1
|
Koga T, Kawashiri SY, Nonaka F, Tsuji Y, Tamai M, Kawakami A. The COVID-19 Pandemic Heightens Interest in Cytokine Storm Disease and Advances in Machine Learning Diagnosis, Telemedicine, and Primordial Prevention of Rheumatic Diseases. Eur J Rheumatol 2024; 11:410-417. [PMID: 39651898 PMCID: PMC11639611 DOI: 10.5152/eurjrheum.2024.23059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 08/14/2024] [Indexed: 12/15/2024] Open
Abstract
Insights gained during the coronavirus disease 2019 pandemic has underscored the critical role played by both innate and adaptive immune responses in determining the severity of diseases. This newfound understanding holds significant potential to bring about a paradigm shift in the diagnosis, treatment, and management of autoimmune conditions. Advanced technologies that are emerging in the field are expected to play a pivotal role in this transformation. These include the utilization of multi-omics analysis to stratify disease states, the application of precision medicine through the integration of digital technologies, and the implementation of telemedicine to bridge existing regional disparities in healthcare provision. The objective of this descriptive review is to offer a detailed overview of reclassifying cytokine storm diseases, explore the use of machine learning methodologies in autoimmune diseases, and highlight the importance of incorporating telemedicine and innovative prevention strategies into the management of rheumatoid arthritis. Through this review, we aim to present the most recent research findings and expert insights, and discuss the future prospects and directions in these areas of research.
Collapse
Affiliation(s)
- Tomohiro Koga
- Division of Advanced Preventive Medical Sciences, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki, Japan
| | - Shin-Ya Kawashiri
- Division of Advanced Preventive Medical Sciences, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki, Japan
- Department of Community Medicine, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki, Japan
| | - Fumiaki Nonaka
- Department of Community Medicine, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki, Japan
| | - Yoshika Tsuji
- Division of Advanced Preventive Medical Sciences, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki, Japan
| | - Mami Tamai
- Division of Advanced Preventive Medical Sciences, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki, Japan
| | - Atsushi Kawakami
- Division of Advanced Preventive Medical Sciences, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki, Japan
| |
Collapse
|
2
|
Vargovic M, Papic N, Samadan L, Balen Topic M, Vince A. Association of Immune Semaphorins with COVID-19 Severity and Outcomes. Biomedicines 2023; 11:2786. [PMID: 37893159 PMCID: PMC10604420 DOI: 10.3390/biomedicines11102786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/08/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Semaphorins have recently been recognized as crucial modulators of immune responses. In the pathogenesis of COVID-19, the activation of immune responses is the key factor in the development of severe disease. This study aimed to determine the association of serum semaphorin concentrations with COVID-19 severity and outcomes. Serum semaphorin concentrations (SEMA3A, -3C, -3F, -4D, -7A) were measured in 80 hospitalized adult patients with COVID-19 (moderate (n = 24), severe (n = 32), critical, (n = 24)) and 40 healthy controls. While SEMA3C, SEMA3F and SEMA7A serum concentrations were significantly higher in patients with COVID-19, SEMA3A was significantly lower. Furthermore, SEMA3A and SEMA3C decreased with COVID-19 severity, while SEMA3F and SEMA7A increased. SEMA4D showed no correlation with disease severity. Serum semaphorin levels show better predictive values than CRP, IL-6 and LDH for differentiating critical from moderate/severe COVID-19. SEMA3F and SEMA7A serum concentrations were associated with the time to recovery, requirement of invasive mechanical ventilation, development of pulmonary thrombosis and nosocomial infections, as well as with in-hospital mortality. In conclusion, we provide the first evidence that SEMA3A, SEMA3C, SEMA3F and SEMA7A can be considered as new biomarkers of COVID-19 severity.
Collapse
Affiliation(s)
- Martina Vargovic
- Department for Infections in the Immunocompromised, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia;
| | - Neven Papic
- Department for Viral Hepatitis, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia;
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (L.S.); (M.B.T.)
| | - Lara Samadan
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (L.S.); (M.B.T.)
| | - Mirjana Balen Topic
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (L.S.); (M.B.T.)
- Department for Gastrointestinal Infections, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia
| | - Adriana Vince
- Department for Viral Hepatitis, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia;
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (L.S.); (M.B.T.)
| |
Collapse
|
3
|
Zhang L, Wang Z, Lyu F, Liu C, Li C, Liu W, Ma X, Zhou J, Qian X, Qian Z, Lu Y. Characterizing distinct profiles of immune and inflammatory response with age to Omicron infection. Front Immunol 2023; 14:1189482. [PMID: 37457688 PMCID: PMC10348361 DOI: 10.3389/fimmu.2023.1189482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Background Understanding inflammatory and immune responses to Omicron infection based on age is crucial when addressing this global health threat. However, the lacking of comprehensive elucidation hinders the development of distinct treatments tailored to different age populations. Methods 1299 cases of Omicron infection in Shanghai were enrolled between April 10, 2022 and June 3, 2022, dividing into three groups by ages: Adult group (18-59 years), Old group (60-79 years), and Elder group (≥ 80 years). Laboratory data including inflammatory cytokines, cellular, and humoral immunity were collected and analyzed. Results The mean age of Adult, Old, and Elder groups were 44.14, 69.98, and 89.35 years, respectively, with 40.9% being men. The Elder group patients exhibited higher white blood cell (WBC) counts and elevated levels of inflammatory cytokines, but their lymphocyte counts were relatively lower. In comparison to the Old group patients, the Elder group patients demonstrated significantly lower CD3+ T-cell counts, CD3+ T-cell proportion, CD4+ T-cell counts, CD8+ T-cell counts, and CD19+ B-cell counts, while the NK-cell counts were higher. Omicron negative patients displayed a higher proportion of CD19+ B-cells and higher levels of Complement-3 and IL-17 compared to the positive patients in the Old group. Omicron negative patients had lower WBC counts, CD3+CD8+ T-cells proportion, and the levels of serum amyloid A and IgA in the Elder group, but the CD4+/CD8+ ratio was higher. Conclusions Our study identified the distinct profiles of inflammatory and immune responses to Omicron infection varying with age and highlighted the diverse correlations between the levels of various biomarkers and Omicron infected/convalescent patients.
Collapse
Affiliation(s)
- Lina Zhang
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhanwen Wang
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Feng Lyu
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
| | - Chun Liu
- Respiratory and Critical Care Medicine Department, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chunhui Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Liu
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xinhua Ma
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jieyu Zhou
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
| | - Xinyu Qian
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
| | - Zhaoxin Qian
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong Lu
- Department of Radiology, Ruijin Hospital Luwan Branch, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
4
|
Zinellu A, Mangoni AA. A systematic review and meta-analysis of the association between the neutrophil, lymphocyte, and platelet count, neutrophil-to-lymphocyte ratio, and platelet-to-lymphocyte ratio and COVID-19 progression and mortality. Expert Rev Clin Immunol 2022; 18:1187-1202. [PMID: 36047369 DOI: 10.1080/1744666x.2022.2120472] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Severe manifestations of coronavirus disease 2019 (COVID-19) are associated with alterations in blood cells that regulate immunity, inflammation, and hemostasis. We conducted an updated systematic review and meta-analysis of the association between the neutrophil, lymphocyte, and platelet count, neutrophil-to-lymphocyte ratio (NLR), and platelet-to-lymphocyte ratio (PLR), and COVID-19 progression and mortality. METHODS A systematic literature search was conducted in PubMed, Web of Science, and Scopus for studies published between January 2020 and June 2022. RESULTS In 71 studies reporting the investigated parameters within 48 hours of admission, higher NLR (HR 1.21, 95% CI 1.16 to 1.27, p < 0.0001), relative neutrophilia (HR 1.62, 95% CI 1.46 to 1.80, p < 0.0001), relative lymphopenia (HR 1.62, 95% CI 1.27 to 2.08, p < 0.001), and relative thrombocytopenia (HR 1.74, 95% CI 1.36 to 2.22, p < 0.001), but not PLR (p = 0.11), were significantly associated with disease progression and mortality. Between-study heterogeneity was large-to-extreme. The magnitude and direction of the effect size were not modified in sensitivity analysis. CONCLUSIONS NLR and neutrophil, lymphocyte, and platelet count significantly discriminate COVID-19 patients with different progression and survival outcomes. (PROSPERO registration number: CRD42021267875).
Collapse
Affiliation(s)
- Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Arduino A Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, Australia.,Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, Australia
| |
Collapse
|
5
|
Bishop CR, Dumenil T, Rawle DJ, Le TT, Yan K, Tang B, Hartel G, Suhrbier A. Mouse models of COVID-19 recapitulate inflammatory pathways rather than gene expression. PLoS Pathog 2022; 18:e1010867. [PMID: 36155667 PMCID: PMC9536645 DOI: 10.1371/journal.ppat.1010867] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/06/2022] [Accepted: 09/08/2022] [Indexed: 11/19/2022] Open
Abstract
How well mouse models recapitulate the transcriptional profiles seen in humans remains debatable, with both conservation and diversity identified in various settings. Herein we use RNA-Seq data and bioinformatics approaches to analyze the transcriptional responses in SARS-CoV-2 infected lungs, comparing 4 human studies with the widely used K18-hACE2 mouse model, a model where hACE2 is expressed from the mouse ACE2 promoter, and a model that uses a mouse adapted virus and wild-type mice. Overlap of single copy orthologue differentially expressed genes (scoDEGs) between human and mouse studies was generally poor (≈15-35%). Rather than being associated with batch, sample treatment, viral load, lung damage or mouse model, the poor overlaps were primarily due to scoDEG expression differences between species. Importantly, analyses of immune signatures and inflammatory pathways illustrated highly significant concordances between species. As immunity and immunopathology are the focus of most studies, these mouse models can thus be viewed as representative and relevant models of COVID-19.
Collapse
Affiliation(s)
- Cameron R. Bishop
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Troy Dumenil
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Daniel J. Rawle
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Thuy T. Le
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Kexin Yan
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Bing Tang
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Gunter Hartel
- Statistics Unit, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Andreas Suhrbier
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Australian Infectious Disease Research Centre, GVN Center of Excellence, Brisbane, Queensland, Australia
| |
Collapse
|
6
|
Zhou HY, Yang N, Sui H, Du XN, Luo Q, Zhao YJ, Zhou YW, Guan Q, Zhou Y, Qian HJ, Liu L, Wang DP, Lin HL. WITHDRAWN: The Role of the Vascular Niche in Organ Fibrosis and COVID-19-Related Organ Damage and the Countermeasures adopted by Chinese and Western Medicine. PHARMACOLOGICAL RESEARCH - MODERN CHINESE MEDICINE 2022. [PMCID: PMC8960293 DOI: 10.1016/j.prmcm.2022.100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
This article has been withdrawn at
the request of the author(s) and/or editor. The Publisher apologizes for
any inconvenience this may cause. The full Elsevier Policy on Article
Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
|