1
|
Zhou Q, Liu X, Lu H, Li N, Meng J, Huang J, Zhang Z, Liu J, Fan W, Li W, Li X, Liu X, Zuo H, Yang P, Hou S. m6A-methylase METTL3 promotes retinal angiogenesis through modulation of metabolic reprogramming in RPE cells. J Neuroinflammation 2024; 21:289. [PMID: 39506758 PMCID: PMC11539582 DOI: 10.1186/s12974-024-03279-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
Retinal neovascularization (RNV) disease is one of the leading causes of blindness, yet the molecular underpinnings of this condition are not well understood. To delve into the critical aspects of cell-mediated angiogenesis, we analyzed our previously published single-cell data. Our analysis revealed that retinal pigment epithelium (RPE) cells serve a crucial promotional function in angiogenesis. RPE cells were regulated by N6-methyladenosine (m6A). Next, we detected several critical m6A methylase in hypoxic ARPE-19 cells and in oxygen-induced retinopathy (OIR) mice, our results revealed a significant decrease in the level of methyltransferase like 3 (METTL3). METTL3 specific inhibitor STM2457 intravitreal injection or METTL3 conditional knockout mice both showed a significantly reduced neovascularization area of retina. Additionally, the angiogenesis-related abilities of human retinal endothelial cells (HRECs) were diminished after co-cultured with ARPE-19 treated with STM2457 or sh-METTL3 in vitro. Furthermore, through the integration of Methylated RNA immunoprecipitation (MeRIP) sequencing and RNA sequencing, we discovered that the metabolic enzyme quinolinate phosphoribosyltransferase (QPRT) was directly modified by METTL3 and recognized by the YTH N6-methyladenosine RNA binding protein C1 (YTHDC1). Moreover, after over-expressing QPRT, the angiogenic abilities of HRECs were improved through the phosphorylated phosphatidylinositol-3-kinase (p-PI3K)/ phosphorylated threonine kinase (p-AKT) pathway. Collectively, our study provided a novel therapeutic target for retinal angiogenesis.
Collapse
Affiliation(s)
- Qian Zhou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, and Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, China
| | - Xianyang Liu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, and Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, China
- Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Huiping Lu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, and Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, China
| | - Na Li
- Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Jiayu Meng
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Jiaxing Huang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, and Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, China
| | - Zhi Zhang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, and Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, China
| | - Jiangyi Liu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, and Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, China
| | - Wei Fan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, and Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, China
| | - Wanqian Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, and Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, China
| | - Xingran Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, and Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, China
| | - Xiaoyan Liu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, and Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, China
| | - Hangjia Zuo
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, and Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, China
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, and Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, China.
| | - Shengping Hou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, and Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, China.
- Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| |
Collapse
|
2
|
Cao F, Liang K, Tang WW, Ni QY, Ji ZY, Zha CK, Wang YK, Jiang ZX, Hou S, Tao LM, Wang X. Polyvinylpyrrolidone-curcumin nanoparticles with immune regulatory and metabolism regulatory effects for the treatment of experimental autoimmune uveitis. J Control Release 2024; 372:551-570. [PMID: 38914206 DOI: 10.1016/j.jconrel.2024.06.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/30/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024]
Abstract
Uveitis comprises a cluster of intraocular inflammatory disorders characterized by uncontrolled autoimmune responses and excessive oxidative stress leading to vision loss worldwide. In the present study, curcumin (CUR) was conjugated with polyvinylpyrrolidone (PVP) to form PVP-CUR nanoparticles with significantly elevated solubility and outstanding multiple radical scavenging abilities. In vitro studies revealed that PVP-CUR nanoparticles markedly mitigated oxidative stress and reduced apoptosis in a H2O2-induced human retinal pigment epithelial cell line (ARPE-19) and promoted phenotypic polarization from M1 to M2 in an LPS-induced human microglial cell line (HMC3). Further in vivo studies demonstrated the prominent therapeutic effects of PVP-CUR nanoparticles on experimental autoimmune uveitis (EAU), which relieved clinical and pathological progression, improved perfusion and tomographic manifestations of retinal vessels, and reduced blood-retinal barrier (BRB) leakage; these effects may be mediated by mitigating oxidative stress and attenuating macrophage/microglia-elicited inflammation. Notably, treatment with PVP-CUR nanoparticles was shown to regulate metabolite alterations in EAU rats, providing novel insights into the underlying mechanisms involved. Additionally, the PVP-CUR nanoparticles showed great biocompatibility in vivo. In summary, our study revealed that PVP-CUR nanoparticles may serve as effective and safe nanodrugs for treating uveitis and other oxidative stress- and inflammation-related diseases.
Collapse
Affiliation(s)
- Fan Cao
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China; Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, Hefei 230032, PR China
| | - Kun Liang
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Wei-Wei Tang
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Qin-Yu Ni
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China; Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, Hefei 230032, PR China
| | - Zhi-Yu Ji
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China; Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, Hefei 230032, PR China
| | - Chen-Kai Zha
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, Hefei 230032, PR China
| | - Ya-Kun Wang
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Zheng-Xuan Jiang
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China.
| | - Shengping Hou
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, PR China.
| | - Li-Ming Tao
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China.
| | - Xianwen Wang
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China; School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei 230032, PR China.
| |
Collapse
|
3
|
Wu Y, Li X, Fu X, Huang X, Zhang S, Zhao N, Ma X, Saiding Q, Yang M, Tao W, Zhou X, Huang J. Innovative Nanotechnology in Drug Delivery Systems for Advanced Treatment of Posterior Segment Ocular Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403399. [PMID: 39031809 PMCID: PMC11348104 DOI: 10.1002/advs.202403399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/29/2024] [Indexed: 07/22/2024]
Abstract
Funduscopic diseases, including diabetic retinopathy (DR) and age-related macular degeneration (AMD), significantly impact global visual health, leading to impaired vision and irreversible blindness. Delivering drugs to the posterior segment of the eye remains a challenge due to the presence of multiple physiological and anatomical barriers. Conventional drug delivery methods often prove ineffective and may cause side effects. Nanomaterials, characterized by their small size, large surface area, tunable properties, and biocompatibility, enhance the permeability, stability, and targeting of drugs. Ocular nanomaterials encompass a wide range, including lipid nanomaterials, polymer nanomaterials, metal nanomaterials, carbon nanomaterials, quantum dot nanomaterials, and so on. These innovative materials, often combined with hydrogels and exosomes, are engineered to address multiple mechanisms, including macrophage polarization, reactive oxygen species (ROS) scavenging, and anti-vascular endothelial growth factor (VEGF). Compared to conventional modalities, nanomedicines achieve regulated and sustained delivery, reduced administration frequency, prolonged drug action, and minimized side effects. This study delves into the obstacles encountered in drug delivery to the posterior segment and highlights the progress facilitated by nanomedicine. Prospectively, these findings pave the way for next-generation ocular drug delivery systems and deeper clinical research, aiming to refine treatments, alleviate the burden on patients, and ultimately improve visual health globally.
Collapse
Affiliation(s)
- Yue Wu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye DiseasesChinese Academy of Medical SciencesShanghai200031China
- Shanghai Research Center of Ophthalmology and OptometryShanghai200031China
| | - Xin Li
- Wenzhou Medical UniversityWenzhouZhejiang325035China
| | - Xueyu Fu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye DiseasesChinese Academy of Medical SciencesShanghai200031China
- Shanghai Research Center of Ophthalmology and OptometryShanghai200031China
| | - Xiaomin Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye DiseasesChinese Academy of Medical SciencesShanghai200031China
- Shanghai Research Center of Ophthalmology and OptometryShanghai200031China
| | | | - Nan Zhao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye DiseasesChinese Academy of Medical SciencesShanghai200031China
- Shanghai Research Center of Ophthalmology and OptometryShanghai200031China
| | - Xiaowei Ma
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye DiseasesChinese Academy of Medical SciencesShanghai200031China
- Shanghai Research Center of Ophthalmology and OptometryShanghai200031China
| | - Qimanguli Saiding
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMA02115USA
| | - Mei Yang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye DiseasesChinese Academy of Medical SciencesShanghai200031China
- Shanghai Research Center of Ophthalmology and OptometryShanghai200031China
| | - Wei Tao
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMA02115USA
| | - Xingtao Zhou
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye DiseasesChinese Academy of Medical SciencesShanghai200031China
- Shanghai Research Center of Ophthalmology and OptometryShanghai200031China
| | - Jinhai Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye DiseasesChinese Academy of Medical SciencesShanghai200031China
- Shanghai Research Center of Ophthalmology and OptometryShanghai200031China
| |
Collapse
|
4
|
Ge Y, Chen R, Ling T, Liu B, Huang J, Cheng Y, Lin Y, Chen H, Xie X, Xia G, Luo G, Yuan S, Xu A. Elevated WTAP promotes hyperinflammation by increasing m6A modification in inflammatory disease models. J Clin Invest 2024; 134:e177932. [PMID: 39007267 PMCID: PMC11245160 DOI: 10.1172/jci177932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/15/2024] [Indexed: 07/16/2024] Open
Abstract
Emerging evidence has linked the dysregulation of N6-methyladenosine (m6A) modification to inflammation and inflammatory diseases, but the underlying mechanism still needs investigation. Here, we found that high levels of m6A modification in a variety of hyperinflammatory states are p65-dependent because Wilms tumor 1-associated protein (WTAP), a key component of the "writer" complex, is transcriptionally regulated by p65, and its overexpression can lead to increased levels of m6A modification. Mechanistically, upregulated WTAP is more prone to phase separation to facilitate the aggregation of the writer complex to nuclear speckles and the deposition of m6A marks on transcriptionally active inflammatory transcripts, thereby accelerating the proinflammatory response. Further, a myeloid deficiency in WTAP attenuates the severity of LPS-induced sepsis and DSS-induced IBD. Thus, the proinflammatory effect of WTAP is a general risk-increasing mechanism, and interrupting the assembly of the m6A writer complex to reduce the global m6A levels by targeting the phase separation of WTAP may be a potential and promising therapeutic strategy for alleviating hyperinflammation.
Collapse
Affiliation(s)
- Yong Ge
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Rong Chen
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Tao Ling
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Biaodi Liu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jingrong Huang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Youxiang Cheng
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Yi Lin
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Hongxuan Chen
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xiongmei Xie
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Guomeng Xia
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Guanzheng Luo
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Shaochun Yuan
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Anlong Xu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
5
|
Liu MH, Zhao NN, Yu WT, Qiu JG, Jiang BH, Zhang Y, Zhang CY. Construction of a label-free fluorescent biosensor for homogeneous detection of m 6A eraser FTO in breast cancer tissues. Talanta 2024; 272:125784. [PMID: 38364555 DOI: 10.1016/j.talanta.2024.125784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/24/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
Fat mass and obesity-associated protein (FTO) is a crucial eraser of RNA N6- methyladenosine (m6A) modification, and abnormal FTO expression level is implicated in pathogenesis of numerous cancers. Herein, we demonstrate the construction of a label-free fluorescent biosensor for homogeneous detection of m6A eraser FTO in breast cancer tissues. When FTO is present, it specifically erases the methyl group in m6A, inducing the cleavage of demethylated DNA by endonuclease DpnII and the generation of a single-stranded DNA (ssDNA) with a 3'-hydroxyl group. Subsequently, terminal deoxynucleotidyl transferase (TdT) promotes the incorporation of dTTPs into the ssDNA to obtain a long polythymidine (T) DNA sequence. The resultant long poly (T) DNA sequence can act as a template to trigger hyperbranched strand displacement amplification (HSDA), yielding numerous DNA fragments that may be stained by SYBR Gold to produce an enhanced fluorescence signal. This biosensor processes ultrahigh sensitivity with a detection limit of 1.65 × 10-10 mg/mL (2.6 fM), and it can detect the FTO activity in a single MCF-7 cell. Moreover, this biosensor can screen the FTO inhibitors, evaluate enzyme kinetic parameters, and discriminate the FTO expression levels in the tissues of breast cancer patients and healthy persons.
Collapse
Affiliation(s)
- Ming-Hao Liu
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China; College of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, 250200, China
| | - Ning-Ning Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Wan-Tong Yu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Jian-Ge Qiu
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Bing-Hua Jiang
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Yan Zhang
- College of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, 250200, China.
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
6
|
Xia Y, Chen K, Yang Q, Chen Z, Jin L, Zhang L, Yu X, Wang L, Xie C, Zhao Y, Shen Y, Tong J. Methylation in cornea and corneal diseases: a systematic review. Cell Death Discov 2024; 10:169. [PMID: 38589350 PMCID: PMC11002037 DOI: 10.1038/s41420-024-01935-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/10/2024] Open
Abstract
Corneal diseases are among the primary causes of blindness and vision loss worldwide. However, the pathogenesis of corneal diseases remains elusive, and diagnostic and therapeutic tools are limited. Thus, identifying new targets for the diagnosis and treatment of corneal diseases has gained great interest. Methylation, a type of epigenetic modification, modulates various cellular processes at both nucleic acid and protein levels. Growing evidence shows that methylation is a key regulator in the pathogenesis of corneal diseases, including inflammation, fibrosis, and neovascularization, making it an attractive potential therapeutic target. In this review, we discuss the major alterations of methylation and demethylation at the DNA, RNA, and protein levels in corneal diseases and how these dynamics contribute to the pathogenesis of corneal diseases. Also, we provide insights into identifying potential biomarkers of methylation that may improve the diagnosis and treatment of corneal diseases.
Collapse
Affiliation(s)
- Yutong Xia
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Kuangqi Chen
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Qianjie Yang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Zhitong Chen
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Le Jin
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Liyue Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Xin Yu
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Liyin Wang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Chen Xie
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Yuan Zhao
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Ye Shen
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China.
| | - Jianping Tong
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
7
|
Li X, Wang G, Wang X, Li W, Li N, Liu X, Fan W, He S, Han Y, Su G, Cao Q, Yang P, Hou S. OR11H1 Missense Variant Confers the Susceptibility to Vogt-Koyanagi-Harada Disease by Mediating Gadd45g Expression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306563. [PMID: 38168905 PMCID: PMC10953539 DOI: 10.1002/advs.202306563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/17/2023] [Indexed: 01/05/2024]
Abstract
Vogt-Koyanagi-Harada (VKH) disease is a severe autoimmune disease. Herein, whole-exome sequencing (WES) study are performed on 2,573 controls and 229 VKH patients with follow-up next-generation sequencing (NGS) in a collection of 2,380 controls and 2,278 VKH patients. A rare c.188T>C (p Val63Ala) variant in the olfactory receptor 11H1 (OR11H1) gene is found to be significantly associated with VKH disease (rs71235604, Pcombined = 7.83 × 10-30 , odds ratio = 3.12). Functional study showes that OR11H1-A63 significantly increased inflammatory factors production and exacerbated barrier function damage. Further studies using RNA-sequencing find that OR11H1-A63 markedly increased growth arrest and DNA-damage-inducible gamma (GADD45G) expression. Moreover, OR11H1-A63 activates the MAPK and NF-κB pathways, and accelerates inflammatory cascades. In addition, inhibiting GADD45G alleviates inflammatory factor secretion, likely due to the regulatory effect of GADD45G on the MAPK and NF-κB pathways. Collectively, this study suggests that the OR11H1-A63 missense mutation may increase susceptibility to VKH disease in a GADD45G-dependent manner.
Collapse
Affiliation(s)
- Xingran Li
- Chongqing Branch of National Clinical Research Center for Ocular Diseases; Chongqing Key Laboratory of Ophthalmology; Chongqing Eye InstituteThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400042China
| | - Guoqing Wang
- Chongqing Branch of National Clinical Research Center for Ocular Diseases; Chongqing Key Laboratory of Ophthalmology; Chongqing Eye InstituteThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400042China
| | - Xiaotang Wang
- Chongqing Branch of National Clinical Research Center for Ocular Diseases; Chongqing Key Laboratory of Ophthalmology; Chongqing Eye InstituteThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400042China
| | - Wanqian Li
- Chongqing Branch of National Clinical Research Center for Ocular Diseases; Chongqing Key Laboratory of Ophthalmology; Chongqing Eye InstituteThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400042China
| | - Na Li
- Department of Laboratory MedicineBeijing Tongren Hospital, Capital Medical UniversityBeijing100005China
| | - Xianyang Liu
- Chongqing Branch of National Clinical Research Center for Ocular Diseases; Chongqing Key Laboratory of Ophthalmology; Chongqing Eye InstituteThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400042China
| | - Wei Fan
- Chongqing Branch of National Clinical Research Center for Ocular Diseases; Chongqing Key Laboratory of Ophthalmology; Chongqing Eye InstituteThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400042China
| | - Siyuan He
- Chongqing Branch of National Clinical Research Center for Ocular Diseases; Chongqing Key Laboratory of Ophthalmology; Chongqing Eye InstituteThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400042China
| | - Yue Han
- Beijing Novogene Bioinformatics Technology Co.,LtdBeijing100600China
| | - Guannan Su
- Chongqing Branch of National Clinical Research Center for Ocular Diseases; Chongqing Key Laboratory of Ophthalmology; Chongqing Eye InstituteThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400042China
| | - Qingfeng Cao
- Chongqing Branch of National Clinical Research Center for Ocular Diseases; Chongqing Key Laboratory of Ophthalmology; Chongqing Eye InstituteThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400042China
| | - Peizeng Yang
- Chongqing Branch of National Clinical Research Center for Ocular Diseases; Chongqing Key Laboratory of Ophthalmology; Chongqing Eye InstituteThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400042China
| | - Shengping Hou
- Chongqing Branch of National Clinical Research Center for Ocular Diseases; Chongqing Key Laboratory of Ophthalmology; Chongqing Eye InstituteThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400042China
- Beijing Institute of OphthalmologyBeijing Tongren Eye CenterBeijing Ophthalmology & Visual Sciences Key LaboratoryBeijing Tongren HospitalCapital Medical UniversityBeijing100730China
| |
Collapse
|
8
|
Chen X, Wang Y, Wang JN, Zhang YC, Zhang YR, Sun RX, Qin B, Dai YX, Zhu HJ, Zhao JX, Zhang WW, Ji JD, Yuan ST, Shen QD, Liu QH. Lactylation-driven FTO targets CDK2 to aggravate microvascular anomalies in diabetic retinopathy. EMBO Mol Med 2024; 16:294-318. [PMID: 38297099 PMCID: PMC10897304 DOI: 10.1038/s44321-024-00025-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 12/10/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024] Open
Abstract
Diabetic retinopathy (DR) is a leading cause of irreversible vision loss in working-age populations. Fat mass and obesity-associated protein (FTO) is an N6-methyladenosine (m6A) demethylase that demethylates RNAs involved in energy homeostasis, though its influence on DR is not well studied. Herein, we detected elevated FTO expression in vitreous fibrovascular membranes of patients with proliferative DR. FTO promoted cell cycle progression and tip cell formation of endothelial cells (ECs) to facilitate angiogenesis in vitro, in mice, and in zebrafish. FTO also regulated EC-pericyte crosstalk to trigger diabetic microvascular leakage, and mediated EC-microglia interactions to induce retinal inflammation and neurodegeneration in vivo and in vitro. Mechanistically, FTO affected EC features via modulating CDK2 mRNA stability in an m6A-YTHDF2-dependent manner. FTO up-regulation under diabetic conditions was driven by lactate-mediated histone lactylation. FB23-2, an inhibitor to FTO's m6A demethylase activity, suppressed angiogenic phenotypes in vitro. To allow for systemic administration, we developed a nanoplatform encapsulating FB23-2 and confirmed its targeting and therapeutic efficiency in mice. Collectively, our study demonstrates that FTO is important for EC function and retinal homeostasis in DR, and warrants further investigation as a therapeutic target for DR patients.
Collapse
Affiliation(s)
- Xue Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China.
| | - Ying Wang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Jia-Nan Wang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yi-Chen Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Ye-Ran Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Ru-Xu Sun
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Bing Qin
- Department of Ophthalmology, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, China
| | - Yuan-Xin Dai
- Department of Polymer Science and Engineering and Key Laboratory of High-Performance Polymer Materials and Technology of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Hong-Jing Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Jin-Xiang Zhao
- Department of Ophthalmology, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, China
| | - Wei-Wei Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Jiang-Dong Ji
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Song-Tao Yuan
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Qun-Dong Shen
- Department of Polymer Science and Engineering and Key Laboratory of High-Performance Polymer Materials and Technology of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Qing-Huai Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
9
|
Li B, Wang Z, Zhou H, Zou J, Yoshida S, Zhou Y. N6-methyladenosine methylation in ophthalmic diseases: From mechanisms to potential applications. Heliyon 2024; 10:e23668. [PMID: 38192819 PMCID: PMC10772099 DOI: 10.1016/j.heliyon.2023.e23668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/23/2023] [Accepted: 12/09/2023] [Indexed: 01/10/2024] Open
Abstract
N6-methyladenosine (m6A) modification, as the most common modification method in eukaryotes, is widely involved in numerous physiological and pathological processes, such as embryonic development, malignancy, immune regulation, and premature aging. Under pathological conditions of ocular diseases, changes in m6A modification and its metabolism can be detected in aqueous and vitreous humor. At the same time, an increasing number of studies showed that m6A modification is involved in the normal development of eye structures and the occurrence and progress of many ophthalmic diseases, especially ocular neovascular diseases, such as diabetic retinopathy, age-related macular degeneration, and melanoma. In this review, we summarized the latest progress regarding m6A modification in ophthalmic diseases, changes in m6A modification-related enzymes in various pathological states and their upstream and downstream regulatory networks, provided new prospects for m6A modification in ophthalmic diseases and new ideas for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Zicong Wang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Haixiang Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jingling Zou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|
10
|
Huang Y, Xue Q, Chang J, Wang Y, Cheng C, Xu S, Wang X, Miao C. M6A methylation modification in autoimmune diseases, a promising treatment strategy based on epigenetics. Arthritis Res Ther 2023; 25:189. [PMID: 37784134 PMCID: PMC10544321 DOI: 10.1186/s13075-023-03149-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/24/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) methylation modification is involved in the regulation of various biological processes, including inflammation, antitumor, and antiviral immunity. However, the role of m6A modification in the pathogenesis of autoimmune diseases has been rarely reported. METHODS Based on a description of m6A modification and the corresponding research methods, this review systematically summarizes current insights into the mechanism of m6A methylation modification in autoimmune diseases, especially its contribution to rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). RESULTS By regulating different biological processes, m6A methylation is involved in the pathogenesis of autoimmune diseases and provides a promising biomarker for the diagnosis and treatment of such diseases. Notably, m6A methylation modification is involved in regulating a variety of immune cells and mitochondrial energy metabolism. In addition, m6A methylation modification plays a role in the pathological processes of RA, and m6A methylation-related genes can be used as potential targets in RA therapy. CONCLUSIONS M6A methylation modification plays an important role in autoimmune pathological processes such as RA and SLE and represents a promising new target for clinical diagnosis and treatment, providing new ideas for the treatment of autoimmune diseases by targeting m6A modification-related pathways.
Collapse
Affiliation(s)
- Yurong Huang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 1 Qianjiang Road, Xinzhan District, Hefei, 230012, Anhui Province, China
| | - Qiuyun Xue
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 1 Qianjiang Road, Xinzhan District, Hefei, 230012, Anhui Province, China
| | - Jun Chang
- Department of Orthopaedics, the First Affiliated Hospital, Anhui Medical University, Hefei, 230032, China.
- Anhui Public Health Clinical Center, Hefei, China.
| | - Yuting Wang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 1 Qianjiang Road, Xinzhan District, Hefei, 230012, Anhui Province, China
| | - Chenglong Cheng
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 1 Qianjiang Road, Xinzhan District, Hefei, 230012, Anhui Province, China
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230027, China
| | - Xiao Wang
- Department of Clinical Nursing, School of Nursing, Anhui University of Chinese Medicine, Hefei, China.
| | - Chenggui Miao
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 1 Qianjiang Road, Xinzhan District, Hefei, 230012, Anhui Province, China.
| |
Collapse
|
11
|
Liu T, Wen Z, Shao L, Cui Y, Tang X, Miao H, Shi J, Jiang L, Feng S, Zhao Y, Zhang H, Liang Q, Chen D, Zhang Y, Wang C. ATF4 knockdown in macrophage impairs glycolysis and mediates immune tolerance by targeting HK2 and HIF-1α ubiquitination in sepsis. Clin Immunol 2023; 254:109698. [PMID: 37481013 DOI: 10.1016/j.clim.2023.109698] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/30/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
Strengthened glycolysis is crucial for the macrophage pro-inflammatory response during sepsis. Activating transcription factor 4 (ATF4) plays an important role in regulating glucose and lipid metabolic homeostasis in hepatocytes and adipocytes. However, its immunometabolic role in macrophage during sepsis remains largely unknown. In the present study, we found that the expression of ATF4 in peripheral blood mononuclear cells (PBMCs) was increased and associated with glucose metabolism in septic patients. Atf4 knockdown specifically decreased LPS-induced spleen macrophages and serum pro-inflammatory cytokines levels in mice. Moreover, Atf4 knockdown partially blocked LPS-induced pro-inflammatory cytokines, lactate accumulation and glycolytic capacity in RAW264.7. Mechanically, ATF4 binds to the promoter region of hexokinase II (HK2), and interacts with hypoxia inducible factor-1α (HIF-1α) and stabilizes HIF-1α through ubiquitination modification in response to LPS. Furthermore, ATF4-HIF-1α-HK2-glycolysis axis launches pro-inflammatory response in macrophage depending on the activation of mammalian target of rapamycin (mTOR). Importantly, Atf4 overexpression improves the decreased level of pro-inflammatory cytokines and lactate secretion and HK2 expression in LPS-induced tolerant macrophages. In conclusion, we propose a novel function of ATF4 as a crucial glycolytic activator contributing to pro-inflammatory response and improving immune tolerant in macrophage involved in sepsis. So, ATF4 could be a potential new target for immunotherapy of sepsis.
Collapse
Affiliation(s)
- Tiantian Liu
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China; Laboratory of Critical Care Translational Medicine, Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China
| | - Zhenliang Wen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Lujing Shao
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China; Laboratory of Critical Care Translational Medicine, Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China
| | - Yun Cui
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China; Laboratory of Critical Care Translational Medicine, Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China; Institute of Pediatric Critical Care, Shanghai Jiao Tong University, 200062, Shanghai, China
| | - Xiaomeng Tang
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China; Laboratory of Critical Care Translational Medicine, Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China
| | - Huijie Miao
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China; Laboratory of Critical Care Translational Medicine, Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China; Institute of Pediatric Critical Care, Shanghai Jiao Tong University, 200062, Shanghai, China
| | - Jingyi Shi
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China; Laboratory of Critical Care Translational Medicine, Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China; Institute of Pediatric Critical Care, Shanghai Jiao Tong University, 200062, Shanghai, China
| | - Linlin Jiang
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
| | - Shuyun Feng
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China; Laboratory of Critical Care Translational Medicine, Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China
| | - Yilin Zhao
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China; Laboratory of Critical Care Translational Medicine, Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China
| | - Hong Zhang
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
| | - Qiming Liang
- Research Center of Translational Medicine, Shanghai Institute of Immunology, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dechang Chen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China..
| | - Yucai Zhang
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China; Laboratory of Critical Care Translational Medicine, Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China; Institute of Pediatric Critical Care, Shanghai Jiao Tong University, 200062, Shanghai, China.
| | - Chunxia Wang
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China; Laboratory of Critical Care Translational Medicine, Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China; Institute of Pediatric Critical Care, Shanghai Jiao Tong University, 200062, Shanghai, China.
| |
Collapse
|
12
|
Zhu X, Zhou C, Zhao S, Zheng Z. Role of m6A methylation in retinal diseases. Exp Eye Res 2023; 231:109489. [PMID: 37084873 DOI: 10.1016/j.exer.2023.109489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 03/06/2023] [Accepted: 04/19/2023] [Indexed: 04/23/2023]
Abstract
Retinal diseases remain among the leading causes of visual impairment in developed countries, despite great efforts in prevention and early intervention. Due to the limited efficacy of current retinal therapies, novel therapeutic methods are urgently required. Over the past two decades, advances in next-generation sequencing technology have facilitated research on RNA modifications, which can elucidate the relevance of epigenetic mechanisms to disease. N6-methyladenosine (m6A), formed by methylation of adenosine at the N6-position, is the most widely studied RNA modification and plays an important role in RNA metabolism. It is dynamically regulated by writers (methyltransferases) and erasers (demethylases), and recognized by readers (m6A binding proteins). Although the discovery of m6A methylation can be traced back to the 1970s, its regulatory roles in retinal diseases are rarely appreciated. Here, we provide an overview of m6A methylation, and discuss its effects and possible mechanisms on retinal diseases, including diabetic retinopathy, age-related macular degeneration, retinoblastoma, retinitis pigmentosa, and proliferative vitreoretinopathy. Furthermore, we highlight potential agents targeting m6A methylation for retinal disease treatment and discuss the limitations and challenges of research in the field of m6A methylation.
Collapse
Affiliation(s)
- Xinyu Zhu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Chuandi Zhou
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Shuzhi Zhao
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China.
| | - Zhi Zheng
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China.
| |
Collapse
|
13
|
Hu Y, Chen J, Wang Y, Sun J, Huang P, Feng J, Liu T, Sun X. Fat mass and obesity-associated protein alleviates Aβ 1-40 induced retinal pigment epithelial cells degeneration via PKA/CREB signaling pathway. Cell Biol Int 2023; 47:584-597. [PMID: 36378581 DOI: 10.1002/cbin.11959] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 10/19/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022]
Abstract
Amyloid-β (Aβ) is thought to be a critical pathologic factor of retinal pigment epithelium (RPE) degeneration in age-related macular degeneration (AMD). Aβ induces inflammatory responses in RPE cells and recent studies demonstrate the N6-methyladenosine (m6A) regulatory role in RPE cell inflammation. m6A is a reversible epigenetic posttranslational modification, but its relationship with Aβ-induced RPE degeneration is yet to be thoroughly investigated. The present study explored the role and mechanism of m6A in Aβ-induced RPE degeneration model. This model was induced via intravitreally injecting oligomeric Aβ and the morphology of its retina was analyzed. One of m6A demethylases, the fat mass and obesity-associated (FTO) gene expression, was assessed. An m6A-messenger RNA (mRNA) epitranscriptomic microarray was employed for further bioinformatic analyses. It was confirmed that Aβ induced FTO upregulation within the RPE. Hypopigmentation alterations and structural disorganization were observed in Aβ-treated eyes, and inhibition of FTO exacerbated retinal degeneration and RPE impairment. Moreover, the m6A-mRNA epitranscriptomic microarray suggested that protein kinase A (PKA) was a target of FTO, and the PKA/cyclic AMP-responsive element binding (CREB) signaling pathway was involved in Aβ-induced RPE degeneration. m6A-RNA binding protein immunoprecipitation confirmed that FTO demethylated PKA within the RPE cells of Aβ-treated eyes. Altered expression of PKA and its downstream targets (CREB and brain-derived neurotrophic factor) was confirmed by quantitative reverse-transcription polymerase chain reaction and Western blot analyses. Hence, this study's findings shed light on FTO-mediated m6A modification in Aβ-induced RPE degeneration and indicate potential therapeutic targets for AMD.
Collapse
Affiliation(s)
- Yifan Hu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), National Clinical Research Center for Ophthalmic Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Department of Ophthalmology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, and Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| | - Jieqiong Chen
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), National Clinical Research Center for Ophthalmic Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Yuwei Wang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), National Clinical Research Center for Ophthalmic Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Department of Ophthalmology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junran Sun
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), National Clinical Research Center for Ophthalmic Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Peirong Huang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), National Clinical Research Center for Ophthalmic Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Jingyang Feng
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), National Clinical Research Center for Ophthalmic Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Te Liu
- Central Laboratory, Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), National Clinical Research Center for Ophthalmic Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Department of Ophthalmology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Du Y, Yan B. Ocular immune privilege and retinal pigment epithelial cells. J Leukoc Biol 2023; 113:288-304. [PMID: 36805720 DOI: 10.1093/jleuko/qiac016] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Indexed: 02/04/2023] Open
Abstract
The ocular tissue microenvironment is immune-privileged and uses multiple immunosuppressive mechanisms to prevent the induction of inflammation. The retinal pigment epithelium plays an essential role in ocular immune privilege. In addition to serving as a blood barrier separating the fenestrated choriocapillaris from the retina, the retinal pigment epithelium is a source of immunosuppressive cytokines and membrane-bound negative regulators that modulate the activity of immune cells within the retina. This article reviews the current understanding of how retinal pigment epithelium cells mediate immune regulation, focusing on the changes under pathologic conditions.
Collapse
Affiliation(s)
- Yuxiang Du
- Institute of Precision Medicine, Jining Medical University, No. 133, Hehua Road, Taibaihu New District, Jining, Shandong 272067, People's Republic of China
| | - Bo Yan
- Institute of Precision Medicine, Jining Medical University, No. 133, Hehua Road, Taibaihu New District, Jining, Shandong 272067, People's Republic of China
| |
Collapse
|
15
|
m6A Modification-Association with Oxidative Stress and Implications on Eye Diseases. Antioxidants (Basel) 2023; 12:antiox12020510. [PMID: 36830067 PMCID: PMC9952187 DOI: 10.3390/antiox12020510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Oxidative stress (OS) refers to a state of imbalance between oxidation and antioxidation. OS is considered to be an important factor leading to aging and a range of diseases. The eyes are highly oxygen-consuming organs. Due to its continuous exposure to ultraviolet light, the eye is particularly vulnerable to the impact of OS, leading to eye diseases such as corneal disease, cataracts, glaucoma, etc. The N6-methyladenosine (m6A) modification is the most investigated RNA post-transcriptional modification and participates in a variety of cellular biological processes. In this study, we review the role of m6A modification in oxidative stress-induced eye diseases and some therapeutic methods to provide a relatively overall understanding of m6A modification in oxidative stress-related eye diseases.
Collapse
|
16
|
Li W, Tan J, He S, Yue Y, Liu H, Li R, Wang X, Wang G, Fan W, Zhao C, Zhou Q, Yang P, Hou S. iPSC-based model of Vogt-Koyanagi-Harada disease for phenotype recapitulation and drug screening. Clin Immunol 2023; 246:109205. [PMID: 36509389 DOI: 10.1016/j.clim.2022.109205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/10/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022]
Abstract
Vogt-Koyanagi-Harada (VKH) disease, a major blinding eye disease, is characterized by an autoimmune response against melanocytes in multiple organs throughout the body. Currently, the aetiology and pathogenesis of VKH disease are unclear, and the treatment strategy needs to be further optimized. The retinal pigment epithelium (RPE), a monolayer of pigmented cells of the fundus, is essential for maintaining normal visual function and is involved in both the acute and chronic stages of VKH disease. Therefore, the functions of the RPE may play a critical role in the aetiology and treatment of VKH disease. Herein, we established a human induced pluripotent stem cell (hiPSC) RPE model of VKH disease by reprogramming peripheral blood mononuclear cells (PBMCs) into iPSCs and then differentiating them into RPE cells. Patient-derived RPE cells exhibited barrier disruption, impaired phagocytosis, and depigmentation compared with those from normal controls, which was consistent with the features of VKH disease. Furthermore, a small molecular compound targeting EGR2 was found to rescue the barrier and phagocytic functions of the hiPSC-RPE cells through high-throughput virtual screening and functional studies, suggesting a promising strategy for the treatment of VKH disease.
Collapse
Affiliation(s)
- Wanqian Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Ophthalmology, Chongqing, China; Chongqing Eye Institute, Chongqing, China; Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Jun Tan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Ophthalmology, Chongqing, China; Chongqing Eye Institute, Chongqing, China; Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Siyuan He
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Ophthalmology, Chongqing, China; Chongqing Eye Institute, Chongqing, China; Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Yingying Yue
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Ophthalmology, Chongqing, China; Chongqing Eye Institute, Chongqing, China; Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Huan Liu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Ophthalmology, Chongqing, China; Chongqing Eye Institute, Chongqing, China; Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Ruonan Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Ophthalmology, Chongqing, China; Chongqing Eye Institute, Chongqing, China; Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Xiaotang Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Ophthalmology, Chongqing, China; Chongqing Eye Institute, Chongqing, China; Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Guoqing Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Ophthalmology, Chongqing, China; Chongqing Eye Institute, Chongqing, China; Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Wei Fan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Ophthalmology, Chongqing, China; Chongqing Eye Institute, Chongqing, China; Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Chenyang Zhao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Ophthalmology, Chongqing, China; Chongqing Eye Institute, Chongqing, China; Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Qian Zhou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Ophthalmology, Chongqing, China; Chongqing Eye Institute, Chongqing, China; Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Ophthalmology, Chongqing, China; Chongqing Eye Institute, Chongqing, China; Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China..
| | - Shengping Hou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Ophthalmology, Chongqing, China; Chongqing Eye Institute, Chongqing, China; Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China..
| |
Collapse
|
17
|
Meng J, Li N, Liu X, Qiao S, Zhou Q, Tan J, Zhang T, Dong Z, Qi X, Kijlstra A, Mao L, Yang P, Hou S. NLRP3 Attenuates Intraocular Inflammation by Inhibiting AIM2-Mediated Pyroptosis Through the Phosphorylated Salt-Inducible Kinase 1/Sterol Regulatory Element Binding Transcription Factor 1 Pathway. Arthritis Rheumatol 2022; 75:842-855. [PMID: 36529965 DOI: 10.1002/art.42420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 10/26/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVE The NLRP3 inflammasome has been shown to be involved in the development of uveitis, but the exact mechanism remains elusive. This study was undertaken to explore the role of NLRP3 in the development of uveitis. METHODS First, Nlrp3-deficient mice were used to study the role of NLRP3 in experimental autoimmune diseases, such as experimental autoimmune uveitis (EAU) and experimental autoimmune encephalomyelitis (EAE). Next, the gathering of ASC, activation of caspase 1 and gasdermin D, and secretion of lactate dehydrogenase and interleukin-1β were detected to confirm macrophage pyroptosis and AIM2 activation in the Nlrp3-/- mice. Additionally, RNA sequencing and chromatin immunoprecipitation-polymerase chain reaction were used to investigate the phosphorylated salt-inducible kinase 1 (p-SIK1)/sterol regulatory element binding transcription factor 1 (SREBF1) pathway, which regulates the transcription of Aim2. Finally, overexpression of Nlrp3 was applied to treat EAU. RESULTS Surprisingly, our findings show that NLRP3 plays an antiinflammatory role in 2 models of EAU and EAE. Additionally, macrophages show an increased M1 activation and pyroptosis in Nlrp3-/- mice. Further experiments indicate that this pyroptosis of macrophages was mediated by the up-regulated transcription of Aim2 as a result of Nlrp3 deficiency. In mechanistic studies, Nlrp3 deficiency was implicated in the down-regulation of p-SIK1 and subsequently the up-regulation of SREBF1, which binds to Aim2 and then promotes the latter's transcription. Finally, Aim2 deficiency, RNA silencing of Aim2 or Srebf1, and overexpression of Nlrp3 resulted in attenuated inflammation of EAU. CONCLUSION Our data demonstrate that NLRP3 inhibits AIM2 inflammasome-mediated EAU by regulating the p-SIK1/SREBF1 pathway, highlighting the therapeutic potential of targeting Nlrp3.
Collapse
Affiliation(s)
- Jiayu Meng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, and Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Na Li
- College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Xianyang Liu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, and Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Shengjun Qiao
- Key Laboratory for Experimental Teratology of the Ministry of Education, Qilu Hospital, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Shandong, China
| | - Qian Zhou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, and Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Jun Tan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, and Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Ting Zhang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, China
| | - Zhifang Dong
- The Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, China
| | - Xiaopeng Qi
- Key Laboratory for Experimental Teratology of the Ministry of Education, Qilu Hospital, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Shandong, China
| | - Aize Kijlstra
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, China
| | - Liming Mao
- Department of Immunology, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, and Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Shengping Hou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, and Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| |
Collapse
|
18
|
FTO-mediated m6A modification alleviates autoimmune uveitis by regulating microglia phenotypes via the GPC4/TLR4/NF-κB signaling axis. Genes Dis 2022. [PMID: 37492748 PMCID: PMC10363593 DOI: 10.1016/j.gendis.2022.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Uveitis, a vision-threatening inflammatory disease worldwide, is closely related to resident microglia. Retinal microglia are the main immune effector cells with strong plasticity, but their role in uveitis remains unclear. N6-methyladenosine (m6A) modification has been proven to be involved in the immune response. Therefore, we in this work aimed to identify the potentially crucial m6A regulators of microglia in uveitis. Through the single-cell sequencing (scRNA-seq) analysis and experimental verification, we found a significant decrease in the expression of fat mass and obesity-associated protein (FTO) in retinal microglia of uveitis mice and human microglia clone 3 (HMC3) cells with inflammation. Additionally, FTO knockdown was found to aggravate the secretion of inflammatory factors and the mobility/chemotaxis of microglia. Mechanistically, the RNA-seq data and rescue experiments showed that glypican 4 (GPC4) was the target of FTO, which regulated microglial inflammation mediated by the TLR4/NF-κB pathway. Moreover, RNA stability assays indicated that GPC4 upregulation was mainly regulated by the downregulation of the m6A "reader" YTH domain family protein 3 (YTHDF3). Finally, the FTO inhibitor FB23-2 further exacerbated experimental autoimmune uveitis (EAU) inflammation by promoting the GPC4/TLR4/NF-κB signaling axis, and this could be attenuated by the TLR4 inhibitor TAK-242. Collectively, a decreased FTO could facilitate microglial inflammation in EAU, suggesting that the restoration or activation of FTO function may be a potential therapeutic strategy for uveitis.
Collapse
|