1
|
Sugimoto K, Nishimura M, Ito N, Hosomi R, Fukunaga K, Nishihira J. Effects of Daily Consumption of Scallop Oil Prepared from Internal Organs of Japanese Giant Scallop (Patinopecten yessoensis) on Serum Lipid Composition and Its Safety: A Randomized, Double-blind, Placebo-controlled, Parallel Group Comparison Study. J Oleo Sci 2024; 73:1201-1212. [PMID: 39168625 DOI: 10.5650/jos.ess24105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Abstract
Scallop oil (SCO) prepared from the internal organs of the Japanese giant scallop (Patinopecten yessoensis) contains eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and phospholipids (PL). It was previously shown that SCO consumption improves cholesterol and triacylglycerols (TG) contents in mice. The present study demonstrated the effects of daily SCO consumption (1.2 g/day, containing 376 mg of EPA, 63 mg of DHA, and 150 mg of PL) for 12 weeks in human subjects. In this randomized, doubleblind, placebo-controlled, parallel group comparison study, 70 Japanese subjects with serum TG levels ≥120 but < 200 mg/dL were recruited and randomly assigned to the SCO or placebo group. All subjects ingested six capsules per day for 12 weeks. We conducted medical interviews, body composition measurements, vital sign examinations, and blood sampling at weeks 0 (baseline), 4, 8, and 12, and measured peripheral blood flow at weeks 0 and 12. In the case of subjects with higher serum TG levels, SCO consumption decreased the changes in serum TG and malondialdehyde-low density lipoprotein (MDA-LDL) levels compared with the placebo group. Safety assessment revealed no medically significant changes due to continuous SCO consumption. The findings indicate that 1.2 g/day of SCO consumption may be beneficial for reducing serum TG and MDA-LDL levels in persons with higher TG levels.
Collapse
Affiliation(s)
- Koki Sugimoto
- Faculty of Food and Nutritional Sciences, Toyo University
| | - Mie Nishimura
- Department of Medical Management and Informatics, Hokkaido Information University
| | - Naohito Ito
- Department of Medical Management and Informatics, Hokkaido Information University
| | - Ryota Hosomi
- Department of Life Science and Biotechnology, Kansai University
| | - Kenji Fukunaga
- Department of Life Science and Biotechnology, Kansai University
| | - Jun Nishihira
- Department of Medical Management and Informatics, Hokkaido Information University
| |
Collapse
|
2
|
Li X, Zhao Y, Zhou H, Hu Y, Chen Y, Guo D. Pro-Inflammatory Signaling Cascade Markers, Oxidative Stress-Inflammatory Signaling Axis, and Chronic Total Occlusion of Tibial Artery in Elderly Patients Suffering from Occlusion of Coronary Arteries. Curr Top Med Chem 2024; 24:2211-2223. [PMID: 39253914 DOI: 10.2174/0115680266306301240821073416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/02/2024] [Accepted: 07/31/2024] [Indexed: 09/11/2024]
Abstract
INTRODUCTION Oxidative response is a risk factor in the progression of arterial atherosclerosis. OBJECTIVE This research study aimed to examine the effects of oxidative response on atherosclerotic susceptibility as well as the development of arteriosclerosis occlusions of the tibial artery through pro-inflammatory mediator genes in elderly patients with occlusion of coronary arteries. METHODS We determined that oxidative stress biomarkers (Malondialdehyde-modified Low-density Lipoprotein (MDA-LDL), Oxidized Low-density Lipoprotein (Ox-LDL) as well as Heme Oxygenase- 1 (HO-1)] and the expressions of pro-inflammatory mediator genes [Toll-like Receptor 4 (TLR4), Nuclear Factor kappa-B (NF-κB), Myeloid Differentiating factor 88 (MyD88) and Growth Arrest-specific gene 6 (GAS6)] have an impact on the severity of arteriosclerosis occlusions of tibial artery in elderly patients suffering from occlusion of coronary arteries. RESULTS Levels of MDA-LDL, Ox-LDL, HO-1, TLR4, NF-κB, MyD88, and GAS6 were increased in the occlusion of tibial arteries + two-vessel coronary occlusion group compared to the CON group and occlusion of tibial arteries + one-vessel coronary occlusion group, respectively (p < 0.001); they were also elevated in occlusion of tibial arteries + multiple-vessel coronary occlusion group compared to occlusion of tibial arteries + one-vessel coronary occlusion group and occlusion of tibial arteries + two-vessel coronary occlusion group, respectively (P < 0.001). This has indicated the key roles of oxidative stress and pro-inflammatory mediator genes in arteriosclerosis occlusions of tibial artery in elderly patients with occlusion of coronary arteries. CONCLUSION Oxidative response may promote the expressions of inflammatory genes and enhance susceptibility to arteriosclerosis occlusions of the tibial artery in elderly patients with chronic total coronary occlusions.
Collapse
Affiliation(s)
- Xia Li
- Xiamen Road Branch Hospital, The Second People's Hospital of Huai'an of Xuzhou Medical University, Huaian 223005, China
| | - Yongjuan Zhao
- Xiamen Road Branch Hospital, The Second People's Hospital of Huai'an of Xuzhou Medical University, Huaian 223005, China
| | - Hualan Zhou
- Department of Geriatrics, The Second People's Hospital of Huai'an of Xuzhou Medical University, Huaian 223002, China
| | - Youdong Hu
- Department of Geriatrics, The Second People's Hospital of Huai'an of Xuzhou Medical University, Huaian 223002, China
| | - Ying Chen
- Department of Geriatrics, The Second People's Hospital of Huai'an of Xuzhou Medical University, Huaian 223002, China
| | - Dianxuan Guo
- Xiamen Road Branch Hospital, The Second People's Hospital of Huai'an of Xuzhou Medical University, Huaian 223005, China
| |
Collapse
|
3
|
Li X, Zhou W, Guo D, Hu Y, Zhou H, Chen Y. Roles of MDA-LDL/OX-LDL/LOX-1 and TNF-α/TLR4/NF-κB Signaling Pathways in Myocardial Damage by Implantations of Cardiac Pacemakers in Elderly Patients. Curr Vasc Pharmacol 2024; 22:251-265. [PMID: 38920075 DOI: 10.2174/0115701611260215231221072709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/07/2023] [Accepted: 12/05/2023] [Indexed: 06/27/2024]
Abstract
INTRODUCTION Permanent pacemakers are an established treatment for sick sinus syndrome and high-grade atrioventricular block. Permanent cardiac pacemaker implantations may damage the myocardium. OBJECTIVE This study evaluated markers of myocardial injury, oxidative stress and inflammation in elderly patients with permanent pacemaker implantations. METHODS Various markers were measured at 1, 2, 3 and 4 months after permanent pacemaker implantations in elderly patients. RESULTS The levels of high-sensitivity troponin T (hsTnT), lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), malondialdehyde-modified low-density lipoprotein (MDA-LDL), oxidized low-density lipoprotein (OX-LDL), tumour necrosis factor-α (TNF-α), toll-like receptor 4 (TLR4) and nuclear factor-kappa B (NF-κB) were increased in 2-month group compared with control and 1- month groups (P<0.001), and were further increased at 4-month group compared with 2- and 3- month groups after pacemaker implantations (P<0.001). Patients with dual-chamber pacemakers had higher levels of hsTnT, LOX-1, MDA-LDL, OX-LDL, TNF-α, TLR4 and NF-κB than patients with single chamber pacemakers (P<0.001). Patients who underwent the pacemakers with the active fixation leads had raised levels of hsTnT, LOX-1, MDA-LDL, OX-LDL, TNF-α, TLR4 and NF-κB compared patients with pacemakers using the passive fixation leads (P<0.001). Myocardial blood flows in 3-month and 4-month groups were lower than 1-month and 2-month groups (P<0.001). CONCLUSION Levels of hsTnT, LOX-1, MDA-LDL, OX-LDL, TNF-α, TLR4 and NF-κB were elevated in elderly patients with permanent pacemaker implantations and the activations of oxidative stress and pro-inflammatory signalling pathways may be associated with myocardial damages and ischemia after pacemaker implantations in elderly patients.
Collapse
Affiliation(s)
- Xia Li
- Xiamen Road Branch Hospital, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian 223002, China
| | - Wenhang Zhou
- Xiamen Road Branch Hospital, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian 223002, China
| | - Dianxuan Guo
- Xiamen Road Branch Hospital, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian 223002, China
| | - Youdong Hu
- Department of Geriatrics, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian 223002, China
| | - Hualan Zhou
- Department of Geriatrics, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian 223002, China
| | - Ying Chen
- Department of Geriatrics, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian 223002, China
| |
Collapse
|
4
|
Lorey MB, Öörni K, Kovanen PT. Modified Lipoproteins Induce Arterial Wall Inflammation During Atherogenesis. Front Cardiovasc Med 2022; 9:841545. [PMID: 35310965 PMCID: PMC8927694 DOI: 10.3389/fcvm.2022.841545] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/26/2022] [Indexed: 12/15/2022] Open
Abstract
Circulating apolipoprotein B-containing lipoproteins, notably the low-density lipoproteins, enter the inner layer of the arterial wall, the intima, where a fraction of them is retained and modified by proteases, lipases, and oxidizing agents and enzymes. The modified lipoproteins and various modification products, such as fatty acids, ceramides, lysophospholipids, and oxidized lipids induce inflammatory reactions in the macrophages and the covering endothelial cells, initiating an increased leukocyte diapedesis. Lipolysis of the lipoproteins also induces the formation of cholesterol crystals with strong proinflammatory properties. Modified and aggregated lipoproteins, cholesterol crystals, and lipoproteins isolated from human atherosclerotic lesions, all can activate macrophages and thereby induce the secretion of proinflammatory cytokines, chemokines, and enzymes. The extent of lipoprotein retention, modification, and aggregation have been shown to depend largely on differences in the composition of the circulating lipoprotein particles. These properties can be modified by pharmacological means, and thereby provide opportunities for clinical interventions regarding the prevention and treatment of atherosclerotic vascular diseases.
Collapse
Affiliation(s)
- Martina B. Lorey
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
- Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Katariina Öörni
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
- Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- *Correspondence: Katariina Öörni
| | - Petri T. Kovanen
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
| |
Collapse
|
5
|
Lisco G, Giagulli VA, De Pergola G, Guastamacchia E, Jirillo E, Triggiani V. The Pathogenic Role of Foam Cells in Atherogenesis: Do They Represent Novel Therapeutic Targets? Endocr Metab Immune Disord Drug Targets 2022; 22:765-777. [PMID: 34994321 DOI: 10.2174/1871530322666220107114313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Foam cells, mainly derived from monocytes-macrophages, contain lipid droplets essentially composed of cholesterol in their cytoplasm. They infiltrate the intima of arteries, contributing to the formation of atherosclerotic plaques. PATHOGENESIS Foam cells damage the arterial cell wall via the release of proinflammatory cytokines, free radicals, and matrix metalloproteinases, enhancing the plaque size up to its rupture. THERAPY A correct dietary regimen seems to be the most appropriate therapeutic approach to minimize obesity, which is associated with the formation of foam cells. At the same time, different types of antioxidants have been evaluated to arrest the formation of foam cells, even if the results are still contradictory. In any case, a combination of antioxidants seems to be more efficient in the prevention of atherosclerosis.
Collapse
Affiliation(s)
- Giuseppe Lisco
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Vito Angelo Giagulli
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Giovanni De Pergola
- Unit of Geriatrics and Internal Medicine, National Institute of Gastroenterology "Saverio de Bellis", Research Hospital, Castellana Grotte, Bari, Italy
| | - Edoardo Guastamacchia
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Emilio Jirillo
- Department of Basic Medical Science, Neuroscience and Sensory Organs, University of Bari Aldo Moro, Bari, Italy
| | - Vincenzo Triggiani
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
| |
Collapse
|
6
|
Mechanistic Insights into the Oxidized Low-Density Lipoprotein-Induced Atherosclerosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5245308. [PMID: 33014272 PMCID: PMC7512065 DOI: 10.1155/2020/5245308] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/30/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023]
Abstract
Dyslipidaemia has a prominent role in the onset of notorious atherosclerosis, a disease of medium to large arteries. Atherosclerosis is the prime root of cardiovascular events contributing to the most considerable number of morbidity and mortality worldwide. Factors like cellular senescence, genetics, clonal haematopoiesis, sedentary lifestyle-induced obesity, or diabetes mellitus upsurge the tendency of atherosclerosis and are foremost pioneers to definitive transience. Accumulation of oxidized low-density lipoproteins (Ox-LDLs) in the tunica intima triggers the onset of this disease. In the later period of progression, the build-up plaques rupture ensuing thrombosis (completely blocking the blood flow), causing myocardial infarction, stroke, and heart attack, all of which are common atherosclerotic cardiovascular events today. The underlying mechanism is very well elucidated in literature but the therapeutic measures remains to be unleashed. Researchers tussle to demonstrate a clear understanding of treating mechanisms. A century of research suggests that lowering LDL, statin-mediated treatment, HDL, and lipid-profile management should be of prime interest to retard atherosclerosis-induced deaths. We shall brief the Ox-LDL-induced atherogenic mechanism and the treating measures in line to impede the development and progression of atherosclerosis.
Collapse
|
7
|
Structural characteristics of circulating immune complexes in calves with bronchopneumonia: Impact on the quiescent leukocytes. Res Vet Sci 2020; 133:63-74. [PMID: 32942254 DOI: 10.1016/j.rvsc.2020.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/12/2020] [Accepted: 09/07/2020] [Indexed: 10/23/2022]
Abstract
Calf bronchopneumonia is accompanied by increased level of circulating immune complexes (CIC), and we analysed size, and protein and lipid constituents of these CIC with an attempt to elucidate the connection between the CIC structural properties and their capacity to modulate leukocyte function. CIC of heathy calves (CICH) and calves with naturally occurring bronchopneumonia (CICD) were isolated by PEG precipitation and analysed by electrophoresis and chromatography. The predominant CIC proteins were IgG, albumin, and transferrin. Affinity isolated serum and CIC IgG coprecipitated several proteins, but only 75 and 80 kDa proteins bound CIC IgG, exclusively. 60 and 65 kDa proteins co-precipitated with CICD IgG, unlike CICH IgG. In both CICH and CICD, oleic acid-containing phospholipids predominated. In CICD, the content of oleic and vaccenic acid was higher than in CICH, while myristic, palmitic, stearic, linoleic and arachidonic acid showed lower content. Dynamic light scattering displayed difference in particle size distribution between CICH and CICD; 1280 nm large particles were present only in CICD. The effect of CICH and CICD on mononuclear cells (MNC) and granulocytes was analysed in vitro. CICH and CICD, with slight difference in intensity, stimulate MNC apoptosis, promote cell cycle arrest of unstimulated MNC, and cell cycle progression of PHA stimulated MNC. Both CIC reduced granulocyte apoptosis after 24 h while after 48 h this effect was detected for CICD only. These results indicate that structural differences of CICH and CICD might interfere with the CIC functional capacity, which we consider important for evaluation of CIC immunoregulatory function.
Collapse
|
8
|
Pro-inflammatory cytokines, oxidative stress and diffuse coronary reocclusions in elderly patients after coronary stenting. Cytokine 2020; 129:155028. [DOI: 10.1016/j.cyto.2020.155028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/12/2019] [Accepted: 02/03/2020] [Indexed: 01/04/2023]
|
9
|
Signaling Pathways and Key Genes Involved in Regulation of foam Cell Formation in Atherosclerosis. Cells 2020; 9:cells9030584. [PMID: 32121535 PMCID: PMC7140394 DOI: 10.3390/cells9030584] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis is associated with acute cardiovascular conditions, such as ischemic heart disease, myocardial infarction, and stroke, and is the leading cause of morbidity and mortality worldwide. Our understanding of atherosclerosis and the processes triggering its initiation is constantly improving, and, during the last few decades, many pathological processes related to this disease have been investigated in detail. For example, atherosclerosis has been considered to be a chronic inflammation triggered by the injury of the arterial wall. However, recent works showed that atherogenesis is a more complex process involving not only the immune system, but also resident cells of the vessel wall, genetic factors, altered hemodynamics, and changes in lipid metabolism. In this review, we focus on foam cells that are crucial for atherosclerosis lesion formation. It has been demonstrated that the formation of foam cells is induced by modified low-density lipoprotein (LDL). The beneficial effects of the majority of therapeutic strategies with generalized action, such as the use of anti-inflammatory drugs or antioxidants, were not confirmed by clinical studies. However, the experimental therapies targeting certain stages of atherosclerosis, among which are lipid accumulation, were shown to be more effective. This emphasizes the relevance of future detailed investigation of atherogenesis and the importance of new therapies development.
Collapse
|
10
|
Lopes-Virella MF, Bebu I, Hunt KJ, Virella G, Baker NL, Braffett B, Gao X, Lachin JM. Immune Complexes and the Risk of CVD in Type 1 Diabetes. Diabetes 2019; 68:1853-1860. [PMID: 31217176 PMCID: PMC6702641 DOI: 10.2337/db19-0358] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/17/2019] [Indexed: 12/15/2022]
Abstract
We investigated whether the composition of modified forms of LDL in circulating immune complexes (LDL-ICs) was associated with cardiovascular disease (CVD) outcomes, including any CVD, major adverse cardiac and cerebrovascular events (MACCE), myocardial infarction (MI), and coronary artery disease, in type 1 diabetes (T1D). Our results demonstrate that the baseline levels of oxidized LDL (oxLDL), MDA-modified LDL (MDA-LDL), and advanced glycosylation-modified LDL (AGE-LDL) in circulating ICs were associated with the four CVD outcomes in unadjusted models, and adjustment by age and mean HbA1c only resulted in minimal reduction of these associations. After adjustments were made for other cardiovascular risk factors, particularly LDL cholesterol, oxLDL-IC and MDA-LDL-IC remained independently associated with the risk of CVD, and oxLDL-IC was independently associated with the risk of MACCE and MI. In the majority of cases, the baseline levels of modified LDL-IC (measured many years before the occurrence of any CVD event) were associated with the risk of CVD over a 25-year period even after adjustment for other risk factors (including LDL cholesterol). Therefore, modified LDL biomarkers may help identify patients with T1D at high risk for MACCE and CVD events very early in the evolution of the disease, before other signals of disease are apparent.
Collapse
Affiliation(s)
| | - Ionut Bebu
- Biostatistics Center, The George Washington University, Rockville, MD
| | - Kelly J Hunt
- Medical University of South Carolina, Charleston, SC
| | | | | | - Barbara Braffett
- Biostatistics Center, The George Washington University, Rockville, MD
| | - Xiaoyu Gao
- Biostatistics Center, The George Washington University, Rockville, MD
| | - John M Lachin
- Biostatistics Center, The George Washington University, Rockville, MD
| | | |
Collapse
|
11
|
Lopes-Virella MF, Virella G. Modified LDL Immune Complexes and Cardiovascular Disease. Curr Med Chem 2019; 26:1680-1692. [DOI: 10.2174/0929867325666180524114429] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/17/2017] [Accepted: 12/28/2017] [Indexed: 12/17/2022]
Abstract
Modified forms of LDL, both spontaneously formed in the organism or prepared in the laboratory, are immunogenic. As a consequence, antigen-antibody complexes (immune complexes, IC) formed in vivo can be measured in the peripheral blood, and their levels are strong predictors of cardiovascular disease (CVD). It has been possible to generate antibodies that recognize different LDL modifications, allowing the analysis of circulating IC constitution. Clinical studies showed that the antigenic constitution of the IC has a modulating effect on the development of CVD. Patients whose IC react strongly with antibodies to copper oxidized LDL (oxLDL) show progressive development of atherosclerosis as demonstrated by increased intima–media thickness and increased coronary calcification scores. In contrast, patients whose IC react strongly with antibodies to the heavily oxidized malondialdehyde LDL prepared in vitro (MDA-LDL) are at a high risk of acute vascular events, mainly myocardial infarction. In vitro studies have shown that while oxLDL IC induce both cell proliferation and mild to moderate macrophage apoptosis, MDA-LDL IC induce a more marked macrophage apoptosis but not cell proliferation. In addition, MDA-LDL IC induce the release of higher levels of matrix metalloproteinases and TNF than oxLDL IC. High levels of TNF are likely to be a major factor leading to apoptosis and high levels of metalloproteinases are likely to play a role in the thinning of the fibrous cap of the atheromatous plaque. The combination of apoptosis and fibrous cap thinning is a well-known characteristic of vulnerable plaques, which are more prone to rupture and responsible for the majority of acute cardiovascular events.
Collapse
Affiliation(s)
- Maria F. Lopes-Virella
- Department of Medicine, Medical University of South Carolina, Charleston, SC, USA; Ralph A. Johnson VA Medical Center, Charleston, SC, United States
| | - Gabriel Virella
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Lipoprotein-induced intracellular lipid accumulation (foam cell formation) is a trigger of atherogenesis at the subendothelial arterial cell level. The purpose of this review is to describe the recent data related to the possible mechanisms of LDL-induced formation of lipid-laden foam cells and their role in the onset and development of atherosclerotic lesion. RECENT FINDINGS The most interesting current studies are related to the factors affecting foam cell formation. SUMMARY The phenomenon of lipid accumulation in cultured cells became the basis for creating a cellular test system that has already been successfully applied for development of drugs possessing direct antiatherosclerotic activity, and then the efficacy of these drugs was demonstrated in clinical studies. Moreover, this test system could be used for diagnostic assessing lipoproteins atherogenicity.
Collapse
Affiliation(s)
- Alexander N Orekhov
- Laboratory of Angiopatology, Institute of General Pathology and Pathophysiology
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia
| |
Collapse
|