1
|
Jian J, Wei J. Ferroptosis: A New Pathway in the Interaction between Gut Microbiota and Multiple Sclerosis. FRONT BIOSCI-LANDMRK 2025; 30:26265. [PMID: 39862079 DOI: 10.31083/fbl26265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 01/27/2025]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disorder marked by neuroinflammation, demyelination, and neuronal damage. Recent advancements highlight a novel interaction between iron-dependent cell death, known as ferroptosis, and gut microbiota, which may significantly influences the pathophysiology of MS. Ferroptosis, driven by lipid peroxidation and tightly linked to iron metabolism, is a pivotal contributor to the oxidative stress observed in MS. Concurrently, the gut microbiota, known to affect systemic immunity and neurological health, emerges as an important regulator of iron homeostasis and inflammatory responses, thereby influencing ferroptotic pathways. This review investigates how gut microbiota dysbiosis and ferroptosis impact MS, emphasizing their potential as therapeutic targets. Through an integrated examination of mechanistic pathways and clinical evidence, we discuss how targeting these interactions could lead to novel interventions that not only modulate disease progression but also offer personalized treatment strategies based on gut microbiota profiling. This synthesis aims at deepening insights into the microbial contributions to ferroptosis and their implications in MS, setting the stage for future research and therapeutic exploration.
Collapse
Affiliation(s)
- Junjie Jian
- The First College of Clinical Medical Science, China Three Gorges University, 443000 Yichang, Hubei, China
- Department of Neurology, Yichang Central People's Hospital, 443003 Yichang, Hubei, China
| | - Jun Wei
- The First College of Clinical Medical Science, China Three Gorges University, 443000 Yichang, Hubei, China
- Department of Neurology, Yichang Central People's Hospital, 443003 Yichang, Hubei, China
| |
Collapse
|
2
|
Kapoor B, Biswas P, Gulati M, Rani P, Gupta R. Gut microbiome and Alzheimer's disease: What we know and what remains to be explored. Ageing Res Rev 2024; 102:102570. [PMID: 39486524 DOI: 10.1016/j.arr.2024.102570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/26/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
With advancement in human microbiome research, an increasing number of scientific evidences have endorsed the key role of gut microbiota in the pathogenesis of Alzheimer disease. Microbiome dysbiosis, characterized by altered diversity and composition, as well as rise of pathobionts influence not only various gut disorder but also central nervous system disorders such as AD. On the basis of accumulated evidences of past few years now it is quite clear that the gut microbiota can control the functions of the central nervous system (CNS) through the gut-brain axis, which provides a new prospective into the interactions between the gut and brain. The main focus of this review is on the molecular mechanism of the crosstalk between the gut microbiota and the brain through the gut-brain axis, and on the onset and development of neurological disorders triggered by the dysbiosis of gut microbiota. Due to microbiota dysbiosis the permeability of the gut and blood brain barrier is increased which may mediate or affect AD. Along with this, bacterial population of the gut microbiota can secrete amyloid proteins and lipopolysaccharides in a large quantity which may create a disturbance in the signaling pathways and the formation of proinflammatory cytokines associated with the pathogenesis of AD. These topics are followed by a critical analysis of potential intervention strategies targeting gut microbiota dysbiosis, including the use of probiotics, prebiotics, metabolites, diets and fecal microbiota transplantation. The main purpose of this review includes the summarization and discussion on the recent finding that may explain the role of the gut microbiota in the development of AD. Understanding of these fundamental mechanisms may provide a new insight into the novel therapeutic strategies for AD.
Collapse
Affiliation(s)
- Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India.
| | - Pratim Biswas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, NSW 2007, Australia
| | - Pooja Rani
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Reena Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
3
|
Barcutean L, Farczadi L, Manescu IB, Imre S, Maier S, Balasa R. Short and Medium Chain Fatty Acids in a Cohort of Naïve Multiple Sclerosis Patients: Pre- and Post-Interferon Beta Treatment Assessment. Biologics 2024; 18:349-361. [PMID: 39569059 PMCID: PMC11577435 DOI: 10.2147/btt.s489523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024]
Abstract
Introduction Alterations in intestinal permeability and microbiota dysregulation have been linked to the development of multiple sclerosis (MS). Short-chain fatty acids (SCFA) and medium-chain fatty acids (MCFA) are products of gut bacteria fermentation which are involved in immune regulation processes. In MS, SCFA have important immunomodulatory properties both in the periphery and the central compartment. Interferon β (IFNβ) was the first disease-modifying therapy approved for the treatment of MS and its effects on the gut microbiota are not fully elucidated. Patients and Methods We performed a prospective observational study aimed to assess peripheral levels of SCFA and MCFA in 23 newly diagnosed, treatment-naïve MS patients (nMS) before and after one year of IFNβ treatment and 23 healthy controls (HC). We investigated their associations with inflammation, interleukin-10 (IL-10), and blood-brain barrier permeability, matrix metalloproteinase 9 (MMP9). Results No significant differences in SCFA/MCFA levels were observed between baseline and after IFNβ treatment. Caproic acid levels were significantly higher in nMS compared to HC (1.64 vs 1.27 µM, p=0.005). The butyric acid/caproic acid ratio was higher in HC compared to nMS (5.47 vs 2.55, p=0.005). Correlation analysis revealed associations between SCFA/MCFA levels and inflammatory biomarkers. Conclusion nMS have a higher gut-inflammatory activity as seen by the caproic acid ratio as opposed to HC. In this cohort, IFNβ does not appear to modify the peripheral SCFA/MCFA levels after one year of treatment. The quantifications of peripheral SCFA/MCFA may prove to be a useful biomarker for gut-brain axis disruption in MS patients.
Collapse
Affiliation(s)
- Laura Barcutean
- Department of Neurology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, 540142, Romania
- Neurology 1 Clinic, Mures County Emergency Clinical Hospital, Targu Mures, Romania
| | - Lenard Farczadi
- Chromatography and Mass Spectrometry Laboratory, Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, Mures, 540139, Romania
| | - Ion-Bogdan Manescu
- Department of Laboratory Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, 540142, Romania
| | - Silvia Imre
- Chromatography and Mass Spectrometry Laboratory, Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, Mures, 540139, Romania
- Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, 540142, Romania
| | - Smaranda Maier
- Department of Neurology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, 540142, Romania
- Neurology 1 Clinic, Mures County Emergency Clinical Hospital, Targu Mures, Romania
| | - Rodica Balasa
- Department of Neurology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, 540142, Romania
- Neurology 1 Clinic, Mures County Emergency Clinical Hospital, Targu Mures, Romania
| |
Collapse
|
4
|
Miyamoto K, Sujino T, Kanai T. The tryptophan metabolic pathway of the microbiome and host cells in health and disease. Int Immunol 2024; 36:601-616. [PMID: 38869080 PMCID: PMC11562643 DOI: 10.1093/intimm/dxae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024] Open
Abstract
The intricate and dynamic tryptophan (Trp) metabolic pathway in both the microbiome and host cells highlights its profound implications for health and disease. This pathway involves complex interactions between host cellular and bacteria processes, producing bioactive compounds such as 5-hydroxytryptamine (5-HT) and kynurenine derivatives. Immune responses to Trp metabolites through specific receptors have been explored, highlighting the role of the aryl hydrocarbon receptor in inflammation modulation. Dysregulation of this pathway is implicated in various diseases, such as Alzheimer's and Parkinson's diseases, mood disorders, neuronal diseases, autoimmune diseases such as multiple sclerosis (MS), and cancer. In this article, we describe the impact of the 5-HT, Trp, indole, and Trp metabolites on health and disease. Furthermore, we review the impact of microbiome-derived Trp metabolites that affect immune responses and contribute to maintaining homeostasis, especially in an experimental autoimmune encephalitis model of MS.
Collapse
Affiliation(s)
- Kentaro Miyamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
- Miyarisan Pharmaceutical Co., Research Laboratory, Tokyo, Japan
| | - Tomohisa Sujino
- Center for Diagnostic and Therapeutic Endoscopy, Keio University School of Medicine, Tokyo, Japan
- Keio Global Research Institute, Keio University, Tokyo, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Bolton C. Review of evidence linking exposure to environmental stressors and associated alterations in the dynamics of immunosenescence (ISC) with the global increase in multiple sclerosis (MS). Immun Ageing 2024; 21:73. [PMID: 39438909 PMCID: PMC11494837 DOI: 10.1186/s12979-024-00473-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Historical survey confirms that, over the latter part of the 20th century, autoimmune-based diseases, including multiple sclerosis (MS), have shown a worldwide increase in incidence and prevalence. Analytical population studies have established that the exponential rise in MS is not solely due to improvements in diagnosis and healthcare but relates to an increase in autoimmune risk factors. Harmful environmental exposures, including non-communicable social determinants of health, anthropogens and indigenous or transmissible microbes, constitute a group of causal determinants that have been closely linked with the global rise in MS cases. Exposure to environmental stressors has profound effects on the adaptive arm of the immune system and, in particular, the associated intrinsic process of immune ageing or immunosenescence (ISC). Stressor-related disturbances to the dynamics of ISC include immune cell-linked untimely or premature (p) alterations and an accelerated replicative (ar) change. A recognised immune-associated feature of MS is pISC and current evidence supports the presence of an arISC during the disease. Moreover, collated data illustrates the immune-associated alterations that characterise pISC and arISC are inducible by environmental stressors strongly implicated in causing duplicate changes in adaptive immune cells during MS. The close relationship between exposure to environmental risk factors and the induction of pISC and arISC during MS offers a valid mechanism through which pro-immunosenescent stressors may act and contribute to the recorded increase in the global rate and number of new cases of the disease. Confirmation of alterations to the dynamics of ISC during MS provides a rational and valuable therapeutic target for the use of senolytic drugs to either prevent accumulation and enhance ablation of less efficient untimely senescent adaptive immune cells or decelerate the dysregulated process of replicative proliferation. A range of senotherapeutics are available including kinase and transcriptase inhibitors, rapalogs, flavanols and genetically-engineered T cells and the use of selective treatments to control emerging and unspecified aspects of pISC and arISC are discussed.
Collapse
|
6
|
Peter B, Rebeaud J, Vigne S, Bressoud V, Phillips N, Ruiz F, Petrova TV, Bernier-Latmani J, Pot C. Perivascular B cells link intestinal angiogenesis to immunity and to the gut-brain axis during neuroinflammation. J Autoimmun 2024; 148:103292. [PMID: 39067313 DOI: 10.1016/j.jaut.2024.103292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/28/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
Disruption of gut barrier function and intestinal immune cell homeostasis are increasingly considered critical players in pathogenesis of extra-intestinal inflammatory diseases, including multiple sclerosis (MS) and its prototypical animal model, the experimental autoimmune encephalomyelitis (EAE). Breakdown of epithelial barriers increases intestinal permeability and systemic dissemination of microbiota-derived molecules. However, whether the gut-vascular barrier (GVB) is altered during EAE has not been reported. Here, we demonstrate that endothelial cell proliferation and vessel permeability increase before EAE clinical onset, leading to vascular remodeling and expansion of intestinal villi capillary bed during disease symptomatic phase in an antigen-independent manner. Concomitant to onset of angiogenesis observed prior to neurological symptoms, we identify an increase of intestinal perivascular immune cells characterized by the surface marker lymphatic vessel endothelial hyaluronic acid receptor 1 (LYVE-1). LYVE-1+ is expressed more frequently on B cells that show high levels of CD73 and have proangiogenic properties. B cell depletion was sufficient to mitigate enteric blood endothelial cell proliferation following immunization for EAE. In conclusion, we propose that altered intestinal vasculature driven by a specialized LYVE-1+ B cell subset promotes angiogenesis and that loss of GVB function is implicated in EAE development and autoimmunity.
Collapse
Affiliation(s)
- Benjamin Peter
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Epalinges, 1066, Switzerland
| | - Jessica Rebeaud
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Epalinges, 1066, Switzerland
| | - Solenne Vigne
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Epalinges, 1066, Switzerland
| | - Valentine Bressoud
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Epalinges, 1066, Switzerland
| | - Nicholas Phillips
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Epalinges, 1066, Switzerland
| | - Florian Ruiz
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Epalinges, 1066, Switzerland
| | - Tatiana V Petrova
- Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research, Epalinges, 1066, Switzerland
| | - Jeremiah Bernier-Latmani
- Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research, Epalinges, 1066, Switzerland
| | - Caroline Pot
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Epalinges, 1066, Switzerland.
| |
Collapse
|
7
|
Di Chiano M, Sallustio F, Fiocco D, Rocchetti MT, Spano G, Pontrelli P, Moschetta A, Gesualdo L, Gadaleta RM, Gallone A. Psychobiotic Properties of Lactiplantibacillus plantarum in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:9489. [PMID: 39273435 PMCID: PMC11394828 DOI: 10.3390/ijms25179489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Neurodegenerative disorders are the main cause of cognitive and physical disabilities, affect millions of people worldwide, and their incidence is on the rise. Emerging evidence pinpoints a disturbance of the communication of the gut-brain axis, and in particular to gut microbial dysbiosis, as one of the contributors to the pathogenesis of these diseases. In fact, dysbiosis has been associated with neuro-inflammatory processes, hyperactivation of the neuronal immune system, impaired cognitive functions, aging, depression, sleeping disorders, and anxiety. With the rapid advance in metagenomics, metabolomics, and big data analysis, together with a multidisciplinary approach, a new horizon has just emerged in the fields of translational neurodegenerative disease. In fact, recent studies focusing on taxonomic profiling and leaky gut in the pathogenesis of neurodegenerative disorders are not only shedding light on an overlooked field but are also creating opportunities for biomarker discovery and development of new therapeutic and adjuvant strategies to treat these disorders. Lactiplantibacillus plantarum (LBP) strains are emerging as promising psychobiotics for the treatment of these diseases. In fact, LBP strains are able to promote eubiosis, increase the enrichment of bacteria producing beneficial metabolites such as short-chain fatty acids, boost the production of neurotransmitters, and support the homeostasis of the gut-brain axis. In this review, we summarize the current knowledge on the role of the gut microbiota in the pathogenesis of neurodegenerative disorders with a particular focus on the benefits of LBP strains in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, autism, anxiety, and depression.
Collapse
Affiliation(s)
- Mariagiovanna Di Chiano
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Fabio Sallustio
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Daniela Fiocco
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Maria Teresa Rocchetti
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Giuseppe Spano
- Department of Agriculture Food Natural Science Engineering (DAFNE), University of Foggia, 71122 Foggia, Italy
| | - Paola Pontrelli
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
- National Institute for Biostructure and Biosystems (INBB), Viale delle Medaglie d'Oro n. 305, 00136 Roma, Italy
| | - Loreto Gesualdo
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Raffaella Maria Gadaleta
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
- National Institute for Biostructure and Biosystems (INBB), Viale delle Medaglie d'Oro n. 305, 00136 Roma, Italy
| | - Anna Gallone
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| |
Collapse
|
8
|
Sun D, Zhang Y, Wang R, Du Q, Shi Z, Chen H, Wang X, Zhou H. Causal effects of gut microbiota on multiple sclerosis: A two-sample Mendelian randomization study. Brain Behav 2024; 14:e3593. [PMID: 38898610 PMCID: PMC11186842 DOI: 10.1002/brb3.3593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/13/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Gut microbiota alterations in multiple sclerosis (MS) patients have been reported in observational studies, but whether these associations are causal is unclear. OBJECTIVE We performed a Mendelian randomization study (MR) to assess the causal effects of gut microbiota on MS. METHODS Independent genetic variants associated with 211 gut microbiota phenotypes were selected as instrumental variables from the largest genome-wide association studies (GWAS) previously published by the MiBioGen study. GWAS data for MS were obtained from the International Multiple Sclerosis Genetics Consortium (IMSGC) for primary analysis and the FinnGen consortium for replication and collaborative analysis. Sensitivity analyses were conducted to evaluate heterogeneity and pleiotropy. RESULTS After inverse-variance-weighted and sensitivity analysis filtering, seven gut microbiota with potential causal effects on MS were identified from the IMSGC. Only five metabolites remained significant associations with MS when combined with the FinnGen consortium, including genus Anaerofilum id.2053 (odds ratio [OR] = 1.141, 95% confidence interval [CI]: 1.021-1.276, p = .021), Ruminococcus2 id.11374 (OR = 1.190, 95% CI: 1.007-1.406, p = .042), Ruminococcaceae UCG003 id.11361 (OR = 0.822, 95% CI: 0.688-0.982, p = .031), Ruminiclostridium5 id.11355 (OR = 0.724, 95% CI: 0.585-0.895, p = .003), Anaerotruncus id.2054 (OR = 0.772, 95% CI: 0.634-0.940, p = .010). CONCLUSION Our MR analysis reveals a potential causal relationship between gut microbiota and MS, offering promising avenues for advancing mechanistic understanding and clinical investigation of microbiota-mediated MS.
Collapse
Affiliation(s)
- Dongren Sun
- Department of NeurologyWest China HospitalSichuan UniversityChengduChina
| | - Yangyang Zhang
- Department of NeurologyWest China HospitalSichuan UniversityChengduChina
| | - Rui Wang
- Department of NeurologyWest China HospitalSichuan UniversityChengduChina
| | - Qin Du
- Department of NeurologyWest China HospitalSichuan UniversityChengduChina
| | - Ziyan Shi
- Department of NeurologyWest China HospitalSichuan UniversityChengduChina
| | - Hongxi Chen
- Department of NeurologyWest China HospitalSichuan UniversityChengduChina
| | - Xiaofei Wang
- Department of NeurologyWest China HospitalSichuan UniversityChengduChina
| | - Hongyu Zhou
- Department of NeurologyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
9
|
Hazan S, Haroon J, Jordan S, Walker SJ. Improvements in Gut Microbiome Composition and Clinical Symptoms Following Familial Fecal Microbiota Transplantation in a Nineteen-Year-Old Adolescent With Severe Autism. J Med Cases 2024; 15:82-91. [PMID: 38715916 PMCID: PMC11073461 DOI: 10.14740/jmc4209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/11/2024] [Indexed: 06/11/2024] Open
Abstract
This case report describes a novel therapy for patients with severe autism spectrum disorder (ASD) that is worth further investigation. A 19-year-old male adolescent with ASD, who was not responding to standard treatment received fecal microbiota transplant (FMT) using donor material from his typically developing female sibling. The patient's ASD symptoms were assessed by assessors who were blind to the patient's past ASD symptomatology. Assessors used the Childhood Autism Rating Scale (CARS), an observation-based rating scale to assess developmental delay in children with autism (range of CARS scores is 15 - 60; a score > 28 is indicative of autism; higher score is positively correlated with degree of severity), at baseline and again at six timepoints post-FMT. The patient experienced marked improvements in microbiome diversity and composition over the year and a half period that followed the FMT procedure. Additionally, the patient who was previously nonverbal said his first two words and experienced a reduction in aggression 1-month post-FMT. To the authors' knowledge, this is the first report to demonstrate the use of familial FMT in an adolescent patient with ASD. Given that ASD symptom improvements post-FMT tend to occur in younger patients, the authors hypothesize that the use of a familial donor may be an important factor that contributed to the improved outcomes experienced by this older child.
Collapse
Affiliation(s)
- Sabine Hazan
- ProgenaBiome, LLC, Ventura, CA, USA
- Microbiome Research Foundation, Ventura, CA, USA
| | | | | | - Stephen J. Walker
- Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, USA
| |
Collapse
|
10
|
Hussain N, Muccee F. In-silico characterization of GABAT protein found in gut-brain axis associated bacteria of healthy individuals and multiple sclerosis patients. Saudi J Biol Sci 2024; 31:103939. [PMID: 38352114 PMCID: PMC10859293 DOI: 10.1016/j.sjbs.2024.103939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 01/10/2024] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
Background Multiple sclerosis (MS) is a neurodegenerative disease characterized by inflammation and demyelination of neurons. There is evidence to suggest that level of a neurotransmitter gamma-aminobutyric acid (GABA), due to the degradation by γ-aminobutyric acid transaminase (GABAT), is reduced in certain areas of the brain in MS patients. MS is always accompanied by gut bacteria dysbiosis. In healthy individuals, Faecalibacterium sp. while in MS patients A. calcoaceticus, Clostridium sp. and S. typhimurium are found abundantly. Although all these microbes produce GABAT but only in MS patients this enzyme significantly degrades GABA. Objective Present study is an attempt to characterize the GABAT protein sequences of these bacteria. Methodology Sequences of GABAT protein were retrieved from Uniprot database. Sequences were analyzed by Protparam, Gneg-mPLoc, SOSUI, PFP-FunDSeqE, Pepwheel program, PROTEUS and Alphafold and SAVES servers, MEME suite and HDOCK server. Results In healthy individuals gastrointestinal tract (GIT) bacteria, GABAT protein was present in inner-membrane with α helix content (61 and 62%) and β sheet content (5%), 4-helical cytokines functional domains. It has greater number of B-cell epitopes and more complex 3D configuration as compared to MS patients GIT bacterial enzymes. Conclusion Present study might enable us to modify the GABAT encoding gene and enzyme through site-directed mutagenesis in pathogenic bacteria thus reducing their potential of causing MS.
Collapse
Affiliation(s)
- Nadia Hussain
- Department of Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain Campus, Al Ain 64141, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi Campus, Abu Dhabi P. O. Box 112612, United Arab Emirates
| | - Fatima Muccee
- School of Biochemistry and Biotechnology, University of Punjab, Lahore 52254, Pakistan
| |
Collapse
|
11
|
Lai J, Rigas Y, Kantor N, Cohen N, Tomlinson A, St. Leger AJ, Galor A. Living with your biome: how the bacterial microbiome impacts ocular surface health and disease. EXPERT REVIEW OF OPHTHALMOLOGY 2024; 19:89-103. [PMID: 38764699 PMCID: PMC11101146 DOI: 10.1080/17469899.2024.2306582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/14/2024] [Indexed: 05/21/2024]
Abstract
Introduction Microbiome research has grown exponentially but the ocular surface microbiome (OSM) remains an area in need of further study. This review aims to explore its complexity, disease-related microbial changes, and immune interactions, and highlights the potential for its manipulation as a therapeutic for ocular surface diseases. Areas Covered We introduce the OSM by location and describe what constitutes a normal OSM. Second, we highlight aspects of the ocular immune system and discuss potential immune microbiome interactions in health and disease. Finally, we highlight how microbiome manipulation may have therapeutic potential for ocular surface diseases. Expert Opinion The ocular surface microbiome varies across its different regions, with a core phyla identified, but with genus variability. A few studies have linked microbiome composition to diseases like dry eye but more research is needed, including examining microbiome interactions with the host. Studies have noted that manipulating the microbiome may impact disease presentation. As such, microbiome manipulation via diet, oral and topical pre and probiotics, and hygienic measures may provide new therapeutic algorithms in ocular surface diseases.
Collapse
Affiliation(s)
- James Lai
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA
| | - Yannis Rigas
- University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Nicole Kantor
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA
| | - Noah Cohen
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA
| | - Ana Tomlinson
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA
| | - Anthony J. St. Leger
- University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anat Galor
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA
- Miami Veterans Affairs Hospital, Miami, Florida, USA
| |
Collapse
|
12
|
Zhu F, Zhao Y, Arnold DL, Bar‐Or A, Bernstein CN, Bonner C, Graham M, Hart J, Knox N, Marrie RA, Mirza AI, O'Mahony J, Van Domselaar G, Yeh EA, Banwell B, Waubant E, Tremlett H. A cross-sectional study of MRI features and the gut microbiome in pediatric-onset multiple sclerosis. Ann Clin Transl Neurol 2024; 11:486-496. [PMID: 38130033 PMCID: PMC10863907 DOI: 10.1002/acn3.51970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/27/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
OBJECTIVE To identify gut microbiome features associated with MRI lesion burden in persons with pediatric-onset multiple sclerosis (symptom onset <18 years). METHODS A cross-sectional study involving the Canadian Paediatric Demyelinating Disease Network study participants. Gut microbiome features (alpha diversity, phylum- and genus-level taxa) were derived using 16S rRNA sequencing from stool samples. T1- and T2-weighted lesion volumes were measured on brain MRI obtained within 6 months of stool sample procurement. Associations between the gut microbiota and MRI metrics (cube-root-transformed) were assessed using standard and Lasso regression models. RESULTS Thirty-four participants were included; mean ages at symptom onset and MRI were 15.1 and 19.0 years, respectively, and 79% were female. The T1- and T2-weighted lesion volumes were not significantly associated with alpha diversity (age and sex-adjusted p > 0.08). At the phylum level, high Tenericutes (relative abundance) was associated with higher T1 and T2 volumes (β coefficient = 0.25, 0.37) and high Firmicutes, Patescibacteria or Actinobacteria with lower lesion volumes (β coefficient = -0.30 to -0.07). At the genus level, high Ruminiclostridium, whereas low Coprococcus 3 and low Erysipelatoclostridium were associated with higher lesion volumes. INTERPRETATION Our study characterized the gut microbiota features associated with MRI lesion burden in pediatric-onset MS, shedding light onto possible pathophysiological mechanisms.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Medicine (Neurology)The University of British ColumbiaVancouverBritish ColumbiaCanada
| | - Yinshan Zhao
- Department of Medicine (Neurology)The University of British ColumbiaVancouverBritish ColumbiaCanada
| | - Douglas L. Arnold
- Department of Neurology and NeurosurgeryMcGill University Faculty of MedicineMontrealQuebecCanada
| | - Amit Bar‐Or
- Department of Neurology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- The Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Charles N. Bernstein
- Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaCanada
- Inflammatory Bowel Disease Clinical and Research CentreUniversity of ManitobaWinnipegManitobaCanada
| | - Christine Bonner
- National Microbiology LaboratoryPublic Health Agency of CanadaWinnipegManitobaCanada
| | - Morag Graham
- National Microbiology LaboratoryPublic Health Agency of CanadaWinnipegManitobaCanada
- Department of Medical Microbiology and Infectious DiseasesUniversity of ManitobaWinnipegManitobaCanada
| | - Janace Hart
- Department of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Natalie Knox
- National Microbiology LaboratoryPublic Health Agency of CanadaWinnipegManitobaCanada
- Department of Medical Microbiology and Infectious DiseasesUniversity of ManitobaWinnipegManitobaCanada
| | - Ruth Ann Marrie
- Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaCanada
| | - Ali I. Mirza
- Department of Medicine (Neurology)The University of British ColumbiaVancouverBritish ColumbiaCanada
| | - Julia O'Mahony
- Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaCanada
| | - Gary Van Domselaar
- National Microbiology LaboratoryPublic Health Agency of CanadaWinnipegManitobaCanada
- Department of Medical Microbiology and Infectious DiseasesUniversity of ManitobaWinnipegManitobaCanada
| | - E. Ann Yeh
- Department of Neurology and NeurosurgeryMcGill University Faculty of MedicineMontrealQuebecCanada
| | - Brenda Banwell
- Department of Neurology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- The Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Emmanuelle Waubant
- Department of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Helen Tremlett
- Department of Medicine (Neurology)The University of British ColumbiaVancouverBritish ColumbiaCanada
| | | |
Collapse
|
13
|
Han K, Xu J, Xie F, Crowther J, Moon JJ. Engineering Strategies to Modulate the Gut Microbiome and Immune System. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:208-215. [PMID: 38166246 PMCID: PMC10766079 DOI: 10.4049/jimmunol.2300480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/28/2023] [Indexed: 01/04/2024]
Abstract
The gut microbiota, predominantly residing in the colon, is a complex ecosystem with a pivotal role in the host immune system. Dysbiosis of the gut microbiota has been associated with various diseases, and there is an urgent need to develop new therapeutics that target the microbiome and restore immune functions. This Brief Review discusses emerging therapeutic strategies that focus on oral delivery systems for modulating the gut microbiome. These strategies include genetic engineering of probiotics, probiotic-biomaterial hybrids, dietary fibers, and oral delivery systems for microbial metabolites, antimicrobial peptides, RNA, and antibiotics. Engineered oral formulations have demonstrated promising outcomes in reshaping the gut microbiome and influencing immune responses in preclinical studies. By leveraging these approaches, the interplay between the gut microbiota and the immune system can be harnessed for the development of novel therapeutics against cancer, autoimmune disorders, and allergies.
Collapse
Affiliation(s)
- Kai Han
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Jin Xu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Fang Xie
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Julia Crowther
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - James J. Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
14
|
Nitzan Z, Staun-Ram E, Volkowich A, Miller A. Multiple Sclerosis-Associated Gut Microbiome in the Israeli Diverse Populations: Associations with Ethnicity, Gender, Disability Status, Vitamin D Levels, and Mediterranean Diet. Int J Mol Sci 2023; 24:15024. [PMID: 37834472 PMCID: PMC10573818 DOI: 10.3390/ijms241915024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Microbiome dysbiosis is increasingly being recognized as implicated in immune-mediated disorders including multiple sclerosis (MS). The microbiome is modulated by genetic and environmental factors including lifestyle, diet, and drug intake. This study aimed to characterize the MS-associated gut microbiome in the Israeli populations and to identify associations with demographic, dietary, and clinical features. The microbiota from 57 treatment-naive patients with MS (PwMS) and 43 age- and gender-matched healthy controls (HCs) was sequenced and abundance compared. Associations between differential microbes with demographic or clinical characteristics, as well as diet and nutrient intake, were assessed. While there was no difference in α- or β-diversity of the microbiome, we identified 40 microbes from different taxonomic levels that differ in abundance between PwMS and HCs, including Barnesiella, Collinsella, Egerthella, Mitsuokella, Olsenella Romboutsia, and Succinivibrio, all enhanced in PwMS, while several members of Lacnospira were reduced. Additional MS-differential microbes specific to ethnicity were identified. Several MS-specific microbial patterns were associated with gender, vitamin D level, Mediterranean diet, nutrient intake, or disability status. Thus, PwMS have altered microbiota composition, with distinctive patterns related to geographic locations and population. Microbiome dysbiosis seem to be implicated in disease progression, gender-related differences, and vitamin D-mediated immunological effects recognized in MS. Dietary interventions may be beneficial in restoring a "healthy microbiota" as part of applying comprehensive personalized therapeutic strategies for PwMS.
Collapse
Affiliation(s)
- Zehavit Nitzan
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel (E.S.-R.)
| | - Elsebeth Staun-Ram
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel (E.S.-R.)
- Neuroimmunology Unit & Multiple Sclerosis Center, Lady Davis Carmel Medical Center, Haifa 3436212, Israel
| | - Anat Volkowich
- Neuroimmunology Unit & Multiple Sclerosis Center, Lady Davis Carmel Medical Center, Haifa 3436212, Israel
| | - Ariel Miller
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel (E.S.-R.)
- Neuroimmunology Unit & Multiple Sclerosis Center, Lady Davis Carmel Medical Center, Haifa 3436212, Israel
- Department of Neurology, Lady Davis Carmel Medical Center, Haifa 3436212, Israel
| |
Collapse
|
15
|
Dehghani F, Abdollahi S, Shidfar F, Clark CCT, Soltani S. Probiotics supplementation and brain-derived neurotrophic factor (BDNF): a systematic review and meta-analysis of randomized controlled trials. Nutr Neurosci 2023; 26:942-952. [PMID: 35996352 DOI: 10.1080/1028415x.2022.2110664] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND AND AIMS An emerging body of evidence has demonstrated the beneficial effects of probiotics on various mental health conditions. In this systematic review and meta-analysis, we sought to examine the effects of probiotics supplementation on brain-derived neurotrophic factor (BDNF) in adults. METHODS PubMed, Scopus, ISI Web of Science, and the Cochrane Library were searched, from database inception to April 2021, for eligible randomized controlled trials (RCTs). We pooled mean differences and standard deviations from RCTs using random-effect models. RESULTS Overall, meta-analysis of 11 trials (n = 648 participants) showed no significant changes in serum level of BDNF following probiotics. However, subgroup analysis revealed that probiotics increased BDNF levels in individuals suffering from neurological disorders (n = 214 participants; WMD = 3.08 ng/mL, 95% CI: 1.83, 4.34; P = 0.001; I2 = 7.5%; P-heterogeneity 0.34), or depression (n = 268 participants; WMD = 0.77 ng/mL, 95% CI: 0.07, 1.47; P = 0.032; I2 = 88.4%; P-heterogeneity < 0.001). Furthermore, a significant increase in BDNF levels was found in studies that administered the mixture of Lactobacillus and Bifidobacterium genera, and were conducted in Asia . CONCLUSION Our main findings suggest that probiotics may be effective in elevating BDNF levels in patients with depression and neurological disorders, and a mixed of Lactobacillus and Bifidobacterium appear to show greater efficacy than the single genus supplement. The low quality of evidence reduces clinical advocacy, and indicates that more large-scale, high-quality, RCTs are needed to facilitate reliable conclusions.
Collapse
Affiliation(s)
- Fereshteh Dehghani
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - Shima Abdollahi
- Department of Nutrition, School of Health, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Farzad Shidfar
- Department of nutrition, School of public health, Iran University of Medical Sciences, Teharn, Iran
| | - Cain C T Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry, UK
| | - Sepideh Soltani
- Yazd Cardiovascular Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
16
|
Doyle WJ, Walters D, Shi X, Hoffman K, Magori K, Roullet JB, Ochoa-Repáraz J. Farnesol brain transcriptomics in CNS inflammatory demyelination. Clin Immunol 2023; 255:109752. [PMID: 37673223 PMCID: PMC10619994 DOI: 10.1016/j.clim.2023.109752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND Farnesol (FOL) prevents the onset of experimental autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis (MS). OBJECTIVE We examined the transcriptomic profile of the brains of EAE mice treated with daily oral FOL using next-generation sequencing (RNA-seq). METHODS Transcriptomics from whole brains of treated and untreated EAE mice at the peak of EAE was performed. RESULTS EAE-induced mice, compared to naïve, healthy mice, overall showed increased expression in pathways for immune response, as well as an increased cytokine signaling pathway, with downregulation of cellular stress proteins. FOL downregulates pro-inflammatory pathways and attenuates the immune response in EAE. FOL downregulated the expression of genes involved in misfolded protein response, MAPK activation/signaling, and pro-inflammatory response. CONCLUSION This study provides insight into the molecular impact of FOL in the brain and identifies potential therapeutic targets of the isoprenoid pathway in MS patients.
Collapse
Affiliation(s)
- William J Doyle
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Dana Walters
- Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Xutong Shi
- Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Kristina Hoffman
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Krisztian Magori
- Department of Biology, Eastern Washington University, Cheney, WA 99004, USA
| | - Jean-Baptiste Roullet
- Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Javier Ochoa-Repáraz
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA.
| |
Collapse
|
17
|
Hamad I, Van Broeckhoven J, Cardilli A, Hellings N, Strowig T, Lemmens S, Hendrix S, Kleinewietfeld M. Effects of Recombinant IL-13 Treatment on Gut Microbiota Composition and Functional Recovery after Hemisection Spinal Cord Injury in Mice. Nutrients 2023; 15:4184. [PMID: 37836468 PMCID: PMC10574124 DOI: 10.3390/nu15194184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 10/15/2023] Open
Abstract
In recent years, the gut-central nervous system axis has emerged as a key factor in the pathophysiology of spinal cord injury (SCI). Interleukin-13 (IL-13) has been shown to have anti-inflammatory and neuroprotective effects in SCI. The aim of this study was to investigate the changes in microbiota composition after hemisection injury and to determine whether systemic recombinant (r)IL-13 treatment could alter the gut microbiome, indirectly promoting functional recovery. The gut microbiota composition was determined by 16S rRNA gene sequencing, and correlations between gut microbiota alterations and functional recovery were assessed. Our results showed that there were no changes in alpha diversity between the groups before and after SCI, while PERMANOVA analysis for beta diversity showed significant differences in fecal microbial communities. Phylogenetic classification of bacterial families revealed a lower abundance of the Bacteroidales S24-7 group and a higher abundance of Lachnospiraceae and Lactobacillaceae in the post-SCI group. Systemic rIL-13 treatment improved functional recovery 28 days post-injury and microbiota analysis revealed increased relative abundance of Clostridiales vadin BB60 and Acetitomaculum and decreased Anaeroplasma, Ruminiclostridium_6, and Ruminococcus compared to controls. Functional assessment with PICRUSt showed that genes related to glyoxylate cycle and palmitoleate biosynthesis-I were the predominant signatures in the rIL-13-treated group, whereas sulfolactate degradation super pathway and formaldehyde assimilation-I were enriched in controls. In conclusion, our results indicate that rIL-13 treatment promotes changes in gut microbial communities and may thereby contribute indirectly to the improvement of functional recovery in mice, possibly having important implications for the development of novel treatment options for SCI.
Collapse
Affiliation(s)
- Ibrahim Hamad
- VIB Laboratory of Translational Immunomodulation, Center for Inflammation Research (IRC), Hasselt University, 3590 Diepenbeek, Belgium (A.C.)
- Department of Immunology and Infection, Biomedical Research Institute (BIOMED), Hasselt University, 3590 Diepenbeek, Belgium; (J.V.B.); (N.H.)
| | - Jana Van Broeckhoven
- Department of Immunology and Infection, Biomedical Research Institute (BIOMED), Hasselt University, 3590 Diepenbeek, Belgium; (J.V.B.); (N.H.)
| | - Alessio Cardilli
- VIB Laboratory of Translational Immunomodulation, Center for Inflammation Research (IRC), Hasselt University, 3590 Diepenbeek, Belgium (A.C.)
- Department of Immunology and Infection, Biomedical Research Institute (BIOMED), Hasselt University, 3590 Diepenbeek, Belgium; (J.V.B.); (N.H.)
| | - Niels Hellings
- Department of Immunology and Infection, Biomedical Research Institute (BIOMED), Hasselt University, 3590 Diepenbeek, Belgium; (J.V.B.); (N.H.)
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, 38124 Braunschweig, Germany
| | - Stefanie Lemmens
- Department of Immunology and Infection, Biomedical Research Institute (BIOMED), Hasselt University, 3590 Diepenbeek, Belgium; (J.V.B.); (N.H.)
| | - Sven Hendrix
- Institute for Translational Medicine, Medical School Hamburg, 20457 Hamburg, Germany
| | - Markus Kleinewietfeld
- VIB Laboratory of Translational Immunomodulation, Center for Inflammation Research (IRC), Hasselt University, 3590 Diepenbeek, Belgium (A.C.)
- Department of Immunology and Infection, Biomedical Research Institute (BIOMED), Hasselt University, 3590 Diepenbeek, Belgium; (J.V.B.); (N.H.)
| |
Collapse
|
18
|
Miyamoto K, Sujino T, Harada Y, Ashida H, Yoshimatsu Y, Yonemoto Y, Nemoto Y, Tomura M, Melhem H, Niess JH, Suzuki T, Suzuki T, Suzuki S, Koda Y, Okamoto R, Mikami Y, Teratani T, Tanaka KF, Yoshimura A, Sato T, Kanai T. The gut microbiota-induced kynurenic acid recruits GPR35-positive macrophages to promote experimental encephalitis. Cell Rep 2023; 42:113005. [PMID: 37590143 DOI: 10.1016/j.celrep.2023.113005] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/25/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023] Open
Abstract
The intricate interplay between gut microbes and the onset of experimental autoimmune encephalomyelitis (EAE) remains poorly understood. Here, we uncover remarkable similarities between CD4+ T cells in the spinal cord and their counterparts in the small intestine. Furthermore, we unveil a synergistic relationship between the microbiota, particularly enriched with the tryptophan metabolism gene EC:1.13.11.11, and intestinal cells. This symbiotic collaboration results in the biosynthesis of kynurenic acid (KYNA), which modulates the recruitment and aggregation of GPR35-positive macrophages. Subsequently, a robust T helper 17 (Th17) immune response is activated, ultimately triggering the onset of EAE. Conversely, modulating the KYNA-mediated GPR35 signaling in Cx3cr1+ macrophages leads to a remarkable amelioration of EAE. These findings shed light on the crucial role of microbial-derived tryptophan metabolites in regulating immune responses within extraintestinal tissues.
Collapse
Affiliation(s)
- Kentaro Miyamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Miyarisan Pharmaceutical Co., Ltd., Research Laboratory, 1-10-3, Kaminagazato, Kita-ku, Tokyo 114-0016, Japan
| | - Tomohisa Sujino
- Center for Diagnostic and Therapeutic Endoscopy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Yosuke Harada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hiroshi Ashida
- Department of Bacterial Infection and Host Response, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; Medical Mycology Research Center, Chiba University, 1-8-1, Inohana, Cyuo-ku, Chiba city, Chiba 260-8673, Japan
| | - Yusuke Yoshimatsu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yuki Yonemoto
- Department of Gastroenterology and Hepatology, Tokyo Medical Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yasuhiro Nemoto
- Department of Gastroenterology and Hepatology, Tokyo Medical Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Michio Tomura
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Otani University, 3-11-1 Nshikiorikita, Tondabayshi, Osaka, 584-8584, Japan
| | - Hassan Melhem
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Jan Hendrik Niess
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland; Clarunis-University Center for Gastrointestinal and Liver Diseases, University Hospital Basel, 4002 Basel, Switzerland
| | - Toshihiko Suzuki
- Department of Bacterial Infection and Host Response, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Toru Suzuki
- Division of Brain Sciences Institute for Advanced Medical Research, Keio University School of Medicne, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shohei Suzuki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yuzo Koda
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Ryuichi Okamoto
- Department of Gastroenterology and Hepatology, Tokyo Medical Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Toshiaki Teratani
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kenji F. Tanaka
- Division of Brain Sciences Institute for Advanced Medical Research, Keio University School of Medicne, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Toshiro Sato
- Department of Organoid Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1, Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan.
| |
Collapse
|
19
|
Bronzini M, Maglione A, Rosso R, Matta M, Masuzzo F, Rolla S, Clerico M. Feeding the gut microbiome: impact on multiple sclerosis. Front Immunol 2023; 14:1176016. [PMID: 37304278 PMCID: PMC10248010 DOI: 10.3389/fimmu.2023.1176016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Multiple sclerosis (MS) is a multifactorial neurological disease characterized by chronic inflammation and immune-driven demyelination of the central nervous system (CNS). The rising number of MS cases in the last decade could be partially attributed to environmental changes, among which the alteration of the gut microbiome driven by novel dietary habits is now of particular interest. The intent of this review is to describe how diet can impact the development and course of MS by feeding the gut microbiome. We discuss the role of nutrition and the gut microbiota in MS disease, describing preclinical studies on experimental autoimmune encephalomyelitis (EAE) and clinical studies on dietary interventions in MS, with particular attention to gut metabolites-immune system interactions. Possible tools that target the gut microbiome in MS, such as the use of probiotics, prebiotics and postbiotics, are analyzed as well. Finally, we discuss the open questions and the prospects of these microbiome-targeted therapies for people with MS and for future research.
Collapse
Affiliation(s)
- Matteo Bronzini
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Alessandro Maglione
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Rachele Rosso
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Manuela Matta
- San Luigi Gonzaga University Hospital, Orbassano, Italy
| | | | - Simona Rolla
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Marinella Clerico
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
- San Luigi Gonzaga University Hospital, Orbassano, Italy
| |
Collapse
|
20
|
Kapoor B, Gulati M, Gupta R, Singla RK. Microbiota dysbiosis and myasthenia gravis: Do all roads lead to Rome? Autoimmun Rev 2023; 22:103313. [PMID: 36918089 DOI: 10.1016/j.autrev.2023.103313] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
Dysregulated immune system with a failure to recognize self from non-self-antigens is one of the common pathogeneses seen in autoimmune diseases. The complex interplay of genetic and environmental factors is important for the occurrence and development of the disease. Among the environmental factors, disturbed gut microbiota (gut dysbiosis) has recently attracted particular attention, especially with advancement in human microbiome research. Although the alterations in microbiota have been seen in various autoimmune diseases, including those of nervous system, there is paucity of information on neuromuscular system diseases. Myasthenia gravis (MG) is one such rare autoimmune disease of neuromuscular junction, and is caused by generation of pathogenic autoantibodies to components of the postsynaptic muscle endplate. In the recent years, accumulating evidences have endorsed the key role of host microbiota, particularly those of gut, in the pathogenesis of MG. Differential microbiota composition, characterized by increased abundance of Fusobacteria, Bacteroidetes, and Proteobacteria, and decreased abundance of Actinobacteria and Firmicutes, has been seen in MG patients in comparison to healthy subjects. Disturbance of microbiota composition, particularly reduced ratio of Firmicutes/Bacteroidetes, alter the gut permeability, subsequently triggering the immunological response. Resultant reduction in levels of short chain fatty acids (SCFAs) is another factor contributing to the immunological response in MG patients. Modulation of gut microbiota via intervention of probiotics, prebiotics, synbiotics, postbiotics (metabiotics), and fecal microbiota transplantation (FMT) is considered to be the futuristic approach for the management of MG. This review summarizes the role of gut microbiota and their metabolites (postbiotics) in the progression of MG. Also, various bacteriotherapeutic approaches involving gut microbiota are discussed for the prevention of MG progression.
Collapse
Affiliation(s)
- Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India.
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, NSW 2007, Australia.
| | - Reena Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Rajeev K Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Xinchuan Road, 2222, Chengdu, Sichuan, China; iGlobal Research and Publishing Foundation, New Delhi, India
| |
Collapse
|
21
|
Garvey M. The Association between Dysbiosis and Neurological Conditions Often Manifesting with Chronic Pain. Biomedicines 2023; 11:biomedicines11030748. [PMID: 36979726 PMCID: PMC10045203 DOI: 10.3390/biomedicines11030748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/21/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
The prevalence of neurological conditions which manifest with chronic pain is increasing globally, where the World Health Organisation has now classified chronic pain as a risk factor for death by suicide. While many chronic pain conditions have a definitive underlying aetiology, non-somatic conditions represent difficult-to-diagnose and difficult-to-treat public health issues. The interaction of the immune system and nervous system has become an important area in understanding the occurrence of neuroinflammation, nociception, peripheral and central sensitisation seen in chronic pain. More recently, however, the role of the resident microbial species in the human gastrointestinal tract has become evident. Dysbiosis, an alteration in the microbial species present in favour of non-beneficial and pathogenic species has emerged as important in many chronic pain conditions, including functional somatic syndromes, autoimmune disease and neurological diseases. In particular, a decreased abundance of small chain fatty acid, e.g., butyrate-producing bacteria, including Faecalibacterium, Firmicutes and some Bacteroides spp., is frequently evident in morbidities associated with long-term pain. Microbes involved in the production of neurotransmitters serotonin, GABA, glutamate and dopamine, which mediate the gut-brain, axis are also important. This review outlines the dysbiosis present in many disease states manifesting with chronic pain, where an overlap in morbidities is also frequently present in patients.
Collapse
Affiliation(s)
- Mary Garvey
- Department of Life Science, Atlantic Technological University, F91 YW50 Sligo, Ireland; ; Tel.: +353-071-9305529
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Atlantic Technological University, F91 YW50 Sligo, Ireland
| |
Collapse
|
22
|
Altieri C, Speranza B, Corbo MR, Sinigaglia M, Bevilacqua A. Gut-Microbiota, and Multiple Sclerosis: Background, Evidence, and Perspectives. Nutrients 2023; 15:942. [PMID: 36839299 PMCID: PMC9965298 DOI: 10.3390/nu15040942] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Many scientific studies reveal a significant connection between human intestinal microbiota, eating habits, and the development of chronic-degenerative diseases; therefore, alterations in the composition and function of the microbiota may be accompanied by different chronic inflammatory mechanisms. Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS), in which autoreactive immune cells attack the myelin sheaths of the neurons. The purpose of this paper was to describe the main changes that occur in the gut microbiota of MS patients, with a focus on both microbiota and its implications for health and disease, as well as the variables that influence it. Another point stressed by this paper is the role of microbiota as a triggering factor to modulate the responses of the innate and adaptive immune systems, both in the intestine and in the brain. In addition, a comprehensive overview of the taxa modified by the disease is presented, with some points on microbiota modulation as a therapeutic approach for MS. Finally, the significance of gastro-intestinal pains (indirectly related to dysbiosis) was assessed using a case study (questionnaire for MS patients), as was the willingness of MS patients to modulate gut microbiota with probiotics.
Collapse
Affiliation(s)
| | | | | | | | - Antonio Bevilacqua
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
23
|
Bianchimano P, Britton GJ, Wallach DS, Smith EM, Cox LM, Liu S, Iwanowski K, Weiner HL, Faith JJ, Clemente JC, Tankou SK. Mining the microbiota to identify gut commensals modulating neuroinflammation in a mouse model of multiple sclerosis. MICROBIOME 2022; 10:174. [PMID: 36253847 PMCID: PMC9575236 DOI: 10.1186/s40168-022-01364-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The gut microbiome plays an important role in autoimmunity including multiple sclerosis and its mouse model called experimental autoimmune encephalomyelitis (EAE). Prior studies have demonstrated that the multiple sclerosis gut microbiota can contribute to disease, hence making it a potential therapeutic target. In addition, antibiotic treatment has been shown to ameliorate disease in the EAE mouse model of multiple sclerosis. Yet, to this date, the mechanisms mediating these antibiotic effects are not understood. Furthermore, there is no consensus on the gut-derived bacterial strains that drive neuroinflammation in multiple sclerosis. RESULTS Here, we characterized the gut microbiome of untreated and vancomycin-treated EAE mice over time to identify bacteria with neuroimmunomodulatory potential. We observed alterations in the gut microbiota composition following EAE induction. We found that vancomycin treatment ameliorates EAE, and that this protective effect is mediated via the microbiota. Notably, we observed increased abundance of bacteria known to be strong inducers of regulatory T cells, including members of Clostridium clusters XIVa and XVIII in vancomycin-treated mice during the presymptomatic phase of EAE, as well as at disease peak. We identified 50 bacterial taxa that correlate with EAE severity. Interestingly, several of these taxa exist in the human gut, and some of them have been implicated in multiple sclerosis including Anaerotruncus colihominis, a butyrate producer, which had a positive correlation with disease severity. We found that Anaerotruncus colihominis ameliorates EAE, and this is associated with induction of RORγt+ regulatory T cells in the mesenteric lymph nodes. CONCLUSIONS We identified vancomycin as a potent modulator of the gut-brain axis by promoting the proliferation of bacterial species that induce regulatory T cells. In addition, our findings reveal 50 gut commensals as regulator of the gut-brain axis that can be used to further characterize pathogenic and beneficial host-microbiota interactions in multiple sclerosis patients. Our findings suggest that elevated Anaerotruncus colihominis in multiple sclerosis patients may represent a protective mechanism associated with recovery from the disease. Video Abstract.
Collapse
Affiliation(s)
- Paola Bianchimano
- Department of Neurology, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA
| | - Graham J Britton
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David S Wallach
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emma M Smith
- Department of Neurology, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA
| | - Laura M Cox
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Shirong Liu
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
- Present address: Department of Medical Oncology, Bing Center for Waldenström's Macroglobulinemia, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Kacper Iwanowski
- Department of Neurology, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Jeremiah J Faith
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jose C Clemente
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephanie K Tankou
- Department of Neurology, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA.
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA.
| |
Collapse
|
24
|
Yaigoub H, Fath N, Tirichen H, Wu C, Li R, Li Y. Bidirectional crosstalk between dysbiotic gut microbiota and systemic lupus erythematosus: What is new in therapeutic approaches? Clin Immunol 2022; 244:109109. [PMID: 36087683 DOI: 10.1016/j.clim.2022.109109] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022]
Abstract
Systemic lupus erythematosus is an autoimmune disease characterized by chronic inflammation and multiple organs damage. Its pathogenesis is complex and involves multiple factors including gut microbiota. Accumulating evidence indicates the interaction of microbial communities with the host immune system to maintain a state of homeostasis. Imbalances within the gut microbial composition and function may contribute to the development of many autoimmune diseases including SLE. In this review, we aim to highlight the dysregulation of commensal bacteria and their metabolites in the gastrointestinal tract and the resulting autoimmune responses in lupus and to decrypt the cross-link between the altered gut microbiota and the immune system in the SLE condition. We also provide new insights into targeting gut microbiota as a promising therapeutic approach to treat and manage SLE.
Collapse
Affiliation(s)
- Hasnaa Yaigoub
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Nada Fath
- Comparative Anatomy Unit, Department of Biological and Pharmacological Veterinary Sciences, Hassan II Agronomy and Veterinary Medicine Institute, Rabat-Instituts, Rabat, Morocco
| | - Hasna Tirichen
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Rongshan Li
- Department of Nephrology, The Fifth Hospital (Shanxi Provincial People's Hospital) of Shanxi Medical University, Taiyuan, China; Shanxi Provincial Key Laboratory of Kidney Disease, Taiyuan, China
| | - Yafeng Li
- Department of Nephrology, The Fifth Hospital (Shanxi Provincial People's Hospital) of Shanxi Medical University, Taiyuan, China; Shanxi Provincial Key Laboratory of Kidney Disease, Taiyuan, China; Academy of Microbial Ecology, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
25
|
Menees KB, Otero BA, Tansey MG. Microbiome influences on neuro-immune interactions in neurodegenerative disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 167:25-57. [PMID: 36427957 DOI: 10.1016/bs.irn.2022.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Mounting evidence points to a role for the gut microbiome in a wide range of central nervous system diseases and disorders including depression, multiple sclerosis, Alzheimer's disease, Parkinson's disease, and autism spectrum disorder. Moreover, immune system involvement has also been implicated in these diseases, specifically with inflammation being central to their pathogenesis. In addition to the reported changes in gut microbiome composition and altered immune states in many neurological diseases, how the microbiome and the immune system interact to influence disease onset and progression has recently garnered much attention. This chapter provides a review of the literature related to gut microbiome influences on neuro-immune interactions with a particular focus on neurological diseases. Gut microbiome-derived mediators, including short-chain fatty acids and other metabolites, lipopolysaccharide, and neurotransmitters, and their impact on neuro-immune interactions as well as routes by which these interactions may occur are also discussed.
Collapse
Affiliation(s)
- Kelly B Menees
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Brittney A Otero
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Malú Gámez Tansey
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, United States; Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, United States.
| |
Collapse
|
26
|
Kapoor B, Gulati M, Rani P, Gupta R. Psoriasis: Interplay between dysbiosis and host immune system. Clin Exp Rheumatol 2022; 21:103169. [PMID: 35964945 DOI: 10.1016/j.autrev.2022.103169] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/07/2022] [Indexed: 11/30/2022]
Abstract
With advancement in human microbiome research, an increasing number of scientific evidences have endorsed the key role of both gut and skin microbiota in the pathogenesis of psoriasis. Microbiome dysbiosis, characterized by altered diversity and composition, as well as rise of pathobionts, have been identified as possible triggers for recurrent episodes of psoriasis. Mechanistically, gut dysbiosis leads to "leaky gut syndrome" via disruption of epithelial bilayer, thereby, resulting in translocation of bacteria and other endotoxins to systemic circulation, which in turn, results in inflammatory response. Similarly, skin dysbiosis disrupts the cutaneous homeostasis, leading to invasion of bacteria and other pathogens to deeper layers of skin or even systemic circulation further enhanced by injury caused by pruritus-induced scratching, and elicit innate and adaptive inflammation. The present review explores the correlation of both skin and gut microbiota dysbiosis with psoriasis. Also, the studies highlighting the potential of bacteriotherapeutic approaches including probiotics, prebiotics, metabiotics, and fecal microbiota transplantation for the management of psoriasis have been discussed.
Collapse
Affiliation(s)
- Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India.
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, NSW 2007, Australia.
| | - Pooja Rani
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Reena Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
27
|
Melatonin and multiple sclerosis: antioxidant, anti-inflammatory and immunomodulator mechanism of action. Inflammopharmacology 2022; 30:1569-1596. [PMID: 35665873 PMCID: PMC9167428 DOI: 10.1007/s10787-022-01011-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/13/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Melatonin is an indole hormone secreted primarily by the pineal gland that showing anti-oxidant, anti-inflammatory and anti-apoptotic capacity. It can play an important role in the pathophysiological mechanisms of various diseases. In this regard, different studies have shown that there is a relationship between Melatonin and Multiple Sclerosis (MS). MS is a chronic immune-mediated disease of the Central Nervous System. AIM The objective of this review was to evaluate the mechanisms of action of melatonin on oxidative stress, inflammation and intestinal dysbiosis caused by MS, as well as its interaction with different hormones and factors that can influence the pathophysiology of the disease. RESULTS Melatonin causes a significant increase in the levels of catalase, superoxide dismutase, glutathione peroxidase, glutathione and can counteract and inhibit the effects of the NLRP3 inflammasome, which would also be beneficial during SARS-CoV-2 infection. In addition, melatonin increases antimicrobial peptides, especially Reg3β, which could be useful in controlling the microbiota. CONCLUSION Melatonin could exert a beneficial effect in people suffering from MS, running as a promising candidate for the treatment of this disease. However, more research in human is needed to help understand the possible interaction between melatonin and certain sex hormones, such as estrogens, to know the potential therapeutic efficacy in both men and women.
Collapse
|
28
|
Doenyas C. Potential Role of Epigenetics and Redox Signaling in the Gut-Brain Communication and the Case of Autism Spectrum Disorder. Cell Mol Neurobiol 2021; 42:483-487. [PMID: 34773541 DOI: 10.1007/s10571-021-01167-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/01/2021] [Indexed: 12/11/2022]
Abstract
The gut-brain axis refers to the bidirectional connection and communication between the gastrointestinal tract and the central nervous system. This paper explores two routes for this communication that have hitherto remained under-examined: epigenetics and redox signaling and their implications for autism spectrum disorder (ASD). The gut microbiota may induce epigenetic changes in the gut and potentially in the brain through their fermentation products. Instead of through other conceptualizations of them acting as neurotransmitters, gut microbial products may act as epigenetic agents, which are supported by the effects of gut bacterial-derived metabolites on gene regulation and expression. In addition to their epigenetic effects, gut bacterial-derived communicative agents can also influence host signaling by contributing to and even substituting host reactive oxygen species (ROS) production. These ROS can act as second messengers and exert oxidative activity on proteins to influence immune, inflammatory, and other signaling processes. ROS and epigenetic mechanisms may have interactive effects as well. ROS, in addition to their role in signaling pathways and cellular redox alterations, also influence redox-sensitive transcription factors, thereby having an effect on gene expression. Specifically, ROS are involved in the activation of transcription factors, chromatin remodeling, and histone/protein deacetylation. These two proposed mechanisms correspond with the recent findings related to ASD, where a cofactor that is shown to be lower in ASD has antioxidative properties, responds to epigenetic modulation, and increases via microbiota interventions. The current evidence reviewed here suggests the need to update models of the gut-brain communication to include these two mechanisms. Such a modeling can also contribute to understanding the unknowns of host metabolism and physiology in ASD and afford potential therapeutic avenues for this as well as other psychiatric and physiological conditions.
Collapse
|
29
|
Advanced glycation end-products as potential triggering factors of self-reactivity against myelin antigens in Multiple Sclerosis. Med Hypotheses 2021; 157:110702. [PMID: 34666261 DOI: 10.1016/j.mehy.2021.110702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/08/2021] [Accepted: 09/28/2021] [Indexed: 11/20/2022]
Abstract
Multiple Sclerosis (MS) is a demyelinating autoimmune disease in which autoreactive T lymphocytes infiltrate the central nervous system (CNS) and react against antigens derived from proteins of the myelin sheath. The reason why T lymphocytes recognize certain myelin antigens as exogenous, activating the autoimmune response, remains unknown and represents the key to understand the pathogenesis of MS. Neurons are characterized by an elevated glycolytic metabolism. Methylglyoxal (MG) is a highly reactive α-oxoaldehyde spontaneously formed as a by-product of glycolysis, and it reacts with proteins, nucleotides and phospholipids forming stable adducts called advanced glycation end-products (AGEs). Several studies demonstrate that MG-derived AGEs accumulate in the plasma and brain of MS patients. Furthermore, there are evidences that post-myelinated oligodendrocytes, the myelin-forming glial cells, increase their glycolytic metabolism to maintain their survival and functions, likely explaining the progressive accumulation of MG in MS lesions. The hypothesis proposed here is that the MG-derived AGEs, accumulated on the proteins composing the myelin sheath, are responsible for the altered antigen presentation process, mimicking exogenous antigens and triggering the autoimmune response. If this hypothesis will be experimentally confirmed a new pathogenic mechanism of MS will be identified.
Collapse
|
30
|
Galluzzo P, Capri FC, Vecchioni L, Realmuto S, Scalisi L, Cottone S, Nuzzo D, Alduina R. Comparison of the Intestinal Microbiome of Italian Patients with Multiple Sclerosis and Their Household Relatives. Life (Basel) 2021; 11:life11070620. [PMID: 34206853 PMCID: PMC8307959 DOI: 10.3390/life11070620] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic immune-mediated disease of the central nervous system, caused by a combination of genetic and environmental factors. In recent years, a role in MS pathogenesis was assigned to the gut microbiota. However, different signatures of gut dysbiosis have been shown to depend on environmental factors, like diet and lifestyle. In this study, we compared the gut microbiome in MS patients and their household healthy relatives sharing lifestyle and environmental factors. Faecal metagenomic DNA was extracted and the V3–V4 regions of the conserved bacterial 16S ribosomal RNA gene were amplified and sequenced. While overall bacterial communities were similar, specific families differed between healthy and MS subjects. We observed an increase in Ruminococcaceae, Christensenellaceae, Desulfovibrionaceae, Clostridiales, and Family XIII in MS patients, while Bacteroidaceae, Tannerellaceae, Veillonellaceae, and Burkholderiaceae were more abundant in healthy controls. In addition, principle coordinate analysis showed that the gut microbiome of all MS patients formed a cluster being less diverse than the household relatives and that gut microbiota of MS patients with EDSS 4.5–7 formed a distinct cluster in respect to their controls. Overall, our study is consistent with the hypothesis that MS patients have gut microbial dysbiosis and evidenced the importance of environmental factors in shaping the gut microbiome.
Collapse
Affiliation(s)
- Paola Galluzzo
- Dipartimento Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Viale delle Scienze, University of Palermo, 90133 Palermo, Italy; (P.G.); (F.C.C.); (L.V.)
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Via G. Marinuzzi 3, 90129 Palermo, Italy
| | - Fanny Claire Capri
- Dipartimento Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Viale delle Scienze, University of Palermo, 90133 Palermo, Italy; (P.G.); (F.C.C.); (L.V.)
| | - Luca Vecchioni
- Dipartimento Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Viale delle Scienze, University of Palermo, 90133 Palermo, Italy; (P.G.); (F.C.C.); (L.V.)
| | - Sabrina Realmuto
- Centro Sclerosi Multipla, UOC Neurologia e Stroke Unit, AOOR Villa Sofia Cervello, 90146 Palermo, Italy;
| | - Luca Scalisi
- Centro Medico di Fisioterapia “Villa Sarina“, Via Porta Palermo 123, 91011 Alcamo, Italy;
| | - Salvatore Cottone
- U.O.C. Neurologia con Stroke Unit A.R.N.A.S. Civico, 90127 Palermo, Italy;
| | - Domenico Nuzzo
- Istituto per la Ricerca e l’Innovazione Biomedica, CNR, Via U. La Malfa 153, 90146 Palermo, Italy
- Correspondence: (D.N.); (R.A.); Tel.: +39-091-23897306 (R.A.)
| | - Rosa Alduina
- Dipartimento Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Viale delle Scienze, University of Palermo, 90133 Palermo, Italy; (P.G.); (F.C.C.); (L.V.)
- Correspondence: (D.N.); (R.A.); Tel.: +39-091-23897306 (R.A.)
| |
Collapse
|
31
|
Cox LM, Maghzi AH, Liu S, Tankou SK, Dhang FH, Willocq V, Song A, Wasén C, Tauhid S, Chu R, Anderson MC, De Jager PL, Polgar-Turcsanyi M, Healy BC, Glanz BI, Bakshi R, Chitnis T, Weiner HL. Gut Microbiome in Progressive Multiple Sclerosis. Ann Neurol 2021; 89:1195-1211. [PMID: 33876477 DOI: 10.1002/ana.26084] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 12/23/2022]
Abstract
OBJECTIVE This study was undertaken to investigate the gut microbiome in progressive multiple sclerosis (MS) and how it relates to clinical disease. METHODS We sequenced the microbiota from healthy controls and relapsing-remitting MS (RRMS) and progressive MS patients and correlated the levels of bacteria with clinical features of disease, including Expanded Disability Status Scale (EDSS), quality of life, and brain magnetic resonance imaging lesions/atrophy. We colonized mice with MS-derived Akkermansia and induced experimental autoimmune encephalomyelitis (EAE). RESULTS Microbiota β-diversity differed between MS patients and controls but did not differ between RRMS and progressive MS or differ based on disease-modifying therapies. Disease status had the greatest effect on the microbiome β-diversity, followed by body mass index, race, and sex. In both progressive MS and RRMS, we found increased Clostridium bolteae, Ruthenibacterium lactatiformans, and Akkermansia and decreased Blautia wexlerae, Dorea formicigenerans, and Erysipelotrichaceae CCMM. Unique to progressive MS, we found elevated Enterobacteriaceae and Clostridium g24 FCEY and decreased Blautia and Agathobaculum. Several Clostridium species were associated with higher EDSS and fatigue scores. Contrary to the view that elevated Akkermansia in MS has a detrimental role, we found that Akkermansia was linked to lower disability, suggesting a beneficial role. Consistent with this, we found that Akkermansia isolated from MS patients ameliorated EAE, which was linked to a reduction in RORγt+ and IL-17-producing γδ T cells. INTERPRETATION Whereas some microbiota alterations are shared in relapsing and progressive MS, we identified unique bacteria associated with progressive MS and clinical measures of disease. Furthermore, elevated Akkermansia in MS may be a compensatory beneficial response in the MS microbiome. ANN NEUROL 2021;89:1195-1211.
Collapse
Affiliation(s)
- Laura M Cox
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA
| | - Amir Hadi Maghzi
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA
| | - Shirong Liu
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA
| | | | - Fyonn H Dhang
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA
| | - Valerie Willocq
- Department of Neurology, Harvard Medical School, Harvard University Wyss Institute for Biologically Inspired Engineering, Boston, MA
| | - Anya Song
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA
| | - Caroline Wasén
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA
| | - Shahamat Tauhid
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA
| | - Renxin Chu
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA
| | - Mark C Anderson
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA
| | - Philip L De Jager
- Department of Neurology, Columbia University Medical Center, New York, NY
| | - Mariann Polgar-Turcsanyi
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA
| | - Brian C Healy
- Department of Neurology, Biostatistics Center, Massachusetts General Hospital, Brigham and Women's Hospital, Boston, MA
| | - Bonnie I Glanz
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA
| | - Rohit Bakshi
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA
| | - Tanuja Chitnis
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
32
|
Associations of serum short-chain fatty acids with circulating immune cells and serum biomarkers in patients with multiple sclerosis. Sci Rep 2021; 11:5244. [PMID: 33664396 PMCID: PMC7933417 DOI: 10.1038/s41598-021-84881-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
Altered composition of gut bacteria and changes to the production of their bioactive metabolites, the short-chain fatty acids (SCFAs), have been implicated in the development of multiple sclerosis (MS). However, the immunomodulatory actions of SCFAs and intermediaries in their ability to influence MS pathogenesis are uncertain. In this study, levels of serum SCFAs were correlated with immune cell abundance and phenotype as well as with other relevant serum factors in blood samples taken at first presentation of Clinically Isolated Syndrome (CIS; an early form of MS) or MS and compared to healthy controls. There was a small but significant reduction in propionate levels in the serum of patients with CIS or MS compared with healthy controls. The frequencies of circulating T follicular regulatory cells and T follicular helper cells were significantly positively correlated with serum levels of propionate. Levels of butyrate associated positively with frequencies of IL-10-producing B-cells and negatively with frequencies of class-switched memory B-cells. TNF production by polyclonally-activated B-cells correlated negatively with acetate levels. Levels of serum SCFAs associated with changes in circulating immune cells and biomarkers implicated in the development of MS.
Collapse
|
33
|
Mindur JE, Yadav SK, Ito N, Senoh M, Kato H, Dhib-Jalbut S, Ito K. Surface Layer Protein A Expressed in Clostridioides difficile DJNS06-36 Possesses an Encephalitogenic Mimotope of Myelin Basic Protein. Microorganisms 2020; 9:microorganisms9010034. [PMID: 33374217 PMCID: PMC7824458 DOI: 10.3390/microorganisms9010034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 12/29/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS). Recent studies suggest that migration of Th1 and Th17 cells specific for enteric bacteria from the gut to the CNS may lead to the initiation and/or exacerbation of autoimmune diseases including MS. Human leukocyte antigen (HLA)-DR15 is an MHC class II (MHCII) haplotype highly associated with the development of MS that contains the two HLA-DRB* genes, DRB1*1501 (DR2b) and DRB5*0101 (DR2a). To identify enteric bacteria which harbor antigenic epitopes that activate myelin-specific T cells and drive CNS inflammation, we screened for enteric bacteria which express cross-reactive epitopes ('mimotopes') of an immunodominant myelin basic protein 89-98 (MBP89-98) epitope. Based on known MHCII HLA-DR2a amino acid binding motifs and cultivation with splenic T cells isolated from MBP-T cell receptor (TCR)/DR2a transgenic (Tg) mice, we discovered that a certain variant of surface layer protein A (SLPA), which is expressed by a subtype of Clostridioides difficile, contains an amino acid sequence that activates MBP89-98-reactive T cells. Furthermore, activation of MBP-specific T cells by SLPA upon active immunization induced experimental autoimmune encephalomyelitis (EAE) in MBP-TCR/DR2a Tg mice. This study suggests that a unique strain of C. difficile possesses an encephalitogenic mimotope of MBP that activates autoreactive, myelin-specific T cells.
Collapse
Affiliation(s)
- John E. Mindur
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA; (J.E.M.); (S.K.Y.); (N.I.); (S.D.-J.)
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Sudhir K. Yadav
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA; (J.E.M.); (S.K.Y.); (N.I.); (S.D.-J.)
| | - Naoko Ito
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA; (J.E.M.); (S.K.Y.); (N.I.); (S.D.-J.)
| | - Mitsutoshi Senoh
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo 208-001, Japan; (M.S.); (H.K.)
| | - Haru Kato
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo 208-001, Japan; (M.S.); (H.K.)
| | - Suhayl Dhib-Jalbut
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA; (J.E.M.); (S.K.Y.); (N.I.); (S.D.-J.)
| | - Kouichi Ito
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA; (J.E.M.); (S.K.Y.); (N.I.); (S.D.-J.)
- Correspondence: ; Tel.: +1-732-235-5482
| |
Collapse
|