1
|
Garcia-Carmona Y, Chavez J, Gernez Y, Geyer JT, Bussel JB, Cunningham-Rundles C. Unexpected diagnosis of WHIM syndrome in refractory autoimmune cytopenia. Blood Adv 2024; 8:5126-5136. [PMID: 39028950 PMCID: PMC11460441 DOI: 10.1182/bloodadvances.2024013301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/25/2024] [Accepted: 07/09/2024] [Indexed: 07/21/2024] Open
Abstract
ABSTRACT WHIM (warts, hypogammaglobulinemia, infections, and myelokathexis) syndrome is a rare primary immunodeficiency predominantly caused by heterozygous gain-of-function mutations in the C-terminus of the gene CXCR4. These CXCR4 variants display impaired receptor trafficking with persistence of the CXCR4 receptor on the surface, resulting in hyperactive downstream signaling after CXCL12 stimulation. In turn, this results in defective lymphoid differentiation, and reduced blood neutrophil and lymphocyte numbers. Here, we report a CXCR4 mutation that in 2 members of a kindred, led to life-long autoimmunity and lymphoid hypertrophy as the primary clinical manifestations of WHIM syndrome. We examine the functional effects of this mutation, and how these have affected phosphorylation, activation, and receptor internalization.
Collapse
Affiliation(s)
- Yolanda Garcia-Carmona
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jose Chavez
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yael Gernez
- Department of Medicine, Stanford School of Medicine, Stanford, CA
| | - Julia T. Geyer
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - James B. Bussel
- Departments of Pediatrics, Medicine and Obstetrics, Weill Cornell School of Medicine, New York, NY
| | - Charlotte Cunningham-Rundles
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
2
|
Giorgiutti S, Rottura J, Korganow AS, Gies V. CXCR4: from B-cell development to B cell-mediated diseases. Life Sci Alliance 2024; 7:e202302465. [PMID: 38519141 PMCID: PMC10961644 DOI: 10.26508/lsa.202302465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/24/2024] Open
Abstract
Chemokine receptors are members of the G protein-coupled receptor superfamily. The C-X-C chemokine receptor type 4 (CXCR4), one of the most studied chemokine receptors, is widely expressed in hematopoietic and immune cell populations. It is involved in leukocyte trafficking in lymphoid organs and inflammatory sites through its interaction with its natural ligand CXCL12. CXCR4 assumes a pivotal role in B-cell development, ranging from early progenitors to the differentiation of antibody-secreting cells. This review emphasizes the significance of CXCR4 across the various stages of B-cell development, including central tolerance, and delves into the association between CXCR4 and B cell-mediated disorders, from immunodeficiencies such as WHIM (warts, hypogammaglobulinemia, infections, and myelokathexis) syndrome to autoimmune diseases such as systemic lupus erythematosus. The potential of CXCR4 as a therapeutic target is discussed, especially through the identification of novel molecules capable of modulating specific pockets of the CXCR4 molecule. These insights provide a basis for innovative therapeutic approaches in the field.
Collapse
Affiliation(s)
- Stéphane Giorgiutti
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Faculty of Medicine, Université de Strasbourg, Strasbourg, France
| | - Julien Rottura
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Anne-Sophie Korganow
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Faculty of Medicine, Université de Strasbourg, Strasbourg, France
| | - Vincent Gies
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Faculty of Pharmacy, Université de Strasbourg, Illkirch, France
| |
Collapse
|
3
|
Geier CB, Ellison M, Cruz R, Pawar S, Leiss-Piller A, Zmajkovicova K, McNulty SM, Yilmaz M, Evans MO, Gordon S, Ujhazi B, Wiest I, Abolhassani H, Aghamohammadi A, Barmettler S, Bhar S, Bondarenko A, Bolyard AA, Buchbinder D, Cada M, Cavieres M, Connelly JA, Dale DC, Deordieva E, Dorsey MJ, Drysdale SB, Ehl S, Elfeky R, Fioredda F, Firkin F, Förster-Waldl E, Geng B, Goda V, Gonzalez-Granado L, Grunebaum E, Grzesk E, Henrickson SE, Hilfanova A, Hiwatari M, Imai C, Ip W, Jyonouchi S, Kanegane H, Kawahara Y, Khojah AM, Kim VHD, Kojić M, Kołtan S, Krivan G, Langguth D, Lau YL, Leung D, Miano M, Mersyanova I, Mousallem T, Muskat M, Naoum FA, Noronha SA, Ouederni M, Ozono S, Richmond GW, Sakovich I, Salzer U, Schuetz C, Seeborg FO, Sharapova SO, Sockel K, Volokha A, von Bonin M, Warnatz K, Wegehaupt O, Weinberg GA, Wong KJ, Worth A, Yu H, Zharankova Y, Zhao X, Devlin L, Badarau A, Csomos K, Keszei M, Pereira J, Taveras AG, Beaussant-Cohen SL, Ong MS, Shcherbina A, Walter JE. Disease Progression of WHIM Syndrome in an International Cohort of 66 Pediatric and Adult Patients. J Clin Immunol 2022; 42:1748-1765. [PMID: 35947323 PMCID: PMC9700649 DOI: 10.1007/s10875-022-01312-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/17/2022] [Indexed: 11/26/2022]
Abstract
Warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome (WS) is a combined immunodeficiency caused by gain-of-function mutations in the C-X-C chemokine receptor type 4 (CXCR4) gene. We characterize a unique international cohort of 66 patients, including 57 (86%) cases previously unreported, with variable clinical phenotypes. Of 17 distinct CXCR4 genetic variants within our cohort, 11 were novel pathogenic variants affecting 15 individuals (23%). All variants affect the same CXCR4 region and impair CXCR4 internalization resulting in hyperactive signaling. The median age of diagnosis in our cohort (5.5 years) indicates WHIM syndrome can commonly present in childhood, although some patients are not diagnosed until adulthood. The prevalence and mean age of recognition and/or onset of clinical manifestations within our cohort were infections 88%/1.6 years, neutropenia 98%/3.8 years, lymphopenia 88%/5.0 years, and warts 40%/12.1 years. However, we report greater prevalence and variety of autoimmune complications of WHIM syndrome (21.2%) than reported previously. Patients with versus without family history of WHIM syndrome were diagnosed earlier (22%, average age 1.3 years versus 78%, average age 5 years, respectively). Patients with a family history of WHIM syndrome also received earlier treatment, experienced less hospitalization, and had less end-organ damage. This observation reinforces previous reports that early treatment for WHIM syndrome improves outcomes. Only one patient died; death was attributed to complications of hematopoietic stem cell transplantation. The variable expressivity of WHIM syndrome in pediatric patients delays their diagnosis and therapy. Early-onset bacterial infections with severe neutropenia and/or lymphopenia should prompt genetic testing for WHIM syndrome, even in the absence of warts.
Collapse
Affiliation(s)
- Christoph B Geier
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center University of Freiburg Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maryssa Ellison
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, University of South Florida, St. Petersburg, FL, USA
| | - Rachel Cruz
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, University of South Florida, St. Petersburg, FL, USA
- Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Sumit Pawar
- X4 Pharmaceuticals (Austria) GmbH, Vienna, Austria
| | | | | | - Shannon M McNulty
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Melis Yilmaz
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, University of South Florida, St. Petersburg, FL, USA
| | | | - Sumai Gordon
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, University of South Florida, St. Petersburg, FL, USA
| | - Boglarka Ujhazi
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, University of South Florida, St. Petersburg, FL, USA
| | - Ivana Wiest
- X4 Pharmaceuticals (Austria) GmbH, Vienna, Austria
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Barmettler
- Allergy and Clinical Immunology Unit, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Boston, MA, USA
| | - Saleh Bhar
- Department of Pediatrics, Section of Hematology/Oncology and Critical Care Medicine, Bone Marrow Transplantation, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | | | - Audrey Anna Bolyard
- Severe Chronic Neutropenia International Registry, University of Washington, Seattle, WA, USA
| | - David Buchbinder
- Division of Hematology, CHOC Children's Hospital, Orange, CA, USA
| | - Michaela Cada
- Division of Hematology and Oncology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Mirta Cavieres
- Hematology Unit, Dr Luis Calvo Mackenna Children's Hospital, Santiago, Chile
| | | | - David C Dale
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Ekaterina Deordieva
- Immunology, the Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Morna J Dorsey
- Division of Allergy, Immunology and Blood and Marrow Transplantation, Department of Pediatrics, UCSF Benioff Children's Hospital, San Francisco, CA, USA
| | - Simon B Drysdale
- Paediatric Infectious Diseases Research Group, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center University of Freiburg Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Reem Elfeky
- Department of Clinical Immunology, Royal Free Hospital, London, UK
| | | | - Frank Firkin
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Vic, Fitzroy, Australia
- Department of Clinical Haematology, St Vincent's Hospital, Vic, Fitzroy, Australia
| | - Elizabeth Förster-Waldl
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- Division of Neonatology, Pediatric Intensive Care & Neuropediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- Center for Congenital Immunodeficiencies, Medical University of Vienna & Jeffrey Modell Diagnostic and Research Center, Vienna, Austria
| | - Bob Geng
- Divisions of Adult and Pediatric Allergy and Immunology, University of California, San Diego, CA, USA
| | - Vera Goda
- Department for Pediatric Hematology and Hemopoietic Stem Cell Transplantation, Central Hospital of Southern Pest - National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Luis Gonzalez-Granado
- Immunodeficiencies Unit, Department of Pediatrics, University Hospital 12 de Octubre, Research Institute Hospital 12 Octubre, Madrid, Spain
| | - Eyal Grunebaum
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
- Division of Immunology and Allergy, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Elzbieta Grzesk
- Department of Pediatrics, Hematology and Oncology Collegium Medicum, Bydgoszcz Nicolaus Copernicus University, Torun, Poland
| | - Sarah E Henrickson
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anna Hilfanova
- Shupyk National Medical Academy of Postgraduate Education, Kyiv, Ukraine
| | - Mitsuteru Hiwatari
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Chihaya Imai
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Department of Pediatrics, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Winnie Ip
- Great Ormond Street Hospital for Children, London, UK
| | - Soma Jyonouchi
- Division of Allergy and Immunology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuta Kawahara
- Department of Pediatrics, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Amer M Khojah
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Vy Hong-Diep Kim
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
- Division of Immunology and Allergy, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Marina Kojić
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Sylwia Kołtan
- Department of Pediatrics, Hematology and Oncology Collegium Medicum, Bydgoszcz Nicolaus Copernicus University, Torun, Poland
| | - Gergely Krivan
- Department for Pediatric Hematology and Hemopoietic Stem Cell Transplantation, Central Hospital of Southern Pest - National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Daman Langguth
- Department of Immunology, Sullivan and Nicolaides Pathology, Brisbane, Australia
| | - Yu-Lung Lau
- Department of Paediatrics and Adolescent Medicine, University of Hong Kong, Hong Kong, China
| | - Daniel Leung
- Department of Paediatrics and Adolescent Medicine, University of Hong Kong, Hong Kong, China
| | - Maurizio Miano
- Haematology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Irina Mersyanova
- Immunology, the Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Talal Mousallem
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, Duke University Medical Center, Durham, NC, USA
| | - Mica Muskat
- Department of Pediatrics, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Flavio A Naoum
- Academia de Ciência e Tecnologia, Sao Jose do Rio Preto, Brazil
| | - Suzie A Noronha
- Department of Pediatrics, Division of Hematology-Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | - Monia Ouederni
- Faculty of Médecine, University Tunis El Manar, Tunis, Tunisia
- Department of Pediatrics: Immuno-Hematology and Stem Cell Transplantation, Bone Marrow Transplantation Center of Tunisia, Tunis, Tunisia
| | - Shuichi Ozono
- Department of Pediatrics, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, Japan
| | - G Wendell Richmond
- Section of Allergy and Immunology, Rush University Medical Center, Chicago, IL, USA
| | - Inga Sakovich
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Ulrich Salzer
- Department of Rheumatology and Clinical Immunology, Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Catharina Schuetz
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Filiz Odabasi Seeborg
- Department of Pediatrics, Section of Immunology, Allergy and Rheumatology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Svetlana O Sharapova
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Katja Sockel
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Alla Volokha
- Shupyk National Medical Academy of Postgraduate Education, Kyiv, Ukraine
| | - Malte von Bonin
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Dresden, Dresden, Germany
| | - Klaus Warnatz
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center University of Freiburg Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Oliver Wegehaupt
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center University of Freiburg Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Geoffrey A Weinberg
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, University of Rochester Golisano Children's Hospital, Rochester, NY, USA
| | - Ke-Juin Wong
- Sabah Women and Children's Hospital, Sabah, Malaysia
| | - Austen Worth
- Great Ormond Street Hospital for Children, London, UK
| | - Huang Yu
- National Clinical Research Center for Child Health and disorders, Children Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
| | - Yulia Zharankova
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Xiaodong Zhao
- National Clinical Research Center for Child Health and disorders, Children Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
| | - Lisa Devlin
- Belfast Health and Social Care Trust, Belfast, Northern Ireland, UK
- Regional Immunology Service, Belfast Health and Social Care Trust, Belfast, Northern Ireland, UK
| | | | - Krisztian Csomos
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, University of South Florida, St. Petersburg, FL, USA
| | - Marton Keszei
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Joao Pereira
- Department of Immunobiology, Yale University School of Medicine, Yale University, New Haven, CT, USA
| | | | | | - Mei-Sing Ong
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Anna Shcherbina
- Immunology, the Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Jolan E Walter
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, University of South Florida, St. Petersburg, FL, USA.
- Division of Allergy and Immunology, Massachusetts General Hospital for Children, Boston, MA, USA.
| |
Collapse
|
4
|
Altered CXCR4 dynamics at the cell membrane impairs directed cell migration in WHIM syndrome patients. Proc Natl Acad Sci U S A 2022; 119:e2119483119. [PMID: 35588454 PMCID: PMC9173760 DOI: 10.1073/pnas.2119483119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
SignificanceNew imaging-based approaches are incorporating new concepts to our knowledge of biological processes. The analysis of receptor dynamics involved in cell movement using single-particle tracking demonstrates that cells require chemokine-mediated receptor clustering to sense appropriately chemoattractant gradients. Here, we report that this process does not occur in T cells expressing CXCR4R334X, a mutant form of CXCR4 linked to WHIM syndrome (warts, hypogammaglobulinemia, infections, myelokathexis). The underlaying molecular mechanism involves inappropriate actin cytoskeleton remodeling due to the inadequate β-arrestin1 activation by CXCR4R334X, which alters its lateral mobility and spatial organization. These defects, associated to CXCR4R334X expression, contribute to the retention of hematopoietic precursors in bone marrow niches and explain the severe immunological symptoms associated with WHIM syndrome.
Collapse
|
5
|
Delmonte OM, Bergerson JRE, Burbelo PD, Durkee-Shock JR, Dobbs K, Bosticardo M, Keller MD, McDermott DH, Rao VK, Dimitrova D, Quiros-Roldan E, Imberti L, Ferrè EMN, Schmitt M, Lafeer C, Pfister J, Shaw D, Draper D, Truong M, Ulrick J, DiMaggio T, Urban A, Holland SM, Lionakis MS, Cohen JI, Ricotta EE, Notarangelo LD, Freeman AF. Antibody responses to the SARS-CoV-2 vaccine in individuals with various inborn errors of immunity. J Allergy Clin Immunol 2021; 148:1192-1197. [PMID: 34492260 PMCID: PMC8418380 DOI: 10.1016/j.jaci.2021.08.016] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND SARS-CoV-2 vaccination is recommended in patients with inborn errors of immunity (IEIs); however, little is known about immunogenicity and safety in these patients. OBJECTIVE We sought to evaluate the impact of genetic diagnosis, age, and treatment on antibody response to COVID-19 vaccine and related adverse events in a cohort of patients with IEIs. METHODS Plasma was collected from 22 health care worker controls, 81 patients with IEIs, and 2 patients with thymoma; the plasma was collected before immunization, 1 to 6 days before the second dose of mRNA vaccine, and at a median of 30 days after completion of the immunization schedule with either mRNA vaccine or a single dose of Johnson & Johnson's Janssen vaccine. Anti-spike (anti-S) and anti-nucleocapsid antibody titers were measured by using a luciferase immunoprecipitation systems method. Information on T- and B-cell counts and use of immunosuppressive drugs was extracted from medical records, and information on vaccine-associated adverse events was collected after each dose. RESULTS Anti-S antibodies were detected in 27 of 46 patients (58.7%) after 1 dose of mRNA vaccine and in 63 of 74 fully immunized patients (85.1%). A lower rate of seroconversion (7 of 11 [63.6%]) was observed in patients with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. Previous use of rituximab and baseline counts of less than 1000 CD3+ T cells/mL and less than 100 CD19+ B cells/mL were associated with lower anti-S IgG levels. No significant adverse events were reported. CONCLUSION Vaccinating patients with IEIs is safe, but immunogenicity is affected by certain therapies and gene defects. These data may guide the counseling of patients with IEIs regarding prevention of SARS-CoV-2 infection and the need for subsequent boosts.
Collapse
Affiliation(s)
- Ottavia M Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Jenna R E Bergerson
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Peter D Burbelo
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Md
| | - Jessica R Durkee-Shock
- Center for Cancer and Immunology Research and Division of Allergy and Immunology, Children's National Hospital, Washington, DC
| | - Kerry Dobbs
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Michael D Keller
- Center for Cancer and Immunology Research and Division of Allergy and Immunology, Children's National Hospital, Washington, DC
| | - David H McDermott
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - V Koneti Rao
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Dimana Dimitrova
- Experimental Transplantation and Immunotherapy Branch, National Cancer Institute, National Institutes of Health, Bethesda, Md
| | - Eugenia Quiros-Roldan
- Department of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, Brescia, Italy; CREA Laboratory, Diagnostic Laboratory, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Luisa Imberti
- CREA Laboratory, Diagnostic Laboratory, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Elise M N Ferrè
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Monica Schmitt
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Christine Lafeer
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Justina Pfister
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Dawn Shaw
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Deborah Draper
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Meng Truong
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Jean Ulrick
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Tom DiMaggio
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Amanda Urban
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Michail S Lionakis
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Jeffrey I Cohen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Emily E Ricotta
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| |
Collapse
|
6
|
Hematologic disorder-associated Cxcr4 gain-of-function mutation leads to uncontrolled extrafollicular immune response. Blood 2021; 137:3050-3063. [PMID: 33512437 DOI: 10.1182/blood.2020007450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 01/06/2021] [Indexed: 12/31/2022] Open
Abstract
The extrafollicular immune response is essential to generate a rapid but transient wave of protective antibodies during infection. Despite its importance, the molecular mechanisms controlling this first response are poorly understood. Here, we demonstrate that enhanced Cxcr4 signaling caused by defective receptor desensitization leads to exacerbated extrafollicular B-cell response. Using a mouse model bearing a gain-of-function mutation of Cxcr4 described in 2 human hematologic disorders, warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome and Waldenström macroglobulinemia, we demonstrated that mutant B cells exhibited enhanced mechanistic target of rapamycin signaling, cycled more, and differentiated more potently into plasma cells than wild-type B cells after Toll-like receptor (TLR) stimulation. Moreover, Cxcr4 gain of function promoted enhanced homing and persistence of immature plasma cells in the bone marrow, a phenomenon recapitulated in WHIM syndrome patient samples. This translated in increased and more sustained production of antibodies after T-independent immunization in Cxcr4 mutant mice. Thus, our results establish that fine-tuning of Cxcr4 signaling is essential to limit the strength and length of the extrafollicular immune response.
Collapse
|
7
|
Magán-Fernández A, Rasheed Al-Bakri SM, O’Valle F, Benavides-Reyes C, Abadía-Molina F, Mesa F. Neutrophil Extracellular Traps in Periodontitis. Cells 2020; 9:cells9061494. [PMID: 32575367 PMCID: PMC7349145 DOI: 10.3390/cells9061494] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 02/08/2023] Open
Abstract
Neutrophils are key cells of the immune system and have a decisive role in fighting foreign pathogens in infectious diseases. Neutrophil extracellular traps (NETs) consist of a mesh of DNA enclosing antimicrobial peptides and histones that are released into extracellular space following neutrophil response to a wide range of stimuli, such as pathogens, host-derived mediators and drugs. Neutrophils can remain functional after NET formation and are important for periodontal homeostasis. Periodontitis is an inflammatory multifactorial disease caused by a dysbiosis state between the gingival microbiome and the immune response of the host. The pathogenesis of periodontitis includes an immune-inflammatory component in which impaired NET formation and/or elimination can be involved, contributing to an exacerbated inflammatory reaction and to the destruction of gingival tissue. In this review, we summarize the current knowledge about the role of NETs in the pathogenesis of periodontitis.
Collapse
Affiliation(s)
- Antonio Magán-Fernández
- Periodontology Department, School of Dentistry, University of Granada, 18071 Granada, Spain; (A.M.-F.); (S.M.R.A.-B.); (F.M.)
| | - Sarmad Muayad Rasheed Al-Bakri
- Periodontology Department, School of Dentistry, University of Granada, 18071 Granada, Spain; (A.M.-F.); (S.M.R.A.-B.); (F.M.)
| | - Francisco O’Valle
- Pathology Department, School of Medicine (IBIMER, CIBM), University of Granada, 18071 Granada, Spain;
- Biosanitary Research Institute (IBS-GRANADA), University of Granada, 18012 Granada, Spain
| | - Cristina Benavides-Reyes
- Department of Operative Dentistry, School of Dentistry, University of Granada, 18071 Granada, Spain
- Correspondence: ; Tel.: +34-9-5824-0654
| | - Francisco Abadía-Molina
- Department of Cell Biology, University of Granada, 18071 Granada, Spain;
- INYTA, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Armilla, 18100 Granada, Spain
| | - Francisco Mesa
- Periodontology Department, School of Dentistry, University of Granada, 18071 Granada, Spain; (A.M.-F.); (S.M.R.A.-B.); (F.M.)
| |
Collapse
|
8
|
Jung S, Gies V, Korganow AS, Guffroy A. Primary Immunodeficiencies With Defects in Innate Immunity: Focus on Orofacial Manifestations. Front Immunol 2020; 11:1065. [PMID: 32625202 PMCID: PMC7314950 DOI: 10.3389/fimmu.2020.01065] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/04/2020] [Indexed: 12/23/2022] Open
Abstract
The field of primary immunodeficiencies (PIDs) is rapidly evolving. Indeed, the number of described diseases is constantly increasing thanks to the rapid identification of novel genetic defects by next-generation sequencing. PIDs are now rather referred to as “inborn errors of immunity” due to the association between a wide range of immune dysregulation-related clinical features and the “prototypic” increased infection susceptibility. The phenotypic spectrum of PIDs is therefore very large and includes several orofacial features. However, the latter are often overshadowed by severe systemic manifestations and remain underdiagnosed. Patients with impaired innate immunity are predisposed to a variety of oral manifestations including oral infections (e.g., candidiasis, herpes gingivostomatitis), aphthous ulcers, and severe periodontal diseases. Although less frequently, they can also show orofacial developmental abnormalities. Oral lesions can even represent the main clinical manifestation of some PIDs or be inaugural, being therefore one of the first features indicating the existence of an underlying immune defect. The aim of this review is to describe the orofacial features associated with the different PIDs of innate immunity based on the new 2019 classification from the International Union of Immunological Societies (IUIS) expert committee. This review highlights the important role played by the dentist, in close collaboration with the multidisciplinary medical team, in the management and the diagnostic of these conditions.
Collapse
Affiliation(s)
- Sophie Jung
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France.,Hôpitaux Universitaires de Strasbourg, Centre de Référence Maladies Rares Orales et Dentaires (O-Rares), Pôle de Médecine et de Chirurgie Bucco-Dentaires, Strasbourg, France.,Université de Strasbourg, INSERM UMR_S 1109 "Molecular ImmunoRheumatology", Strasbourg, France
| | - Vincent Gies
- Université de Strasbourg, INSERM UMR_S 1109 "Molecular ImmunoRheumatology", Strasbourg, France.,Université de Strasbourg, Faculté de Pharmacie, Illkirch-Graffenstaden, France.,Hôpitaux Universitaires de Strasbourg, Service d'Immunologie Clinique et de Médecine Interne, Centre de Référence des Maladies Auto-immunes Systémiques Rares (RESO), Centre de Compétences des Déficits Immunitaires Héréditaires, Strasbourg, France
| | - Anne-Sophie Korganow
- Université de Strasbourg, INSERM UMR_S 1109 "Molecular ImmunoRheumatology", Strasbourg, France.,Hôpitaux Universitaires de Strasbourg, Service d'Immunologie Clinique et de Médecine Interne, Centre de Référence des Maladies Auto-immunes Systémiques Rares (RESO), Centre de Compétences des Déficits Immunitaires Héréditaires, Strasbourg, France.,Université de Strasbourg, Faculté de Médecine, Strasbourg, France
| | - Aurélien Guffroy
- Université de Strasbourg, INSERM UMR_S 1109 "Molecular ImmunoRheumatology", Strasbourg, France.,Hôpitaux Universitaires de Strasbourg, Service d'Immunologie Clinique et de Médecine Interne, Centre de Référence des Maladies Auto-immunes Systémiques Rares (RESO), Centre de Compétences des Déficits Immunitaires Héréditaires, Strasbourg, France.,Université de Strasbourg, Faculté de Médecine, Strasbourg, France
| |
Collapse
|
9
|
Feng Y, Wang Y, Zhang S, Haneef K, Liu W. Structural and immunogenomic insights into B-cell receptor activation. J Genet Genomics 2020; 47:27-35. [PMID: 32111437 DOI: 10.1016/j.jgg.2019.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/10/2019] [Accepted: 12/09/2019] [Indexed: 02/08/2023]
Abstract
B cells express B-cell receptors (BCRs) which recognize antigen to trigger signaling cascades for B-cell activation and subsequent antibody production. BCR activation has a crucial influence on B-cell fate. How BCR is activated upon encountering antigen remains to be solved, although tremendous progresses have been achieved in the past few years. Here, we summarize the models that have been proposed to explain BCR activation, including the cross-linking model, the conformation-induced oligomerization model, the dissociation activation model, and the conformational change model. Especially, we elucidate the partially resolved structures of antibodies and/or BCRs by far and discusse how these current structural and further immunogenomic messages and more importantly the future studies may shed light on the explanation of BCR activation and the relevant diseases in the case of dysregulation.
Collapse
Affiliation(s)
- Yangyang Feng
- MOE Key Laboratory of Protein Sciences, Center for Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Yu Wang
- MOE Key Laboratory of Protein Sciences, Center for Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Shaocun Zhang
- MOE Key Laboratory of Protein Sciences, Center for Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Kabeer Haneef
- MOE Key Laboratory of Protein Sciences, Center for Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Wanli Liu
- MOE Key Laboratory of Protein Sciences, Center for Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Institute for Immunology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
10
|
Silva LM, Brenchley L, Moutsopoulos NM. Primary immunodeficiencies reveal the essential role of tissue neutrophils in periodontitis. Immunol Rev 2019; 287:226-235. [PMID: 30565245 DOI: 10.1111/imr.12724] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 10/06/2018] [Indexed: 12/14/2022]
Abstract
Periodontitis is a common human inflammatory disease. In this condition, microbiota trigger excessive inflammation in oral mucosal tissues surrounding the dentition, resulting in destruction of tooth-supporting structures (connective tissue and bone). While susceptibility factors for common forms of periodontitis are not clearly understood, studies in patients with single genetic defects reveal a critical role for tissue neutrophils in disease susceptibility. Indeed, various genetic defects in the development, egress from the bone marrow, chemotaxis, and extravasation are clearly linked to aggressive/severe periodontitis at an early age. Here, we provide an overview of genetic defects in neutrophil biology that are linked to periodontitis. In particular, we focus on the mechanisms underlying Leukocyte Adhesion Deficiency-I, the prototypic Mendelian defect of impaired neutrophil extravasation and severe periodontitis.
Collapse
Affiliation(s)
- Lakmali M Silva
- Oral Immunity and Inflammation Unit, NIDCR, NIH, Bethesda, Maryland.,Proteases and Remodeling Section, NIDCR, NIH, Bethesda, Maryland
| | - Laurie Brenchley
- Oral Immunity and Inflammation Unit, NIDCR, NIH, Bethesda, Maryland
| | | |
Collapse
|
11
|
Heusinkveld LE, Majumdar S, Gao JL, McDermott DH, Murphy PM. WHIM Syndrome: from Pathogenesis Towards Personalized Medicine and Cure. J Clin Immunol 2019; 39:532-556. [PMID: 31313072 PMCID: PMC6698215 DOI: 10.1007/s10875-019-00665-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 06/26/2019] [Indexed: 12/15/2022]
Abstract
WHIM syndrome is a rare combined primary immunodeficiency disease named by acronym for the diagnostic tetrad of warts, hypogammaglobulinemia, infections, and myelokathexis. Myelokathexis is a unique form of non-cyclic severe congenital neutropenia caused by accumulation of mature and degenerating neutrophils in the bone marrow; monocytopenia and lymphopenia, especially B lymphopenia, also commonly occur. WHIM syndrome is usually caused by autosomal dominant mutations in the G protein-coupled chemokine receptor CXCR4 that impair desensitization, resulting in enhanced and prolonged G protein- and β-arrestin-dependent responses. Accordingly, CXCR4 antagonists have shown promise as mechanism-based treatments in phase 1 clinical trials. This review is based on analysis of all 105 published cases of WHIM syndrome and covers current concepts, recent advances, unresolved enigmas and controversies, and promising future research directions.
Collapse
Affiliation(s)
- Lauren E Heusinkveld
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
- Cleveland Clinic, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, 44195, USA
| | - Shamik Majumdar
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ji-Liang Gao
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David H McDermott
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Philip M Murphy
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
12
|
Kaasinen E, Kuismin O, Rajamäki K, Ristolainen H, Aavikko M, Kondelin J, Saarinen S, Berta DG, Katainen R, Hirvonen EAM, Karhu A, Taira A, Tanskanen T, Alkodsi A, Taipale M, Morgunova E, Franssila K, Lehtonen R, Mäkinen M, Aittomäki K, Palotie A, Kurki MI, Pietiläinen O, Hilpert M, Saarentaus E, Niinimäki J, Junttila J, Kaikkonen K, Vahteristo P, Skoda RC, Seppänen MRJ, Eklund KK, Taipale J, Kilpivaara O, Aaltonen LA. Impact of constitutional TET2 haploinsufficiency on molecular and clinical phenotype in humans. Nat Commun 2019; 10:1252. [PMID: 30890702 PMCID: PMC6424975 DOI: 10.1038/s41467-019-09198-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/25/2019] [Indexed: 12/15/2022] Open
Abstract
Clonal hematopoiesis driven by somatic heterozygous TET2 loss is linked to malignant degeneration via consequent aberrant DNA methylation, and possibly to cardiovascular disease via increased cytokine and chemokine expression as reported in mice. Here, we discover a germline TET2 mutation in a lymphoma family. We observe neither unusual predisposition to atherosclerosis nor abnormal pro-inflammatory cytokine or chemokine expression. The latter finding is confirmed in cells from three additional unrelated TET2 germline mutation carriers. The TET2 defect elevates blood DNA methylation levels, especially at active enhancers and cell-type specific regulatory regions with binding sequences of master transcription factors involved in hematopoiesis. The regions display reduced methylation relative to all open chromatin regions in four DNMT3A germline mutation carriers, potentially due to TET2-mediated oxidation. Our findings provide insight into the interplay between epigenetic modulators and transcription factor activity in hematological neoplasia, but do not confirm the putative role of TET2 in atherosclerosis.
Collapse
Affiliation(s)
- Eevi Kaasinen
- Department of Medical and Clinical Genetics, University of Helsinki, FI-00014, Helsinki, Finland
- Genome-Scale Biology, Research Programs Unit, University of Helsinki, FI-00014, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, SE 171 77, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 171 77, Stockholm, Sweden
| | - Outi Kuismin
- Department of Clinical Genetics, Oulu University Hospital, FI-90029, Oulu, Finland
- PEDEGO Research Unit, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, FI-90014, Oulu, Finland
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, FI-00014, Helsinki, Finland
| | - Kristiina Rajamäki
- Department of Medical and Clinical Genetics, University of Helsinki, FI-00014, Helsinki, Finland
- Genome-Scale Biology, Research Programs Unit, University of Helsinki, FI-00014, Helsinki, Finland
- Clinicum, University of Helsinki, FI-00014, Helsinki, Finland
| | - Heikki Ristolainen
- Department of Medical and Clinical Genetics, University of Helsinki, FI-00014, Helsinki, Finland
- Genome-Scale Biology, Research Programs Unit, University of Helsinki, FI-00014, Helsinki, Finland
| | - Mervi Aavikko
- Department of Medical and Clinical Genetics, University of Helsinki, FI-00014, Helsinki, Finland
- Genome-Scale Biology, Research Programs Unit, University of Helsinki, FI-00014, Helsinki, Finland
| | - Johanna Kondelin
- Department of Medical and Clinical Genetics, University of Helsinki, FI-00014, Helsinki, Finland
- Genome-Scale Biology, Research Programs Unit, University of Helsinki, FI-00014, Helsinki, Finland
| | - Silva Saarinen
- Department of Medical and Clinical Genetics, University of Helsinki, FI-00014, Helsinki, Finland
- Genome-Scale Biology, Research Programs Unit, University of Helsinki, FI-00014, Helsinki, Finland
| | - Davide G Berta
- Department of Medical and Clinical Genetics, University of Helsinki, FI-00014, Helsinki, Finland
- Genome-Scale Biology, Research Programs Unit, University of Helsinki, FI-00014, Helsinki, Finland
| | - Riku Katainen
- Department of Medical and Clinical Genetics, University of Helsinki, FI-00014, Helsinki, Finland
- Genome-Scale Biology, Research Programs Unit, University of Helsinki, FI-00014, Helsinki, Finland
| | - Elina A M Hirvonen
- Department of Medical and Clinical Genetics, University of Helsinki, FI-00014, Helsinki, Finland
- Genome-Scale Biology, Research Programs Unit, University of Helsinki, FI-00014, Helsinki, Finland
| | - Auli Karhu
- Department of Medical and Clinical Genetics, University of Helsinki, FI-00014, Helsinki, Finland
- Genome-Scale Biology, Research Programs Unit, University of Helsinki, FI-00014, Helsinki, Finland
| | - Aurora Taira
- Department of Medical and Clinical Genetics, University of Helsinki, FI-00014, Helsinki, Finland
- Genome-Scale Biology, Research Programs Unit, University of Helsinki, FI-00014, Helsinki, Finland
| | - Tomas Tanskanen
- Department of Medical and Clinical Genetics, University of Helsinki, FI-00014, Helsinki, Finland
- Genome-Scale Biology, Research Programs Unit, University of Helsinki, FI-00014, Helsinki, Finland
| | - Amjad Alkodsi
- Genome-Scale Biology, Research Programs Unit, University of Helsinki, FI-00014, Helsinki, Finland
| | - Minna Taipale
- Department of Biosciences and Nutrition, Karolinska Institutet, SE 171 77, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 171 77, Stockholm, Sweden
| | - Ekaterina Morgunova
- Department of Biosciences and Nutrition, Karolinska Institutet, SE 171 77, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 171 77, Stockholm, Sweden
| | - Kaarle Franssila
- HUSLAB, Helsinki University Hospital, FI-00029, Helsinki, Finland
| | - Rainer Lehtonen
- Genome-Scale Biology, Research Programs Unit, University of Helsinki, FI-00014, Helsinki, Finland
| | - Markus Mäkinen
- Cancer and Translational Medicine Research Unit, University of Oulu, FI-90014, Oulu, Finland
| | - Kristiina Aittomäki
- Department of Clinical Genetics, Helsinki University Hospital, FI-00029, Helsinki, Finland
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, FI-00014, Helsinki, Finland
- Analytic and Translational Genetics Unit, Department of Medicine, Department of Neurology and Department of Psychiatry, Massachusetts General Hospital, Boston, 02114, MA, USA
- The Stanley Center for Psychiatric Research and Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, 02142, MA, USA
| | - Mitja I Kurki
- Analytic and Translational Genetics Unit, Department of Medicine, Department of Neurology and Department of Psychiatry, Massachusetts General Hospital, Boston, 02114, MA, USA
| | - Olli Pietiläinen
- The Stanley Center for Psychiatric Research and Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, 02142, MA, USA
| | - Morgane Hilpert
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, CH-4031, Switzerland
| | - Elmo Saarentaus
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, FI-00014, Helsinki, Finland
| | - Jaakko Niinimäki
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, FI-90014, Oulu, Finland
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, FI-90014, Oulu, Finland
| | - Juhani Junttila
- Research Unit of Internal Medicine, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, FI-90014, Oulu, Finland
| | - Kari Kaikkonen
- Research Unit of Internal Medicine, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, FI-90014, Oulu, Finland
| | - Pia Vahteristo
- Department of Medical and Clinical Genetics, University of Helsinki, FI-00014, Helsinki, Finland
- Genome-Scale Biology, Research Programs Unit, University of Helsinki, FI-00014, Helsinki, Finland
| | - Radek C Skoda
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, CH-4031, Switzerland
| | - Mikko R J Seppänen
- Adult Immunodeficiency Unit, Infectious Diseases, Inflammation Center, University of Helsinki and Helsinki University Hospital, FI-00029, Helsinki, Finland
- Rare Diseases Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, FI-00029, Helsinki, Finland
| | - Kari K Eklund
- Clinicum, University of Helsinki, FI-00014, Helsinki, Finland
- Department of Rheumatology, Helsinki University Hospital, FI-00029, Helsinki, Finland
- ORTON Orthopaedic Hospital, FI-00280, Helsinki, Finland
| | - Jussi Taipale
- Genome-Scale Biology, Research Programs Unit, University of Helsinki, FI-00014, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, SE 171 77, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 171 77, Stockholm, Sweden
| | - Outi Kilpivaara
- Department of Medical and Clinical Genetics, University of Helsinki, FI-00014, Helsinki, Finland.
- Genome-Scale Biology, Research Programs Unit, University of Helsinki, FI-00014, Helsinki, Finland.
| | - Lauri A Aaltonen
- Department of Medical and Clinical Genetics, University of Helsinki, FI-00014, Helsinki, Finland.
- Genome-Scale Biology, Research Programs Unit, University of Helsinki, FI-00014, Helsinki, Finland.
- Department of Biosciences and Nutrition, Karolinska Institutet, SE 171 77, Stockholm, Sweden.
| |
Collapse
|
13
|
Abstract
Cysteine-X-cysteine chemokine receptor 4 (CXCR4) is a broadly expressed and multifunctional G protein-coupled chemokine receptor critical for organogenesis, hematopoiesis, and antimicrobial host defense. In the hematopoietic system, the binding of CXCR4 to its cognate chemokine ligand, CXCL12, mediates leukocyte trafficking, distribution, survival, activation, and proliferation. Warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome is a rare, autosomal dominant, combined immunodeficiency disorder caused by mutations in the C-terminus of CXCR4 that prevent receptor downregulation and therefore result in pathologically increased signaling. The "M" in the acronym WHIM refers to myelokathexis, the retention of neutrophils in the bone marrow resulting in neutropenia, which explains in part the increased susceptibility to bacterial infection. However, WHIM patients also present with B and T lymphopenia, which may explain the susceptibility to human papillomavirus (HPV), the cause of warts. The impact of WHIM mutations on lymphocytes and adaptive immunity has received less attention than myelokathexis and is the focus of this review.
Collapse
Affiliation(s)
- Shamik Majumdar
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| | - Philip M Murphy
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
14
|
McDermott DH, Murphy PM. WHIM syndrome: Immunopathogenesis, treatment and cure strategies. Immunol Rev 2018; 287:91-102. [DOI: 10.1111/imr.12719] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 08/31/2018] [Indexed: 02/07/2023]
Affiliation(s)
- David H. McDermott
- Molecular Signaling Section; Laboratory of Molecular Immunology; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda Maryland
| | - Philip M. Murphy
- Molecular Signaling Section; Laboratory of Molecular Immunology; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda Maryland
| |
Collapse
|
15
|
How I treat warts, hypogammaglobulinemia, infections, and myelokathexis syndrome. Blood 2017; 130:2491-2498. [DOI: 10.1182/blood-2017-02-708552] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 10/16/2017] [Indexed: 12/14/2022] Open
Abstract
Abstract
Warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome is a genetic disease characterized by neutropenia, lymphopenia, susceptibility to infections, and myelokathexis, which describes degenerative changes of mature neutrophils and hyperplasia of bone marrow myeloid cells. Some patients present with hypogammaglobulinemia and/or refractory warts of skin and genitalia. Congenital cardiac defects constitute uncommon manifestations of the disease. The disorder, which is inherited as an autosomal dominant trait, is caused by heterozygous mutations of the chemokine receptor CXCR4. These mutations lead to an increased sensitivity of neutrophils and lymphocytes to the unique ligand CXCL12 and to an increased accumulation of mature neutrophils in the bone marrow. Despite greatly improved knowledge of the disease, therapeutic choices are insufficient to prevent some of the disease outcomes, such as development of bronchiectasis, anogenital dysplasia, or invasive cancer. The available therapeutic measures aimed at preventing the risk for infection in WHIM patients are discussed. We critically evaluate the diagnostic criteria of WHIM syndrome, particularly when WHIM syndrome should be suspected in patients with congenital neutropenia and lymphopenia despite the absence of hypogammaglobulinemia and/or warts. Finally, we discuss recent results of trials evaluating plerixafor, a selective antagonist of CXCR4, as a mechanism-oriented strategy for treatment of WHIM patients.
Collapse
|
16
|
Heusinkveld LE, Yim E, Yang A, Azani AB, Liu Q, Gao JL, McDermott DH, Murphy PM. Pathogenesis, diagnosis and therapeutic strategies in WHIM syndrome immunodeficiency. Expert Opin Orphan Drugs 2017; 5:813-825. [PMID: 29057173 DOI: 10.1080/21678707.2017.1375403] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
21 INTRODUCTION WHIM syndrome is a rare combined primary immunodeficiency disorder caused by autosomal dominant gain-of-function mutations in the chemokine receptor CXCR4. It is the only Mendelian condition known to be caused by mutation of a chemokine or chemokine receptor. As such, it provides a scientific opportunity to understand chemokine-dependent immunoregulation in humans and a medical opportunity to develop mechanism-based treatment and cure strategies. 22 AREAS COVERED This review covers the clinical features, genetics, immunopathogenesis and clinical management of WHIM syndrome. Clinical trials of targeted therapeutic agents and potential cure strategies are also included. 23 EXPERT OPINION WHIM syndrome may be particularly amenable to mechanism-based therapeutics for three reasons: 1) CXCR4 has been validated as the molecular target in the disease by Mendelian genetics; 2) the biochemical abnormality is excessive CXCR4 signaling; and 3) antagonists selective for CXCR4 have been developed. Plerixafor is FDA-approved for hematopoietic stem cell (HSC) mobilization and has shown preliminary safety and efficacy in phase I clinical trials in WHIM syndrome. Gene editing may represent a viable cure strategy, since chromothriptic deletion of the disease allele in HSCs resulted in clinical cure of a patient and because CXCR4 haploinsufficiency enhances engraftment of transplanted HSCs in mice.
Collapse
Affiliation(s)
- Lauren E Heusinkveld
- Laboratory of Molecular Immunology, Bldg 10, Room 11N113, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Erin Yim
- Laboratory of Molecular Immunology, Bldg 10, Room 11N113, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Alexander Yang
- Laboratory of Molecular Immunology, Bldg 10, Room 11N113, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Ari B Azani
- Laboratory of Molecular Immunology, Bldg 10, Room 11N113, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Qian Liu
- Laboratory of Molecular Immunology, Bldg 10, Room 11N113, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Ji-Liang Gao
- Laboratory of Molecular Immunology, Bldg 10, Room 11N113, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - David H McDermott
- Laboratory of Molecular Immunology, Bldg 10, Room 11N113, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Philip M Murphy
- Laboratory of Molecular Immunology, Bldg 10, Room 11N113, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
17
|
Roselli G, Martini E, Lougaris V, Badolato R, Viola A, Kallikourdis M. CXCL12 Mediates Aberrant Costimulation of B Lymphocytes in Warts, Hypogammaglobulinemia, Infections, Myelokathexis Immunodeficiency. Front Immunol 2017; 8:1068. [PMID: 28928741 PMCID: PMC5591327 DOI: 10.3389/fimmu.2017.01068] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 08/16/2017] [Indexed: 11/24/2022] Open
Abstract
The Warts, Hypogammaglobulinemia, Infections, Myelokathexis (WHIM) syndrome is an immunodeficiency caused by mutations in chemokine receptor CXCR4. WHIM patient adaptive immunity defects remain largely unexplained. We have previously shown that WHIM-mutant T cells form unstable immunological synapses, affecting T cell activation. Here, we show that, in WHIM patients and WHIM CXCR4 knock-in mice, B cells are more apoptosis prone. Intriguingly, WHIM-mutant B cells were also characterized by spontaneous activation. Searching for a mechanistic explanation for these observations, we uncovered a novel costimulatory effect of CXCL12, the CXCR4 ligand, on WHIM-mutant but not wild-type B cells. The WHIM CXCR4-mediated costimulation led to increased B-cell activation, possibly involving mTOR, albeit without concurrently promoting survival. A reduction in antigenic load during immunization in the mouse was able to circumvent the adaptive immunity defects. These results suggest that WHIM-mutant CXCR4 may lead to spontaneous aberrant B-cell activation, via CXCL12-mediated costimulation, impairing B-cell survival and thus possibly contributing to the WHIM syndrome defects in adaptive immunity.
Collapse
Affiliation(s)
- Giuliana Roselli
- Adaptive Immunity Laboratory, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Elisa Martini
- Adaptive Immunity Laboratory, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Vassilios Lougaris
- Department of Pediatrics, Institute of Molecular Medicine Angelo Nocivelli, University of Brescia, Brescia, Italy
| | - Raffaele Badolato
- Department of Pediatrics, Institute of Molecular Medicine Angelo Nocivelli, University of Brescia, Brescia, Italy
| | - Antonella Viola
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| | - Marinos Kallikourdis
- Adaptive Immunity Laboratory, Humanitas Clinical and Research Center, Rozzano, Italy.,Humanitas University, Rozzano, Italy
| |
Collapse
|
18
|
Boisvert M, Zhang W, Elrod EJ, Bernard NF, Villeneuve JP, Bruneau J, Marcotrigiano J, Shoukry NH, Grakoui A. Novel E2 Glycoprotein Tetramer Detects Hepatitis C Virus-Specific Memory B Cells. THE JOURNAL OF IMMUNOLOGY 2016; 197:4848-4858. [PMID: 27849172 DOI: 10.4049/jimmunol.1600763] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 10/13/2016] [Indexed: 01/16/2023]
Abstract
Acute hepatitis C virus (HCV) infection culminates in viral persistence in the majority of cases. Abs that recognize the envelope glycoproteins E1 and E2 are generated during the late stages of acute infection, yet their contribution to spontaneous viral clearance remains controversial. Investigation of the humoral responses during acute HCV infection have been limited by the inability to directly identify and characterize HCV-specific B cells. In this study we describe the development of a novel tetramer of the E2 glycoprotein ectodomain (J6, genotype 2a strain), which allowed us to visualize E2-specific B cells longitudinally in the peripheral blood of HCV-infected individuals. HCV-specific class-switched memory B cells were detected in 3 out of 7 participants during late acute infection, with a mean frequency of 0.63% for positive samples (range 0.16-0.67%) and in 7 out of 7 participants with chronic infection with a mean frequency of 0.47% (range 0.20-0.78%). In a cross-sectional study, E2 tetramer positive population was detected in 28 out of 31 chronically infected individuals. Deep sequencing of the BCR from E2-specific class-switched memory B cells sorted from two independent participants revealed a focused repertoire suggestive of clonal selection. Tetramer-specific B cells exhibited skewed CDR3 length distribution and increased mutation frequency compared with naive B cells. This BCR profile is indicative of clonal expansion and affinity maturation. E2 tetramer allows for specific and sensitive ex vivo characterization of rare HCV-specific B cells in infected individuals, and will enable researchers to gain a better understanding of humoral immunity in HCV infection.
Collapse
Affiliation(s)
- Maude Boisvert
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec H2X 0A9, Canada
| | - Wanrui Zhang
- Yerkes National Primate Research Center, Emory Vaccine Center, Atlanta, GA 30329
| | - Elizabeth J Elrod
- Yerkes National Primate Research Center, Emory Vaccine Center, Atlanta, GA 30329
| | - Nicole F Bernard
- Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Division of Experimental Medicine, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Jean-Pierre Villeneuve
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec H2X 0A9, Canada.,Département de Médecine, Faculté de Médecine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Julie Bruneau
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec H2X 0A9, Canada.,Département de Médecine Familiale et de Médecine D'Urgence, Faculté de Médecine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Joseph Marcotrigiano
- Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854; and
| | - Naglaa H Shoukry
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec H2X 0A9, Canada; .,Département de Médecine, Faculté de Médecine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Arash Grakoui
- Yerkes National Primate Research Center, Emory Vaccine Center, Atlanta, GA 30329; .,Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30329
| |
Collapse
|
19
|
Biajoux V, Natt J, Freitas C, Alouche N, Sacquin A, Hemon P, Gaudin F, Fazilleau N, Espéli M, Balabanian K. Efficient Plasma Cell Differentiation and Trafficking Require Cxcr4 Desensitization. Cell Rep 2016; 17:193-205. [DOI: 10.1016/j.celrep.2016.08.068] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 07/07/2016] [Accepted: 08/19/2016] [Indexed: 01/08/2023] Open
|
20
|
CXCR4 signaling in health and disease. Immunol Lett 2016; 177:6-15. [PMID: 27363619 DOI: 10.1016/j.imlet.2016.06.006] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 06/22/2016] [Accepted: 06/27/2016] [Indexed: 12/23/2022]
Abstract
Chemokines and chemokine receptors regulate multiple processes such morphogenesis, angiogenesis and immune responses. Among the chemokine receptors, CXCR4 stands out for its pleiotropic roles as well as for its involvement in several pathological conditions, including immune diseases, viral infections and cancer. For these reasons, CXCR4 represents a crucial target in drug development. In this review, we discuss of CXCR4 receptor properties and signaling in health and diseases, focusing on the WHIM syndrome, an inherited immunodeficiency caused by mutations of the CXCR4 gene.
Collapse
|
21
|
Christakos KJ, Chapman JA, Fane BA, Campos SK. PhiXing-it, displaying foreign peptides on bacteriophage ΦX174. Virology 2015; 488:242-8. [PMID: 26655242 DOI: 10.1016/j.virol.2015.11.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 09/25/2015] [Accepted: 11/20/2015] [Indexed: 11/17/2022]
Abstract
Although bacteriophage φX174 is easy to propagate and genetically tractable, it is use as a peptide display platform has not been explored. One region within the φX174 major spike protein G tolerated 13 of 16 assayed insertions, ranging from 10 to 75 amino acids. The recombinant proteins were functional and incorporated into infectious virions. In the folded protein, the peptides would be icosahedrally displayed within loops that extend from the protein׳s β-barrel core. The well-honed genetics of φX174 allowed permissive insertions to be quickly identified by the cellular phenotypes associated with cloned gene expression. The cloned genes were easily transferred from plasmids to phage genomes via recombination rescue. Direct ELISA validated several recombinant virions for epitope display. Some insertions conferred a temperature-sensitive (ts) protein folding defect, which was suppressed by global suppressors in protein G, located too far away from the insertion to directly alter peptide display.
Collapse
Affiliation(s)
- Kristofer J Christakos
- The Department of Molecular and Cellular Biology, The University of Arizona, Tucson, AZ, USA
| | | | - Bentley A Fane
- The Department of Immunobiology, The University of Arizona, Tucson, AZ, USA; The School of Plant Sciences, The University of Arizona, Tucson, AZ, USA; The BIO5 Institute, The University of Arizona, Tucson, AZ, USA.
| | - Samuel K Campos
- The Department of Immunobiology, The University of Arizona, Tucson, AZ, USA; The Department of Molecular and Cellular Biology, The University of Arizona, Tucson, AZ, USA; The Cancer Biology Graduate Interdisciplinary Program, The University of Arizona, Tucson, AZ, USA; The BIO5 Institute, The University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
22
|
Giardino G, Cirillo E, Gallo V, Esposito T, Fusco F, Conte MI, Quinti I, Ursini MV, Carsetti R, Pignata C. B cells from nuclear factor kB essential modulator deficient patients fail to differentiate to antibody secreting cells in response to TLR9 ligand. Clin Immunol 2015; 161:131-5. [DOI: 10.1016/j.clim.2015.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/05/2015] [Accepted: 08/19/2015] [Indexed: 01/07/2023]
|
23
|
Pichard DC, Freeman AF, Cowen EW. Primary immunodeficiency update: Part II. Syndromes associated with mucocutaneous candidiasis and noninfectious cutaneous manifestations. J Am Acad Dermatol 2015; 73:367-81; quiz 381-2. [PMID: 26282795 DOI: 10.1016/j.jaad.2015.01.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 12/19/2022]
Abstract
Several primary immunodeficiencies (PIDs) have recently been described that confer an elevated risk of fungal infections and noninfectious cutaneous manifestations. In addition, immunologic advances have provided new insights into our understanding of the pathophysiology of fungal infections in established PIDs. We reviewed PIDs that present with an eczematous dermatitis in part I. In part II of this continuing medical education article we discuss updates on PIDs associated with fungal infections, their biologic basis in PIDs, and noninfectious cutaneous manifestations.
Collapse
Affiliation(s)
- Dominique C Pichard
- National Institutes of Health, National Cancer Institute, Bethesda, Maryland
| | | | - Edward W Cowen
- National Institutes of Health, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|
24
|
Kallikourdis M, Viola A, Benvenuti F. Human Immunodeficiencies Related to Defective APC/T Cell Interaction. Front Immunol 2015; 6:433. [PMID: 26379669 PMCID: PMC4551858 DOI: 10.3389/fimmu.2015.00433] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 08/09/2015] [Indexed: 11/13/2022] Open
Abstract
The primary event for initiating adaptive immune responses is the encounter between T lymphocytes and antigen presenting cells (APCs) in the T cell area of secondary lymphoid organs and the formation of highly organized intercellular junctions referred to as immune synapses (IS). In vivo live-cell imaging of APC-T cell interactions combined to functional studies unveiled that T cell fate is dictated, in large part, by the stability of the initial contact. Immune cell interaction is equally important during delivery of T cell help to B cells and for the killing of target cells by cytotoxic T cells and NK cells. The critical role of contact dynamics and synapse stability on the immune response is well illustrated by human immune deficiencies in which disease pathogenesis is linked to altered adhesion or defective cross-talk between the synaptic partners. The Wiskott-Aldrich syndrome (WAS) is a severe primary immunodeficiency caused by mutations in the Wiskott-Aldrich syndrome protein (WASp), a scaffold that promotes actin polymerization and links TCR stimulation to T cell activation. Absence or mutations in WASp affects intercellular APC-T cell communications by interfering with multiple mechanisms on both sides of the IS. The warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome is caused by mutations in CXCR4, a chemokine receptor that in mutant form leads to impairment of APC-T cell interactions. Present evidences suggest that other recently characterized primary immune deficiencies caused by mutation in genes linked to actin cytoskeletal reorganization, such as WIP and DOCK8, may also depend on altered synapse stability. Here, we will discuss in details the mechanisms of disturbed APC-T cell interactions in WAS and WHIM. Moreover, we will summarize the evidence pointing to a compromised conjugate formation in WIP, DOCK8, and X-linked lymphoproliferative syndrome.
Collapse
Affiliation(s)
- Marinos Kallikourdis
- Humanitas University , Rozzano , Italy ; Adaptive Immunity Laboratory, Humanitas Clinical and Research Center , Rozzano , Italy
| | | | - Federica Benvenuti
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology , Trieste , Italy
| |
Collapse
|
25
|
McDermott DH, Liu Q, Velez D, Lopez L, Anaya-O'Brien S, Ulrick J, Kwatemaa N, Starling J, Fleisher TA, Priel DAL, Merideth MA, Giuntoli RL, Evbuomwan MO, Littel P, Marquesen MM, Hilligoss D, DeCastro R, Grimes GJ, Hwang ST, Pittaluga S, Calvo KR, Stratton P, Cowen EW, Kuhns DB, Malech HL, Murphy PM. A phase 1 clinical trial of long-term, low-dose treatment of WHIM syndrome with the CXCR4 antagonist plerixafor. Blood 2014; 123:2308-16. [PMID: 24523241 PMCID: PMC3983611 DOI: 10.1182/blood-2013-09-527226] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 01/30/2014] [Indexed: 12/18/2022] Open
Abstract
Warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome is a rare immunodeficiency disorder caused by gain-of-function mutations in the G protein-coupled chemokine receptor CXCR4. The CXCR4 antagonist plerixafor, which is approved by the US Food and Drug Administration (FDA) for stem cell mobilization in cancer and administered for that indication at 0.24 mg/kg, has been shown in short-term (1- to 2-week) phase 1 dose-escalation studies to correct neutropenia and other cytopenias in WHIM syndrome. However, long-term safety and long-term hematologic and clinical efficacy data are lacking. Here we report results from the first long-term clinical trial of plerixafor in any disease, in which 3 adults with WHIM syndrome self-injected 0.01 to 0.02 mg/kg (4% to 8% of the FDA-approved dose) subcutaneously twice daily for 6 months. Circulating leukocytes were durably increased throughout the trial in all patients, and this was associated with fewer infections and improvement in warts in combination with imiquimod; however, immunoglobulin levels and specific vaccine responses were not fully restored. No drug-associated side effects were observed. These results provide preliminary evidence for the safety and clinical efficacy of long-term, low-dose plerixafor in WHIM syndrome and support its continued study as mechanism-based therapy in this disease. The ClinicalTrials.gov identifier for this study is NCT00967785.
Collapse
|
26
|
Abstract
We initially described the WHIM syndrome based on the combination of Warts, Hypogammaglobulinaemia, Infections and Myelokathexis (neutrophil retention in the bone marrow). Translational research led to the discovery that this rare immunodeficiency disease is caused by a heterozygous mutation in the CXCR4 gene. Recently, Plerixafor has been suggested as a treatment for WHIM syndrome due to its efficacy as a CXCR4 antagonist, closing the translational research loop. In this review, we will focus on the clinical manifestations, pathophysiology, diagnosis and possible therapies for this rare entity.
Collapse
Affiliation(s)
- Omar Al Ustwani
- Leukemia Section, Department of Medicine, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY
| | - Razelle Kurzrock
- University of California, San Diego, Moores Cancer Center, San Diego, CA
| | - Meir Wetzler
- Leukemia Section, Department of Medicine, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY
| |
Collapse
|
27
|
Hajishengallis E, Hajishengallis G. Neutrophil homeostasis and periodontal health in children and adults. J Dent Res 2013; 93:231-7. [PMID: 24097856 DOI: 10.1177/0022034513507956] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
This review summarizes the current state of knowledge on neutrophil basic biology and discusses how the breakdown of neutrophil homeostasis affects periodontal health. The homeostasis of neutrophils is tightly regulated through coordinated bone marrow production, release into the circulation, transmigration to and activation in peripheral tissues, and clearance of senescent neutrophils. Dysregulation of any of these homeostatic mechanisms at any age can cause severe periodontitis in humans and animal models. Accordingly, both impaired and excessive neutrophil activity (in terms of numbers or immune function) can precipitate periodontitis. Neutrophil defects of congenital origin (e.g., congenital neutropenia, leukocyte adhesion deficiency, and Chediak-Higashi syndrome) are associated with cutaneous and systemic infections and early-onset forms of periodontitis affecting both the primary and permanent dentitions of children. However, the strong association between congenital neutrophil disorders and early-onset periodontitis is not currently adequately explained mechanistically. This suggests the operation of as-yet-unknown molecular mechanisms, although the available body of evidence leaves no doubt that neutrophils are integral to periodontal tissue homeostasis and health.
Collapse
Affiliation(s)
- E Hajishengallis
- University of Pennsylvania School of Dental Medicine, Department of Preventive and Restorative Sciences, Division of Pediatric Dentistry, Philadelphia, PA 19104, USA
| | | |
Collapse
|
28
|
Pickman Y, Dunn-Walters D, Mehr R. BCR CDR3 length distributions differ between blood and spleen and between old and young patients, and TCR distributions can be used to detect myelodysplastic syndrome. Phys Biol 2013; 10:056001. [PMID: 23965732 DOI: 10.1088/1478-3975/10/5/056001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Complementarity-determining region 3 (CDR3) is the most hyper-variable region in B cell receptor (BCR) and T cell receptor (TCR) genes, and the most critical structure in antigen recognition and thereby in determining the fates of developing and responding lymphocytes. There are millions of different TCR Vβ chain or BCR heavy chain CDR3 sequences in human blood. Even now, when high-throughput sequencing becomes widely used, CDR3 length distributions (also called spectratypes) are still a much quicker and cheaper method of assessing repertoire diversity. However, distribution complexity and the large amount of information per sample (e.g. 32 distributions of the TCRα chain, and 24 of TCRβ) calls for the use of machine learning tools for full exploration. We have examined the ability of supervised machine learning, which uses computational models to find hidden patterns in predefined biological groups, to analyze CDR3 length distributions from various sources, and distinguish between experimental groups. We found that (a) splenic BCR CDR3 length distributions are characterized by low standard deviations and few local maxima, compared to peripheral blood distributions; (b) healthy elderly people's BCR CDR3 length distributions can be distinguished from those of the young; and (c) a machine learning model based on TCR CDR3 distribution features can detect myelodysplastic syndrome with approximately 93% accuracy. Overall, we demonstrate that using supervised machine learning methods can contribute to our understanding of lymphocyte repertoire diversity.
Collapse
Affiliation(s)
- Yishai Pickman
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | | |
Collapse
|
29
|
Badolato R. Defects of leukocyte migration in primary immunodeficiencies. Eur J Immunol 2013; 43:1436-40. [DOI: 10.1002/eji.201243155] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 04/07/2013] [Accepted: 04/24/2013] [Indexed: 11/12/2022]
Affiliation(s)
- Raffaele Badolato
- Department of Pediatrics; Institute of Molecular Medicine “Angelo Nocivelli”, University of Brescia, Brescia; Italy
| |
Collapse
|
30
|
The CXCR4 mutations in WHIM syndrome impair the stability of the T-cell immunologic synapse. Blood 2013; 122:666-73. [PMID: 23794067 DOI: 10.1182/blood-2012-10-461830] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
WHIM (warts, hypogammaglobulinemia, infections, myelokathexis) syndrome is a rare disease characterized by diverse symptoms indicative of aberrantly functioning immunity. It is caused by mutations in the chemokine receptor CXCR4, which impair its intracellular trafficking, leading to increased responsiveness to chemokine ligand and retention of neutrophils in bone marrow. Yet WHIM symptoms related to adaptive immunity, such as delayed IgG switching and impaired memory B-cell function, remain largely unexplained. We hypothesized that the WHIM-associated mutations in CXCR4 may affect the formation of immunologic synapses between T cells and antigen-presenting cells (APCs). We show that, in the presence of competing external chemokine signals, the stability of T-APC conjugates from patients with WHIM-mutant CXCR4 is disrupted as a result of impaired recruitment of the mutant receptor to the immunologic synapse. Using retrogenic mice that develop WHIM-mutant T cells, we show that WHIM-mutant CXCR4 inhibits the formation of long-lasting T-APC interactions in ex vivo lymph node slice time-lapse microscopy. These findings demonstrate that chemokine receptors can affect T-APC synapse stability and allow us to propose a novel mechanism that contributes to the adaptive immune response defects in WHIM patients.
Collapse
|
31
|
|
32
|
Liu Q, Chen H, Ojode T, Gao X, Anaya-O'Brien S, Turner NA, Ulrick J, DeCastro R, Kelly C, Cardones AR, Gold SH, Hwang EI, Wechsler DS, Malech HL, Murphy PM, McDermott DH. WHIM syndrome caused by a single amino acid substitution in the carboxy-tail of chemokine receptor CXCR4. Blood 2012; 120:181-9. [PMID: 22596258 PMCID: PMC3390956 DOI: 10.1182/blood-2011-12-395608] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 04/30/2012] [Indexed: 01/30/2023] Open
Abstract
WHIM syndrome is a rare, autosomal dominant, immunodeficiency disorder so-named because it is characterized by warts, hypogammaglobulinemia, infections, and myelokathexis (defective neutrophil egress from the BM). Gain-of-function mutations that truncate the C-terminus of the chemokine receptor CXCR4 by 10-19 amino acids cause WHIM syndrome. We have identified a family with autosomal dominant inheritance of WHIM syndrome that is caused by a missense mutation in CXCR4, E343K (1027G → A). This mutation is also located in the C-terminal domain, a region responsible for negative regulation of the receptor. Accordingly, like CXCR4(R334X), the most common truncation mutation in WHIM syndrome, CXCR4(E343K) mediated approximately 2-fold increased signaling in calcium flux and chemotaxis assays relative to wild-type CXCR4; however, CXCR4(E343K) had a reduced effect on blocking normal receptor down-regulation from the cell surface. Therefore, in addition to truncating mutations in the C-terminal domain of CXCR4, WHIM syndrome may be caused by a single charge-changing amino acid substitution in this domain, E343K, that results in increased receptor signaling.
Collapse
Affiliation(s)
- Qian Liu
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Proper desensitization of CXCR4 is required for lymphocyte development and peripheral compartmentalization in mice. Blood 2012; 119:5722-30. [PMID: 22438253 DOI: 10.1182/blood-2012-01-403378] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Desensitization controls G protein-dependent signaling of chemokine receptors. We investigate the physiologic implication of this process for CXCR4 in a mouse model harboring a heterozygous mutation of the Cxcr4 gene, which engenders a desensitization-resistant receptor. Such anomaly is linked to the warts, hypogammaglobulinemia, infections, myelokathexis (WHIM) syndrome, a human rare combined immunodeficiency. Cxcr4(+/mutant(1013)) mice display leukocytes with enhanced responses to Cxcl12 and exhibit leukopenia as reported in patients. Treatment with CXCL12/CXCR4 antagonists transiently reverses blood anomalies, further demonstrating the causal role of the mutant receptor in the leukopenia. Strikingly, neutropenia occurs in a context of normal bone marrow architecture and granulocyte lineage maturation, indicating a minor role for Cxcr4-dependent signaling in those processes. In contrast, Cxcr4(+/1013) mice show defective thymopoiesis and B-cell development, accounting for circulating lymphopenia. Concomitantly, mature T and B cells are abnormally compartmentalized in the periphery, with a reduction of primary follicles in the spleen and their absence in lymph nodes mirrored by an unfurling of the T-cell zone. These mice provide a model to decipher the role of CXCR4 desensitization in the homeostasis of B and T cells and to investigate which manifestations of patients with WHIM syndrome may be overcome by dampening the gain of CXCR4 function.
Collapse
|
34
|
Borte S, Wang N, Oskarsdóttir S, von Döbeln U, Hammarström L. Newborn screening for primary immunodeficiencies: beyond SCID and XLA. Ann N Y Acad Sci 2012; 1246:118-30. [PMID: 22236436 DOI: 10.1111/j.1749-6632.2011.06350.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Primary immunodeficiencies (PID) encompass more than 250 disease entities, including phagocytic disorders, complement deficiencies, T cell defects, and antibody deficiencies. While differing in clinical severity, early diagnosis and treatment is of considerable importance for all forms of PID to prevent organ damage and life-threatening infections. During the past few years, neonatal screening assays have been developed to detect diseases hallmarked by the absence of T or B lymphocytes, classically seen in severe combined immunodeficiencies (SCID) and X-linked agammaglobulinemia (XLA). As described in this review, a reduction or lack of T and B cells in newborns is also frequently found in several other forms of PID, requiring supplemental investigation and involving the development of additional technical platforms in order to help classify abnormal screening results.
Collapse
Affiliation(s)
- Stephan Borte
- Division of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
35
|
McDermott DH, Liu Q, Ulrick J, Kwatemaa N, Anaya-O'Brien S, Penzak SR, Filho JO, Priel DAL, Kelly C, Garofalo M, Littel P, Marquesen MM, Hilligoss D, Decastro R, Fleisher TA, Kuhns DB, Malech HL, Murphy PM. The CXCR4 antagonist plerixafor corrects panleukopenia in patients with WHIM syndrome. Blood 2011; 118:4957-62. [PMID: 21890643 PMCID: PMC3208300 DOI: 10.1182/blood-2011-07-368084] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 08/19/2011] [Indexed: 01/21/2023] Open
Abstract
WHIM syndrome is a rare congenital immunodeficiency disorder characterized by warts, hypogammaglobulinemia, infections, and myelokathexis (neutropenia because of impaired egress from the BM); most patients also have severe panleukopenia. Because WHIM syndrome is caused by mutations in the chemokine receptor CXCR4 that result in increased agonist-dependent signaling, we hypothesized that the CXCR4 antagonist plerixafor (Mozobil [Genyzme Corporation], AMD3100), might be an effective treatment. To test this, we enrolled 3 unrelated adult patients with the most common WHIM mutation, CXCR4(R334X), in a phase 1 dose-escalation study. Plerixafor increased absolute lymphocyte, monocyte, and neutrophil counts in blood to normal without significant side effects in all 3 patients. Peak responses occurred at 3-12 hours after injection and waned by 24 hours after injection which tracked the drug's pharmacokinetics. All 3 cell types increased in a dose-dependent manner with the rank order of responsiveness absolute lymphocyte > monocyte > neutrophil. These data provide the first pharmacologic evidence that panleukopenia in WHIM syndrome is caused by CXCL12-CXCR4 signaling-dependent leukocyte sequestration, and support continued study of plerixafor as mechanism-based therapy in this disease. This study is registered at http://www.clinicaltrials.gov as NCT00967785.
Collapse
Affiliation(s)
- David H McDermott
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
During development, natural killer (NK) cells exit the BM to reach the blood. CXCR4 retains NK cells in the BM, whereas the sphingosine-1 phosphate receptor 5 (S1P5) promotes their exit from this organ. However, how the action of these receptors is coordinated to preserve NK-cell development in the BM parenchyma while providing mature NK cells at the periphery is unclear. The role of CXCR4 and S1P5 in NK-cell recirculation at the periphery is also unknown. In the present study, we show that, during NK-cell differentiation, CXCR4 expression decreases whereas S1P5 expression increases, thus favoring the exit of mature NK cells via BM sinusoids. Using S1P5(-/-) mice and a new knockin mouse model in which CXCR4 cannot be desensitized (a mouse model of warts, hypogammaglobulinemia, infections, and myelokathexis [WHIM] syndrome), we demonstrate that NK-cell exit from the BM requires both CXCR4 desensitization and S1P5 engagement. These 2 signals occur independently of each other: CXCR4 desensitization is not induced by S1P5 engagement and vice versa. Once in the blood, the S1P concentration increases and S1P5 responsiveness decreases. This responsiveness is recovered in the lymph nodes to allow NK-cell exit via lymphatics in a CXCR4-independent manner. Therefore, coordinated changes in CXCR4 and S1P5 responsiveness govern NK-cell trafficking.
Collapse
|
37
|
Bignon A, Biajoux V, Bouchet-Delbos L, Emilie D, Lortholary O, Balabanian K. [CXCR4, a therapeutic target in rare immunodeficiencies?]. Med Sci (Paris) 2011; 27:391-7. [PMID: 21524404 DOI: 10.1051/medsci/2011274015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Currently, more than 200 primary immunodeficiency diseases have been discovered. In most cases, genetic defects affect the expression or the function of proteins involved in immune development and homeostasis. Some orphan immuno-hematological disorders are characterized by an abnormal leukocyte trafficking, a notion predictive of an anomaly of the chemokine/chemokine receptor system. In this review, we focus on recent advances in the characterization of dysfunctions of the CXCL12 (SDF-1)/CXCR4 signaling axis in two rare human immunodeficiencies, one associated with a loss of CXCR4 function, the Idiopathic CD4(+) T-cell Lymphocytopenia, and the other with a gain of CXCR4 function, the WHIM syndrome.
Collapse
Affiliation(s)
- Alexandre Bignon
- Université Paris-Sud, laboratoire cytokines, chimiokines et immunopathologie, UMR-S996, 32, rue des Carnets, 92140 Clamart, France
| | | | | | | | | | | |
Collapse
|
38
|
Yoshida N, Kitayama D, Arima M, Sakamoto A, Inamine A, Watanabe-Takano H, Hatano M, Koike T, Tokuhisa T. CXCR4 expression on activated B cells is downregulated by CD63 and IL-21. THE JOURNAL OF IMMUNOLOGY 2011; 186:2800-8. [PMID: 21270405 DOI: 10.4049/jimmunol.1003401] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CXCR4 expression is critical for localization of centroblasts in the dark zone of germinal centers (GCs), and centrocytes downregulate CXCR4 and thus leave the dark zone to reside in the light zone. However, mechanisms governing CXCR4 downregulation on centrocytes are not known. In this study, we show that the amount of intracellular CXCR4 in centroblasts was similar to that in centrocytes, suggesting differential control of CXCR4 protein expression in these GC B cells. Restimulation of activated B cells with IL-21, which is a major cytokine produced by T follicular helper cells, accelerated CXCR4 internalization by inducing endocytosis-related GRK6 expression. Although CXCR4 expression was downregulated on GC B cells by IL-21 stimulation, CXCR4(low) centrocytes developed in the spleens of IL-21R-deficient mice, suggesting other mechanisms for downregulation. The level of CD63 (which recruits CXCR4 to late endosome in CD4 T cells) in centrocytes was more than that in centroblasts and was strikingly elevated in activated Bcl6-deficient B cells. Bcl6, a transcriptional repressor, was detected on the chromatin of the CD63 gene in resting B cells, therefore CD63 is a molecular target of Bcl6. Downregulation of CD63 mRNA in activated Bcl6-deficient B cells by small interfering RNA upregulated CXCR4 expression on the B cells. Furthermore, addition of Bcl6 inhibitor to activated B cell cultures increased CD63 mRNA expression in (and downregulated CXCR4 expression on) those activated B cells. Thus, CXCR4 can be downregulated on activated B cells by IL-21-induced endocytosis and CD63-mediated endosomal recruitment, and these mechanisms may contribute to downregulation of CXCR4 on centrocytes.
Collapse
Affiliation(s)
- Nobuya Yoshida
- Department of Developmental Genetics, H2, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Biajoux V, Bignon A, Bouchet-Delbos L, Emilie D, Balabanian K. [Dysfunctions of the CXCL12 (SDF-1)/CXCR4 signaling axis in the WHIM syndrome and the idiopathic CD4(+) T-cell lymphocytopenia]. Biol Aujourdhui 2011; 204:273-284. [PMID: 21215244 DOI: 10.1051/jbio/2010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Indexed: 05/30/2023]
Abstract
Chemokines are small cytokine-like secreted proteins that govern migration of leukocytes to their specific niches in lymphoid organs and to inflammatory sites. They mediate their functions by binding to and activating chemokine receptors, which belong to the heptahelical G protein-coupled receptor family. The CXC chemokine Stromal cell Derived Factor-1 (SDF-1/CXCL12) is the sole natural ligand for the broadly expressed CXCR4 receptor and acts as a chemoattractant for many leukocyte subsets. The CXCL12/CXCR4 axis exerts critical activities in homeostatic processes such as organogenesis, hematopoiesis and leukocyte trafficking. Dysregulations of CXCR4 signaling and/or expression are associated with several infectious, inflammatory, autoimmune and malignant conditions. In light of recent data, we review here CXCR4 dysfunctions unveiled in two rare human immunodeficiency disorders, one characterized by a gain of CXCR4 function, the WHIM syndrome, and the other by a loss of CXCR4 function, the idiopathic CD4(+) T-cell lymphocytopenia.
Collapse
Affiliation(s)
- Vincent Biajoux
- Université Paris-Sud, Laboratoire Cytonkin, Chimiokines et Immunopathologies, UMR S996, 32 rue des Carnets, 92140 Clamart, France - INSERM, 92140 Clamart, France
| | | | | | | | | |
Collapse
|