1
|
Chen S, Ye J, Lin Y, Chen W, Huang S, Yang Q, Qian H, Gao S, Hua C. Crucial Roles of RSAD2/viperin in Immunomodulation, Mitochondrial Metabolism and Autoimmune Diseases. Inflammation 2025; 48:520-540. [PMID: 38909344 DOI: 10.1007/s10753-024-02076-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/22/2024] [Accepted: 06/03/2024] [Indexed: 06/24/2024]
Abstract
Autoimmune diseases are typically characterized by aberrant activation of immune system that leads to excessive inflammatory reactions and tissue damage. Nevertheless, precise targeted and efficient therapies are limited. Thus, studies into novel therapeutic targets for the management of autoimmune diseases are urgently needed. Radical S-adenosyl methionine domain-containing 2 (RSAD2) is an interferon-stimulated gene (ISG) renowned for the antiviral properties of the protein it encodes, named viperin. An increasing number of studies have underscored the new roles of RSAD2/viperin in immunomodulation and mitochondrial metabolism. Previous studies have shown that there is a complex interplay between RSAD2/vipeirn and mitochondria and that binding of the iron-sulfur (Fe-S) cluster is necessary for the involvement of viperin in mitochondrial metabolism. Viperin influences the proliferation and development of immune cells as well as inflammation via different signaling pathways. However, the function of RSAD2/viperin varies in different studies and a comprehensive overview of this emerging theme is lacking. This review will describe the characteristics of RSAD2/viperin, decipher its function in immunometabolic processes, and clarify the crosstalk between RSAD2/viperin and mitochondria. Furthermore, we emphasize the crucial roles of RSAD2 in autoimmune diseases and its potential application value.
Collapse
Affiliation(s)
- Siyan Chen
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Jiani Ye
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Yinfang Lin
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Wenxiu Chen
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Shenghao Huang
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Qianru Yang
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Hengrong Qian
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Sheng Gao
- Laboratory Animal Center, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China.
| | - Chunyan Hua
- School of Basic Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China.
| |
Collapse
|
2
|
Lai B, Luo SF, Lai JH. Therapeutically targeting proinflammatory type I interferons in systemic lupus erythematosus: efficacy and insufficiency with a specific focus on lupus nephritis. Front Immunol 2024; 15:1489205. [PMID: 39478861 PMCID: PMC11521836 DOI: 10.3389/fimmu.2024.1489205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
Type I interferons (IFN-Is) are important players in the immunopathogenesis of systemic lupus erythematosus (SLE). Pathogenic events in patients with SLE are potent triggers of IFN-I induction, yet IFN-I may induce or initiate the immunopathogenesis leading to these events. Because blocking IFN-I is effective in some clinical manifestations of SLE patients, concerns about the efficacy of anti-IFN-I therapy in patients with lupus nephritis remain. Tissues from kidney biopsies of patients with lupus nephritis revealed infiltration of various immune cells and activation of inflammatory signals; however, their correlation with renal damage is not clear, which raises serious concerns about how critical the role of IFN-I is among the potential contributors to the pathogenesis of lupus nephritis. This review addresses several issues related to the roles of IFN-I in SLE, especially in lupus nephritis, including (1) the contribution of IFN-I to the development and immunopathogenesis of SLE; (2) evidence supporting the association of IFN-I with lupus nephritis; (3) therapies targeting IFN-I and IFN-I downstream signaling molecules in SLE and lupus nephritis; (4) findings challenging the therapeutic benefits of anti-IFN-I in lupus nephritis; and (5) a perspective associated with anti-IFN-I biologics for lupus nephritis treatment. In addition to providing clear pictures of the roles of IFN-I in SLE, especially in lupus nephritis, this review addresses the lately published observations and clinical trials on this topic.
Collapse
Affiliation(s)
- Benjamin Lai
- Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shue-Fen Luo
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| | - Jenn-Haung Lai
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
3
|
Korsten P, Tampe B. A Transcriptome Array-Based Approach Links Proteinuria and Distinct Molecular Signatures to Intrarenal Expression of Type I Interferon IFNA5 in Lupus Nephritis. Int J Mol Sci 2023; 24:10636. [PMID: 37445814 DOI: 10.3390/ijms241310636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
In systemic lupus erythematosus (SLE), the relevance of non-hematopoietic sources of type I interferon in human autoimmunity has recently been recognized. Particularly, type I interferon production precedes autoimmunity in early skin lesions related to SLE. However, the relevance of intrarenal type I interferon expression has not been shown in lupus nephritis. From transcriptome array datasets, median-centered log2 mRNA expression levels of IFNα (IFNA1, IFNA2, IFNA4, IFNA5, IFNA6, IFNA7, IFNA8, IFNA10, IFNA13, IFNA14, IFNA16, IFNA17, and IFNA21), IFNω (IFNW1), and IFNβ (IFNB1) in lupus nephritis were extracted specifically from microdissected tubulointerstitial (n = 32) and glomerular compartments (n = 32). We found an association between proteinuria and tubulointerstitial expression of type I interferon IFNA5 (p = 0.0142), while all others were not significantly associated. By contrast, no such correlation was observed between proteinuria and any type I interferon expression in the glomerular compartment in lupus nephritis. Interestingly, there was no difference between female and male patients (p = 0.8237) and no association between type I interferon IFNA5 expression and kidney function or lupus nephritis progression. Finally, we identified distinct molecular signatures involved in transcriptional regulation (GLI protein-regulated transcription, IRF7 activation, and HSF1-dependent transactivation) and receptor signaling (BMP signaling and GPCR ligand binding) in association with tubulointerstitial expression of type I interferon IFNA5 in the kidney. In summary, this transcriptome array-based approach links proteinuria to the tubulointerstitial expression of type I interferon IFNA5 in lupus nephritis. Because type I interferon receptor subunit I antagonism has recently been investigated in active SLE, the current study further emphasizes the role of type I interferons in lupus nephritis and might also be of relevance for mechanistic studies.
Collapse
Affiliation(s)
- Peter Korsten
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Björn Tampe
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
4
|
Ramaswamy M, Tummala R, Streicher K, Nogueira da Costa A, Brohawn PZ. The Pathogenesis, Molecular Mechanisms, and Therapeutic Potential of the Interferon Pathway in Systemic Lupus Erythematosus and Other Autoimmune Diseases. Int J Mol Sci 2021; 22:11286. [PMID: 34681945 PMCID: PMC8540355 DOI: 10.3390/ijms222011286] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022] Open
Abstract
Therapeutic success in treating patients with systemic lupus erythematosus (SLE) is limited by the multivariate disease etiology, multi-organ presentation, systemic involvement, and complex immunopathogenesis. Agents targeting B-cell differentiation and survival are not efficacious for all patients, indicating a need to target other inflammatory mediators. One such target is the type I interferon pathway. Type I interferons upregulate interferon gene signatures and mediate critical antiviral responses. Dysregulated type I interferon signaling is detectable in many patients with SLE and other autoimmune diseases, and the extent of this dysregulation is associated with disease severity, making type I interferons therapeutically tangible targets. The recent approval of the type I interferon-blocking antibody, anifrolumab, by the US Food and Drug Administration for the treatment of patients with SLE demonstrates the value of targeting this pathway. Nevertheless, the interferon pathway has pleiotropic biology, with multiple cellular targets and signaling components that are incompletely understood. Deconvoluting the complexity of the type I interferon pathway and its intersection with lupus disease pathology will be valuable for further development of targeted SLE therapeutics. This review summarizes the immune mediators of the interferon pathway, its association with disease pathogenesis, and therapeutic modalities targeting the dysregulated interferon pathway.
Collapse
Affiliation(s)
- Madhu Ramaswamy
- Translational Science and Experimental Medicine, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA; (A.N.d.C.); (P.Z.B.)
| | - Raj Tummala
- Respiratory, Inflammation & Autoimmunity, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA;
| | - Katie Streicher
- Translational Medicine, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA;
| | - Andre Nogueira da Costa
- Translational Science and Experimental Medicine, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA; (A.N.d.C.); (P.Z.B.)
| | - Philip Z. Brohawn
- Translational Science and Experimental Medicine, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA; (A.N.d.C.); (P.Z.B.)
| |
Collapse
|
5
|
Wang Z, Wang Z, Hu X, Han Q, Chen K, Pang G. Extracellular Matrix-Associated Pathways Promote the Progression of Gastric Cancer by Impacting the Dendritic Cell Axis. Int J Gen Med 2021; 14:6725-6739. [PMID: 34675633 PMCID: PMC8520888 DOI: 10.2147/ijgm.s334245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/29/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is the third most frequent malignant tumour in the Chinese population, let alone the whole world. Recently, most prognostic models have only focused on the levels of several genes, miRNAs, lncRNAs, gene mutations, or DNA methylation; however, the activation status of biological pathways is more stable and can reflect the comprehensive inner conditions of tumours. METHODS We collected samples from the Cancer Genome Atlas Stomach Adenocarcinoma (TCGA-STAD) cohort and GSE62254 cohort, with a total of 594 patients. We employed GSEA to first compare the diverse activated signalling pathways between dead GC patients and living patients. The least absolute shrinkage and selection operator (LASSO) regression analysis was subsequently performed by the "glmnet" package to generate a prognostic signature. RESULTS We extracted a total of 218 genes from the KEGG Focal Adhesion and KEGG ECM Receptor Interaction pathways, which showed significant activation in dead GC patients in two enrolled cohorts, for subsequent LASSO analysis. In the TCGA-STAD cohort, patients in the high-risk group faced a significantly poorer prognosis than those in the low-risk group (P < 0.001, HR: 4.62, 95% CI: 3.447-6.183), with an AUC of 0.694. In the GSE62254 cohort, the HR value was 4.94 (95% CI: 3.413-7.165), and the AUC value was as high as 0.834. A high-risk score and poor prognosis correlated with infiltrated dendritic cells, and the receptor of IFN-α was also positively linked with the risk score, as well as poor prognosis. GC patients with high-risk scores were more likely to respond to CTLA4 treatment but not PD1 treatment. CONCLUSION Taken together, we established and verified an extracellular matrix prognostic model of gastric cancer patients. The model can be used to evaluate the risk of death of GC patients, as well as the response to anti-CTLA4 immunotherapy.
Collapse
Affiliation(s)
- Zhenlin Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, People’s Republic of China
| | - Zunyun Wang
- Department of Human Anatomy, School of Basic Medicine Sciences, Anhui Medical University, Hefei, 230032, Anhui, People’s Republic of China
| | - Xianyu Hu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, People’s Republic of China
| | - Qijun Han
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, People’s Republic of China
| | - Ke Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, People’s Republic of China
| | - Gang Pang
- Department of Human Anatomy, School of Basic Medicine Sciences, Anhui Medical University, Hefei, 230032, Anhui, People’s Republic of China
| |
Collapse
|
6
|
Chen KL, Patel J, Zeidi M, Wysocka M, Bashir MM, Patel B, Maddukuri S, White B, Werth VP. Myeloid Dendritic Cells Are Major Producers of IFN-β in Dermatomyositis and May Contribute to Hydroxychloroquine Refractoriness. J Invest Dermatol 2021; 141:1906-1914.e2. [PMID: 33675790 PMCID: PMC8316264 DOI: 10.1016/j.jid.2020.12.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 11/08/2020] [Accepted: 12/04/2020] [Indexed: 12/27/2022]
Abstract
Dermatomyositis pathogenesis remains incompletely understood; however, recent work suggests a predominant IFN-1 response. We explored dermatomyositis pathogenesis by quantifying the inflammatory cells in the skin, comparing myeloid with plasmacytoid dendritic cell release of IFN-β, and assessing myeloid dendritic cell (mDC) contribution to hydroxychloroquine refractoriness. Immunohistochemistry was performed to assess cell-type expression in lesional skin biopsies from 12 patients with moderate-to-severe cutaneous dermatomyositis. Immunofluorescence, laser-capture microdissection, and flow cytometry were used to assess mDC release of IFN-β in lesional skin biopsies and blood of patients with dermatomyositis. Immunohistochemistry was utilized to determine whether myeloid or plasmacytoid dendritic cells were increased in hydroxychloroquine nonresponders. CD4+, CD11c+, and CD69+ cells were more populous in lesional skin of patients with dermatomyositis. mDCs colocalized with IFN-β by immunofluorescence and laser-capture microdissection revealed increased IFN-β mRNA expression by mDCs in lesional skin of patients with dermatomyositis. In blood, both mDCs and plasmacytoid dendritic cells were major producers of IFN-β in patients with dermatomyositis, whereas plasmacytoid dendritic cells predominately released IFN-β in healthy controls (P < 0.01). mDCs were significantly increased in the skin of hydroxychloroquine nonresponders compared with that in the skin of responders (P < 0.05). mDCs cells appear to play an important role in dermatomyositis pathogenesis and IFN-β production.
Collapse
Affiliation(s)
- Kristen L Chen
- Department of Dermatology, Corporal Michael J. Crescenz VAMC, Philadelphia, Pennsylvania, USA; Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jay Patel
- Department of Dermatology, Corporal Michael J. Crescenz VAMC, Philadelphia, Pennsylvania, USA; Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Majid Zeidi
- Department of Dermatology, Corporal Michael J. Crescenz VAMC, Philadelphia, Pennsylvania, USA; Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Maria Wysocka
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Muhammad M Bashir
- Department of Dermatology, Corporal Michael J. Crescenz VAMC, Philadelphia, Pennsylvania, USA; Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Basil Patel
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Spandana Maddukuri
- Department of Dermatology, Corporal Michael J. Crescenz VAMC, Philadelphia, Pennsylvania, USA; Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Barbara White
- Corbus Pharmaceuticals Holdings, Inc, Norwood, Massachusetts, USA
| | - Victoria P Werth
- Department of Dermatology, Corporal Michael J. Crescenz VAMC, Philadelphia, Pennsylvania, USA; Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
7
|
Bolko L, Jiang W, Tawara N, Landon‐Cardinal O, Anquetil C, Benveniste O, Allenbach Y. The role of interferons type I, II and III in myositis: A review. Brain Pathol 2021; 31:e12955. [PMID: 34043262 PMCID: PMC8412069 DOI: 10.1111/bpa.12955] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/19/2021] [Indexed: 12/27/2022] Open
Abstract
The classification of idiopathic inflammatory myopathies (IIM) is based on clinical, serological and histological criteria. The identification of myositis-specific antibodies has helped to define more homogeneous groups of myositis into four dominant subsets: dermatomyositis (DM), antisynthetase syndrome (ASyS), sporadic inclusion body myositis (sIBM) and immune-mediated necrotising myopathy (IMNM). sIBM and IMNM patients present predominantly with muscle involvement, whereas DM and ASyS patients present additionally with other extramuscular features, such as skin, lung and joints manifestations. Moreover, the pathophysiological mechanisms are distinct between each myositis subsets. Recently, interferon (IFN) pathways have been identified as key players implicated in the pathophysiology of myositis. In DM, the key role of IFN, especially type I IFN, has been supported by the identification of an IFN signature in muscle, blood and skin of DM patients. In addition, DM-specific antibodies are targeting antigens involved in the IFN signalling pathways. The pathogenicity of type I IFN has been demonstrated by the identification of mutations in the IFN pathways leading to genetic diseases, the monogenic interferonopathies. This constitutive activation of IFN signalling pathways induces systemic manifestations such as interstitial lung disease, myositis and skin rashes. Since DM patients share similar features in the context of an acquired activation of the IFN signalling pathways, we may extend underlying concepts of monogenic diseases to acquired interferonopathy such as DM. Conversely, in ASyS, available data suggest a role of type II IFN in blood, muscle and lung. Indeed, transcriptomic analyses highlighted a type II IFN gene expression in ASyS muscle tissue. In sIBM, type II IFN appears to be an important cytokine involved in muscle inflammation mechanisms and potentially linked to myodegenerative features. For IMNM, currently published data are scarce, suggesting a minor implication of type II IFN. This review highlights the involvement of different IFN subtypes and their specific molecular mechanisms in each myositis subset.
Collapse
Affiliation(s)
- Loïs Bolko
- Division of RheumatologyHopital Maison BlancheReimsFrance
| | - Wei Jiang
- Department of Internal Medicine and Clinical ImmunlogySorbonne UniversitéPitié‐Salpêtrière University HospitalParisFrance
- Centre de Recherche en MyologieUMRS974Institut National de la Santé et de la Recherche MédicaleAssociation Institut de MyologieSorbonne UniversitéParisFrance
| | - Nozomu Tawara
- Department of Internal Medicine and Clinical ImmunlogySorbonne UniversitéPitié‐Salpêtrière University HospitalParisFrance
- Centre de Recherche en MyologieUMRS974Institut National de la Santé et de la Recherche MédicaleAssociation Institut de MyologieSorbonne UniversitéParisFrance
| | - Océane Landon‐Cardinal
- Division of RheumatologyCentre hospitalier de l'Université de Montréal (CHUM)CHUM Research CenterMontréalQCCanada
- Department of MedicineUniversité de MontréalMontréalQCCanada
| | - Céline Anquetil
- Department of Internal Medicine and Clinical ImmunlogySorbonne UniversitéPitié‐Salpêtrière University HospitalParisFrance
- Centre de Recherche en MyologieUMRS974Institut National de la Santé et de la Recherche MédicaleAssociation Institut de MyologieSorbonne UniversitéParisFrance
| | - Olivier Benveniste
- Department of Internal Medicine and Clinical ImmunlogySorbonne UniversitéPitié‐Salpêtrière University HospitalParisFrance
- Centre de Recherche en MyologieUMRS974Institut National de la Santé et de la Recherche MédicaleAssociation Institut de MyologieSorbonne UniversitéParisFrance
| | - Yves Allenbach
- Department of Internal Medicine and Clinical ImmunlogySorbonne UniversitéPitié‐Salpêtrière University HospitalParisFrance
- Centre de Recherche en MyologieUMRS974Institut National de la Santé et de la Recherche MédicaleAssociation Institut de MyologieSorbonne UniversitéParisFrance
| |
Collapse
|
8
|
Shah K, Cragg M, Leandro M, Reddy V. Anti-CD20 monoclonal antibodies in Systemic Lupus Erythematosus. Biologicals 2021; 69:1-14. [PMID: 33288390 DOI: 10.1016/j.biologicals.2020.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 10/04/2020] [Accepted: 11/08/2020] [Indexed: 02/07/2023] Open
Abstract
Systemic Lupus Erythematosus (SLE) is an autoimmune inflammatory condition with a wide spectrum of disease manifestations and severities, resulting in significant morbidity and mortality. The aetiopathogenesis of SLE is complex. Young women and certain ethnicities are commonly affected, suggesting a significant hormonal and genetic influence. Diverse immunological abnormalities have been described. A characteristic abnormality is the presence of autoantibodies, implicating a central role for B cells in disease pathogenesis and/or perpetuation. Whilst conventional therapies have improved outcomes, a great unmet need remains. Recently, biological therapies are being explored. B-cell depletion therapy with rituximab has been in use off-label for nearly two decades. Inconsistent results between uncontrolled and controlled studies have raised doubts about its efficacy. In this review, we will focus on B cell abnormalities and the rationale behind B-cell depletion therapy with anti-CD20 monoclonal antibody (mAb), rituximab, will be explored including an evaluation of clinical and trial experience. Finally, we will discuss the mechanistic basis for considering alternative anti-CD20 mAbs.
Collapse
Affiliation(s)
- Kavina Shah
- Centre for Rheumatology, University College London Division of Medicine, Rayne Building 4th Floor, 5 University Street, London, WC1E 6JF, United Kingdom.
| | - Mark Cragg
- Centre for Cancer Immunology MP127, Southampton General Hospital, Tremona Road, Southampton, SO16 6YD, United Kingdom.
| | - Maria Leandro
- Centre for Rheumatology, University College London Division of Medicine, Rayne Building 4th Floor, 5 University Street, London, WC1E 6JF, United Kingdom.
| | - Venkat Reddy
- Centre for Rheumatology, University College London Division of Medicine, Rayne Building 4th Floor, 5 University Street, London, WC1E 6JF, United Kingdom.
| |
Collapse
|
9
|
Human Type I Interferon Antiviral Effects in Respiratory and Reemerging Viral Infections. J Immunol Res 2020; 2020:1372494. [PMID: 32455136 PMCID: PMC7231083 DOI: 10.1155/2020/1372494] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/17/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
Type I interferons (IFN-I) are a group of related proteins that help regulate the activity of the immune system and play a key role in host defense against viral infections. Upon infection, the IFN-I are rapidly secreted and induce a wide range of effects that not only act upon innate immune cells but also modulate the adaptive immune system. While IFN-I and many IFN stimulated genes are well-known for their protective antiviral role, recent studies have associated them with potential pathogenic functions. In this review, we summarize the current knowledge regarding the complex effects of human IFN-I responses in respiratory as well as reemerging flavivirus infections of public health significance and the molecular mechanisms by which viral proteins antagonize the establishment of an antiviral host defense. Antiviral effects and immune modulation of IFN-stimulated genes is discussed in resisting and controlling pathogens. Understanding the mechanisms of these processes will be crucial in determining how viral replication can be effectively controlled and in developing safe and effective vaccines and novel therapeutic strategies.
Collapse
|
10
|
Anderson E, Furie R. Anifrolumab in systemic lupus erythematosus: current knowledge and future considerations. Immunotherapy 2020; 12:275-286. [PMID: 32237942 DOI: 10.2217/imt-2020-0017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that is potentially life-threatening and can affect any organ. The complex pathogenesis and heterogeneity of the disease, among other factors, present significant challenges in developing new therapies. Knowledge gained over many years has implicated type I interferon (IFN) in the pathogenesis of SLE and anti-IFN therapies hold promise as a much-needed future treatment for SLE. Anifrolumab, a human monoclonal antibody against the type I IFN receptor, has recently been evaluated in two Phase III clinical trials for the treatment of moderate-to-severe SLE. Here, we review the clinical efficacy and safety of anifrolumab and discuss the potential challenges in determining the optimal SLE patient subgroup for treatment.
Collapse
Affiliation(s)
- Erik Anderson
- Elmezzi Graduate School of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
| | - Richard Furie
- Division of Rheumatology, Zucker School of Medicine at Hofstra/Northwell, 865 Northern Boulevard, Great Neck, NY 11021, USA
| |
Collapse
|
11
|
Joslyn RC, Forero A, Green R, Parker SE, Savan R. Long Noncoding RNA Signatures Induced by Toll-Like Receptor 7 and Type I Interferon Signaling in Activated Human Plasmacytoid Dendritic Cells. J Interferon Cytokine Res 2019; 38:388-405. [PMID: 30230983 DOI: 10.1089/jir.2018.0086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) exhibit highly lineage-specific expression and act through diverse mechanisms to exert control over a wide range of cellular processes. lncRNAs can function as potent modulators of innate immune responses through control of transcriptional and posttranscriptional regulation of mRNA expression and processing. Recent studies have demonstrated that lncRNAs participate in the regulation of antiviral responses and autoimmune disease. Despite their emerging role as immune mediators, the mechanisms that govern lncRNA expression and function have only begun to be characterized. In this study, we explore the role of lncRNAs in human plasmacytoid dendritic cells (pDCs), which are critical sentinel sensors of viral infection and contribute to the development of autoimmune disease. Using genome-wide sequencing approaches, we dissect the contributions of Toll-like receptor 7 (TLR7) and type I interferon (IFN-I) in the regulation of coding and noncoding RNA expression in CAL-1 pDCs treated with R848 or IFNβ. Functional enrichment analysis reveals both the unique and synergistic roles of TLR7 and IFN-I signaling in the orchestration of pDC function. These observations were consistent with primary cell immune responses elicited by detection of viral infection. We identified and characterized the conditional TLR7- and IFN-I-dependent regulation of 588 lncRNAs. Dysregulation of these lncRNAs could significantly alter pDC maturation, IFN-I and inflammatory cytokine production, antigen presentation, costimulation or tolerance cues, turnover, or localization, all consequential events during viral infection or IFN-I-driven autoimmune diseases such as systemic lupus erythematosus. These findings demonstrate the differential responsiveness of lncRNAs to unique immune stimuli, uncover regulatory mechanisms of lncRNA expression, and reveal a novel and tractable platform for the study of lncRNA expression and function.
Collapse
Affiliation(s)
- Rochelle C Joslyn
- 1 Department of Immunology and University of Washington , Seattle, Washington
| | - Adriana Forero
- 1 Department of Immunology and University of Washington , Seattle, Washington
| | - Richard Green
- 1 Department of Immunology and University of Washington , Seattle, Washington.,2 Center for Innate Immunity and Immune Disease, University of Washington , Seattle, Washington
| | - Stephen E Parker
- 1 Department of Immunology and University of Washington , Seattle, Washington
| | - Ram Savan
- 1 Department of Immunology and University of Washington , Seattle, Washington.,2 Center for Innate Immunity and Immune Disease, University of Washington , Seattle, Washington
| |
Collapse
|
12
|
Hillen MR, Pandit A, Blokland SLM, Hartgring SAY, Bekker CPJ, van der Heijden EHM, Servaas NH, Rossato M, Kruize AA, van Roon JAG, Radstake TRDJ. Plasmacytoid DCs From Patients With Sjögren's Syndrome Are Transcriptionally Primed for Enhanced Pro-inflammatory Cytokine Production. Front Immunol 2019; 10:2096. [PMID: 31552042 PMCID: PMC6736989 DOI: 10.3389/fimmu.2019.02096] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/20/2019] [Indexed: 12/19/2022] Open
Abstract
Primary Sjögren's syndrome (pSS) is a systemic auto-immune disease typified by dryness of the mouth and eyes. A majority of patients with pSS have a type-I interferon (IFN)-signature, which is defined as the increased expression of IFN-induced genes in circulating immune cells and is associated with increased disease activity. As plasmacytoid dendritic cells (pDC) are the premier type-I IFN-producing cells and are present at the site of inflammation, they are thought to play a significant role in pSS pathogenesis. Considering the lack of data on pDC regulation and function in pSS patients, we here provided the first in-depth molecular characterization of pSS pDCs. In addition, a group of patients with non-Sjögren's sicca (nSS) was included; these poorly studied patients suffer from complaints similar to pSS patients, but are not diagnosed with Sjögren's syndrome. We isolated circulating pDCs from two independent cohorts of patients and controls (each n = 31) and performed RNA-sequencing, after which data-driven networks and modular analysis were used to identify robustly reproducible transcriptional “signatures” of differential and co-expressed genes. Four signatures were identified, including an IFN-induced gene signature and a ribosomal protein gene-signature, that indicated pDC activation. Comparison with a dataset of in vitro activated pDCs showed that pSS pDCs have higher expression of many genes also upregulated upon pDC activation. Corroborating this transcriptional profile, pSS pDCs produced higher levels of pro-inflammatory cytokines, including type-I IFN, upon in vitro stimulation with endosomal Toll-like receptor ligands. In this setting, cytokine production was associated with expression of hub-genes from the IFN-induced and ribosomal protein gene-signatures, indicating that the transcriptional profile of pSS pDCs underlies their enhanced cytokine production. In all transcriptional analyses, nSS patients formed an intermediate group in which some patients were molecularly similar to pSS patients. Furthermore, we used the identified transcriptional signatures to develop a discriminative classifier for molecular stratification of patients with sicca. Altogether, our data provide in-depth characterization of the aberrant regulation of pDCs from patients with nSS and pSS and substantiate their perceived role in the immunopathology of pSS, supporting studies that target pDCs, type-I IFNs, or IFN-signaling in pSS.
Collapse
Affiliation(s)
- Maarten R Hillen
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Aridaman Pandit
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Sofie L M Blokland
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Sarita A Y Hartgring
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Cornelis P J Bekker
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Eefje H M van der Heijden
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Nila H Servaas
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Marzia Rossato
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Biotechnology, University of Verona, Verona, Italy
| | - Aike A Kruize
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Joel A G van Roon
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Timothy R D J Radstake
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
13
|
Felten R, Scher F, Sagez F, Chasset F, Arnaud L. Spotlight on anifrolumab and its potential for the treatment of moderate-to-severe systemic lupus erythematosus: evidence to date. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:1535-1543. [PMID: 31190735 PMCID: PMC6514126 DOI: 10.2147/dddt.s170969] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/04/2019] [Indexed: 12/19/2022]
Abstract
Previous reports have described the appearance of systemic lupus erythematosus (SLE) cases following interferon-α (IFN-α) therapy, IFN-regulated gene expression is significantly increased in SLE, and an association between SLE and gene variants belonging to IFN downstream pathways has been shown. Based on this, targeting of IFN and of their signaling pathways has appeared to be interesting developments within the field of SLE therapy. Different specific type I IFN antagonists have been studied in clinical trials and some of those have already reached Phase III. A potential approach would be to target IFN receptors rather than IFN themselves. Anifrolumab (previously MEDI-546) is a fully human monoclonal antibody (Ab) that binds to subunit 1 of the type I IFN receptor (IFNAR1), blocking the action of different type I IFNs (IFN-α, IFN-β and IFN-ω). This drug has been assessed in 11 clinical studies: 9 in SLE, 1 in systemic sclerosis and 1 in rheumatoid arthritis. In SLE, clinical development reached Phase I for 1 study and Phases II and III for 5 and 3 trials, respectively. The Phase IIb, randomized control trial (RCT), double-blind, placebo-controlled study of adults with moderate-to-severe SLE (MUSE trial) showed positive results on the composite primary endpoint SRI-4. Greater efficacy was seen in patients with high baseline IFN gene signature compared with those with low baseline IFN gene signature. Anifrolumab also demonstrated promising results on cutaneous and arthritic manifestations, especially among patients with a high IFN gene signature. The pivotal Treatment of Uncontrolled Lupus via the Interferon IFN Pathway (TULIP 1 and 2 studies are now completed. In August 2018, the promoter announced that the TULIP 1 Phase III trial did not reach its primary endpoint. The release of the completed but not yet published Phase II studies and of the TULIP pivotal trials results will further inform us on the actual therapeutic potential of anifrolumab.
Collapse
Affiliation(s)
- Renaud Felten
- Rheumatology Department, University Hospital of Strasbourg, Université de Strasbourg, Strasbourg, F-67000, France.,National Reference Centre for Rare Systemic and Autoimmune Diseases East South-West (RESO), Strasbourg, France.,Immunology Laboratory, "Immunopathologie et Chimie Thérapeutique", Institut de Biologie Moléculaire et Cellulaire (IBMC), CNRS UPR3572, Strasbourg, F-67000, France
| | - Florence Scher
- Pharmacy-Sterilisation Department, University Hospital of Strasbourg, University of Strasbourg, Strasbourg, France
| | - Flora Sagez
- Rheumatology Department, University Hospital of Strasbourg, Université de Strasbourg, Strasbourg, F-67000, France.,National Reference Centre for Rare Systemic and Autoimmune Diseases East South-West (RESO), Strasbourg, France
| | - François Chasset
- Faculty of Medicine at Sorbonne University, AP-HP, Dermatology and Allergology Department, Tenon Hospital, Sorbonne University, Paris, F-75020, France
| | - Laurent Arnaud
- Rheumatology Department, University Hospital of Strasbourg, Université de Strasbourg, Strasbourg, F-67000, France.,National Reference Centre for Rare Systemic and Autoimmune Diseases East South-West (RESO), Strasbourg, France.,Immuno-Rheumatology Laboratory, "Laboratoire d'ImmunoRhumatologie Moléculaire", INSERM UMR_S1109, Strasbourg, F-67000, France
| |
Collapse
|
14
|
Kahn JS, Deverapalli SC, Rosmarin DM. JAK-STAT signaling pathway inhibition: a role for treatment of discoid lupus erythematosus and dermatomyositis. Int J Dermatol 2018; 57:1007-1014. [DOI: 10.1111/ijd.14064] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 04/21/2018] [Accepted: 05/02/2018] [Indexed: 01/16/2023]
Affiliation(s)
- Jared S. Kahn
- Tufts University School of Medicine; Boston MA USA
- Department of Dermatology; Tufts Medical Center; Boston MA USA
| | | | - David M. Rosmarin
- Tufts University School of Medicine; Boston MA USA
- Department of Dermatology; Tufts Medical Center; Boston MA USA
| |
Collapse
|
15
|
Riggs JM, Hanna RN, Rajan B, Zerrouki K, Karnell JL, Sagar D, Vainshtein I, Farmer E, Rosenthal K, Morehouse C, de Los Reyes M, Schifferli K, Liang M, Sanjuan MA, Sims GP, Kolbeck R. Characterisation of anifrolumab, a fully human anti-interferon receptor antagonist antibody for the treatment of systemic lupus erythematosus. Lupus Sci Med 2018; 5:e000261. [PMID: 29644082 PMCID: PMC5890856 DOI: 10.1136/lupus-2018-000261] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/02/2018] [Accepted: 03/08/2018] [Indexed: 01/19/2023]
Abstract
Objective We investigated the mechanistic and pharmacological properties of anifrolumab, a fully human, effector-null, anti-type I interferon (IFN) alpha receptor 1 (IFNAR1) monoclonal antibody in development for SLE. Methods IFNAR1 surface expression and internalisation on human monocytes before and after exposure to anifrolumab were assessed using confocal microscopy and flow cytometry. The effects of anifrolumab on type I IFN pathway activation were assessed using signal transducer and activator of transcription 1 (STAT1) phosphorylation, IFN-stimulated response element-luciferase reporter cell assays and type I IFN gene signature induction. The ability of anifrolumab to inhibit plasmacytoid dendritic cell (pDC) function and plasma cell differentiation was assessed by flow cytometry and ELISA. Effector-null properties of anifrolumab were assessed in antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) assays with B cells. Results Anifrolumab reduced cell surface IFNAR1 by eliciting IFNAR1 internalisation. Anifrolumab blocked type I IFN-dependent STAT1 phosphorylation and IFN-dependent signalling induced by recombinant and pDC-derived type I IFNs and serum of patients with SLE. Anifrolumab suppressed type I IFN production by blocking the type I IFN autoamplification loop and inhibited proinflammatory cytokine induction and the upregulation of costimulatory molecules on stimulated pDCs. Blockade of IFNAR1 suppressed plasma cell differentiation in pDC/B cell co-cultures. Anifrolumab did not exhibit CDC or ADCC activity. Conclusions Anifrolumab potently inhibits type I IFN-dependent signalling, including the type I IFN autoamplification loop, and is a promising therapeutic for patients with SLE and other diseases that exhibit chronic dysfunctional type I IFN signalling.
Collapse
Affiliation(s)
- Jeffrey M Riggs
- Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, Maryland, USA
| | - Richard N Hanna
- Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, Maryland, USA
| | - Bhargavi Rajan
- Clinical Pharmacology and DMPK, MedImmune LLC, Mountain View, California, USA
| | - Kamelia Zerrouki
- Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, Maryland, USA
| | - Jodi L Karnell
- Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, Maryland, USA
| | - Divya Sagar
- Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, Maryland, USA
| | - Inna Vainshtein
- Clinical Pharmacology and DMPK, MedImmune LLC, Mountain View, California, USA
| | - Erika Farmer
- Analytical Sciences, MedImmune LLC, Gaithersburg, Maryland, USA
| | - Kimberly Rosenthal
- Antibody Discovery and Protein Engineering, MedImmune LLC, Gaithersburg, Maryland, USA
| | - Chris Morehouse
- Translational Medicine, MedImmune LLC, Gaithersburg, Maryland, USA
| | | | - Kevin Schifferli
- Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, Maryland, USA
| | - Meina Liang
- Clinical Pharmacology and DMPK, MedImmune LLC, Mountain View, California, USA
| | - Miguel A Sanjuan
- Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, Maryland, USA
| | - Gary P Sims
- Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, Maryland, USA
| | - Roland Kolbeck
- Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, Maryland, USA
| |
Collapse
|
16
|
Ziegler SM, Beisel C, Sutter K, Griesbeck M, Hildebrandt H, Hagen SH, Dittmer U, Altfeld M. Human pDCs display sex-specific differences in type I interferon subtypes and interferon α/β receptor expression. Eur J Immunol 2017; 47:251-256. [DOI: 10.1002/eji.201646725] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/31/2016] [Accepted: 11/24/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Susanne M. Ziegler
- Department of Virus Immunology; Heinrich Pette Institute; Leibniz Institute for Experimental Virology; Hamburg Germany
| | - Claudia Beisel
- Department of Virus Immunology; Heinrich Pette Institute; Leibniz Institute for Experimental Virology; Hamburg Germany
- Section Infectious Diseases; I. Department of Internal Medicine; University Medical Center Hamburg-Eppendorf, and DZIF partner site (German Center for Infection Research); Hamburg Germany
| | - Kathrin Sutter
- Institute for Virology University Hospital in Essen; University of Duisburg-Essen; Essen Germany
| | - Morgane Griesbeck
- CIMI; Université Pierre et Marie Curie/INSERM U1135; Hospital Pitié Salpêtrière; Paris France
| | - Heike Hildebrandt
- Department of Virus Immunology; Heinrich Pette Institute; Leibniz Institute for Experimental Virology; Hamburg Germany
| | - Sven H. Hagen
- Department of Virus Immunology; Heinrich Pette Institute; Leibniz Institute for Experimental Virology; Hamburg Germany
| | - Ulf Dittmer
- Institute for Virology University Hospital in Essen; University of Duisburg-Essen; Essen Germany
| | - Marcus Altfeld
- Department of Virus Immunology; Heinrich Pette Institute; Leibniz Institute for Experimental Virology; Hamburg Germany
| |
Collapse
|
17
|
Dillmann C, Ringel C, Ringleb J, Mora J, Olesch C, Fink AF, Roberts E, Brüne B, Weigert A. S1PR4 Signaling Attenuates ILT 7 Internalization To Limit IFN-α Production by Human Plasmacytoid Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2016; 196:1579-90. [PMID: 26783340 DOI: 10.4049/jimmunol.1403168] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 12/09/2015] [Indexed: 12/14/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) produce large amounts of type I IFN in response to TLR7/9 ligands. This conveys antiviral effects, activates other immune cells (NK cells, conventional DCs, B, and T cells), and causes the induction and expansion of a strong inflammatory response. pDCs are key players in various type I IFN-driven autoimmune diseases such as systemic lupus erythematosus or psoriasis, but pDCs are also involved in (anti-)tumor immunity. The sphingolipid sphingosine-1-phosphate (S1P) signals through five G-protein-coupled receptors (S1PR1-5) to regulate, among other activities, immune cell migration and activation. The present study shows that S1P stimulation of human, primary pDCs substantially decreases IFN-α production after TLR7/9 activation with different types of CpG oligodeoxynucleotides or tick-borne encephalitis vaccine, which occurred in an S1PR4-dependent manner. Mechanistically, S1PR4 activation preserves the surface expression of the human pDC-specific inhibitory receptor Ig-like transcript 7. We provide novel information that Ig-like transcript 7 is rapidly internalized upon receptor-mediated endocytosis of TLR7/9 ligands to allow high IFN-α production. This is antagonized by S1PR4 signaling, thus decreasing TLR-induced IFN-α secretion. At a functional level, attenuated IFN-α production failed to alter Ag-driven T cell proliferation in pDC-dependent T cell activation assays, but shifted cytokine production of T cells from a Th1 (IFN-γ) to a regulatory (IL-10) profile. In conclusion, S1PR4 agonists block human pDC activation and may therefore be a promising tool to restrict pathogenic IFN-α production.
Collapse
Affiliation(s)
- Christina Dillmann
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany; and
| | - Christian Ringel
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany; and
| | - Julia Ringleb
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany; and
| | - Javier Mora
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany; and
| | - Catherine Olesch
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany; and
| | - Annika F Fink
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany; and
| | - Edward Roberts
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | - Bernhard Brüne
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany; and
| | - Andreas Weigert
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany; and
| |
Collapse
|
18
|
Virus Multiplicity of Infection Affects Type I Interferon Subtype Induction Profiles and Interferon-Stimulated Genes. J Virol 2015; 89:11534-48. [PMID: 26355085 DOI: 10.1128/jvi.01727-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/31/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Type I interferons (IFNs) are induced upon viral infection and important mediators of innate immunity. While there is 1 beta interferon (IFN-β) protein, there are 12 different IFN-α subtypes. It has been reported extensively that different viruses induce distinct patterns of IFN subtypes, but it has not been previously shown how the viral multiplicity of infection (MOI) can affect IFN induction. In this study, we discovered the novel finding that human U937 cells infected with 2 different concentrations of Sendai virus (SeV) induce 2 distinct type I IFN subtype profiles. Cells infected at the lower MOI induced more subtypes than cells infected at the higher MOI. We found that this was due to the extent of signaling through the IFN receptor (IFNAR). The cells infected at the lower viral MOI induced the IFNAR2-dependent IFN-α subtypes 4, 6, 7, 10, and 17, which were not induced in cells infected at higher virus concentrations. IFN-β and IFN-α1, -2, and -8 were induced in an IFNAR-independent manner in cells infected at both virus concentrations. IFN-α5, -14, -16, and -21 were induced in an IFNAR-dependent manner in cells infected at lower virus concentrations and in an IFNAR-independent manner in cells infected at higher virus concentrations. These differences in IFN subtype profiles in the 2 virus concentrations also resulted in distinct interferon-stimulated gene induction. These results present the novel finding that different viral MOIs differentially activate JAK/STAT signaling through the IFNAR, which greatly affects the profile of IFN subtypes that are induced. IMPORTANCE Type I IFNs are pleiotropic cytokines that are instrumental in combating viral diseases. Understanding how the individual subtypes are induced is important in developing strategies to block viral replication. Many studies have reported that different viruses induce distinct type I IFN subtype profiles due to differences in the way viruses are sensed in different cell types. However, we report in our study the novel finding that the amount of virus used to infect a system can also affect which type I IFN subtypes are induced due to the extent of activation of certain signaling pathways. These distinct IFN subtype profiles in cells infected at different MOIs are correlated with differences in interferon-stimulated gene induction, indicating that the same virus can induce distinct antiviral responses depending on the MOI. Because type I IFNs are used as therapeutic agents to treat viral diseases, understanding their antiviral mechanisms can enhance clinical treatments.
Collapse
|
19
|
Arshanapalli A, Shah M, Veerula V, Somani AK. The role of type I interferons and other cytokines in dermatomyositis. Cytokine 2014; 73:319-25. [PMID: 25541432 DOI: 10.1016/j.cyto.2014.11.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 11/20/2014] [Accepted: 11/21/2014] [Indexed: 12/24/2022]
Abstract
Much work has been done to unveil the mechanisms behind the pathogenesis of dermatomyositis (DM) - mainly those involving certain pathogenic cytokines, termed "pathokines" as the principal cytokines involved. Recently, it has become clear that a group of cytokines known as type I interferons (IFN-Is) play a significant role in the development of DM. We review the literature published between 1946 and 2014 using an Ovid Medline database search to provide an update on the role of IFN-Is and other cytokines in the pathogenesis of DM. We provide information about the genes and proteins induced by IFN-Is and potential mechanisms by which these downstream products relate to clinical disease activity. We also explore findings of other autoimmune phenomena that may contribute to disease onset and activity including T-helper 17 (Th17) cells and associated interleukins, as well as autoantibodies. Finally, we provide a brief update on current treatment options for DM as well as some new immunomodulatory treatment modalities in development.
Collapse
Affiliation(s)
- Ashish Arshanapalli
- Department of Dermatology, Indiana University School of Medicine, 545 Barnhill Dr., Indianapolis, IN 46202, USA
| | - Mihir Shah
- Northeast Ohio Medical University, 4209 SR 44, Rootstown, OH 44272, USA
| | - Vindhya Veerula
- Department of Dermatology, Indiana University School of Medicine, 545 Barnhill Dr., Indianapolis, IN 46202, USA
| | - Ally-Khan Somani
- Department of Dermatology, Indiana University School of Medicine, 545 Barnhill Dr., Indianapolis, IN 46202, USA.
| |
Collapse
|
20
|
Schijf MA, Lukens MV, Kruijsen D, van Uden NOP, Garssen J, Coenjaerts FEJ, van’t Land B, van Bleek GM. Respiratory syncytial virus induced type I IFN production by pDC is regulated by RSV-infected airway epithelial cells, RSV-exposed monocytes and virus specific antibodies. PLoS One 2013; 8:e81695. [PMID: 24303065 PMCID: PMC3841124 DOI: 10.1371/journal.pone.0081695] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 10/15/2013] [Indexed: 12/25/2022] Open
Abstract
Innate immune responses elicited upon virus exposure are crucial for the effective eradication of viruses, the onset of adaptive immune responses and for establishing proper immune memory. Respiratory syncytial virus (RSV) is responsible for a high disease burden in neonates and immune compromised individuals, causing severe lower respiratory tract infections. During primary infections exuberant innate immune responses may contribute to disease severity. Furthermore, immune memory is often insufficient to protect during RSV re-exposure, which results in frequent symptomatic reinfections. Therefore, identifying the cell types and pattern recognition receptors (PRRs) involved in RSV-specific innate immune responses is necessary to understand incomplete immunity against RSV. We investigated the innate cellular response triggered upon infection of epithelial cells and peripheral blood mononuclear cells. We show that CD14+ myeloid cells and epithelial cells are the major source of IL-8 and inflammatory cytokines, IL-6 and TNF-α, when exposed to live RSV Three routes of RSV-induced IFN-α production can be distinguished that depend on the cross-talk of different cell types and the presence or absence of virus specific antibodies, whereby pDC are the ultimate source of IFN-α. RSV-specific antibodies facilitate direct TLR7 access into endosomal compartments, while in the absence of antibodies, infection of monocytes or epithelial cells is necessary to provide an early source of type I interferons, required to engage the IFN-α,β receptor (IFNAR)-mediated pathway of IFN-α production by pDC. However, at high pDC density infection with RSV causes IFN-α production without the need for a second party cell. Our study shows that cellular context and immune status are factors affecting innate immune responses to RSV. These issues should therefore be addressed during the process of vaccine development and other interventions for RSV disease.
Collapse
Affiliation(s)
- Marcel A. Schijf
- Department of Pediatrics, The Wilhelmina Children’s Hospital, University Medical Center, Utrecht, The Netherlands
- Department of Immunology, Danone Research - Centre for Specialised Nutrition, Wageningen, The Netherlands
| | - Michael V. Lukens
- Department of Pediatrics, The Wilhelmina Children’s Hospital, University Medical Center, Utrecht, The Netherlands
| | - Debby Kruijsen
- Department of Pediatrics, The Wilhelmina Children’s Hospital, University Medical Center, Utrecht, The Netherlands
| | - Nathalie O. P. van Uden
- Department of Pediatrics, The Wilhelmina Children’s Hospital, University Medical Center, Utrecht, The Netherlands
| | - Johan Garssen
- Department of Immunology, Danone Research - Centre for Specialised Nutrition, Wageningen, The Netherlands
- Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht, The Netherlands
| | | | - Belinda van’t Land
- Department of Pediatrics, The Wilhelmina Children’s Hospital, University Medical Center, Utrecht, The Netherlands
- Department of Immunology, Danone Research - Centre for Specialised Nutrition, Wageningen, The Netherlands
| | - Grada M. van Bleek
- Department of Pediatrics, The Wilhelmina Children’s Hospital, University Medical Center, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
21
|
Liau JY, Chuang SS, Chu CY, Ku WH, Tsai JH, Shih TF. The presence of clusters of plasmacytoid dendritic cells is a helpful feature for differentiating lupus panniculitis from subcutaneous panniculitis-like T-cell lymphoma. Histopathology 2013; 62:1057-66. [DOI: 10.1111/his.12105] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 01/28/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Jau-Yu Liau
- Department of Pathology; College of Medicine; National Taiwan University Hospital; National Taiwan University; Taipei; Taiwan
| | - Shih-Sung Chuang
- Department of Pathology; Chi-Mei Medical Centre; Tainan and Taipei Medical University; Taipei; Taiwan
| | - Chia-Yu Chu
- Department of Dermatology; College of Medicine; National Taiwan University Hospital; National Taiwan University; Taipei; Taiwan
| | - Wen-Hui Ku
- Department of Pathology and Laboratory Medicine; Koo Foundation; Sun Yat-Sen Cancer Centre; Taipei; Taiwan
| | - Jia-Huei Tsai
- Department of Pathology; College of Medicine; National Taiwan University Hospital; National Taiwan University; Taipei; Taiwan
| | - Teng-Fu Shih
- Department of Pathology; Yuan's General Hospital; Kaohsiung; Taiwan
| |
Collapse
|
22
|
Circulating interferon-α2 levels are increased in the majority of patients with systemic lupus erythematosus and are associated with disease activity and multiple cytokine activation. Lupus 2012; 22:155-63. [DOI: 10.1177/0961203312468964] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mutations in interferon (IFN) regulatory factor genes and the biological activity of type I IFN on expression of specific genes that are induced by IFN have been associated with various aspects of systemic lupus erythematosus (SLE). Circulating levels of IFN-α in SLE has not been extensively studied because of limited sensitivity of available ELISA assays. We performed a cross-sectional case-control study where circulating levels of IFN-α2 were measured by a highly sensitive, solution phase multiplex magnetized bead assay and investigated the relation of IFN-α2 with autoantibody profiles, clinical disease activity and levels of inflammatory cytokines in SLE patients ( n = 87). Cytokine levels were determined on stored sera aliquots with cut-off levels determined by the geometric mean + 2SD in healthy controls ( n = 27). IFN-α2 levels were increased in 64% of SLE patients, who displayed more renal disease and higher disease activity ( p = 0.06) and had a significantly higher sum of activated cytokines (median 4.5, range 7) compared to patients with normal IFN-α2 (median one, range 3; p < 0.001). Solution phase micro-bead assay thus identified increased IFN-α2 levels in two-thirds of SLE patients with longstanding disease. The association with clinical disease and activation of multiple inflammatory cytokines supports a role for IFN-α2 in disease perpetuation in a large subset of SLE patients.
Collapse
|
23
|
Baccala R, Gonzalez-Quintial R, Schreiber RD, Lawson BR, Kono DH, Theofilopoulos AN. Anti-IFN-α/β receptor antibody treatment ameliorates disease in lupus-predisposed mice. THE JOURNAL OF IMMUNOLOGY 2012; 189:5976-84. [PMID: 23175700 DOI: 10.4049/jimmunol.1201477] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The demonstration in humans and mice that nucleic acid-sensing TLRs and type I IFNs are essential disease mediators is a milestone in delineating the mechanisms of lupus pathogenesis. In this study, we show that Ifnb gene deletion does not modify disease progression in NZB mice, thereby strongly implicating IFN-α subtypes as the principal pathogenic effectors. We further document that long-term treatment of male BXSB mice with an anti-IFN-α/β receptor Ab of mouse origin reduced serologic, cellular, and histologic disease manifestations and extended survival, suggesting that disease acceleration by the Tlr7 gene duplication in this model is mediated by type I IFN signaling. The efficacy of this treatment in BXSB mice was clearly evident when applied early in the disease process, but only partial reductions in some disease characteristics were observed when treatment was initiated at later stages. A transient therapeutic effect was also noted in the MRL-Fas(lpr) model, although overall mortality was unaffected. The combined findings suggest that IFN-α/β receptor blockade, particularly when started at early disease stages, may be a useful treatment approach for human systemic lupus erythematosus and other autoimmune syndromes.
Collapse
Affiliation(s)
- Roberto Baccala
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Dermatomyositis is a poorly understood multisystem disease predominantly affecting skin and muscle. This review focuses on the potential role of a group of related cytokines, the type 1 interferons, in the pathogenesis of dermatomyositis. Type 1 interferon-inducible transcripts and proteins are uniquely elevated in dermatomyositis muscle compared with all other muscle diseases studied to date. The endothelial cell tubuloreticular inclusions present in affected dermatomyositis muscle are biomarkers of type 1 interferon exposure. The cell-poor lichenoid reaction in skin with predominant involvement of the basal epidermal cell layer and its topologic equivalent in muscle, perifascicular atrophy, may be lesions that develop directly in response to type 1 interferon signaling.
Collapse
Affiliation(s)
- Steven A Greenberg
- Department of Neurology, Division of Neuromuscular Disease, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|