their precursors while acquiring a defined transcriptional immunoregulatory program.
Collapse
Affiliation(s)
- Patricia Solé
- Department of Liver, Digestive System and Metabolism, Institut D’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Daniel Parras
- Department of Liver, Digestive System and Metabolism, Institut D’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Jun Yamanouchi
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Josep Garnica
- Department of Liver, Digestive System and Metabolism, Institut D’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Nahir Garabatos
- Department of Liver, Digestive System and Metabolism, Institut D’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Joel Moro
- Department of Liver, Digestive System and Metabolism, Institut D’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Javier Montaño
- Department of Liver, Digestive System and Metabolism, Institut D’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Debajyoti Mondal
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - César Fandos
- Department of Liver, Digestive System and Metabolism, Institut D’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Yang Yang
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Pau Serra
- Department of Liver, Digestive System and Metabolism, Institut D’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Pere Santamaria
- Department of Liver, Digestive System and Metabolism, Institut D’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- *Correspondence: Pere Santamaria,
| |
Collapse
|
3
|
Yang Y, Ellestad KK, Singha S, Uddin MM, Clarke R, Mondal D, Garabatos N, Solé P, Fandos C, Serra P, Santamaria P. Extremely short bioavailability and fast pharmacodynamic effects of pMHC-based nanomedicines. J Control Release 2021; 338:557-570. [PMID: 34474072 DOI: 10.1016/j.jconrel.2021.08.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/10/2021] [Accepted: 08/25/2021] [Indexed: 01/25/2023]
Abstract
Nanoparticles (NPs) coated with autoimmune disease-relevant peptide-major histocompatibility complexes (pMHCs) can blunt autoimmune diseases by re-programming cognate effector T-lymphocytes into disease-suppressing regulatory T-cells, followed by massive expansion. Here, a method to quantify the absolute amounts of the active drug product is developed, to understand the relationship between bioavailability and pharmacodynamics. Incubation with plasma results in the formation of a protein corona that stabilizes the directional pMHC coat, shielding it from proteolysis or anti-drug antibody recognition, without any appreciable loss in biological potency. A quantitative method that harnesses these features indicates that the half-life of these compounds in the circulation and organs is an order of magnitude shorter (minutes vs. hours) than that measured using commonly-used semi-quantitative methods. Extensive transmission electron microscopy-based organ scanning and flow cytometry-based enumeration of pMHCII-NP capturing cells confirmed that these compounds are rapidly captured (within 1 min) by liver sinusoidal endothelial cells, Kupffer cells, splenic phagocytes and cognate T-cells, leading to a fast decline in the circulation. Therefore, the powerful pharmacodynamic effects of these compounds are dissociated from long bioavailability, implying a hit-and-run event. Collectively, these data provide a detailed view of the life-cycle of a nanoimmunomedicine, and suggest that the real half-lives of intact nanomedicines may be much shorter than those estimated using indirect approaches.
Collapse
Affiliation(s)
- Yang Yang
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1, Canada; Department of Biochemistry and Molecular Biology and Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1, Canada.
| | - Kristofor K Ellestad
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1, Canada
| | - Santiswarup Singha
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1, Canada
| | - Muhammad Myn Uddin
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1, Canada
| | - Robert Clarke
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1, Canada
| | - Debajyoti Mondal
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1, Canada
| | - Nahir Garabatos
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona 08036, Spain
| | - Patricia Solé
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona 08036, Spain
| | - Cesar Fandos
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona 08036, Spain
| | - Pau Serra
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona 08036, Spain
| | - Pere Santamaria
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1, Canada; Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona 08036, Spain.
| |
Collapse
|
4
|
He Q, Jiang X, Zhou X, Weng J. Targeting cancers through TCR-peptide/MHC interactions. J Hematol Oncol 2019; 12:139. [PMID: 31852498 PMCID: PMC6921533 DOI: 10.1186/s13045-019-0812-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/27/2019] [Indexed: 02/07/2023] Open
Abstract
Adoptive T cell therapy has achieved dramatic success in a clinic, and the Food and Drug Administration approved two chimeric antigen receptor-engineered T cell (CAR-T) therapies that target hematological cancers in 2018. A significant issue faced by CAR-T therapies is the lack of tumor-specific biomarkers on the surfaces of solid tumor cells, which hampers the application of CAR-T therapies to solid tumors. Intracellular tumor-related antigens can be presented as peptides in the major histocompatibility complex (MHC) on the cell surface, which interact with the T cell receptors (TCR) on antigen-specific T cells to stimulate an anti-tumor response. Multiple immunotherapy strategies have been developed to eradicate tumor cells through targeting the TCR-peptide/MHC interactions. Here, we summarize the current status of TCR-based immunotherapy strategies, with particular focus on the TCR structure, activated signaling pathways, the effects and toxicity associated with TCR-based therapies in clinical trials, preclinical studies examining immune-mobilizing monoclonal TCRs against cancer (ImmTACs), and TCR-fusion molecules. We propose several TCR-based therapeutic strategies to achieve optimal clinical responses without the induction of autoimmune diseases.
Collapse
Affiliation(s)
- Qinghua He
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, 621 Gangwan Rd, Huangpu Qu, Guangzhou, 510700, China
| | - Xianhan Jiang
- Department of General Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| | - Xinke Zhou
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, 621 Gangwan Rd, Huangpu Qu, Guangzhou, 510700, China. .,Department of General Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China.
| | - Jinsheng Weng
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, 1414 Holcombe Boulevard, Houston, TX, 77030, USA.
| |
Collapse
|
5
|
Eisenberg V, Hoogi S, Shamul A, Barliya T, Cohen CJ. T-cells "à la CAR-T(e)" - Genetically engineering T-cell response against cancer. Adv Drug Deliv Rev 2019; 141:23-40. [PMID: 30653988 DOI: 10.1016/j.addr.2019.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 01/01/2019] [Accepted: 01/09/2019] [Indexed: 02/06/2023]
Abstract
The last decade will be remembered as the dawn of the immunotherapy era during which we have witnessed the approval by regulatory agencies of genetically engineered CAR T-cells and of checkpoint inhibitors for cancer treatment. Understandably, T-lymphocytes represent the essential player in these approaches. These cells can mediate impressive tumor regression in terminally-ill cancer patients. Moreover, they are amenable to genetic engineering to improve their function and specificity. In the present review, we will give an overview of the most recent developments in the field of T-cell genetic engineering including TCR-gene transfer and CAR T-cells strategies. We will also elaborate on the development of other types of genetic modifications to enhance their anti-tumor immune response such as the use of co-stimulatory chimeric receptors (CCRs) and unconventional CARs built on non-antibody molecules. Finally, we will discuss recent advances in genome editing and synthetic biology applied to T-cell engineering and comment on the next challenges ahead.
Collapse
|
6
|
Morimoto S, Fujiki F, Kondo K, Nakajima H, Kobayashi Y, Inatome M, Aoyama N, Nishida Y, Tsuboi A, Oka Y, Nishida S, Nakata J, Hosen N, Oji Y, Sugiyama H. Establishment of a novel platform cell line for efficient and precise evaluation of T cell receptor functional avidity. Oncotarget 2018; 9:34132-34141. [PMID: 30344927 PMCID: PMC6183340 DOI: 10.18632/oncotarget.26139] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/10/2018] [Indexed: 12/15/2022] Open
Abstract
Adoptive T-cell therapy with T cell receptor (TCR) -engineered T cells is an attractive strategy for cancer treatment and the success in this therapy is dependent on the functional avidity of the transduced TCRs against targeted tumor antigens. Therefore, the establishment of the methodology of the efficient and precise evaluation of TCR functional avidity has been awaited. Here, we show a novel platform cell line, named 2D3, which enables the functional avidity of transduced TCRs to be evaluated efficiently and precisely. In the 2D3, the precise TCR functional avidity of transduced TCRs is easily evaluable by the expression of green fluorescent protein (GFP) reporter gene driven by nuclear factor of activated T cells (NFAT) activation via TCR signaling. Four different TCRs of HLA-A*24:02-restricted Wilms’ tumor gene 1 (WT1)-specific CD8+ cytotoxic T lymphocytes (CTLs) were transduced into 2D3 cells and the functional avidities of these four TCRs were evaluated. The evaluated functional avidity of these TCRs positively correlated with cell proliferation, cytokine production, and WT1-specific cytotoxicity of the TCR-transduced CD8+ T cells in response to WT1 antigen. These results showed that 2D3 cell line was a novel and stable tool useful for the efficient and precise evaluation of the functional avidity of isolated and transduced TCRs in developing TCR-based immunotherapy.
Collapse
Affiliation(s)
- Soyoko Morimoto
- Department of Cancer Immunotherapy, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Fumihiro Fujiki
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kenta Kondo
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroko Nakajima
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshiki Kobayashi
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Miki Inatome
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Nao Aoyama
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuya Nishida
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Akihiro Tsuboi
- Department of Cancer Immunotherapy, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshihiro Oka
- Department of Cancer Stem Cell Biology, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of Immunopathology, Immunology Frontier Research Center (World Premier International Research Center), Osaka University, Osaka, Japan
| | - Sumiyuki Nishida
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jun Nakata
- Department of Cancer Immunotherapy, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Naoki Hosen
- Department of Cancer Stem Cell Biology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yusuke Oji
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Haruo Sugiyama
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
7
|
Mercier-Letondal P, Marton C, Deschamps M, Ferrand C, Vauchy C, Chenut C, Baguet A, Adotévi O, Borg C, Galaine J, Godet Y. Isolation and Characterization of an HLA-DRB1*04-Restricted HPV16-E7 T Cell Receptor for Cancer Immunotherapy. Hum Gene Ther 2018; 29:1202-1212. [PMID: 30136612 DOI: 10.1089/hum.2018.091] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
High-risk human papillomavirus (HPV) infection is a causal factor in oropharyngeal and gynecological malignancies, and development of HPV-targeted immunotherapy could be used to treat patients with these cancers. T cell-mediated adoptive immunotherapy targeting E6 and E7, two HPV16 proteins consistently expressed in tumor cells, appears to be both attractive and safe. However, isolation of HPV-specific T cells is difficult owing to the low frequency of these cell precursors in the peripheral blood. In addition, HPV-positive cancer cells often down-regulate major histocompatibility complex (MHC) class I expression ex vivo, limiting the efficacy of MHC class I-restricted approaches. Of particular interest is that both CD4 and CD8 T cells can mediate the responses. Given that CD4 T cells play a critical role in coordinating effective antitumor responses, the generation of a T helper response in patients with HPV16-associated malignancies would unleash the ultimate potential of immunotherapy. In this view, T-cell receptor (TCR) gene transfer could be a relevant strategy to generate HPV16-E7-specific and MHC class II-restricted T cells in sufficient numbers. An HPV16-E7/HLA-DRB1*04 TCR has been isolated from a cancer patient with complete response, and retroviral particles encoding this TCR have been produced. The transgenic TCR is highly expressed in transduced T cells, with a functional inducible caspase-9 suicide gene safety cassette. TCR transgenic T cells are HPV16-E770-89 specific and HLA-DRB1*04 restricted, as determined by interferon (IFN)-γ secretion. CD8 and CD4 T cells are equivalently transduced and secrete interleukin-2 and IFN-γ when cultured with appropriate targets. We also demonstrate that TCR transgenic T cells recognize the endogenously processed and presented HPV16-E770-89 peptide. In conclusion, our data indicate that the production of MHC class II-restricted HPV16-E7-specific T cells is feasible through TCR gene transfer and could be used for immunotherapy.
Collapse
Affiliation(s)
- Patricia Mercier-Letondal
- 1 Université Bourgogne Franche-Comté , INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France; Department of Medical Oncology, F-25000 Besançon, France
| | - Chrystel Marton
- 1 Université Bourgogne Franche-Comté , INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France; Department of Medical Oncology, F-25000 Besançon, France
| | - Marina Deschamps
- 1 Université Bourgogne Franche-Comté , INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France; Department of Medical Oncology, F-25000 Besançon, France
| | - Christophe Ferrand
- 1 Université Bourgogne Franche-Comté , INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France; Department of Medical Oncology, F-25000 Besançon, France
| | - Charline Vauchy
- 1 Université Bourgogne Franche-Comté , INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France; Department of Medical Oncology, F-25000 Besançon, France
| | - Clément Chenut
- 1 Université Bourgogne Franche-Comté , INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France; Department of Medical Oncology, F-25000 Besançon, France
| | - Aurélie Baguet
- 2 EA3181, Université Bourgogne Franche-Comté , F-25000 Besançon, France; and Department of Medical Oncology, F-25000 Besançon, France
| | - Olivier Adotévi
- 1 Université Bourgogne Franche-Comté , INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France; Department of Medical Oncology, F-25000 Besançon, France .,3 University Hospital of Besançon , Department of Medical Oncology, F-25000 Besançon, France
| | - Christophe Borg
- 1 Université Bourgogne Franche-Comté , INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France; Department of Medical Oncology, F-25000 Besançon, France .,3 University Hospital of Besançon , Department of Medical Oncology, F-25000 Besançon, France
| | - Jeanne Galaine
- 1 Université Bourgogne Franche-Comté , INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France; Department of Medical Oncology, F-25000 Besançon, France
| | - Yann Godet
- 1 Université Bourgogne Franche-Comté , INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France; Department of Medical Oncology, F-25000 Besançon, France
| |
Collapse
|
8
|
Jiang P, Wang L, Hou B, Zhu J, Zhou M, Jiang J, Wang L, Chen S, Zhu S, Chen J, Zhang L. A novel HPV16 E7-affitoxin for targeted therapy of HPV16-induced human cervical cancer. Am J Cancer Res 2018; 8:3544-3558. [PMID: 30026865 PMCID: PMC6037027 DOI: 10.7150/thno.24607] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/27/2018] [Indexed: 02/06/2023] Open
Abstract
Cervical cancer, the second most common cause of cancer death in women worldwide, is significantly associated with infection of high-risk human papillomaviruses (HPVs), especially the most common genotype, HPV 16. To date, there is no established noninvasive therapy to treat cervical cancer. Methods: Here, we report a novel affitoxin that targets HPV16 E7 protein, one of the primary target proteins in molecular targeted therapy for HPV-induced cervical cancer. The affitoxin, ZHPV16E7 affitoxin384 was generated by fusing the modified Pseudomonas Exotoxin A (PE38KDEL) to the HPV16 E7-specific affibody. The expressed and purified ZHPV16E7 affitoxin384 was characterized using numerous methods. SPR assay, indirect immunofluorescence assay, and near-infrared (NIR) optical imaging were respectively performed to assess the targeting ability of ZHPV16E7 affitoxin384 to HPV16 E7 protein both in vitro and in vivo. Cell viability assays and SiHa tumor-bearing nude mice were used to evaluate the efficacy of ZHPV16 E7 affitoxin384 in vitro and in vivo, respectively. Results: Using in vitro methods the SPR assay and indirect immunofluorescence assay showed that ZHPV16E7 affitoxin384 targeted HPV16 E7 with high binding affinity and specificity. Significant reduction of cell viability in HPV16 positive cells was observed in the presence of ZHPV16 E7 affitoxin384. By NIR optical imaging, ZHPV16 E7 affitoxin384 specifically targeted HPV16 positive tumors in vivo. ZHPV16E7 affitoxin384 showed significant in vivo antitumor efficacy in two kinds of tumor-bearing nude mouse models. Conclusions: ZHPV16E7 affitoxin384 is a potent anti-cervical cancer therapeutic agent that could be effective against HPV16 positive tumors in humans.
Collapse
|
9
|
McCormack SE, Cruz CRY, Wright KE, Powell AB, Lang H, Trimble C, Keller MD, Fuchs E, Bollard CM. Human papilloma virus-specific T cells can be generated from naïve T cells for use as an immunotherapeutic strategy for immunocompromised patients. Cytotherapy 2018; 20:385-393. [PMID: 29331266 DOI: 10.1016/j.jcyt.2017.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/21/2017] [Accepted: 11/24/2017] [Indexed: 01/31/2023]
Abstract
Human papilloma virus (HPV) is a known cause of cervical cancer, squamous cell carcinoma and laryngeal cancer. Although treatments exist for HPV-associated malignancies, patients unresponsive to these therapies have a poor prognosis. Recent findings from vaccine studies suggest that T-cell immunity is essential for disease control. Because Epstein-Barr Virus (EBV)-specific T cells have been highly successful in treating or preventing EBV-associated tumors, we hypothesized that the development of a manufacturing platform for HPV-specific T cells from healthy donors could be used in a third-party setting to treat patients with high-risk/relapsed HPV-associated cancers. Most protocols for generating virus-specific T cells require prior exposure of the donor to the targeted virus and, because the seroprevalence of high-risk HPV types varies greatly by age and ethnicity, manufacturing of donor-derived HPV-specific T cells has proven challenging. We, therefore, made systematic changes to our current Good Manufacturing Practice (GMP)-compliant protocols to improve antigen presentation, priming and expansion for the manufacture of high-efficacy HPV-specific T cells. Like others, we found that current methodologies fail to expand HPV-specific T cells from most healthy donors. By optimizing dendritic cell maturation and function with lipopolysaccharide (LPS) and interferon (IFN)γ, adding interleukin (IL)-21 during priming and depleting memory T cells, we achieved reliable expansion of T cells specific for oncoproteins E6 and E7 to clinically relevant amounts (mean, 578-fold expansion; n = 10), which were polyfunctional based on cytokine multiplex analysis. In the third-party setting, such HPV-specific T-cell products might serve as a potent salvage therapy for patients with HPV-associated diseases.
Collapse
Affiliation(s)
- Sarah E McCormack
- Program for Cell Enhancement and Technologies for Immunotherapy, Children's National Medical Center, Washington, DC, USA
| | - Conrad Russell Y Cruz
- Program for Cell Enhancement and Technologies for Immunotherapy, Children's National Medical Center, Washington, DC, USA; Sheikh Zayed Institute, Children's National Medical Center, Washington, DC, USA
| | - Kaylor E Wright
- Program for Cell Enhancement and Technologies for Immunotherapy, Children's National Medical Center, Washington, DC, USA; Sheikh Zayed Institute, Children's National Medical Center, Washington, DC, USA
| | - Allison B Powell
- Program for Cell Enhancement and Technologies for Immunotherapy, Children's National Medical Center, Washington, DC, USA; Sheikh Zayed Institute, Children's National Medical Center, Washington, DC, USA
| | - Haili Lang
- Program for Cell Enhancement and Technologies for Immunotherapy, Children's National Medical Center, Washington, DC, USA
| | - Cornelia Trimble
- Department of Gynecology and Obstetrics, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Michael D Keller
- Program for Cell Enhancement and Technologies for Immunotherapy, Children's National Medical Center, Washington, DC, USA; Division of Allergy and Immunology, Children's National Medical Center, Washington, DC, USA
| | - Ephraim Fuchs
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Catherine M Bollard
- Program for Cell Enhancement and Technologies for Immunotherapy, Children's National Medical Center, Washington, DC, USA; Sheikh Zayed Institute, Children's National Medical Center, Washington, DC, USA; Division of Allergy and Immunology, Children's National Medical Center, Washington, DC, USA; Division of Blood and Marrow Transplantation, Children's National Medical Center, Washington, DC, USA.
| |
Collapse
|
10
|
Mingozzi F, High KA. Overcoming the Host Immune Response to Adeno-Associated Virus Gene Delivery Vectors: The Race Between Clearance, Tolerance, Neutralization, and Escape. Annu Rev Virol 2017; 4:511-534. [PMID: 28961410 DOI: 10.1146/annurev-virology-101416-041936] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Immune responses in gene therapy with adeno-associated virus (AAV) vectors have been the object of almost two decades of study. Although preclinical models helped to define and predict certain aspects of interactions between the vector and the host immune system, most of our current knowledge has come from clinical trials. These studies have allowed development of effective interventions for modulating immunotoxicities associated with vector administration, resulting in therapeutic advances. However, the road to full understanding and effective modulation of immune responses in gene therapy is still long; the determinants of the balance between tolerance and immunogenicity in AAV vector-mediated gene transfer are not fully understood, and effective solutions for overcoming preexisting neutralizing antibodies are still lacking. However, despite these challenges, the goal of reliably delivering effective gene-based treatments is now in sight.
Collapse
Affiliation(s)
- Federico Mingozzi
- Genethon and INSERM U951, 91000 Evry, France; .,University Pierre and Marie Curie Paris 6 and INSERM U974, 75651 Paris, France
| | | |
Collapse
|
11
|
Singha S, Shao K, Yang Y, Clemente-Casares X, Solé P, Clemente A, Blanco J, Dai Q, Song F, Liu SW, Yamanouchi J, Umeshappa CS, Nanjundappa RH, Detampel P, Amrein M, Fandos C, Tanguay R, Newbigging S, Serra P, Khadra A, Chan WCW, Santamaria P. Peptide-MHC-based nanomedicines for autoimmunity function as T-cell receptor microclustering devices. NATURE NANOTECHNOLOGY 2017; 12:701-710. [PMID: 28436959 DOI: 10.1038/nnano.2017.56] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 03/06/2017] [Indexed: 05/23/2023]
Abstract
We have shown that nanoparticles (NPs) can be used as ligand-multimerization platforms to activate specific cellular receptors in vivo. Nanoparticles coated with autoimmune disease-relevant peptide-major histocompatibility complexes (pMHC) blunted autoimmune responses by triggering the differentiation and expansion of antigen-specific regulatory T cells in vivo. Here, we define the engineering principles impacting biological activity, detail a synthesis process yielding safe and stable compounds, and visualize how these nanomedicines interact with cognate T cells. We find that the triggering properties of pMHC-NPs are a function of pMHC intermolecular distance and involve the sustained assembly of large antigen receptor microclusters on murine and human cognate T cells. These compounds show no off-target toxicity in zebrafish embryos, do not cause haematological, biochemical or histological abnormalities, and are rapidly captured by phagocytes or processed by the hepatobiliary system. This work lays the groundwork for the design of ligand-based NP formulations to re-program in vivo cellular responses using nanotechnology.
Collapse
Affiliation(s)
- Santiswarup Singha
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Kun Shao
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Yang Yang
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Xavier Clemente-Casares
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Patricia Solé
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona 08036, Spain
| | - Antonio Clemente
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona 08036, Spain
| | - Jesús Blanco
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona 08036, Spain
| | - Qin Dai
- Institute of Biomaterials and Biomedical Engineering, Departments of Chemistry, Chemical Engineering, and Materials Sciences and Engineering, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Fayi Song
- Institute of Biomaterials and Biomedical Engineering, Departments of Chemistry, Chemical Engineering, and Materials Sciences and Engineering, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Shang Wan Liu
- Department of Physiology, McGill University, McIntyre Medical Building, Montreal, Quebec H3G 1Y6, Canada
| | - Jun Yamanouchi
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Channakeshava Sokke Umeshappa
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Roopa Hebbandi Nanjundappa
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Pascal Detampel
- Departments of Cell Biology and Anatomy, and Pathology &Laboratory Medicine, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Matthias Amrein
- Departments of Cell Biology and Anatomy, and Pathology &Laboratory Medicine, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - César Fandos
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona 08036, Spain
| | - Robert Tanguay
- Environmental &Molecular Toxicology Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvalis, Oregon 97333, USA
| | - Susan Newbigging
- Center for Modeling Human Disease, Toronto Centre for Phenogenomics, Lunenfeld Research Institute, 25 Orde Street, Toronto, Ontario M5T 3H7, Canada
| | - Pau Serra
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona 08036, Spain
| | - Anmar Khadra
- Department of Physiology, McGill University, McIntyre Medical Building, Montreal, Quebec H3G 1Y6, Canada
| | - Warren C W Chan
- Institute of Biomaterials and Biomedical Engineering, Departments of Chemistry, Chemical Engineering, and Materials Sciences and Engineering, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Pere Santamaria
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona 08036, Spain
| |
Collapse
|
12
|
T-Cell Receptor (TCR) Clonotype-Specific Differences in Inhibitory Activity of HIV-1 Cytotoxic T-Cell Clones Is Not Mediated by TCR Alone. J Virol 2017; 91:JVI.02412-16. [PMID: 28077649 DOI: 10.1128/jvi.02412-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 12/27/2016] [Indexed: 01/11/2023] Open
Abstract
Functional analysis of T-cell responses in HIV-infected individuals has indicated that virus-specific CD8+ T cells with superior antiviral efficacy are well represented in HIV-1 controllers but are rare or absent in HIV-1 progressors. To define the role of individual T-cell receptor (TCR) clonotypes in differential antiviral CD8+ T-cell function, we performed detailed functional and mass cytometric cluster analysis of multiple CD8+ T-cell clones recognizing the identical HLA-B*2705-restricted HIV-1 epitope KK10 (KRWIILGLNK). Effective and ineffective CD8+ T-cell clones segregated based on responses to HIV-1-infected and peptide-loaded target cells. Following cognate peptide stimulation, effective HIV-specific clones displayed significantly more rapid TCR signal propagation, more efficient initial lytic granule release, and more sustained nonlytic cytokine and chemokine secretion than ineffective clones. To evaluate the TCR clonotype contribution to CD8+ T-cell function, we cloned the TCR α and β chain genes from one effective and two ineffective CD8+ T-cell clones from an elite controller into TCR-expressing lentivectors. We show that Jurkat/MA cells and primary CD8+ T cells transduced with lentivirus expressing TCR from one of the ineffective clones exhibited a level of activation by cognate peptide and inhibition of in vitro HIV-1 infection, respectively, that were comparable to those of the effective clonotype. Taken together, these data suggest that the potent antiviral capacity of some HIV-specific CD8+ T cells is a consequence of factors in addition to TCR sequence that modulate functionality and contribute to the increased antiviral capacity of HIV-specific CD8+ T cells in elite controllers to inhibit HIV infection.IMPORTANCE The greater ex vivo antiviral inhibitory activity of CD8+ T cells from elite controllers than from HIV-1 progressors supports the crucial role of effective HIV-specific CD8+ T cells in controlling HIV-1 replication. The contribution of TCR clonotype to inhibitory potency was investigated by delineating the responsiveness of effective and ineffective CD8+ T-cell clones recognizing the identical HLA-B*2705-restricted HIV-1 Gag-derived peptide, KK10 (KRWIILGLNK). KK10-stimulated "effective" CD8+ T-cell clones displayed significantly more rapid TCR signal propagation, more efficient initial lytic granule release, and more sustained cytokine and chemokine secretion than "ineffective" CD8+ T-cell clones. However, TCRs cloned from an effective and one of two ineffective clones conferred upon primary CD8+ T cells the equivalent potent capacity to inhibit HIV-1 infection. Taken together, these data suggest that other factors aside from intrinsic TCR-peptide-major histocompatibility complex (TCR-peptide-MHC) reactivity can contribute to the potent antiviral capacity of some HIV-specific CD8+ T-cell clones.
Collapse
|
13
|
de Bruin RCG, Lougheed SM, van der Kruk L, Stam AG, Hooijberg E, Roovers RC, van Bergen En Henegouwen PMP, Verheul HMW, de Gruijl TD, van der Vliet HJ. Highly specific and potently activating Vγ9Vδ2-T cell specific nanobodies for diagnostic and therapeutic applications. Clin Immunol 2016; 169:128-138. [PMID: 27373969 DOI: 10.1016/j.clim.2016.06.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 06/15/2016] [Accepted: 06/29/2016] [Indexed: 01/23/2023]
Abstract
Vγ9Vδ2-T cells constitute the predominant subset of γδ-T cells in human peripheral blood and have been shown to play an important role in antimicrobial and antitumor immune responses. Several efforts have been initiated to exploit these cells for cancer immunotherapy, e.g. by using phosphoantigens, adoptive cell transfer, and by a bispecific monoclonal antibody based approach. Here, we report the generation of a novel set of Vγ9Vδ2-T cell specific VHH (or nanobody). VHH have several advantages compared to conventional antibodies related to their small size, stability, ease of generating multispecific molecules and low immunogenicity. With high specificity and affinity, the anti-Vγ9Vδ2-T cell receptor VHHs are shown to be useful for FACS, MACS and immunocytochemistry. In addition, some VHH were found to specifically activate Vγ9Vδ2-T cells. Besides being of possible immunotherapeutic value, these single domain antibodies will be of great value in the further study of this important immune effector cell subset.
Collapse
Affiliation(s)
- Renée C G de Bruin
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands.
| | - Sinéad M Lougheed
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands.
| | - Liza van der Kruk
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands.
| | - Anita G Stam
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands.
| | - Erik Hooijberg
- Department of Pathology, VU University Medical Center, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands.
| | - Rob C Roovers
- Department of Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | | | - Henk M W Verheul
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands.
| | - Tanja D de Gruijl
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands.
| | - Hans J van der Vliet
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Skeate JG, Woodham AW, Einstein MH, Da Silva DM, Kast WM. Current therapeutic vaccination and immunotherapy strategies for HPV-related diseases. Hum Vaccin Immunother 2016; 12:1418-29. [PMID: 26835746 DOI: 10.1080/21645515.2015.1136039] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Carcinomas of the anogenital tract, in particular cervical cancer, remains one of the most common cancers in women, and represent the most frequent gynecological malignancies and the fourth leading cause of cancer death in women worldwide. Human papillomavirus (HPV)-induced lesions are immunologically distinct in that they express viral antigens, which are necessary to maintain the cancerous phenotype. The causal relationship between HPV infection and anogenital cancer has prompted substantial interest in the development of therapeutic vaccines against high-risk HPV types targeting the viral oncoproteins E6 and E7. This review will focus on the most recent clinical trials for immunotherapies for mucosal HPV-induced lesions as well as emerging therapeutic strategies that have been tested in pre-clinical models for HPV-induced diseases. Progress in peptide- and protein-based vaccines, DNA-based vaccines, viral/bacterial vector-based vaccines, immune checkpoint inhibition, immune response modifiers, and adoptive cell therapy for HPV will be discussed.
Collapse
Affiliation(s)
- Joseph G Skeate
- a Department of Molecular Microbiology & Immunology , University of Southern California , Los Angeles , CA , USA
| | - Andrew W Woodham
- a Department of Molecular Microbiology & Immunology , University of Southern California , Los Angeles , CA , USA
| | - Mark H Einstein
- b Department of Obstetrics & Gynecology and Women's Health , Rutgers New Jersey Medical School , Newark , NJ , USA
| | - Diane M Da Silva
- c Department of Obstetrics & Gynecology , University of Southern California , Los Angeles , CA , USA.,d Norris Comprehensive Cancer Center, University of Southern California , Los Angeles , CA , USA
| | - W Martin Kast
- a Department of Molecular Microbiology & Immunology , University of Southern California , Los Angeles , CA , USA.,c Department of Obstetrics & Gynecology , University of Southern California , Los Angeles , CA , USA.,d Norris Comprehensive Cancer Center, University of Southern California , Los Angeles , CA , USA
| |
Collapse
|
15
|
Da Silva DM, Woodham AW, Skeate JG, Rijkee LK, Taylor JR, Brand HE, Muderspach LI, Roman LD, Yessaian AA, Pham HQ, Matsuo K, Lin YG, McKee GM, Salazar AM, Kast WM. Langerhans cells from women with cervical precancerous lesions become functionally responsive against human papillomavirus after activation with stabilized Poly-I:C. Clin Immunol 2015; 161:197-208. [PMID: 26360252 DOI: 10.1016/j.clim.2015.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 08/27/2015] [Accepted: 09/01/2015] [Indexed: 12/15/2022]
Abstract
Human papillomavirus (HPV)-mediated suppression of Langerhans cell (LC) function can lead to persistent infection and development of cervical intraepithelial neoplasia (CIN). Women with HPV-induced high-grade CIN2/3 have not mounted an effective immune response against HPV, yet it is unknown if LC-mediated T cell activation from such women is functionally impaired against HPV. We investigated the functional activation of in vitro generated LC and their ability to induce HPV16-specific T cells from CIN2/3 patients after exposure to HPV16 followed by treatment with stabilized Poly-I:C (s-Poly-I:C). LC from patients exposed to HPV16 demonstrated a lack of costimulatory molecule expression, inflammatory cytokine secretion, and chemokine-directed migration. Conversely, s-Poly-I:C caused significant phenotypic and functional activation of HPV16-exposed LC, which resulted in de novo generation of HPV16-specific CD8(+) T cells. Our results highlight that LC of women with a history of persistent HPV infection can present HPV antigens and are capable of inducing an adaptive T cell immune response when given the proper stimulus, suggesting that s-Poly-I:C compounds may be attractive immunomodulators for LC-mediated clearance of persistent HPV infection.
Collapse
Affiliation(s)
- Diane M Da Silva
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA; Department of Obstetrics & Gynecology, University of Southern California, Los Angeles, CA, USA.
| | - Andrew W Woodham
- Department of Molecular Microbiology & Immunology, University of Southern California, Los Angeles, CA, USA
| | - Joseph G Skeate
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Laurie K Rijkee
- Groningen International Program of Science in Medicine, University of Groningen, Groningen, The Netherlands
| | - Julia R Taylor
- Department of Molecular Microbiology & Immunology, University of Southern California, Los Angeles, CA, USA
| | - Heike E Brand
- Department of Molecular Microbiology & Immunology, University of Southern California, Los Angeles, CA, USA
| | - Laila I Muderspach
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA; Department of Obstetrics & Gynecology, University of Southern California, Los Angeles, CA, USA
| | - Lynda D Roman
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA; Department of Obstetrics & Gynecology, University of Southern California, Los Angeles, CA, USA
| | - Annie A Yessaian
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA; Department of Obstetrics & Gynecology, University of Southern California, Los Angeles, CA, USA
| | - Huyen Q Pham
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA; Department of Obstetrics & Gynecology, University of Southern California, Los Angeles, CA, USA
| | - Koji Matsuo
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA; Department of Obstetrics & Gynecology, University of Southern California, Los Angeles, CA, USA
| | - Yvonne G Lin
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA; Department of Obstetrics & Gynecology, University of Southern California, Los Angeles, CA, USA
| | | | | | - W Martin Kast
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA; Department of Obstetrics & Gynecology, University of Southern California, Los Angeles, CA, USA; Department of Molecular Microbiology & Immunology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
16
|
Yin Q, Tan H, Chen S, Yang L, Ye J, Li Y. Characterization of conserved CDR3 sequence of TCRα- andβ-chain genes in peripheral blood T-cells from patients with diffuse large B-cell lymphoma. Hematology 2013; 15:48-57. [PMID: 20132663 DOI: 10.1179/102453310x12583347009694] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Affiliation(s)
- Qingsong Yin
- Institute of HematologyMedical College, Jinan University, Guangzhou, China
| | - Huo Tan
- Center of Oncology and Hematologythe First Affiliated Hospital of Guangzhou Medical College, Guangzhou, China
| | - Shaohua Chen
- Institute of HematologyMedical College, Jinan University, Guangzhou, China
| | - Lijian Yang
- Institute of HematologyMedical College, Jinan University, Guangzhou, China
| | - Jingmei Ye
- Center of Oncology and Hematologythe First Affiliated Hospital of Guangzhou Medical College, Guangzhou, China
| | - Yangqiu Li
- Institute of HematologyMedical College, Jinan University, Guangzhou, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| |
Collapse
|
17
|
Fernandes ATG, da Rocha NP, Avvad E, Grinsztejn BJ, Russomano F, Tristão A, Quintana MDSB, Perez MA, Conceição-Silva F, Bonecini-Almeida MDG. Balance of apoptotic and anti-apoptotic marker and perforin granule release in squamous intraepithelial lesions. HIV infection leads to a decrease in perforin degranulation. Exp Mol Pathol 2013; 95:166-73. [PMID: 23791892 DOI: 10.1016/j.yexmp.2013.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 06/07/2013] [Indexed: 11/28/2022]
Abstract
Cell-mediated cytotoxicity plays an important role in the regulation to HPV-associated cervical intraepithelial neoplasia. HIV co-infection is related to poorer prognosis and more rapid clinical progression to cancer. We evaluated the presence of cervical inflammatory cells, apoptotic (Bax, Bcl-2, FasL, NOS2, perforin) markers and the degranulating expressing cell marker (CD107a) in low and high squamous intraepithelial lesions (LSIL and HSIL, respectively) from HIV-negative and -positive women. Higher percentage of cervical CD4(+), CD8(+) T cells and macrophage were observed in LSIL and HSIL groups when compared with control, especially in epithelium and basal layer of epithelium. However, progression from LSIL to HSIL did not change the frequency of inflammatory cells. HIV-infection lead to a reduction on cervical CD4(+) T cell infiltration and an increased CD8(+) T cell distribution in LSIL groups. A balance between pro- and anti-apoptotic protein expressions was verified. Bax-expressing cells were present in all groups and were rarely expressed in keratinocytes in the epithelium in LSIL and control groups, but notably decreased in HSIL group. However, its frequency was enhanced in the basal layer of the epithelium meanly in LSIL group. Bcl2-expressing cells in the epithelium and the stroma were enhanced in HSIL group when compared with LSIL group. HIV-infection did not interfere in both expressions NOS2 expression was located on keratinocytes in both LSIL and HSIL groups when compared with control group. There were few FasL cervical expressing cells in all groups. Indeed, perforin was identified in few cervical cells. However, CD107a, a surface marker for cellular degranulation was significantly higher in epithelium, basal layer of epithelium and stroma in LSIL and HSIL, respectively, when compared with control group. These results support that HIV infection may induce reduction on inflammatory cervical cell degranulation corroborating to carcinogenesis process. This is the first description on the role of HIV in downregulation of perforin degranulation in the cervical lesions and it might be related to carcinogenesis.
Collapse
Affiliation(s)
- Ana Teresa G Fernandes
- Laboratory of Immunology and Immunogenetic in Infectious Diseases at Evandro Chagas Clinical Research Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Turksma AW, Braakhuis BJ, Bloemena E, Meijer CJ, Leemans CR, Hooijberg E. Immunotherapy for head and neck cancer patients: shifting the balance. Immunotherapy 2013; 5:49-61. [PMID: 23256798 DOI: 10.2217/imt.12.135] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Head and neck squamous cell carcinoma is the sixth most common cancer in the western world. Over the last few decades little improvement has been made to increase the relatively low 5-year survival rate. This calls for novel and improved therapies. Here, we describe opportunities in immunotherapy for head and neck cancer patients and hurdles yet to be overcome. Viruses are involved in a subset of head and neck squamous cell carcinoma cases. The incidence of HPV-related head and neck cancer is increasing and is a distinctly different disease from other head and neck carcinomas. Virus-induced tumors express viral antigens that are good targets for immunotherapeutic treatment options. The type of immunotherapeutic treatment, either active or passive, should be selected depending on the HPV status of the tumor and the immune status of the patient.
Collapse
Affiliation(s)
- Annelies W Turksma
- VU University Medical Center - Cancer Center Amsterdam, Department of Pathology 2.26, de Boelelaan 1117, NL-1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
19
|
Turksma AW, Bontkes HJ, Ruizendaal JJ, van den Heuvel H, Scholten KBJ, Santegoets SJAM, de Gruijl TD, Meijer CJLM, Hooijberg E. Increased cytotoxic capacity of tumor antigen specific human T cells after in vitro stimulation with IL21 producing dendritic cells. Hum Immunol 2013; 74:506-13. [PMID: 23376456 DOI: 10.1016/j.humimm.2013.01.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 12/04/2012] [Accepted: 01/14/2013] [Indexed: 01/01/2023]
Abstract
Monocyte derived dendritic cells (moDC) electroporated with tumor associated antigen derived mRNA can elicit specific T cells against tumor cells in vivo. IL21 has been shown to enhance activation and cytotoxicity in CD8+ T cells. We therefore investigated in vitro effects on human CD8+ T-cells after stimulation with IL21 mRNA electroporated moDC. Codon modification of the IL21 gene significantly enhanced IL21 production upon electroporation of moDC. Tumor associated antigen specific CTL induction efficiency was significantly enhanced when codon modified IL21 mRNA was co-electroporated with tumor associated antigen mRNA. Tumor associated antigen specific T cells induced by codon modified IL21-DC demonstrated increased cytotoxic capacity and killing compared to control cultures. In conclusion, ectopic expression of codon modified IL21 by moDC enhances the priming efficiency of the DC as well as the cytotoxic potential of the induced CTL.
Collapse
Affiliation(s)
- A W Turksma
- VU University Medical Center - Cancer Center Amsterdam, Department of Pathology, De Boelelaan 1117, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Daniel-Meshulam I, Ya'akobi S, Ankri C, Cohen CJ. How (specific) would like your T-cells today? Generating T-cell therapeutic function through TCR-gene transfer. Front Immunol 2012; 3:186. [PMID: 22783259 PMCID: PMC3390604 DOI: 10.3389/fimmu.2012.00186] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 06/15/2012] [Indexed: 01/02/2023] Open
Abstract
T-cells are central players in the immune response against both pathogens and cancer. Their specificity is solely dictated by the T-cell receptor (TCR) they clonally express. As such, the genetic modification of T lymphocytes using pathogen- or cancer-specific TCRs represents an appealing strategy to generate a desired immune response from peripheral blood lymphocytes. Moreover, notable objective clinical responses were observed in terminally ill cancer patients treated with TCR-gene modified cells in several clinical trials conducted recently. Nevertheless, several key aspects of this approach are the object of intensive research aimed at improving the reliability and efficacy of this strategy. Herein, we will survey recent studies in the field of TCR-gene transfer dealing with the improvement of this approach and its application for the treatment of malignant, autoimmune, and infectious diseases.
Collapse
Affiliation(s)
- Inbal Daniel-Meshulam
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences , Bar-Ilan University, Ramat Gan, Israel
| | | | | | | |
Collapse
|
21
|
Scholten KBJ, Turksma AW, Ruizendaal JJ, van den Hende M, van der Burg SH, Heemskerk MHM, Meijer CJLM, Hooijberg E. Generating HPV specific T helper cells for the treatment of HPV induced malignancies using TCR gene transfer. J Transl Med 2011; 9:147. [PMID: 21892941 PMCID: PMC3176193 DOI: 10.1186/1479-5876-9-147] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 09/05/2011] [Indexed: 02/02/2023] Open
Abstract
Background Infection with high risk Human Papilloma Virus (HPV) is associated with cancer of the cervix, vagina, penis, vulva, anus and some cases of head and neck carcinomas. The HPV derived oncoproteins E6 and E7 are constitutively expressed in tumor cells and therefore potential targets for T cell mediated adoptive immunotherapy. Effective immunotherapy is dependent on the presence of both CD4+ and CD8+ T cells. However, low precursor frequencies of HPV16 specific T cells in patients and healthy donors hampers routine isolation of these cells for adoptive transfer purposes. An alternative to generate HPV specific CD4+ and CD8+ T cells is TCR gene transfer. Methods HPV specific CD4+ T cells were generated using either a MHC class I or MHC class II restricted TCR (from clones A9 and 24.101 respectively) directed against HPV16 antigens. Functional analysis was performed by interferon-γ secretion, proliferation and cytokine production assays. Results Introduction of HPV16 specific TCRs into blood derived CD4+ recipient T cells resulted in recognition of the relevant HPV16 epitope as determined by IFN-γ secretion. Importantly, we also show recognition of the endogenously processed and HLA-DP1 presented HPV16E6 epitope by 24.101 TCR transgenic CD4+ T cells and recognition of the HLA-A2 presented HPV16E7 epitope by A9 TCR transgenic CD4+ T cells. Conclusion Our data indicate that TCR transfer is feasible as an alternative strategy to generate human HPV16 specific CD4+ T helper cells for the treatment of patients suffering from cervical cancer and other HPV16 induced malignancies.
Collapse
Affiliation(s)
- Kirsten B J Scholten
- Department of Pathology, VU University Medical Center, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhou Q, Zhu K, Cheng H. Ubiquitination in host immune response to human papillomavirus infection. Arch Dermatol Res 2011; 303:217-30. [PMID: 21400034 DOI: 10.1007/s00403-011-1141-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 02/22/2011] [Accepted: 02/23/2011] [Indexed: 02/07/2023]
Abstract
Human papillomavirus (HPV) infection with low-risk or high-risk subtypes is very common. Infection with HPVs is often a major causative factor for the development of cutaneous benign lesions, cervical cancer, and a number of other tumors. The mechanisms of host immunity to prevent and control HPV infection still remain unclear. The importance of ubiquitination (or ubiquitylation) as an intracellular proteasomal-mediated protein degradation pathway, and as an important modulator for the regulation of many fundamental cellular processes has been valued over the last decade. Although the molecular and cellular mechanisms are not completely established, the critical role of ubiquitination in host immune response to HPV infection has become increasingly apparent. This review summarizes current knowledge on the possible role that ubiquitination plays in regulating the host immune response during HPV infection. Targeting the components of the ubiquitin system might offer potential therapeutic strategies for HPV-related diseases in the future.
Collapse
Affiliation(s)
- Qiang Zhou
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | | | | |
Collapse
|
23
|
Zhang Y, Liu Y, Moxley KM, Golden-Mason L, Hughes MG, Liu T, Heemskerk MHM, Rosen HR, Nishimura MI. Transduction of human T cells with a novel T-cell receptor confers anti-HCV reactivity. PLoS Pathog 2010; 6:e1001018. [PMID: 20686664 PMCID: PMC2912399 DOI: 10.1371/journal.ppat.1001018] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 06/25/2010] [Indexed: 12/20/2022] Open
Abstract
Hepatitis C Virus (HCV) is a major public health concern, with no effective vaccines currently available and 3% of the world's population being infected. Despite the existence of both B- and T-cell immunity in HCV-infected patients, chronic viral infection and HCV-related malignancies progress. Here we report the identification of a novel HCV TCR from an HLA-A2-restricted, HCV NS3:1073-1081-reactive CTL clone isolated from a patient with chronic HCV infection. We characterized this HCV TCR by expressing it in human T cells and analyzed the function of the resulting HCV TCR-transduced cells. Our results indicate that both the HCV TCR-transduced CD4(+) and CD8(+) T cells recognized the HCV NS3:1073-1081 peptide-loaded targets and HCV(+) hepatocellular carcinoma cells (HCC) in a polyfunctional manner with cytokine (IFN-gamma, IL-2, and TNF-alpha) production as well as cytotoxicity. Tumor cell recognition by HCV TCR transduced CD8(-) Jurkat cells and CD4(+) PBL-derived T cells indicated this TCR was CD8-independent, a property consistent with other high affinity TCRs. HCV TCR-transduced T cells may be promising for the treatment of patients with chronic HCV infections.
Collapse
Affiliation(s)
- Yi Zhang
- Division of Transplantation, Department of Surgery, Medical University of South Carolina, Hollings Cancer Center, Charleston, South Carolina, United States of America
| | - Yeuying Liu
- Division of Transplantation, Department of Surgery, Medical University of South Carolina, Hollings Cancer Center, Charleston, South Carolina, United States of America
| | - Kelly M. Moxley
- Division of Transplantation, Department of Surgery, Medical University of South Carolina, Hollings Cancer Center, Charleston, South Carolina, United States of America
| | - Lucy Golden-Mason
- Division of Gastroenterology & Hepatology, Hepatitis C Center & Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado, United States of America
| | - Michael G. Hughes
- Division of Transplantation, Department of Surgery, Medical University of South Carolina, Hollings Cancer Center, Charleston, South Carolina, United States of America
| | - Tongxin Liu
- Division of Transplantation, Department of Surgery, Medical University of South Carolina, Hollings Cancer Center, Charleston, South Carolina, United States of America
| | - Mirjam H. M. Heemskerk
- Laboratory of Experimental Hematology, Department of Hematology, Leiden University Medical Center Leiden, the Netherlands
| | - Hugo R. Rosen
- Division of Gastroenterology & Hepatology, Hepatitis C Center & Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado, United States of America
| | - Michael I. Nishimura
- Division of General Surgery, Department of Surgery, Medical University of South Carolina, Hollings Cancer Center, Charleston, South Carolina, United States of America
| |
Collapse
|
24
|
Finn JD, Hui D, Downey HD, Dunn D, Pien GC, Mingozzi F, Zhou S, High KA. Proteasome inhibitors decrease AAV2 capsid derived peptide epitope presentation on MHC class I following transduction. Mol Ther 2009; 18:135-42. [PMID: 19904235 DOI: 10.1038/mt.2009.257] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Adeno-associated viral (AAV) vectors are an extensively studied and highly used vector platform for gene therapy applications. We hypothesize that in the first clinical trial using AAV to treat hemophilia B, AAV capsid proteins were presented on the surface of transduced hepatocytes, resulting in clearance by antigen-specific CD8+ T cells and consequent loss of therapeutic transgene expression. It has been previously shown that proteasome inhibitors can have a dramatic effect on AAV transduction in vitro and in vivo. Here, we describe using the US Food and Drug Administration-approved proteasome inhibitor, bortezomib, to decrease capsid antigen presentation on hepatocytes in vitro, whereas at the same time, enhancing gene expression in vivo. Using an AAV capsid-specific T-cell reporter (TCR) line to analyze the effect of proteasome inhibitors on antigen presentation, we demonstrate capsid antigen presentation at low multiplicities of infection (MOIs), and inhibition of antigen presentation at pharmacologic levels of bortezomib. We also demonstrate that bortezomib can enhance Factor IX (FIX) expression from an AAV2 vector in mice, although the same effect was not observed for AAV8 vectors. A pharmacological agent that can enhance AAV transduction, decrease T-cell activation/proliferation, and decrease capsid antigen presentation would be a promising solution to obstacles to successful AAV-mediated, liver-directed gene transfer in humans.
Collapse
Affiliation(s)
- Jonathan D Finn
- Department of Pediatrics, Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Yin R, Zheng W, Hao F, Yang XC, Zhong BY, Li QJ. HPV16E7 tumor antigen modified by KDEL sequence induce specific cytotoxic T lymphocytes-dependent antitumor immunity. J Dermatol Sci 2009; 55:116-22. [DOI: 10.1016/j.jdermsci.2009.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 04/22/2009] [Accepted: 04/30/2009] [Indexed: 11/29/2022]
|
26
|
Kuemper C, Burges A, Hillemanns P, Mueller-Egloff S, Lenhard M, Ditsch N, Strauss A. Supraclavicular lymph node metastases of unknown origin: HPV-typing identifies the primary tumour. Eur J Cancer Care (Engl) 2009; 18:606-11. [PMID: 19549285 DOI: 10.1111/j.1365-2354.2008.00937.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cancers of unknown primary origin (CUP) account for 0.5-10% of all malignancies. CUP patients with metastases have a median survival of approximately 6 months, despite therapy. Identification of the primary tumour site may offer the opportunity of a specific and more efficient treatment. The case of a 45-year-old woman with supraclavicular lymph node metastases of a squamous cell CUP is reported. A staging laparoscopy with multiple biopsies and a loop diathermy excision of the cervix were performed. Human papillomavirus (HPV)-testing in the tissues revealed the tumour cells as metastases of an occult cervical cancer. Primary platin-based chemotherapy combined with paclitaxel leads to a complete apparative remission. Twelve months later, staging positron emission tomography with 2-[18F]fluoro-2-deoxy-D-glucose in combination with computed tomography identified an isolated left renal lymph node metastasis. The patient received targeted radiation therapy, combined with cisplatin. To date, 19 months after diagnosis, she is doing well without any evidence of disease. The presented case report addresses the difficulties involving the identification of CUP. HPV-DNA is found in over 95% of cervical cancers. As the presented case illustrates, testing for this virus DNA in human tissues can be a useful diagnostic tool in patients with CUP where cervical cancer is the possible primary tumour.
Collapse
Affiliation(s)
- C Kuemper
- Department of Obstetrics and Gynecology, Kiel University Hospital, Arnold-Heller-Strasse 3, 24105 Kiel, Germany.
| | | | | | | | | | | | | |
Collapse
|
27
|
Mapping of cytotoxic T lymphocytes epitopes in E7 antigen of human papillomavirus type 11. Arch Dermatol Res 2008; 300:235-42. [PMID: 18299861 DOI: 10.1007/s00403-008-0837-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2007] [Revised: 01/17/2008] [Accepted: 01/28/2008] [Indexed: 10/22/2022]
Abstract
One of the critical steps in the progression to condyloma acuminatum (CA) is the establishment of a persistent human papillomavirus (HPV) infection, majority of HPV type 6 and 11. Cytotoxic T lymphocytes (CTL), which can be induced by the epitope-based peptides in vitro, are thought to be able to recognize and destroy virus-infected cells. In order to screen and identify HLA-A*0201 restricted HPV-11E7 CTL epitopes, five epitope peptides and tetramers were selected including HPV-11E7 7-15 (TLKDIVLDL), 15-23 (LQPPDPVGL), 47-55 (PLTQHYQIL), 81-89 (DLLLGTLNI) and 82-90 (LLLGTLNIV). Human monocyte-derived dendritic cells (DCs) from HLA-A*0201 healthy individuals were pulsed with these peptides to assess the expression of CD83, CD86, HLA-DR and the secretion of IL-12. The ability of peptide-loaded mature DCs to activate autologous T cells was evaluated by analyzing the frequency of specific tetramer(+) CD8(+) T cells using flow cytometry, and the level of IFN-gamma secretion by ELISA. The ability of the epitope-specific CTLs to kill the target cells was also analysed. It was found that the immature DCs could be fully activated by all the five HPV-11E7 peptides and peptide-loaded mature DCs were able to stimulate the epitope-specific T cells in vitro. There was an increased frequency of CD8(+) T cells specific for the E7 7-15 epitope when compared to other four predicted epitopes of HPV-11E7 (P < 0.05). The epitope-specific CTLs for E7 7-15 induced the strongest cytotoxicity to HPV-11E7 expressing cell line at an E:T ratio of 50:1 (P < 0.05). Taken together, these findings demonstrate that E7 7-15 (TLKDIVLDL) is an HLA-A*0201-restricted CTL epitope of HPV type 11. We propose that this epitope could be more helpful in the characterization of HPV control mechanism and be useful for the development of immunotherapeutic approaches for low-risk HPV infectious diseases such as CA.
Collapse
|
28
|
Genetically engineered T cells expressing a HER2-specific chimeric receptor mediate antigen-specific tumor regression. Cancer Gene Ther 2008; 15:382-92. [PMID: 18292797 DOI: 10.1038/cgt.2008.5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this report, we developed a chimeric receptor (N29gamma chR) involving the single chain Fv (scFv) derived from N29 monoclonal antibody (mAb) specific for p185HER2 and characterized the therapeutic efficacy of primary T cells engineered to express N29gamma chR in two histologically distinct murine tumor models. Murine breast (MT901) and fibrosarcoma (MCA207) cancer cell lines were engineered to express human HER2 as targets. Administration of N29gamma chR-expressing T cells eliminated 3-day pulmonary micrometastases of MT901/HER2 and MCA207/HER2 but not parental tumor cells. A 5 to 8-fold increased dose of N29gamma T cells was required to mediate regression of advanced 8-day macrometastases. Exogenous administration of interleukin-2 (IL-2) after N29gamma T-cell transfer was dispensable for treatment of 3-day micrometastases, but was required for mediating regression of well-established 8-day macrometastases. Moreover, fractionated CD8 T cells expressing N29gamma chR suppressed HER2-positive tumor cell growth after adoptive transfer independent of CD4(+) cells. These data indicate that genetically modified T cells expressing a HER2-targeting chimeric receptor can mediate antigen-specific regression of preestablished metastatic cancers in a cell dose-dependent fashion. Systemic administration of IL-2 augments the therapeutic efficacy of these genetically engineered T cells in advanced diseases. These results are relevant to the implication of genetically redirected T cells in clinical cancer immunotherapy.
Collapse
|
29
|
Kanodia S, Da Silva DM, Kast WM. Recent advances in strategies for immunotherapy of human papillomavirus-induced lesions. Int J Cancer 2008; 122:247-59. [PMID: 17973257 PMCID: PMC4943456 DOI: 10.1002/ijc.23252] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Human papillomavirus (HPV)-induced lesions are distinct in that they have targetable foreign antigens, the expression of which is necessary to maintain the cancerous phenotype. Hence, they pose as a very attractive target for "proof of concept" studies in the development of therapeutic vaccines. This review will focus on the most recent clinical trials for the immunotherapy of mucosal and cutaneous HPV-induced lesions as well as emerging therapeutic strategies that have been tested in preclinical models for HPV-induced lesions. Progress in peptide-based vaccines, DNA-based vaccines, viral/bacterial vector-based vaccines, immune response modifiers, photodynamic therapy and T cell receptor based therapy for HPV will be discussed.
Collapse
Affiliation(s)
- Shreya Kanodia
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | | | | |
Collapse
|
30
|
Lentiviral vectors encoding human immunodeficiency virus type 1 (HIV-1)-specific T-cell receptor genes efficiently convert peripheral blood CD8 T lymphocytes into cytotoxic T lymphocytes with potent in vitro and in vivo HIV-1-specific inhibitory activity. J Virol 2008; 82:3078-89. [PMID: 18184707 DOI: 10.1128/jvi.01812-07] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1)-specific CD8 cytotoxic T-lymphocyte (CTL) response plays a critical role in controlling HIV-1 replication. Augmenting this response should enhance control of HIV-1 replication and stabilize or improve the clinical course of the disease. Although cytomegalovirus (CMV) or Epstein-Barr virus (EBV) infection in immunocompromised patients can be treated by adoptive transfer of ex vivo-expanded CMV- or EBV-specific CTLs, adoptive transfer of ex vivo-expanded, autologous HIV-1-specific CTLs had minimal effects on HIV-1 replication, likely a consequence of the inherently compromised qualitative function of HIV-1-specific CTLs derived from HIV-1-infected individuals. We hypothesized that this limitation could be circumvented by using as an alternative source of HIV-1-specific CTLs, autologous peripheral CD8(+) T lymphocytes whose antigen specificity is redirected by transduction with lentiviral vectors encoding HIV-1-specific T-cell receptor (TCR) alpha and beta chains, an approach used successfully in cancer therapy. To efficiently convert peripheral CD8 lymphocytes into HIV-1-specific CTLs that potently suppress in vivo HIV-1 replication, we constructed lentiviral vectors encoding the HIV-1-specific TCR alpha and TCR beta chains cloned from a CTL clone specific for an HIV Gag epitope, SL9, as a single transcript linked with a self-cleaving peptide. We demonstrated that transduction with this lentiviral vector efficiently converted primary human CD8 lymphocytes into HIV-1-specific CTLs with potent in vitro and in vivo HIV-1-specific activity. Using lentiviral vectors encoding an HIV-1-specific TCR to transform peripheral CD8 lymphocytes into HIV-1-specific CTLs with defined specificities represents a new immunotherapeutic approach to augment the HIV-1-specific immunity of infected patients.
Collapse
|
31
|
DiGiusto DL, Cooper LJN. Preparing clinical grade Ag-specific T cells for adoptive immunotherapy trials. Cytotherapy 2008; 9:613-29. [PMID: 17943498 DOI: 10.1080/14653240701650320] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The production of clinical-grade T cells for adoptive immunotherapy has evolved from the ex vivo numerical expansion of tumor-infiltrating lymphocytes to sophisticated bioengineering processes often requiring cell selection, genetic modification and other extensive tissue culture manipulations, to produce desired cells with improved therapeutic potential. Advancements in understanding the biology of lymphocyte signaling, activation, homing and sustained in vivo proliferative potential have redefined the strategies used to produce T cells suitable for clinical investigation. When combined with new technical methods in cell processing and culturing, the therapeutic potential of T cells manufactured in academic centers has improved dramatically. Paralleling these technical achievements in cell manufacturing is the development of broadly applied regulatory standards that define the requirements for the clinical implementation of cell products with ever-increasing complexity. In concert with academic facilities operating in compliance with current good manufacturing practice, the prescribing physician can now infuse T cells with a highly selected or endowed phenotype that has been uniformly manufactured according to standard operating procedures and that meets federal guidelines for quality of investigational cell products. In this review we address salient issues related to the technical, immunologic, practical and regulatory aspects of manufacturing these advanced T-cell products for clinical use.
Collapse
Affiliation(s)
- D L DiGiusto
- Division of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute and City of Hope National Medical Center, Duarte, CA 91010, USA.
| | | |
Collapse
|
32
|
Engels B, Uckert W. Redirecting T lymphocyte specificity by T cell receptor gene transfer – A new era for immunotherapy. Mol Aspects Med 2007; 28:115-42. [PMID: 17307249 DOI: 10.1016/j.mam.2006.12.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Accepted: 12/18/2006] [Indexed: 12/16/2022]
Abstract
The therapeutic efficacy of adoptively transferred cytotoxic T lymphocytes (CTL) has been demonstrated in clinical trials for the treatment of chronic myelogenous leukemia, cytomegalovirus-mediated disease, and Epstein-Barr virus-positive B cell lymphomas. It is however limited by the difficulty of generating sufficient amounts of CTLs in vitro, especially for the treatment of solid tumors. Recent gene therapy approaches, including two clinical trials, successfully apply genetic engineering of T cell specificity by T cell receptor (TCR) gene transfer. In this review we want to elucidate several principles of the redirection of T cell specificity. We cover basic aspects of retroviral gene transfer, regarding transduction efficacy and transgene expression levels. It was demonstrated that the number of TCR molecules on a T cell is important for its function. Therefore, an efficient transfer system that yields high transduction efficiency and strong and stable transgene expression is a prerequisite to achieve effector function by redirected T cells. Furthermore, we consider more recent aspects of T cell specificity engineering. These include the possibility of co-transferring coreceptors to create for example functional T helper cells by engrafting CD4(+) T cells with a MHC class I restricted TCR and the CD8 coreceptor and vice versa. Also, risks related to the adoptive transfer of TCR gene-modified T cells and possible safety mechanisms are discussed. Finally, we summarize recent findings describing transferred TCRs capable of displacing endogenous TCRs from the cell surface.
Collapse
Affiliation(s)
- Boris Engels
- Humboldt-University Berlin, Institute of Biology, Department of Molecular Cell Biology and Gene Therapy, Robert-Rössle-Strasse 10, D-13092 Berlin, Germany
| | | |
Collapse
|
33
|
Zentz C, Wiesner M, Man S, Frankenberger B, Wollenberg B, Hillemanns P, Zeidler R, Hammerschmidt W, Moosmann A. Activated B cells mediate efficient expansion of rare antigen-specific T cells. Hum Immunol 2007; 68:75-85. [PMID: 17321896 DOI: 10.1016/j.humimm.2006.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Accepted: 12/08/2006] [Indexed: 10/23/2022]
Abstract
Potent professional antigen-presenting cells (APC) are essential tools to activate and expand antigen-specific T cells in vitro for use in adoptive immunotherapy. CD40-activated B cells can be easily generated and propagated from human donors and have been successfully used to generate antigen-specific T-cell cultures. Here we show that CD40-activated B cells strongly and specifically expand rare populations of antigen-specific CD8 T cells, with frequencies of less than 1 in 20,000 CD8 T cells in peripheral blood. We focused on T cells recognizing an epitope from the human papillomavirus 16 (HPV-16) E7 protein. In 6 of 6 healthy donors, epitope-specific CD8+ T cells were found to be "rare" by this criterion, as shown by staining with human leukocyte antigen (HLA)/peptide multimers. Using peptide-loaded CD40-activated B cells, epitope-specific T cells could be selectively expanded in all donors up to 10(6) fold, and the resulting T-cell cultures contained up to 88% specific T cells. These results strongly encourage the use of CD40-stimulated B cells as APCs in immunotherapy.
Collapse
Affiliation(s)
- Caroline Zentz
- Clinical Cooperative Group Molecular Oncology, GSF - National Research Center for Environment and Health, Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW To review novel immunologic strategies for the prevention and treatment of human papillomavirus infection and associated diseases. Both animal model systems and human protocols are discussed. RECENT FINDINGS Many vaccine platforms for both prevention of human papillomavirus infection and treatment of associated disease have been developed. Virus-like particle constructs containing human papillomavirus capsid proteins have been shown to protect against human papillomavirus infection. Novel peptide or protein constructs containing modified E6 or E7 proteins, novel adjuvants, fusion proteins such as immunoglobulin-G-heavy chain E7, or heat shock proteins have been made as therapeutic modalities. In addition, many new recombinant vaccine vectors such as vaccinia, Listeria species, adenovirus, Semliki Forest vectors, and others have been developed as carriers of immunotherapeutic agents. Recently, chimeric virus-like particle vaccines have been developed to treat existing human papillomavirus-induced neoplasms. SUMMARY Immunotherapy protocols using a variety of recombinant vectors and modified human papillomavirus proteins induce in-vitro T cell responses and may lead to tumor regression. Vaccine-induced in-vitro immune reactivity and clinical vaccine effects are often not well associated. Further analysis of ongoing human immunotherapy trials is awaited.
Collapse
Affiliation(s)
- Anna S Kadish
- Departments of Pathology, Obstetrics and Gynecology & Women's Health, Albert Einstein College of Medicine, 1695 Eastchester Road, Suite 601, Bronx, NY 10461, USA.
| | | |
Collapse
|
35
|
Schaft N, Lankiewicz B, Drexhage J, Berrevoets C, Moss DJ, Levitsky V, Bonneville M, Lee SP, McMichael AJ, Gratama JW, Bolhuis RLH, Willemsen R, Debets R. T cell re-targeting to EBV antigens following TCR gene transfer: CD28-containing receptors mediate enhanced antigen-specific IFNγ production. Int Immunol 2006; 18:591-601. [PMID: 16507598 DOI: 10.1093/intimm/dxh401] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
EBV is associated with a broad range of malignancies. Adoptive immunotherapy of these tumors with EBV-specific CTL proved useful. We generated a panel of primary human T cells specific to various EBV antigens (i.e. Epstein-Barr nuclear antigen 3A, 3B and BamHI-M leftward reading frame) via transfer of modified TCR genes that are either coupled to CD3zeta or Fc(epsilon)RIgamma. TCR-transduced T cells from 20-60% of donors (total number of 25) demonstrated specific lysis of EBV peptide-loaded target cells, whereas lymphoblastoid cell lines expressing native EBV antigens were not killed by any of the EBV-specific T cell populations. This non-responsiveness, confirmed at the level of nuclear factor of activated T cells activation, is not due to receptor configuration since identical receptor formats specific for melanoma antigens successfully re-targeted T cells to native melanoma cells. In an effort to generate a more potent receptor, we introduced a CD28 domain into one of the EBV-specific TCR. This TCR did not affect the cytotoxic response of re-targeted T cells, but dramatically enhanced antigen-specific IFNgamma production. We therefore conclude that these novel CD28-containing EBV-specific TCRs provide a basis for further development of TCR gene transfer to treat EBV-induced diseases.
Collapse
Affiliation(s)
- Niels Schaft
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC-Daniel den Hoed Cancer Center, Groene Hilledijk 301, 3075 EA Rotterdam, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Scholten KBJ, Kramer D, Kueter EWM, Graf M, Schoedl T, Meijer CJLM, Schreurs MWJ, Hooijberg E. Codon modification of T cell receptors allows enhanced functional expression in transgenic human T cells. Clin Immunol 2006; 119:135-45. [PMID: 16458072 DOI: 10.1016/j.clim.2005.12.009] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Revised: 12/20/2005] [Accepted: 12/20/2005] [Indexed: 10/25/2022]
Abstract
Expression of native transgenic T cell receptors in recipient human T cells is often insufficient to achieve highly reactive T cell bulks. Here we show that codon modification of an HPV16E7-specific T cell receptor (TCR), together with omission of mRNA instability motifs and (cryptic) splice sites, leads to a dramatic increase in the expression levels of the transgenic TCRs in human CD8+ T cells. The codon-modified TCRs have been tested in three different configurations in the retroviral vector LZRS: (1) TCRalpha-IRES-GFP in combination with TCRbeta-IRES-NGFR, (2) TCRalpha-IRES-TCRbeta, and (3) TCRalpha-2A-TCRbeta. T cells carrying the codon-modified TCRs are functionally active against target cells loaded with relevant peptide, model tumor cells expressing the specific epitope as well as cervical carcinoma cells. The significant improvements we report here in the functional expression of specific human TCRs will hopefully expedite clinical application of TCR transfer-based immunotherapy.
Collapse
Affiliation(s)
- Kirsten B J Scholten
- Department of Pathology, VU University Medical Center, de Boelelaan 1117, NL-1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Globally, carcinomas of the anogenital tract, in particular cervical cancer, remain some of the most common cancers in women, cervical cancer represents the second most frequent gynecological malignancy and the third leading cause of cancer-related death in women worldwide. The causal relationship between human papilomavirus (HPV) infection and anogenital cancer has prompted substantial interest in the development of both preventive and therapeutic vaccines against high-risk HPV types. In the past decade, several groups have shown encouraging results using experimental vaccination systems in animal models and these results have led to several current prophylactic and therapeutic vaccine clinical trials in humans. Prophylactic vaccination focuses on the induction of high titer neutralizing antibodies that are potentially protective against incident and persistent HPV infection. Two major phase II clinical trials conducted by pharmaceutical companies have demonstrated that their vaccines have 100% efficacy in preventing persistent viral DNA and its associated cellular abnormalities; however, whether they induce long-lasting protective immunity is yet to be determined. At least one US FDA approved prophylactic vaccine targeting the two most common high-risk HPVs is expected to be on the market within the next 2-3 years. Nevertheless, significant reductions in the frequency and onset of cytologic screening and incidences of HPV-related lesions are not expected to become apparent for decades due to the fact that there will be women who are already infected with HPV, the long latency period between infection and development of high-grade lesions, and lesions associated with other high-risk HPV types not being included in the vaccines. Therapeutic vaccines aim to control HPV-associated malignancies by stimulating cellular immune responses that target established HPV infections via viral proteins. Progress in the field of HPV immunotherapy has remained elusive, with clinical trials being limited to small numbers of patients. Potential treatment of precancerous lesions is unique to HPV-associated infection and cancer because of cytologic monitoring and HPV typing. Unlike more common surgical treatments for cervical lesions, active immunotherapy has the potential to address HPV persistence as the cause of lesion development in addition to leaving the patient with long-term immunity that can be reactivated if and when the patient becomes reinfected.
Collapse
Affiliation(s)
- Diane M Da Silva
- Norris Comprehensive Cancer Center and Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California, USA
| | - W Martin Kast
- Norris Comprehensive Cancer Center and Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California, USA
| |
Collapse
|