1
|
Ivanova I, Svilenska T, Maisch T, Karrer S, Niebel D, Berneburg M, Kurz B. The role of UV-induced cutaneous matrix metalloproteinases and mi-RNAs in the pathogenesis of lupus erythematosus. J Transl Autoimmun 2025; 10:100265. [PMID: 39835284 PMCID: PMC11743922 DOI: 10.1016/j.jtauto.2024.100265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/22/2025] Open
Abstract
Cutaneous (CLE) and systemic lupus erythematosus (SLE) are autoimmune diseases with a multifactorial pathogenesis. Ultraviolet radiation (UVR) is the most important trigger of CLE; however, the degree of photosensitivity varies between the clinical subtypes. The expression of matrix metalloproteinases (MMPs)-important enzymes involved in skin turnover and homeostasis-is modulated by UVR. To investigate the causality of the clinically observed effects of UVR, sun-exposed lesional skin samples from patients with different subtypes of lupus erythematosus (LE) were examined by immunohistochemistry for the expression of MMP1 and MMP28 and compared with biopsies from polymorphous light eruption (PLE) and healthy skin (HS). The expression of micro-RNAs (miR-31 and miR-150)-regulators of MMP expression and cellular metabolism-in the samples was determined by in-situ hybridization and correlated with the expression of the glucose transporter 1 (GLUT1) receptor to examine potential metabolic regulation. To assess potential UVR regulation of MMP28, we performed in vitro experiments in healthy keratinocytes and fibroblasts. MMP28 expression was differentially affected by UVA1 and UVB irradiation in keratinocytes and fibroblasts. Compared with all other LE subtypes, as well as PLE and HS samples, MMP28 expression in Chilblain LE skin showed a distinct vertical distribution, reaching as far as the upper layers of the dermis. This vertical expression pattern coincided with decreased GLUT1 levels and with increased expression of miR-31 and miR-150 in the epidermis of patients with Chilblain LE. These data provide evidence for a potential metabolic dysregulation that may play a role in the etiology of LE. Furthermore, our results suggest MMP28 as a novel complementary marker in Chilblain LE diagnosis.
Collapse
Affiliation(s)
- I. Ivanova
- Department of Dermatology, University Medical Center Regensburg, 93042, Regensburg, Germany
| | - T. Svilenska
- Department of Dermatology, University Medical Center Regensburg, 93042, Regensburg, Germany
| | - T. Maisch
- Department of Dermatology, University Medical Center Regensburg, 93042, Regensburg, Germany
| | - S. Karrer
- Department of Dermatology, University Medical Center Regensburg, 93042, Regensburg, Germany
| | - D. Niebel
- Department of Dermatology, University Medical Center Regensburg, 93042, Regensburg, Germany
| | - M. Berneburg
- Department of Dermatology, University Medical Center Regensburg, 93042, Regensburg, Germany
| | - B. Kurz
- Department of Dermatology, University Medical Center Regensburg, 93042, Regensburg, Germany
| |
Collapse
|
2
|
Yu Q, Tang X, Hart T, Homer R, Belperron AA, Bockenstedt L, Ring A, Nakamura A, Fikrig E. Secretory leukocyte protease inhibitor influences periarticular joint inflammation in B. burgdorferi-infected mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.24.625079. [PMID: 39651186 PMCID: PMC11623497 DOI: 10.1101/2024.11.24.625079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Lyme disease, caused by Borrelia burgdorferi , is the most common tick-borne infection in the United States. Arthritis is a major clinical manifestation of infection, and synovial tissue damage has been attributed to the excessive pro-inflammatory responses. The secretory leukocyte protease inhibitor (SLPI) promotes tissue repair and exerts anti-inflammatory effects. The role of SLPI in the development of Lyme arthritis in C57BL/6 mice, which can be infected with B. burgdorferi , but only develop mild joint inflammation, was therefore examined. SLPI -deficient C57BL/6 mice challenged with B. burgdorferi had a higher infection load in the tibiotarsal joints and marked periarticular swelling, compared to infected wild type control mice. The ankle joint tissues of B. burgdorferi -infected SLPI -deficient mice contained significantly higher percentages of infiltrating neutrophils and macrophages. B. burgdorferi -infected SLPI -deficient mice also exhibited elevated serum levels of IL-6, neutrophil elastase, and MMP-8. Moreover, using a recently developed BASEHIT (BActerial Selection to Elucidate Host-microbe Interactions in high Throughput) library, we found that SLPI directly interacts with B. burgdorferi . These data demonstrate the importance of SLPI in suppressing periarticular joint inflammation in Lyme disease.
Collapse
|
3
|
Riaz M, Rasool G, Yousaf R, Fatima H, Munir N, Ejaz H. Anti-Rheumatic potential of biological DMARDS and protagonistic role of bio-markers in early detection and management of rheumatoid arthritis. Innate Immun 2025; 31:17534259251324820. [PMID: 40091354 PMCID: PMC11912179 DOI: 10.1177/17534259251324820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 02/07/2025] [Indexed: 03/19/2025] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease that primarily affects the synovial joint linings, resulting in progressive disability, increased mortality, and considerable economic costs. Early treatment with disease-modifying antirheumatic medications (DMARDs) can significantly improve the overall outlook for people with RA. Contemporary pharmaceutical interventions, encompassing standard, biological, and emerging small molecule disease- modifying anti-rheumatic medications continue to be the cornerstone of RA management, with substantial advancements made in the pursuit of achieving remission from the disease and preventing joint deformities. Nevertheless, a substantial segment of individuals with RA do not experience a satisfactory response to existing treatments, underscoring the pressing need for novel therapeutic options. Biologic DMARDs are among the therapy choices. Non-tumor necrosis factor inhibitors (Non-TNFi) such as abatacept, rituximab, tocilizumab, and sarilumab are examples, as are anti-tumor necrosis factor (TNF) medications such as infliximab, adalimumab, etanercept, golimumab, and certolizumab pegol. More recent biomarkers have emerged and showed usefulness in the early detection of RA. These biomarkers, often referred to simply as "biomarkers", are quantifiable indicators of normal or pathologic processes, and they can also gauge treatment response. The assessment of RA treatment response typically combines patient-reported outcomes, physical evaluations, and laboratory findings, as there isn't a single biomarker that has proven sufficient for measuring disease activity. This review explores the usage of biologic DMARDs as a therapeutic approach for RA, as well as the biomarkers typically used for RA early diagnosis, prognosis prediction, and disease activity evaluation.
Collapse
Affiliation(s)
- Muhammad Riaz
- Department of Allied Health Sciences, University of Sargodha, Sargodha, Pakistan
| | - Ghulam Rasool
- Department of Allied Health Sciences, University of Sargodha, Sargodha, Pakistan
| | - Ruhamah Yousaf
- Department of Health Professional Technologies, The University of Lahore, Lahore, Pakistan
| | - Hina Fatima
- Department of Biochemistry, Government College Women University, Faisalabad, Pakistan
| | - Naveed Munir
- Department of Biomedical Lab Sciences, School of Health Sciences, University of Management and Technology, Lahore, Pakistan
| | - Hasan Ejaz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
4
|
Smolinska V, Klimova D, Danisovic L, Harsanyi S. Synovial Fluid Markers and Extracellular Vesicles in Rheumatoid Arthritis. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1945. [PMID: 39768826 PMCID: PMC11678482 DOI: 10.3390/medicina60121945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025]
Abstract
In recent years, numerous potential prognostic biomarkers for rheumatoid arthritis (RA) have been investigated. Despite these advancements, clinical practice primarily relies on autoantibody tests-for rheumatoid factor (RF) and anti-citrullinated protein antibody (anti-CCP)-alongside inflammatory markers, such as the erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP). Expanding the repertoire of diagnostic and therapeutic biomarkers is critical for improving clinical outcomes in RA. Emerging evidence highlights the significance of synovial fluid biomarkers, including aggrecan, matrix metalloproteinases, glucosyl-galactosyl-pyridinoline, hyaluronic acid, S100 proteins, calprotectin, and various cytokines, as well as immunological markers. Additionally, specific components of extracellular vesicles, such as non-coding RNAs, heat shock proteins, and lipids, are gaining attention. This review focuses on molecular markers found in synovial fluid and extracellular vesicles, excluding clinical and imaging biomarkers, and explores their potential applications in the diagnosis and management of RA.
Collapse
Affiliation(s)
- Veronika Smolinska
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (V.S.); (D.K.); (L.D.)
- National Institute of Rheumatic Diseases, Nábrežie Ivana Krasku 4, 921 12 Piestany, Slovakia
| | - Daniela Klimova
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (V.S.); (D.K.); (L.D.)
| | - Lubos Danisovic
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (V.S.); (D.K.); (L.D.)
- National Institute of Rheumatic Diseases, Nábrežie Ivana Krasku 4, 921 12 Piestany, Slovakia
| | - Stefan Harsanyi
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (V.S.); (D.K.); (L.D.)
| |
Collapse
|
5
|
Allard CC, Salti S, Mourad W, Hassan GS. Implications of CD154 and Its Receptors in the Pathogenesis and Treatment of Systemic Lupus Erythematosus. Cells 2024; 13:1621. [PMID: 39404385 PMCID: PMC11482534 DOI: 10.3390/cells13191621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
CD154, also known as CD40 ligand, is a costimulatory molecule involved in humoral and adaptive immune responses upon pairing with its classical receptor, CD40. The CD154/CD40 dyad is a key participant in the pathogenesis of many autoimmune diseases, including systemic lupus erythematosus (SLE). In SLE, the major cells at play, T and B lymphocytes, are shown to overexpress CD154 and CD40, respectively. Subsequently, these cells and other CD40-positive cells engage in numerous effector functions contributing to SLE development. With the recent identification of additional receptors for CD154, all belonging to the integrin family, the role of CD154 in SLE is more complex and calls for deeper investigation into its biological significance. Many therapeutic strategies directed against the CD154/CD40 couple have been deployed for the treatment of SLE and proved efficient in animal models and human studies. However, the incidence of thromboembolic complications in patients treated with these anti-CD154/CD40 antibodies halted their further clinical assessments and called for another class of therapies targeting these molecules. Second-generation antibodies directed against CD154 or CD40 are showing promising results in the advanced stages of clinical testing. Our review presents a thorough description of CD154 and its receptors, CD40 and the integrin family members in SLE pathogenesis. All these elements of the CD154 system represent important therapeutic targets for the treatment of SLE.
Collapse
Affiliation(s)
| | | | - Walid Mourad
- Laboratoire d’Immunologie Cellulaire et Moléculaire, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Rue Saint-Denis, Tour Viger, Montréal, QC H2X 0A9, Canada; (C.C.A.); (S.S.)
| | - Ghada S. Hassan
- Laboratoire d’Immunologie Cellulaire et Moléculaire, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Rue Saint-Denis, Tour Viger, Montréal, QC H2X 0A9, Canada; (C.C.A.); (S.S.)
| |
Collapse
|
6
|
Baidya SK, Banerjee S, Ghosh B, Jha T, Adhikari N. Pinpointing prime structural attributes of potential MMP-2 inhibitors comprising alkyl/arylsulfonyl pyrrolidine scaffold: a ligand-based molecular modelling approach validated by molecular dynamics simulation analysis. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2024; 35:665-692. [PMID: 39193767 DOI: 10.1080/1062936x.2024.2389822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024]
Abstract
MMP-2 overexpression is strongly related to several diseases including cancer. However, none of the MMP-2 inhibitors have been marketed as drug candidates due to various adverse effects. Here, a set of sulphonyl pyrrolidines was subjected to validation of molecular modelling followed by binding mode analysis to explore the crucial structural features required for the discovery of promising MMP-2 inhibitors. This study revealed the importance of hydroxamate as a potential zinc-binding group compared to the esters. Importantly, hydrophobic and sterical substituents were found favourable at the terminal aryl moiety attached to the sulphonyl group. The binding interaction study revealed that the S1' pocket of MMP-2 similar to 'a basketball passing through a hoop' allows the aryl moiety for proper fitting and interaction at the active site to execute potential MMP-2 inhibition. Again, the sulphonyl pyrrolidine moiety can be a good fragment necessary for MMP-2 inhibition. Moreover, some novel MMP-2 inhibitors were also reported. They showed the significance of the 3rd position substitution of the pyrrolidine ring to produce interaction inside S2' pocket. The current study can assist in the design and development of potential MMP-2 inhibitors as effective drug candidates for the management of several diseases including cancers in the future.
Collapse
Affiliation(s)
- S K Baidya
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - S Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - B Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad, India
| | - T Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - N Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
7
|
Li J, Cao J, Chen Q, Liu D, Li R. Investigating the therapeutic potential of sinomenine in rheumatoid arthritis: anti-inflammatory, antioxidant, and immunomodulatory mechanisms. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3945-3958. [PMID: 37991542 DOI: 10.1007/s00210-023-02810-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/20/2023] [Indexed: 11/23/2023]
Abstract
An autoimmune disease, rheumatoid arthritis (RA) is characterized by the onset of inflammation and subsequent damage to the joints. Although several therapies are available for RA, none are effective, and many have undesirable side effects. The roots of Sinomenium acutum produce an alkaloid called Sinomenine (SIN), which has been used for centuries in Chinese medicine to treat arthritis due to its anti-inflammatory properties. This study aimed to explore the potential therapeutic benefits of SIN through oral administration following RA induction using Freund's complete adjuvant (FCA) injections. The study monitored changes in the arthritic index, hind paw volume, inflammation and oxidative stress markers. Results demonstrated that SIN effectively inhibited the activity of NF-κB and IKKβ in knee joint tissues, which led to a decrease in tissue levels of TNF-α, IL-6, IL-1β, and iNOS in RA-induced rats. The production of anti-inflammatory cytokines such as IL-10, Arg-1, and Fizz1 also increased. In rat knee joints, SIN elevated the expression of TIMP-1 and TIMP-3 and decreased the expression of MMP-2 and MMP-9. Additionally, SIN modulated the RANK/RANKL/OPG pathway in RA-induced rat knee joint tissues, reducing RANKL expression and increasing OPG. SIN also effectively decreased MDA, NO, and elevated antioxidant enzymes (SOD, CAT, GPx, and GSH) in RA-induced rats via Nrf2/Keap 1 signaling pathway activation. In conclusion, this study suggests that SIN possesses potential therapeutic benefits for treating RA by modulating the RANK/RANKL/OPG pathway, which may impact osteoclast activity, oxidative stress, and inflammation in knee joint tissues.
Collapse
Affiliation(s)
- Juan Li
- The First Ward of Rheumatology and Immunology, Xi'an No. 5 Hospital, Xi'an, 710000, China
| | - Junjie Cao
- Laboratory medicine department, Xi'an No. 5 Hospital, Xi'an, 710000, China
| | - Qingping Chen
- The First Ward of Rheumatology and Immunology, Xi'an No. 5 Hospital, Xi'an, 710000, China
| | - Dan Liu
- Rheumatology and Immunology Department, The First Affiliated Hospital of Xi'an Medical University, Xi'an, 710000, China
| | - Rui Li
- The First Ward of Rheumatology and Immunology, Xi'an No. 5 Hospital, Xi'an, 710000, China.
| |
Collapse
|
8
|
Heidari Moghadam R, Babajani F, Karami A, Elieh-Ali-Komi D, Hoseini F, Salehi N, Elahirad S, Mohammadi-Noori E, Mohammadi H, Kiani A. Association of Matrix Metalloproteinase-2 (MMP-2) and MMP-9 Promoter Variants, Their Serum Levels, and Activities with Aortic Valve Calcification (AVC) in a Population from Western Iran. Genet Test Mol Biomarkers 2024; 28:223-232. [PMID: 38708584 DOI: 10.1089/gtmb.2023.0370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024] Open
Abstract
Background: Matrix metalloproteinase (MMP) enzyme gene polymorphisms MMP-2-1575G/A and MMP-9-1562C/T promoter polymorphism, their serum levels, and activity are associated with aortic valve calcification (AVC). Materials and Methods: The synergistic link between the risk of AVC and the alleles T and A of MMP-9 and MMP-2 was investigated, respectively. Ninety-two cases with AVC and 92 healthy individuals from the west of Iran were included, and MMP- 2-1575G/A and MMP-9-1562C/T promoter polymorphisms were detected using PCR-RFLP. The serum levels and activity of MMP-2 and -9 were assessed using ELISA and gelatin zymography methods, respectively. In addition, serum biochemical markers, including FBS, urea and creatinine, cholesterol, triglyceride, HDL, LDL, calcium, phosphorus, and blood pressure: systolic blood pressure and diastolic blood pressure were measured. Results: Heart valve calcification disease was associated with a comparatively higher frequency of the A allele of the MMP2-1575 variation (p = 0.002). In addition, the frequency of T allele of the MMP9-1562 variant was higher than the control group (p = 0.007). Conclusion: MMP-2 and MMP-9 serum levels and activities were observed to be considerably higher in the experimental group than in the control group (p < 0.001). Patients are more susceptible to cardiovascular disease than the control group due to elevated serum levels and activity of MMP-2 and MMP-9.
Collapse
Affiliation(s)
- Reza Heidari Moghadam
- Cardiovascular Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Babajani
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Afshin Karami
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Daniel Elieh-Ali-Komi
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Faeghe Hoseini
- Cardiovascular Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nahid Salehi
- Cardiovascular Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saeed Elahirad
- Cardiovascular Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ehsan Mohammadi-Noori
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hossein Mohammadi
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Kiani
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
9
|
Banerjee S, Baidya SK, Adhikari N, Jha T. An updated patent review of matrix metalloproteinase (MMP) inhibitors (2021-present). Expert Opin Ther Pat 2023; 33:631-649. [PMID: 37982191 DOI: 10.1080/13543776.2023.2284935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
INTRODUCTION Matrix metalloproteinases (MMPs) are strongly interlinked with the progression and mechanisms of several life-threatening diseases including cancer. Thus, novel MMP inhibitors (MMPIs) as promising drug candidates can be effective in combating these diseases. However, no MMPIs are marketed to date due to poor pharmacokinetics and lower selectivity. Therefore, this review was performed to study the newer MMPIs patented after the COVID-19 period for an updated perspective on MMPIs. AREAS COVERED This review highlights patents related to MMPIs, and their therapeutic implications published between January 2021 and August 2023 available in the Google Patents, Patentscope, and Espacenet databases. EXPERT OPINION Despite various MMP-related patents disclosed up to 2020, newer patent applications in the post-COVID-19 period decreased a lot. Besides major MMPs, other isoforms (i.e. MMP-3 and MMP-7) have gained attention recently for drug development. This may open up newer dimensions targeting these MMPs for therapeutic advancements. The isoform selectivity and bioavailability are major concerns for effective MMPI development. Thus, adopting theoretical approaches and experimental methodologies can unveil the development of novel MMPIs with improved pharmacokinetic profiles. Nevertheless, the involvement of MMPs in cancer, and the mechanisms of such MMPs in other diseases should be extensively studied for novel MMPI development.
Collapse
Affiliation(s)
| | | | | | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
10
|
Laroui A, Galarneau L, Abolghasemi A, Benachenhou S, Plantefève R, Bouchouirab FZ, Lepage JF, Corbin F, Çaku A. Clinical significance of matrix metalloproteinase-9 in Fragile X Syndrome. Sci Rep 2022; 12:15386. [PMID: 36100610 PMCID: PMC9470743 DOI: 10.1038/s41598-022-19476-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/30/2022] [Indexed: 11/12/2022] Open
Abstract
High plasma matrix metalloproteases-9 (MMP-9) levels have been reported in Fragile X Syndrome in a limited number of animal and human studies. Since the results obtained are method-dependent and not directly comparable, the clinical utility of MMP-9 measurement in FXS remains unclear. This study aimed to compare quantitative gel zymography and ELISA and to determine which method better discriminates abnormal MMP-9 levels of individuals with FXS from healthy controls and correlates with the clinical profile. The active and total forms of MMP-9 were quantified respectively, by gel zymography and ELISA in a cohort of FXS (n = 23) and healthy controls (n = 20). The clinical profile was assessed for the FXS group using the Aberrant Behavior Checklist FXS adapted version (ABC-CFX), Adaptive Behavior Assessment System (ABAS), Social Communication Questionnaire (SCQ), and Anxiety Depression and Mood Scale questionnaires. Method comparison showed a disagreement between gel zymography and ELISA with a constant error of − 0.18 [95% CI: − 0.35 to − 0.02] and a proportional error of 2.31 [95% CI: 1.53 to 3.24]. Plasma level of MMP-9 active form was significantly higher in FXS (n = 12) as compared to their age-sex and BMI matched controls (n = 12) (p = 0.039) and correlated with ABC-CFX (rs = 0.60; p = 0.039) and ADAMS (rs = 0.57; p = 0.043) scores. As compared to the plasma total form, the plasma MMP-9 active form better enables the discrimination of individuals with FXS from controls and correlates with the clinical profile. Our results highlight the importance of choosing the appropriate method to quantify plasma MMP-9 in future FXS clinical studies.
Collapse
|
11
|
Mahmoud RH, Fouad NA, Hefzy EM, Shaker OG, Ahmed TI, Hussein HA, Nasr MH, Zaki OM, Abdelghaffar NK, Abdelaleem OO. The potential role of serum expression profile of long non coding RNAs, Cox2 and HOTAIR as novel diagnostic biomarkers in systemic lupus erythematosus. PLoS One 2022; 17:e0268176. [PMID: 35972968 PMCID: PMC9380942 DOI: 10.1371/journal.pone.0268176] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/25/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The role of the long non-coding RNAs (lncRNAs) in the pathogenesis of systemic lupus erythematosus (SLE) is mostly unknown, despite increasing evidence that lncRNAs extensively participate in physiological and pathological conditions. AIM To detect the level of lncRNA-Cox2, HOTAIR, IL-6, and MMP-9 in the serum of SLE patients and to correlate these levels with disease activity and patients' clinical and laboratory data to evaluate the value of these biomarkers for SLE diagnosis and assessment of disease activity. METHODS Blood samples from 58 SLE patients, and 60 healthy controls (HCs) were used for detection of lncRNAs-Cox2 and HOTAIR expression levels by real-time polymerase chain reaction. Both IL-6 and MMP-9 serum levels were assayed by enzyme-linked immunosorbent assay. Lupus activity was assessed with the Systemic Lupus Erythematosus Disease Activity Index (SLEDAI). RESULTS The serum expression levels of lncRNA-Cox2 and HOTAIR were significantly up-regulated in SLE patients vs HCs (fold change [median (IQR) was 1.29(0.81-1.71, P<0.0001) and 2.68(0.95-3.67), P = 0.038) for lncRNA-Cox2 and HOTAIR, respectively. Serum levels of both IL-6 and MMP-9 were significantly high in SLE patients compared with HCs (P≤0.001 for each). The up-regulated lncRNA-Cox2 was positively associated with the presence of neurological manifestations in SLE patients (P = 0.007). Furthermore, HOTAIR expression level had significantly positive correlation with IL-6 (r = 0.578, P<0.0001), MMP-9 level (r = 0.762, P<0.0001), nephritis grades (r = 0.296, P = 0.024) and proteinuria (r = 0.287, P = 0.035). LncRNA-Cox2 showed sensitivity and specificity 72.4%, and 100.0% respectively. HOTAIR sensitivity was 60.3%, and specificity was 100.0%. By multiple logistic regression analysis, lncRNA-Cox2 and HOTAIR were found as SLE independent predictors. CONCLUSION LncRNA-COX2 and HOTAIR can be used as new non-invasive biomarkers for the diagnosis of SLE.
Collapse
Affiliation(s)
- Rania H. Mahmoud
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Nermeen A. Fouad
- Department of Rheumatology and Rehabilitation, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Enas M. Hefzy
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Fayoum University, Cairo, Egypt
| | - Olfat G. Shaker
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Tarek I. Ahmed
- Department of Internal Medicine, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Hoda A. Hussein
- Department of Internal Medicine, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Maha H. Nasr
- Department of Rheumatology and Rehabilitation, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Othman M. Zaki
- Department of Clinical Pathology, Faculty of Medicine, Damietta University, Damietta, Egypt
| | - Noha K. Abdelghaffar
- Department of Clinical Pathology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Omayma O. Abdelaleem
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| |
Collapse
|
12
|
Baidya SK, Banerjee S, Adhikari N, Jha T. Selective Inhibitors of Medium-Size S1' Pocket Matrix Metalloproteinases: A Stepping Stone of Future Drug Discovery. J Med Chem 2022; 65:10709-10754. [PMID: 35969157 DOI: 10.1021/acs.jmedchem.1c01855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Among various matrix metalloproteinases (MMPs), MMPs having medium-size S1' pockets are established as promising biomolecular targets for executing crucial roles in cancer, cardiovascular diseases, and neurodegenerative diseases. However, no such MMP inhibitors (MMPIs) are available to date as drug candidates despite a lot of continuous research work for more than three decades. Due to a high degree of structural resemblance among these MMPs, designing selective MMPIs is quite challenging. However, the variability and uniqueness of the S1' pockets of these MMPs make them promising targets for designing selective MMPIs. In this perspective, the overall structural aspects of medium-size S1' pocket MMPs including the unique binding patterns of enzyme-inhibitor interactions have been discussed in detail to acquire knowledge regarding selective inhibitor designing. This overall knowledge will surely be a curtain raiser for the designing of selective MMPIs as drug candidates in the future.
Collapse
Affiliation(s)
- Sandip Kumar Baidya
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Suvankar Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
13
|
Medhat E, Ayeldeen G, Hosni Ahmed H, Shaker O, Gheita T, Salama Ashour S. HOTAIR and THRIL Long Non Coding RNAs and Their Target Genes in Rheumatoid Arthritis patients. Rep Biochem Mol Biol 2022; 10:614-621. [PMID: 35291607 PMCID: PMC8903355 DOI: 10.52547/rbmb.10.4.697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/24/2021] [Indexed: 05/20/2023]
Abstract
BACKGROUND Rheumatoid arthtritis (RA) is a chronic systemic inflammatory autoimmune disease characterized by irreversible joint damage and deformity. The aim of this study is to investigate THRIL and HOTAIR serum expression and their target genes in Egyptian RA patients and to evaluate their relationship to the clinico-pathological data. METHODS The present study included fifty-two RA patients and fifty-six healthy controls. RA patients were classified according to DAS28 score. All subjects were subjected to full history taking and clinical examination. Quantitative real time PCR was done to estimate the expression levels of serum THRIL and HOTAIR as well as their target genes tumor necrosis factor alpha (TNF-α) and metalloproteinase 2 (MMP-2) were estimated by ELISA techniques. RESULTS Results revealed that both THRIL and HOTAIR were statistically over expressed in RA patients compared to healthy group with p-value< 0.05. Results showed as well that the target genes for those long-non coding RNAs, TNF-α and MMP-2, were also significantly higher in RA patients compared to healthy controls. CONCLUSION Both THRIL and HOTAIR associated with their target genes, can be considered as diagnostic markers for RA.
Collapse
Affiliation(s)
- Engy Medhat
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University.
- Corresponding author: Engy Medhat; Tel: 002 01002975847; E-mail:
| | - Ghada Ayeldeen
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University.
| | - Hanan Hosni Ahmed
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University.
| | - Olfat Shaker
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University.
| | - Tamer Gheita
- Rheumatology Department, Faculty of Medicine, Cairo University.
| | | |
Collapse
|
14
|
Matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases in kidney disease. Adv Clin Chem 2021; 105:141-212. [PMID: 34809827 DOI: 10.1016/bs.acc.2021.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Matrix metalloproteinases (MMPs) are a group of zinc and calcium endopeptidases which cleave extracellular matrix (ECM) proteins. They are also involved in the degradation of cell surface components and regulate multiple cellular processes, cell to cell interactions, cell proliferation, and cell signaling pathways. MMPs function in close interaction with the endogenous tissue inhibitors of matrix metalloproteinases (TIMPs), both of which regulate cell turnover, modulate various growth factors, and participate in the progression of tissue fibrosis and apoptosis. The multiple roles of MMPs and TIMPs are continuously elucidated in kidney development and repair, as well as in a number of kidney diseases. This chapter focuses on the current findings of the significance of MMPs and TIMPs in a wide range of kidney diseases, whether they result from kidney tissue changes, hemodynamic alterations, tubular epithelial cell apoptosis, inflammation, or fibrosis. In addition, the potential use of these endopeptidases as biomarkers of renal dysfunction and as targets for therapeutic interventions to attenuate kidney disease are also explored in this review.
Collapse
|
15
|
Meng W, Cao X, Sun W, Zheng L, Fan B, Zhou S, Liu H, Wang H, Wang W, Liu X. A functional polymorphism at the miR‑491‑5p binding site in the 3'‑untranslated region of the MMP‑9 gene increases the risk of developing ventilator‑associated pneumonia. Int J Mol Med 2021; 48:217. [PMID: 34664683 DOI: 10.3892/ijmm.2021.5050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 07/15/2021] [Indexed: 11/06/2022] Open
Abstract
Matrix metalloproteinase (MMP)‑9 is associated with the severity of ventilator‑associated pneumonia (VAP), while an rs1056629 SNP located in the 3'‑untranslated region (UTR) of MMP‑9 affects the microRNA (miRNA/miR)‑491‑mediated regulation of MMP‑9 expression. In the present study, the effect of rs1056629 on the development of VAP in patients with chronic obstructive pulmonary disease (COPD) was investigated. Patients with COPD were enrolled in the study and their genotypes of rs1056629 (CC, CA or AA) were determined. ELISA was used to analyze the levels of TNF‑α and IL‑6 in the monocytes of patients with COPD carrying differential genotypes of rs1056629. Reverse transcription‑quantitative PCR was carried out to evaluate the expression of miR‑491 and MMP‑9 mRNA in the different groups of patients with COPD. Luciferase assay was used to confirm the inhibitory role of miR‑491 in MMP‑9 expression. Western blot analysis was carried out to assess the expression of MMP‑9 protein in A549 and H1299 cells transfected with miR‑491 mimics. The risk and severity of VAP were significantly elevated in patients with COPD carrying the CC and AC genotypes of rs1056629. Although there was no difference in the expression of miR‑491 in patients carrying different genotypes of rs1056629, the expression levels of TNF‑α, IL‑6 and MMP‑9 were increased in patients with COPD carrying the CC and AC genotypes of rs1056629. The results of luciferase assay revealed that miR‑491 inhibited the expression of MMP‑9 through direct binding to the 3'UTR of MMP‑9. Transfection of miR‑491 mimics into A549 and H1299 cells markedly suppressed the expression of MMP‑9 in a concentration‑dependent manner. On the whole, the findings of the present study confirm that the CC and AC genotypes of rs1056629 increase the risk of developing VAP in patients with COPD by increasing the expression of MMP‑9.
Collapse
Affiliation(s)
- Weimin Meng
- Intensive Care Unit, The Fourth People's Hospital of Qinghai Province, Xining, Qinghai 810000, P.R. China
| | - Xiuting Cao
- Intensive Care Unit, The Fourth People's Hospital of Qinghai Province, Xining, Qinghai 810000, P.R. China
| | - Wengqing Sun
- Intensive Care Unit, Shandong Chest Hospital, Jinan, Shandong 250000, P.R. China
| | - Liheng Zheng
- Clinical Laboratory, Shijiazhuang Fifth People's Hospital, Shijiazhuang, Hebei 050000, P.R. China
| | - Bingdong Fan
- Intensive Care Unit, The Fourth People's Hospital of Qinghai Province, Xining, Qinghai 810000, P.R. China
| | - Shengjing Zhou
- Intensive Care Unit, The Fourth People's Hospital of Qinghai Province, Xining, Qinghai 810000, P.R. China
| | - Hongjuan Liu
- Intensive Care Unit, The Fourth People's Hospital of Qinghai Province, Xining, Qinghai 810000, P.R. China
| | - Hua Wang
- Emergency Department, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Wenxin Wang
- Emergency Intensive Care Unit, Qinghai Red Cross Hospital, Xining, Qinghai 810000, P.R. China
| | - Xiang Liu
- Emergency Department, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| |
Collapse
|
16
|
Role of Histone Deacetylases in Monocyte Function in Health and Chronic Inflammatory Diseases. Rev Physiol Biochem Pharmacol 2021; 180:1-47. [PMID: 33974124 DOI: 10.1007/112_2021_59] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Histone deacetylases (HDACs) are a family of 18 members that participate in the epigenetic regulation of gene expression. In addition to histones, some HDACs also deacetylate transcription factors and specific cytoplasmic proteins.Monocytes, as part of the innate immune system, maintain tissue homeostasis and help fight infections and cancer. In these cells, HDACs are involved in multiple processes including proliferation, migration, differentiation, inflammatory response, infections, and tumorigenesis. Here, a systematic description of the role that most HDACs play in these functions is reviewed. Specifically, some HDACs induce a pro-inflammatory response and play major roles in host defense. Conversely, other HDACs reprogram monocytes and macrophages towards an immunosuppressive phenotype. The right balance between both types helps monocytes to respond correctly to the different physiological/pathological stimuli. However, aberrant expressions or activities of specific HDACs are associated with autoimmune diseases along with other chronic inflammatory diseases, infections, or cancer.This paper critically reviews the interesting and extensive knowledge regarding the role of some HDACs in these pathologies. It also shows that as yet, very little progress has been made toward the goal of finding effective HDAC-targeted therapies. However, given their obvious potential, we conclude that it is worth the effort to develop monocyte-specific drugs that selectively target HDAC subtypes with the aim of finding effective treatments for diseases in which our innate immune system is involved.
Collapse
|
17
|
Şahin A, Kaya S, Baylan M. The effects of caffeic acid phenethyl ester on retina in a diabetic rat model. Cutan Ocul Toxicol 2021; 40:268-273. [PMID: 34165369 DOI: 10.1080/15569527.2021.1940196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE We aimed to investigate the effect of caffeic acid phenethyl ester (CAPE) on retinal apoptosis and oxidative stress parameters in streptozotocin (STZ) induced diabetic rat model. METHODS This study included 3 groups; control, STZ, and STZ + CAPE. The rats in STZ, and STZ + CAPE groups were injected with STZ (35 mg/kg, i.p.) for induction of diabetes. In the STZ + CAPE group, 10 µmol/kg of CAPE were intraperitoneally injected for 4 weeks. Control and STZ groups were given only intraperitoneal vehicle (saline). Rats were anaesthetized and sacrificed on the 4th week of the experiment. Total anti-oxidant status (TAS), and total oxidant status (TOS) were measured on the dissected retinal tissues. Oxidative stress index (OSI) was also calculated. Fellow eyes were used for histopathologic evaluation with caspase-3 and matrix metalloproteinase-2 (MMP-2) and MMP-9 evaluation. RESULTS TAS levels were similar between groups (p = 0.71). However, CAPE treatment prevented the elevation of the TOS in the STZ + CAPE group compared to the STZ group (30.93 ± 9.97 vs 61.53 ± 24.7 nmol H2O2 Eq/mg protein, p = 0.007). OSI was also significantly lower in the STZ + CAPE group than that of the STZ group (20.01 ± 5.87 vs. 37.90 ± 14.32, respectively, p = 0.007). Retinal caspase-3 staining, MMP-2 and MMP-9 scores were not different between groups (p > 0.05 for all). CONCLUSION The present study demonstrated that CAPE treatment may decrease the oxidative stress in the retina in STZ induced diabetic rat model. However, apoptosis was not observed in the retina. The retinal apoptosis cannot be shown probably due to a shorter period of diabetes.
Collapse
Affiliation(s)
- Alparslan Şahin
- Department of Ophthalmology, Memorial Dicle Hospital, Diyarbakır, Turkey
| | - Savaş Kaya
- Department of Immunology, School of Medicine, Dicle University, Diyarbakır, Turkey
| | - Mukadder Baylan
- Department of Physiology, School of Medicine, Dicle University, Diyarbakır, Turkey
| |
Collapse
|
18
|
Arvikar SL, Hasturk H, Strle K, Stephens D, Bolster MB, Collier DS, Kantarci A, Steere AC. Periodontal inflammation and distinct inflammatory profiles in saliva and gingival crevicular fluid (GCF) compared with serum and joints in rheumatoid arthritis patients. J Periodontol 2021; 92:1379-1391. [PMID: 33611834 DOI: 10.1002/jper.20-0051] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 10/27/2020] [Accepted: 02/04/2021] [Indexed: 11/11/2022]
Abstract
BACKGROUND The association of periodontitis and Porphyromonas gingivalis (Pg) with rheumatoid arthritis (RA) is incompletely understood. To gain further insights, we evaluated periodontal status, oral, serum and joint inflammatory profiles, and Pg biomarkers in RA patients. METHODS In this cross-sectional study, we evaluated 33 patients with predominantly untreated new-onset RA, 20 healthy individuals (HIs), and 20 non-RA chronic periodontitis patients. Thirteen mediators (IFN-γ, IL-10, IL-17A, IL-6, IL-8, CXCL10, TNF-α, CXCL13, IL-23, MMP-1, MMP-3, MMP-8, MMP-9) were measured in serum, synovial fluid, saliva and gingival crevicular fluid (GCF) by multiplex immunoassay. Serum Pg IgG antibodies and subgingival Pg DNA were determined. RESULTS Most RA patients (91%) received routine dental care; only one currently smoked. Ten (30.3%) had periodontal health, 13 (39.4%) had gingivitis, and 10 (30.3%) had periodontitis. Th1 and innate immune responses predominated in serum. Many mediators were concentrated in joints, particularly IL-6, IL-8, and CXCL10. However, salivary and GCF profiles were more restricted, emphasizing neutrophilic inflammation (IL-8, MMP-8) and MMP-9. Compared with HI, most RA patients, regardless of periodontal status, had significantly elevated oral fluid levels of these mediators, with suppression of GCF IL-10, a pattern similar to non-RA periodontitis patients. Pg antibodies or DNA however were primarily associated with clinical periodontitis. CONCLUSIONS Despite routine dental care, RA patients often had inflammation in oral fluids, but inflammatory profiles differed from serum and joints. Neutrophilic inflammatory profiles in oral fluids, regardless of periodontal status, suggests that gingival tissues are a common, and often unrecognized, site of extra-articular inflammation in RA.
Collapse
Affiliation(s)
- Sheila L Arvikar
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Hatice Hasturk
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, Massachusetts
| | - Klemen Strle
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Danielle Stephens
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, Massachusetts
| | - Marcy B Bolster
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Deborah S Collier
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alpdogan Kantarci
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, Massachusetts
| | - Allen C Steere
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
19
|
Serum matrix metalloproteinase-2 as a predictor of level of hypoxemia and severity of obstructive sleep apnea. Sleep Breath 2020; 25:877-886. [PMID: 33006024 DOI: 10.1007/s11325-020-02200-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/12/2020] [Accepted: 09/17/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Intermittent hypoxia in obstructive sleep apnea (OSA) resembles ischemia/reperfusion. Oxidative stress during ischemia/reperfusion increases matrix metalloproteinase-2 (MMP-2) activity and leads to adverse cardiovascular consequences in animal models, but there is scarce information about MMP-2 in humans with OSA. The aim of this study was to determine if serum MMP-2 levels of patients with OSA differ from controls and if MMP-2 activity correlates with the severity of OSA and level of hypoxemia. METHODS Patients with OSA (n = 124) were recruited from the Sleep Disorders Center (Saskatoon City Hospital, Canada) after in-lab polysomnography (PSG). Controls (n = 26) were subjects referred for PSG who did not have OSA. Severity of OSA was categorized according to American Academy of Sleep Medicine criteria. Level of hypoxemia was expressed as oxygen desaturation index (ODI; 3% desaturation). Gelatin zymography was performed to measure serum MMP-2 activity. RESULTS Serum MMP-2 activity was significantly higher in patients with OSA than in controls (p = 0.029). MMP-2 activity in patients with severe OSA was significantly higher than in those with mild/moderate OSA and controls (p = 0.002). Linear regression showed positive associations with MMP-2 activity in serum for AHI (p < 0.001) and ODI (p = 0.003). The associations persisted after adjustment for multiple confounders, including age, sex, BMI, and cardiovascular disease. CONCLUSIONS Serum MMP-2 activity was associated with OSA severity, and level of hypoxemia in patients with OSA, suggesting MMP-2 is worth considering as a potential biomarker to be included in future studies on sets of biomarkers for hypoxemic insult in OSA.
Collapse
|
20
|
Association between MMP/TIMP Levels in the Aqueous Humor and Plasma with Axial Lengths in Myopia Patients. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2961742. [PMID: 32596291 PMCID: PMC7305534 DOI: 10.1155/2020/2961742] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/29/2020] [Indexed: 01/24/2023]
Abstract
Purpose The present study investigated the profiles of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) of the aqueous humor (AH) and plasma (PL) in myopia patients, to determine whether there was an association between these levels with their axial length (AL) and to investigate if MMPs/TIMPs were regulated locally or systemically. Methods A cross-sectional study was conducted. Thirty-nine patients (78 eyes) diagnosed with high myopia were recruited. The AL was measured using IOL Master. And the patients were divided into three groups based on their AL, Group A (AL ≤ 26 mm), Group B (26 < AL ≤ 28 mm), and Group C (AL > 28 mm). The AH in both eyes and blood samples were collected before the patients underwent implantable collamer lens surgery. In all, 78 samples of the AH and 39 samples of the PL were analyzed using MILLIPLEX map assays, followed by statistical analyses of the results. Results There were 8 patients (16 eyes) in Group A, 22 patients (44 eyes) in Group B, and 9 patients (18 eyes) in Group C. MMP-1 (p = 0.014, Β = 0.118), MMP-2 (p ≤ 0.001, Β = 0.278), MMP-9 (p ≤ 0.001, Β = 0.019), and TIMP-1 (p = 0.014, Β = 0.062) in the AH were positively associated with the AL. MMP-1 (p = 0.004, Β = 0.001) and TIMP-1 (p = 0.030, Β = 1.171) concentrations in the PL increased linearly with longer ALs. No concentration-dependent relationship was found between MMP-2 in the PL and AL. Conclusions There was a consistent relationship between MMP-2 in the AH and AL. AL was not consistently or substantially affected by MMP-2 in the PL, indicating myopia formation was possibly a localized process. Associations among MMP-1, MMP-9, and TIMP-1 in the AH and AL were also observed.
Collapse
|
21
|
Maniu AA, Perde-Schrepler MI, Tatomir CB, Tănase MI, Dindelegan MG, Budu VA, Rădeanu GD, Cosgarea M, Mogoantă CA. Latest advances in chronic rhinosinusitis with nasal polyps endotyping and biomarkers, and their significance for daily practice. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2020; 61:309-320. [PMID: 33544783 PMCID: PMC7864319 DOI: 10.47162/rjme.61.2.01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 09/24/2020] [Indexed: 11/17/2022]
Abstract
The term chronic rhinosinusitis (CRS) comprises of an assortment of diseases that share a common feature: inflammation of the sinonasal mucosa. The phenotype classification of CRS, based on the presence of polyps, has failed to offer a curative treatment for the disease, particularly in refractory cases. Chronic rhinosinusitis with nasal polyps (CRSwNP) remains a challenging entity. Researchers have made efforts trying to characterize subtypes of the disease according to the endotypes, which are delineated by different immunological pathways, using biomarkers. Even if the inflammatory processes controlling CRSwNP are not fully understood, data suggested that the disease associated with a type 2 inflammatory mechanisms can be also linked to the type 1 or type 3 pathomechanism, being highly heterogeneous. Biomarkers for CRSwNP are proposed, such as: eosinophil count, cytokines, metalloproteinases, bitter and sweet taste receptors, and the nasal microbiome. For endotyping to be clinically applicable and simply determined, biomarkers referring to the intrinsic biomolecular mechanism still need to be found. Precision medicine is becoming the new standard of care, but innovative therapies such as biologics may be rather challenging for the clinicians in their daily practice. This new approach to CRSwNP implies patient selection and a simple algorithm for deciding the right treatment, easy to implement and adjust. Our review points out the ongoing new research on the pathophysiology of CRSwNP, biomarkers and treatment opportunities. It allows clinicians to keep abreast of current evidence-based knowledge and to individualize the management of CRSwNP, especially in refractory cases.
Collapse
Affiliation(s)
- Alma Aurelia Maniu
- Department of ENT, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Maria Ida Perde-Schrepler
- Department of Radiobiology and Tumor Biology, Prof. Dr. Ion Chiricuţă Oncology Institute, Cluj-Napoca, Romania
| | - Corina-Bianca Tatomir
- Department of Radiobiology and Tumor Biology, Prof. Dr. Ion Chiricuţă Oncology Institute, Cluj-Napoca, Romania
| | - Mihai Ionuţ Tănase
- Department of ENT, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of ENT, Emergency County Hospital, Cluj-Napoca, Romania
| | | | - Vlad Andrei Budu
- Department of ENT, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Gheorghe Doinel Rădeanu
- Department of ENT, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Marcel Cosgarea
- Department of ENT, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | |
Collapse
|
22
|
Assessment of CD40 and CD40L expression in rheumatoid arthritis patients, association with clinical features and DAS28. Clin Exp Med 2019; 19:427-437. [PMID: 31313080 DOI: 10.1007/s10238-019-00568-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 07/08/2019] [Indexed: 01/09/2023]
Abstract
The predominance of the effector mechanisms by CD4 + T cells is a characteristic of inflammatory autoimmune diseases such as rheumatoid arthritis (RA). The CD40/CD40L costimulatory pathway contributes to these pathogenic mechanisms by promoting autoantibody production and inflammation. Aberrant expression of CD40 and CD40L in RA patients has been shown, the latter prevailing in females. However, contrasting results have emerged regarding the clinical associations of these findings. We determined the association of CD40 and CD40L expression with the clinical activity evaluated through DAS28 in RA patients. A total of 38 female RA patients and 10 age- and sex-matched control subjects were included. CD40 and CD40L mRNA expression was quantified by real-time qPCR, cell surface proteins were determined by flow cytometry, and protein soluble forms were determined by ELISA. The expansion of a CD4 + T cell subpopulation expressing CD40 was identified in the RA group. In addition, high frequencies of CD4 + CD40L + T cells expressing high levels of CD40L, increased levels of sCD40L and overexpression of CD40L mRNA were observed in these patients. Moreover, there was a gradual increase in CD40L when data were stratified according to DAS28, except for very active patients. No correlation was observed between the levels of mRNA, cell surface protein and soluble protein of CD40 and CD40L with the clinical features of RA patients. There is an altered expression of CD40L in female RA patients in association with clinical activity assessed by DAS28, these findings support the evidence that suggests CD40L as a marker of clinical activity.
Collapse
|
23
|
Suzuki M, Ramezanpour M, Cooksley C, Li J, Nakamaru Y, Homma A, Psaltis A, Wormald PJ, Vreugde S. Sirtuin-1 Controls Poly (I:C)-Dependent Matrix Metalloproteinase 9 Activation in Primary Human Nasal Epithelial Cells. Am J Respir Cell Mol Biol 2019; 59:500-510. [PMID: 29767533 DOI: 10.1165/rcmb.2017-0415oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Matrix metalloproteinase (MMP)-9 is thought to be involved in the etiopathogenesis of chronic rhinosinusitis (CRS) with nasal polyps and cleaves collagen IV, causing hyperpermeability of the basement membrane within mucosal tissue. It is known that MMP-9 expression is negatively affected by sirtuin (SIRT)-1 in human monocytotic cells, retinal endothelial cells, and epithelial carcinoma cells. However, it is unknown which factors affect MMP-9 expression and activity in human nasal epithelial cells (HNECs). To examine factors affecting MMP-9 expression and activity in HNECs, HNECs were stimulated with Toll-like receptor (TLR) agonists, followed by quantitative PCR, immunofluorescence, and zymography to examine MMP-9 expression and activity. MMP-9 expression was evaluated in sinonasal tissue of control subjects without CRS, and patients with CRS without nasal polyps and those with CRS with nasal polyps, in relation to the expression of SIRT1 using a tissue microarray. The effect of SIRT1 stimulation/inhibition on MMP-9 expression in HNECs was also tested. TLR3 agonists increased MMP-9 mRNA expression (473 fold, P = 0.0198) and activity (20.4-fold, P < 0.05). SIRT1 activation or inhibition reciprocally affected MMP-9 expression in the presence of TLR3 agonists. MMP-9 and SIRT1 expression within the epithelial layer of sinonasal tissue was inversely correlated only in patients with CRS but not in control subjects. TLR3 agonists increased MMP-9 expression and activity in HNECs, and the effect was abolished in the presence of SIRT1 activation. SIRT1 and MMP-9 expression was inversely correlated in CRS tissue, supporting SIRT1 as a possible therapeutic target for nasal polyp formation.
Collapse
Affiliation(s)
- Masanobu Suzuki
- 1 Department of Surgery-Otorhinolaryngology Head and Neck Surgery, the Queen Elizabeth Hospital, and the University of Adelaide, Adelaide, South Australia, Australia; and.,2 Department of Otolaryngology-Head and Neck Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Mahnaz Ramezanpour
- 1 Department of Surgery-Otorhinolaryngology Head and Neck Surgery, the Queen Elizabeth Hospital, and the University of Adelaide, Adelaide, South Australia, Australia; and
| | - Clare Cooksley
- 1 Department of Surgery-Otorhinolaryngology Head and Neck Surgery, the Queen Elizabeth Hospital, and the University of Adelaide, Adelaide, South Australia, Australia; and
| | - Jian Li
- 1 Department of Surgery-Otorhinolaryngology Head and Neck Surgery, the Queen Elizabeth Hospital, and the University of Adelaide, Adelaide, South Australia, Australia; and
| | - Yuji Nakamaru
- 2 Department of Otolaryngology-Head and Neck Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Akihiro Homma
- 2 Department of Otolaryngology-Head and Neck Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Alkis Psaltis
- 1 Department of Surgery-Otorhinolaryngology Head and Neck Surgery, the Queen Elizabeth Hospital, and the University of Adelaide, Adelaide, South Australia, Australia; and
| | - Peter-John Wormald
- 1 Department of Surgery-Otorhinolaryngology Head and Neck Surgery, the Queen Elizabeth Hospital, and the University of Adelaide, Adelaide, South Australia, Australia; and
| | - Sarah Vreugde
- 1 Department of Surgery-Otorhinolaryngology Head and Neck Surgery, the Queen Elizabeth Hospital, and the University of Adelaide, Adelaide, South Australia, Australia; and
| |
Collapse
|
24
|
Ugarte-Berzal E, Boon L, Martens E, Rybakin V, Blockmans D, Vandooren J, Proost P, Opdenakker G. MMP-9/Gelatinase B Degrades Immune Complexes in Systemic Lupus Erythematosus. Front Immunol 2019; 10:538. [PMID: 30967870 PMCID: PMC6440319 DOI: 10.3389/fimmu.2019.00538] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/27/2019] [Indexed: 12/20/2022] Open
Abstract
Systemic Lupus Erythematosus (SLE) is a common and devastating autoimmune disease, characterized by a dysregulated adaptive immune response against intracellular antigens, which involves both autoreactive T and B cells. In SLE, mainly intracellular autoantigens generate autoantibodies and these assemble into immune complexes and activate the classical pathway of the complement system enhancing inflammation. Matrix metalloproteinase-9 (MMP-9) levels have been investigated in the serum of SLE patients and in control subjects. On the basis of specific studies, it has been suggested to treat SLE patients with MMP inhibitors. However, some of these inhibitors induce SLE. Analysis of LPR−/−MMP-9−/− double knockout mice suggested that MMP-9 plays a protective role in autoantigen clearance in SLE, but the effects of MMP-9 on immune complexes remained elusive. Therefore, we studied the role of MMP-9 in the clearance of autoantigens, autoantibodies and immune complexes and demonstrated that the lack of MMP-9 increased the levels of immune complexes in plasma and local complement activation in spleen and kidney in the LPR−/− mouse model of SLE. In addition, we showed that MMP-9 dissolved immune complexes from plasma of lupus-prone LPR−/−/MMP-9−/− mice and from blood samples of SLE patients. Surprisingly, autoantigens incorporated into immune complexes, but not immunoglobulin heavy or light chains, were cleaved by MMP-9. We discovered Apolipoprotein-B 100 as a new substrate of MMP-9 by analyzing the degradation of immune complexes from human plasma samples. These data are relevant to understand lupus immunopathology and side-effects observed with the use of known drugs. Moreover, we caution against the use of MMP inhibitors for the treatment of SLE.
Collapse
Affiliation(s)
- Estefania Ugarte-Berzal
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Lise Boon
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Erik Martens
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Vasily Rybakin
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Daniel Blockmans
- Department of General Internal Medicine, University Hospital Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Jennifer Vandooren
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
25
|
Shaker OG, Mahmoud RH, Abdelaleem OO, Ahmed TI, Fouad NA, Hussein HA, Nassr MH, Zaki OM, Abdelghaffar NK, Hefzy EM. Expression Profile of Long Noncoding RNAs, lnc-Cox2, and HOTAIR in Rheumatoid Arthritis Patients. J Interferon Cytokine Res 2019; 39:174-180. [PMID: 30668267 DOI: 10.1089/jir.2018.0117] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Despite the increased proof that long noncoding RNAs (lncRNAs) can control gene expression and broadly affect the normal physiological and disease conditions, the part of lncRNAs in rheumatoid arthritis (RA) is not well known. This study aimed to assess the serum expression levels of lnc-Cox2 and HOTAIR in RA and to investigate their role as novel noninvasive biomarkers in diagnosis of RA. Also, their relations with the levels of interleukin (IL)-6 and matrix metalloproteinase (MMP)-9 and with other clinicolaboratory data in RA patients were analyzed. LncRNAs-Cox2 and HOTAIR expression levels were detected in serum by real-time quantitative polymerase chain reaction. Both IL-6 and MMP-9 levels in serum were measured by enzyme-linked immunosorbent assay. The mRNA expression of lncRNA-Cox2 and HOTAIR was significantly upregulated in RA patients compared with healthy controls. Serum levels of both IL-6 and MMP-9 were significantly higher in RA patients than in healthy subjects (P < 0.001 each). Receiver operating characteristic (ROC) curve demonstrated that lncRNA-Cox2 and HOTAIR could discriminate RA patients from healthy controls. HOTAIR (not lnc-Cox2) was observed to be an independent predictor for RA using multiple logistic regression analysis. We concluded that lnc-Cox2 and HOTAIR serum expression levels can be used as novel noninvasive biomarkers for the diagnosis of RA.
Collapse
Affiliation(s)
- Olfat G Shaker
- 1 Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Rania H Mahmoud
- 2 Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Omayma O Abdelaleem
- 2 Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Tarek I Ahmed
- 3 Department of Internal Medicine, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Nermeen A Fouad
- 4 Department of Rheumatology and Rehabilitation, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Hoda A Hussein
- 3 Department of Internal Medicine, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Maha H Nassr
- 4 Department of Rheumatology and Rehabilitation, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Othman M Zaki
- 5 Department of Clinical Pathology, and Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Noha K Abdelghaffar
- 5 Department of Clinical Pathology, and Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Enas M Hefzy
- 6 Department of Medical Microbiology and Immunology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| |
Collapse
|
26
|
Matsuo N, Azuma K, Hattori S, Ohtake J, Kawahara A, Ishii H, Tokito T, Yamada K, Shibata Y, Shimokawaji T, Kondo T, Kato T, Saito H, Yamada K, Sasada T, Hoshino T. Association between soluble immune mediators and tumor responses in patients with nonsmall cell lung cancer treated with anti-PD-1 inhibitor. Int J Cancer 2018; 144:1170-1179. [DOI: 10.1002/ijc.31923] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 09/17/2018] [Accepted: 09/27/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Norikazu Matsuo
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine; Kurume University School of Medicine; Kurume, Fukuoka Japan
| | - Koichi Azuma
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine; Kurume University School of Medicine; Kurume, Fukuoka Japan
| | - Satoshi Hattori
- Division of Biomedical Statistics, Department of Integrated Medicine, Graduate School of Medicine Faculty of Medicine; Osaka University; Suita Osaka Japan
| | - Junya Ohtake
- Cancer Vaccine Center; Kanagawa Cancer Center Research Institute; Yokohama Kanagawa Japan
| | - Akihiko Kawahara
- Department of Diagnostic Pathology; Kurume University Hospital, Kurume; Fukuoka Japan
| | - Hidenobu Ishii
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine; Kurume University School of Medicine; Kurume, Fukuoka Japan
| | - Takaaki Tokito
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine; Kurume University School of Medicine; Kurume, Fukuoka Japan
| | - Kazuhiko Yamada
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine; Kurume University School of Medicine; Kurume, Fukuoka Japan
| | - Yuji Shibata
- Department of Respiratory Medicine; Kanagawa Cancer Center; Yokohama Kanagawa Japan
| | - Tadasuke Shimokawaji
- Department of Respiratory Medicine; Kanagawa Cancer Center; Yokohama Kanagawa Japan
| | - Tetsuro Kondo
- Department of Respiratory Medicine; Kanagawa Cancer Center; Yokohama Kanagawa Japan
| | - Terufumi Kato
- Department of Respiratory Medicine; Kanagawa Cancer Center; Yokohama Kanagawa Japan
| | - Haruhiro Saito
- Department of Respiratory Medicine; Kanagawa Cancer Center; Yokohama Kanagawa Japan
| | - Kouzo Yamada
- Department of Respiratory Medicine; Kanagawa Cancer Center; Yokohama Kanagawa Japan
| | - Tetsuro Sasada
- Cancer Vaccine Center; Kanagawa Cancer Center Research Institute; Yokohama Kanagawa Japan
| | - Tomoaki Hoshino
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine; Kurume University School of Medicine; Kurume, Fukuoka Japan
| |
Collapse
|
27
|
Jayashree K, Yasir M, Senthilkumar GP, Ramesh Babu K, Mehalingam V, Mohanraj PS. Circulating matrix modulators (MMP-9 and TIMP-1) and their association with severity of diabetic retinopathy. Diabetes Metab Syndr 2018; 12:869-873. [PMID: 29752166 DOI: 10.1016/j.dsx.2018.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/04/2018] [Indexed: 12/21/2022]
Abstract
AIMS Diabetic Retinopathy (DR) is the leading cause of vision loss in the working age population. Matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of metalloproteinase-1 (TIMP-1), are molecules involved in extracellular tissue matrix remodelling. They are implicated in the loss of retinal tissue integrity, a major cause of DR, that leads to retinal tissue degradation and apoptosis. This study is therefore, conducted to compare the serum levels of MMP-9 and TIMP-1 in T2DM patients without and with retinopathy, and to evaluate their association with the severity of DR. MATERIALS AND METHODS Our study comprised of 2 groups of 41 each. Group A (cases) included T2DM patients with retinopathy and Group B (controls) included T2DM patients without retinopathy. Routine parameters, mainly, fasting blood glucose, and lipid profile were measured using autoanalyzer. Serum MMP-9, TIMP-1, and insulin levels were assessed using ELISA method. RESULTS AND CONCLUSION Statistically significant increase in the levels of MMP-9, insulin, fasting blood glucose and lipid profile were observed in the serum of T2DM patients with retinopathy, as compared with those without retinopathy. These results help to conclude that rise in MMP-9, and associated serum markers promote disease progress in DR. These findings suggest that the elevations of our study markers in the serum of the type 2 diabetic patients with retinopathy, as compared to those without retinopathy, play important roles in aggravating tissue matrix degradation, supporting DR disease progression.
Collapse
Affiliation(s)
- Kuppuswami Jayashree
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, 605006, India
| | - Md Yasir
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, 605006, India
| | | | - K Ramesh Babu
- Department of Ophthalmology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, 605006, India
| | - Vadivelan Mehalingam
- Department of Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, 605006, India
| | - Palani Selvam Mohanraj
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, 605006, India
| |
Collapse
|
28
|
Ugarte-Berzal E, Martens E, Boon L, Vandooren J, Blockmans D, Proost P, Opdenakker G. EDTA/gelatin zymography method to identify C1s versus activated MMP-9 in plasma and immune complexes of patients with systemic lupus erythematosus. J Cell Mol Med 2018; 23:576-585. [PMID: 30358100 PMCID: PMC6307758 DOI: 10.1111/jcmm.13962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/11/2018] [Accepted: 09/20/2018] [Indexed: 01/02/2023] Open
Abstract
Gelatin zymography analysis is a sensitive method and commonly used to characterize and quantify the presence of the gelatinases (MMP‐2 and MMP‐9) in biological samples. In human plasma samples from healthy controls and systemic lupus erythematosus (SLE) patients, we observed a gelatinolytic molecule at 80 kDa, suggestive for activated human MMP‐9. However, by developing and using the EDTA/gelatin zymography method and after purification of the 80 kDa entity, we proved that this molecule was the C1s subunit of the complement system. The zymolytic capacity of C1s was validated and found to be enhanced, in the absence of calcium and in the presence of EDTA. Our findings indicate that for correct identification of gelatinolytic proteins in complex biological samples the use of EDTA/gelatin zymography for enzyme development is advised. In addition, by quantification of EDTA/gelatin zymography analysis and ELISA, we observed that the levels of C1s were higher in plasma and immune complexes of SLE patients than of healthy individuals. Therefore, our data imply that C1s may become a marker for the diagnosis of SLE.
Collapse
Affiliation(s)
- Estefania Ugarte-Berzal
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, KU Leuven, Leuven, Belgium
| | - Erik Martens
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, KU Leuven, Leuven, Belgium
| | - Lise Boon
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, KU Leuven, Leuven, Belgium
| | - Jennifer Vandooren
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, KU Leuven, Leuven, Belgium
| | - Daniel Blockmans
- Department of General Internal Medicine, University Hospital Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, KU Leuven, Leuven, Belgium
| |
Collapse
|
29
|
Ertugrul G, Keles D, Oktay G, Aktan S. Matrix metalloproteinase-2 and -9 activity levels increase in cutaneous lupus erythematosus lesions and correlate with disease severity. Arch Dermatol Res 2018; 310:173-179. [DOI: 10.1007/s00403-018-1811-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 01/10/2018] [Accepted: 01/12/2018] [Indexed: 01/05/2023]
|
30
|
Maghsood F, Mirshafiey A, Farahani MM, Modarressi MH, Jafari P, Motevaseli E. Dual Effects of Cell Free Supernatants from Lactobacillus acidophilus and Lactobacillus rhamnosus GG in Regulation of MMP-9 by Up-Regulating TIMP-1 and Down-Regulating CD147 in PMADifferentiated THP-1 Cells. CELL JOURNAL 2017; 19:559-568. [PMID: 29105390 PMCID: PMC5672094 DOI: 10.22074/cellj.2018.4447] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 09/19/2016] [Indexed: 01/26/2023]
Abstract
Objective Recent studies have reported dysregulated expression of matrix metalloproteinases (MMPs), especially
MMP-2, MMP-9, tissue inhibitor of metalloproteinase-1, -2 (TIMP-1, TIMP-2), and extracellular matrix metalloproteinase
inducer (EMMPRIN/CD147) in activated macrophages of patients with inflammatory diseases. Therefore, MMP-2,
MMP-9, and their regulators may represent a new target for treatment of inflammatory diseases. Probiotics, which
are comprised of lactic acid bacteria, have the potential to modulate inflammatory responses. In this experimental
study, we investigated the anti-inflammatory effects of cell-free supernatants (CFS) from Lactobacillus acidophilus (L.
acidophilus) and L. rhamnosus GG (LGG) in phorbol myristate acetate (PMA)-differentiated THP-1 cells.
Materials and Methods In this experimental study, PMA-differentiated THP-1 cells were treated with CFS from L.
acidophilus, LGG and uninoculated bacterial growth media (as a control). The expression of MMP-2, MMP-9, TIMP-1,
and TIMP-2 mRNAs were determined using real-time quantitative reverse transcription polymerase chain reaction (RT-
PCR). The levels of cellular surface expression of CD147 were assessed by flow cytometry, and the gelatinolytic activity
of MMP-2 and MMP-9 were determined by zymography.
Results Our results showed that CFS from both L. acidophilus and LGG significantly inhibited the gene expression of
MMP-9 (P=0.0011 and P=0.0005, respectively), increased the expression of TIMP-1 (P<0.0001), decreased the cell
surface expression of CD147 (P=0.0307 and P=0.0054, respectively), and inhibited the gelatinolytic activity of MMP-9
(P=0.0003 and P<0.0001, respectively) in PMA-differentiated THP-1 cells. Although, MMP-2 expression and activity
and TIMP-2 expression remained unchanged.
Conclusion Our results indicate that CFS from L. acidophilus and LGG possess anti-inflammatory properties and can
modulate the inflammatory response.
Collapse
Affiliation(s)
- Faezeh Maghsood
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Mirshafiey
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohadese M Farahani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Parvaneh Jafari
- Department of Microbiology, Science Faculty, Islamic Azad University, Arak Branch, Arak, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
31
|
Nyati KK, Prasad KN, Agrawal V, Husain N. Matrix metalloproteinases-2 and -9 in Campylobacter jejuni-induced paralytic neuropathy resembling Guillain-Barré syndrome in chickens. Microb Pathog 2017; 111:395-401. [PMID: 28916318 DOI: 10.1016/j.micpath.2017.09.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 09/10/2017] [Accepted: 09/11/2017] [Indexed: 11/19/2022]
Abstract
Inflammation in Guillain-Barré syndrome (GBS) is manifested by changes in matrix metalloproteinase (MMP) and pro-inflammatory cytokine expression. We investigated the expression of MMP-2, -9 and TNF-α and correlated it with pathological changes in sciatic nerve tissue from Campylobacter jejuni-induced chicken model for GBS. Campylobacter jejuni and placebo were fed to chickens and assessed for disease symptoms. Sciatic nerves were examined by histopathology and immunohistochemistry. Expressions of MMPs and TNF-α, were determined by real-time PCR, and activities of MMPs by zymography. Diarrhea developed in 73.3% chickens after infection and 60.0% of them developed GBS like neuropathy. Pathology in sciatic nerves showed perinodal and/or patchy demyelination, perivascular focal lymphocytic infiltration and myelin swelling on 10th- 20th post infection day (PID). MMP-2, -9 and TNF-α were up-regulated in progressive phase of the disease. Enhanced MMP-2, -9 and TNF-α production in progressive phase correlated with sciatic nerve pathology in C. jejuni-induced GBS chicken model.
Collapse
Affiliation(s)
- Kishan Kumar Nyati
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226 014, India.
| | - Kashi Nath Prasad
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226 014, India.
| | - Vinita Agrawal
- Department of Pathology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226 014, India
| | - Nuzhat Husain
- Department of Pathology, Dr. RML Institute of Medical Sciences, Lucknow 226 010, India
| |
Collapse
|
32
|
Ellinghaus U, Cortini A, Pinder CL, Le Friec G, Kemper C, Vyse TJ. Dysregulated CD46 shedding interferes with Th1-contraction in systemic lupus erythematosus. Eur J Immunol 2017; 47:1200-1210. [PMID: 28444759 PMCID: PMC5507296 DOI: 10.1002/eji.201646822] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/01/2017] [Accepted: 04/20/2017] [Indexed: 12/23/2022]
Abstract
IFN‐γ‐producing T helper 1 (Th1) cell responses mediate protection against infections but uncontrolled Th1 activity also contributes to a broad range of autoimmune diseases. Autocrine complement activation has recently emerged as key in the induction and contraction of human Th1 immunity: activation of the complement regulator CD46 and the C3aR expressed by CD4+ T cells via autocrine generated ligands C3b and C3a, respectively, are critical to IFN‐γ production. Further, CD46‐mediated signals also induce co‐expression of immunosuppressive IL‐10 in Th1 cells and transition into a (self)‐regulating and contracting phase. In consequence, C3 or CD46‐deficient patients suffer from recurrent infections while dysregulation of CD46 signaling contributes to Th1 hyperactivity in rheumatoid arthritis and multiple sclerosis. Here, we report a defect in CD46‐regulated Th1 contraction in patients with systemic lupus erythematosus (SLE). We observed that MMP‐9‐mediated increased shedding of soluble CD46 by Th1 cells was associated with this defect and that inhibition of MMP‐9 activity normalized release of soluble CD46 and restored Th1 contraction in patients’ T cells. These data may deliver the first mechanistic explanation for the increased serum CD46 levels observed in SLE patients and indicate that targeting CD46‐cleaving proteases could be a novel avenue to modulate Th1 responses.
Collapse
Affiliation(s)
- Ursula Ellinghaus
- Division of Genetics and Molecular Medicine, Department of Medical and Molecular Genetics, King's College London, Guy's Hospital, London, UK
| | - Andrea Cortini
- Division of Genetics and Molecular Medicine, Department of Medical and Molecular Genetics, King's College London, Guy's Hospital, London, UK
| | - Christopher L Pinder
- Division of Genetics and Molecular Medicine, Department of Medical and Molecular Genetics, King's College London, Guy's Hospital, London, UK
| | - Gaelle Le Friec
- MRC Centre for Transplantation, Division of Transplant Immunology and Mucosal Biology, King's College London, UK
| | - Claudia Kemper
- MRC Centre for Transplantation, Division of Transplant Immunology and Mucosal Biology, King's College London, UK.,Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Timothy J Vyse
- Division of Genetics and Molecular Medicine, Department of Medical and Molecular Genetics, King's College London, Guy's Hospital, London, UK
| |
Collapse
|
33
|
Garro A, Chodobski A, Szmydynger-Chodobska J, Shan R, Bialo SR, Bennett J, Quayle K, Rewers A, Schunk JE, Casper TC, Kuppermann N, Glaser N. Circulating matrix metalloproteinases in children with diabetic ketoacidosis. Pediatr Diabetes 2017; 18:95-102. [PMID: 26843101 PMCID: PMC4974171 DOI: 10.1111/pedi.12359] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/16/2015] [Accepted: 12/17/2015] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Matrix metalloproteinases (MMPs) mediate blood-brain barrier dysfunction in inflammatory disease states. Our objective was to compare circulating MMPs in children with diabetic ketoacidosis (DKA) to children with type 1 diabetes mellitus without DKA. RESEARCH DESIGN AND METHODS This was a prospective study performed at five tertiary-care pediatric hospitals. We measured plasma MMP-2, MMP-3, and MMP-9 early during DKA (time 1; within 2 h of beginning intravenous fluids) and during therapy (time 2; median 8 h; range: 4-16 h). The primary outcome was MMP levels in 34 children with DKA vs. 23 children with type 1 diabetes without DKA. Secondary outcomes included correlations between MMPs and measures of DKA severity. RESULTS In children with DKA compared with diabetes controls, circulating MMP-2 levels were lower (mean 77 vs. 244 ng/mL, p < 0.001), MMP-3 levels were similar (mean 5 vs. 4 ng/mL, p = 0.57), and MMP-9 levels were higher (mean 67 vs. 25 ng/mL, p = 0.002) early in DKA treatment. MMP-2 levels were correlated with pH at time 1 (r = 0.45, p = 0.018) and time 2 (r = 0.47, p = 0.015) and with initial serum bicarbonate at time 2 (r = 0.5, p = 0.008). MMP-9 levels correlated with hemoglobin A1c in DKA and diabetes controls, but remained significantly elevated in DKA after controlling for hemoglobin A1c (β = -31.3, p = 0.04). CONCLUSIONS Circulating MMP-2 levels are lower and MMP-9 levels are higher in children during DKA compared with levels in children with diabetes without DKA. Alterations in MMP expression could mediate BBB dysfunction occurring during DKA.
Collapse
Affiliation(s)
- Aris Garro
- Departments of Pediatrics and Emergency Medicine, Rhode Island Hospital, Providence, RI, USA,Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Adam Chodobski
- Warren Alpert Medical School, Brown University, Providence, RI, USA
| | | | - Rongzi Shan
- Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Shara R Bialo
- Departments of Pediatrics and Emergency Medicine, Rhode Island Hospital, Providence, RI, USA,Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Jonathan Bennett
- Department of Pediatrics, Sidney Kimmel Medical College at Thomas Jefferson University, Wilmington, DE, USA
| | - Kimberly Quayle
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Arleta Rewers
- Department of Pediatrics, University of Colorado, School of Medicine, Denver, CO, USA
| | - Jeffrey E Schunk
- Department of Pediatrics, University of Utah, School of Medicine, Salt Lake City, UT, USA
| | - T Charles Casper
- Department of Pediatrics, University of Utah, School of Medicine, Salt Lake City, UT, USA
| | - Nathan Kuppermann
- Department of Emergency Medicine, University of California Davis, Davis, CA, USA
| | - Nicole Glaser
- Department of Pediatrics, University of California Davis, Davis, CA, USA
| | | |
Collapse
|
34
|
Han HM, Hong SH, Park HS, Jung JC, Kim JS, Lee YT, Lee EW, Choi YH, Kim BW, Kim CM, Kang KH. Protective effects of Fructus sophorae extract on collagen-induced arthritis in BALB/c mice. Exp Ther Med 2016; 13:146-154. [PMID: 28123483 PMCID: PMC5245053 DOI: 10.3892/etm.2016.3929] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 05/01/2016] [Indexed: 12/12/2022] Open
Abstract
Styphnolobium japonicum (L.) is utilized in Korean medicine for the treatment of various inflammatory diseases. The aim of the present study was to explore the effects of Fructus sophorae extract (FSE) isolated from the dried ripe fruit of S. japonicum (L.) on the development of type II collagen-induced arthritis (CIA) in BALB/c mice. The CIA mice were orally administered FSE or saline daily for 2 weeks. The incidence and severity of disease and the inflammatory response in the serum and the joint tissues were assessed. Macroscopic and histological investigation indicated that FSE protected against CIA development. FSE was associated with a significant reduction in the levels of total immunoglobulin G2a and proinflammatory cytokines and mediators in the serum. In addition, FSE suppressed the gene expression levels of proinflammatory cytokines and mediators, the mediator of osteoclastic bone remodeling, the receptor activator of nuclear factor κ-B ligand and matrix metalloproteinases in the joint tissues. The present results suggest that FSE may protect against inflammation and bone damage, and would be a valuable candidate for further investigation as a novel anti-arthritic agent.
Collapse
Affiliation(s)
- Hyoung-Min Han
- Department of Physiology, College of Korean Medicine, Dongeui University, Busan 614-851, Republic of Korea
| | - Su-Hyun Hong
- Department of Biochemistry, College of Korean Medicine, Dongeui University, Busan 614-851, Republic of Korea
| | - Heung-Sik Park
- NOVAREX Co., Ltd. Life Science R&D Institute, Ochang, Chungcheongbuk 363-885, Republic of Korea
| | - Jae-Chul Jung
- NOVAREX Co., Ltd. Life Science R&D Institute, Ochang, Chungcheongbuk 363-885, Republic of Korea
| | - Jong-Sik Kim
- Department of Anatomy, College of Medicine, Kosin University, Busan 602-703, Republic of Korea
| | - Yong-Tae Lee
- Department of Physiology, College of Korean Medicine, Dongeui University, Busan 614-851, Republic of Korea
| | - Eun-Woo Lee
- Anti-Aging Research Center and Blue-Bio Industry RIC, Dongeui University, Busan 614-714, Republic of Korea; Departments of Life Science and Biotechnology, Dongeui University, Busan 614-714, Republic of Korea
| | - Yung-Hyun Choi
- Department of Biochemistry, College of Korean Medicine, Dongeui University, Busan 614-851, Republic of Korea; Anti-Aging Research Center and Blue-Bio Industry RIC, Dongeui University, Busan 614-714, Republic of Korea
| | - Byung-Woo Kim
- Anti-Aging Research Center and Blue-Bio Industry RIC, Dongeui University, Busan 614-714, Republic of Korea; Departments of Life Science and Biotechnology, Dongeui University, Busan 614-714, Republic of Korea
| | - Cheol-Min Kim
- Research Center for Anti-Aging Technology Development, Busan 609-735, Republic of Korea; Department of Biochemistry, College of Medicine, Pusan National University, Yangsan, Gyeongsangnam 626-870, Republic of Korea
| | - Kyung-Hwa Kang
- Department of Physiology, College of Korean Medicine, Dongeui University, Busan 614-851, Republic of Korea
| |
Collapse
|
35
|
Liu X, Zhang H, Chang X, Shen J, Zheng W, Xu Y, Wang J, Gao W, He S. Upregulated expression of CCR3 in rheumatoid arthritis and CCR3-dependent activation of fibroblast-like synoviocytes. Cell Biol Toxicol 2016; 33:15-26. [PMID: 27495116 DOI: 10.1007/s10565-016-9356-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 07/22/2016] [Indexed: 12/20/2022]
Abstract
It is recognized that CC chemokine receptor 3 (CCR3) is associated with numerous inflammatory conditions and fibroblast-like synoviocyte (FLS) invasiveness correlates with articular damage in rheumatoid arthritis (RA). However, little is known of the expression and action of CCR3 on FLS in RA. In the present study, we investigated the expression of CCR3 on dispersed synovial tissue and peripheral blood cells in RA and influence of eotaxin-1 on FLS functions by using flow cytometry analysis, FLS challenge, and real-time PCR techniques. The results showed that approximately 7.0 % dispersed synovial cells are CCR3+ cells. Among those CCR3+ cells, 38.1, 23.8, and 20.6 % cells are CD90+CD14-CD3- (representing FLS), CD14+, and CD8+ cells, respectively, indicating that FLS is one of the major populations of CCR3+ cells in the synovial tissue of RA. In peripheral blood, CD14+ CCR3+ cells are elevated, but CD8+CCR3+ cells are reduced in RA. It was found that eotaxin-1 induced upregulated expression of CCR3 and matrix metalloproteinase (MMP)-9 messenger RNAs (mRNAs) in FLS. Since an antagonist of CCR3 suppressed the action of eotaxin-1, the event appeared CCR3 dependent. Moreover, we observed that interleukin (IL)-1β induced markedly enhanced eotaxin-1 release from FLS, but TNF-α reduced eotaxin-1 release at 12 and 24 h following incubation. In conclusion, enhanced expression of CCR3 on synovial cells and increased levels of eotaxin-1 in plasma and synovial fluid (SF) of RA indicate that CCR3-mediated mechanisms may play an important role in RA. Blockage of eotaxin-1 provoked CCR3 and MMP-9 expression in FLS by antagonist of CCR3, implicating that anti-CCR3 agents may have therapeutic use for RA.
Collapse
Affiliation(s)
- Xin Liu
- Allergy and Clinical Immunology Research Centre, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, Liaoning, 121001, People's Republic of China
| | - Huiyun Zhang
- Allergy and Clinical Immunology Research Centre, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, Liaoning, 121001, People's Republic of China.
| | - Xin Chang
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Jirong Shen
- Department of Orthopaedics, Affiliated Hospital of Nanjing University of TCM, Nanjing, Jiangsu, 210029, China
| | - Wenjiao Zheng
- Allergy and Clinical Immunology Research Centre, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, Liaoning, 121001, People's Republic of China
| | - Yanan Xu
- Allergy and Clinical Immunology Research Centre, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, Liaoning, 121001, People's Republic of China
| | - Junling Wang
- Allergy and Clinical Immunology Research Centre, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, Liaoning, 121001, People's Republic of China
| | - Wei Gao
- Allergy and Clinical Immunology Research Centre, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, Liaoning, 121001, People's Republic of China
| | - Shaoheng He
- Allergy and Clinical Immunology Research Centre, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, Liaoning, 121001, People's Republic of China.
| |
Collapse
|
36
|
Marshall DC, Lyman SK, McCauley S, Kovalenko M, Spangler R, Liu C, Lee M, O’Sullivan C, Barry-Hamilton V, Ghermazien H, Mikels-Vigdal A, Garcia CA, Jorgensen B, Velayo AC, Wang R, Adamkewicz JI, Smith V. Selective Allosteric Inhibition of MMP9 Is Efficacious in Preclinical Models of Ulcerative Colitis and Colorectal Cancer. PLoS One 2015; 10:e0127063. [PMID: 25961845 PMCID: PMC4427291 DOI: 10.1371/journal.pone.0127063] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 04/11/2015] [Indexed: 12/20/2022] Open
Abstract
Expression of matrix metalloproteinase 9 (MMP9) is elevated in a variety of inflammatory and oncology indications, including ulcerative colitis and colorectal cancer. MMP9 is a downstream effector and an upstream mediator of pathways involved in growth and inflammation, and has long been viewed as a promising therapeutic target. However, previous efforts to target matrix metalloproteinases (MMPs), including MMP9, have utilized broad-spectrum or semi-selective inhibitors. While some of these drugs showed signs of efficacy in patients, all MMP-targeted inhibitors have been hampered by dose-limiting toxicity or insufficient clinical benefit, likely due to their lack of specificity. Here, we show that selective inhibition of MMP9 did not induce musculoskeletal syndrome (a characteristic toxicity of pan-MMP inhibitors) in a rat model, but did reduce disease severity in a dextran sodium sulfate-induced mouse model of ulcerative colitis. We also found that MMP9 inhibition decreased tumor growth and metastases incidence in a surgical orthotopic xenograft model of colorectal carcinoma, and that inhibition of either tumor- or stroma-derived MMP9 was sufficient to reduce primary tumor growth. Collectively, these data suggest that selective MMP9 inhibition is a promising therapeutic strategy for treatment of inflammatory and oncology indications in which MMP9 is upregulated and is associated with disease pathology, such as ulcerative colitis and colorectal cancer. In addition, we report the development of a potent and highly selective allosteric MMP9 inhibitor, the humanized monoclonal antibody GS-5745, which can be used to evaluate the therapeutic potential of MMP9 inhibition in patients.
Collapse
MESH Headings
- Allosteric Regulation
- Animals
- Antibodies, Monoclonal, Humanized/biosynthesis
- Antibodies, Monoclonal, Humanized/isolation & purification
- Antibodies, Monoclonal, Humanized/pharmacology
- Antineoplastic Agents/isolation & purification
- Antineoplastic Agents/metabolism
- Antineoplastic Agents/pharmacology
- Colitis, Ulcerative/chemically induced
- Colitis, Ulcerative/drug therapy
- Colitis, Ulcerative/enzymology
- Colitis, Ulcerative/genetics
- Colorectal Neoplasms/drug therapy
- Colorectal Neoplasms/enzymology
- Colorectal Neoplasms/genetics
- Colorectal Neoplasms/pathology
- Dextran Sulfate
- Disease Models, Animal
- Drug Evaluation, Preclinical
- Epitope Mapping
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Hybridomas/immunology
- Male
- Matrix Metalloproteinase 9/administration & dosage
- Matrix Metalloproteinase 9/genetics
- Matrix Metalloproteinase 9/metabolism
- Matrix Metalloproteinase Inhibitors/isolation & purification
- Matrix Metalloproteinase Inhibitors/metabolism
- Matrix Metalloproteinase Inhibitors/pharmacology
- Mice
- Mice, Nude
- Rats
- Rats, Inbred Lew
- Recombinant Proteins/administration & dosage
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Signal Transduction
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Derek C. Marshall
- Department of Biology, Gilead Sciences, Inc., Foster City, California, United States of America
| | - Susan K. Lyman
- Department of Biology, Gilead Sciences, Inc., Foster City, California, United States of America
| | - Scott McCauley
- Department of Biology, Gilead Sciences, Inc., Foster City, California, United States of America
| | - Maria Kovalenko
- Department of Biology, Gilead Sciences, Inc., Foster City, California, United States of America
| | - Rhyannon Spangler
- Department of Biology, Gilead Sciences, Inc., Foster City, California, United States of America
| | - Chian Liu
- Department of Biology, Gilead Sciences, Inc., Foster City, California, United States of America
| | - Michael Lee
- Department of Biology, Gilead Sciences, Inc., Foster City, California, United States of America
| | - Christopher O’Sullivan
- Department of Biology, Gilead Sciences, Inc., Foster City, California, United States of America
| | - Vivian Barry-Hamilton
- Department of Biology, Gilead Sciences, Inc., Foster City, California, United States of America
| | - Haben Ghermazien
- Department of Biology, Gilead Sciences, Inc., Foster City, California, United States of America
| | - Amanda Mikels-Vigdal
- Department of Biology, Gilead Sciences, Inc., Foster City, California, United States of America
| | - Carlos A. Garcia
- Department of Process Development, Gilead Sciences, Inc., Oceanside, California, United States of America
| | - Brett Jorgensen
- Department of Biology, Gilead Sciences, Inc., Foster City, California, United States of America
| | - Arleene C. Velayo
- Department of Process Development, Gilead Sciences, Inc., Oceanside, California, United States of America
| | - Ruth Wang
- Department of Biology, Gilead Sciences, Inc., Foster City, California, United States of America
| | - Joanne I. Adamkewicz
- Department of Biology, Gilead Sciences, Inc., Foster City, California, United States of America
| | - Victoria Smith
- Department of Biology, Gilead Sciences, Inc., Foster City, California, United States of America
| |
Collapse
|
37
|
Guerra AD, Cantu DA, Vecchi JT, Rose WE, Hematti P, Kao WJ. Mesenchymal Stromal/Stem Cell and Minocycline-Loaded Hydrogels Inhibit the Growth of Staphylococcus aureus that Evades Immunomodulation of Blood-Derived Leukocytes. AAPS JOURNAL 2015; 17:620-30. [PMID: 25716147 DOI: 10.1208/s12248-015-9728-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/28/2015] [Indexed: 01/03/2023]
Abstract
Mesenchymal stromal/stem cells (MSCs) have demonstrated favorable wound healing properties in addition to their differentiation capacity. MSCs encapsulated in biomaterials such as gelatin and polyethylene glycol (PEG) composite hydrogels have displayed an immunophenotype change that leads to the release of cytokines and growth factors to accelerate wound healing. However, therapeutic potential of implanted MSC-loaded hydrogels may be limited by non-specific protein adsorption that facilitates adhesion of bacterial pathogens such as planktonic Staphylococcus aureus (SA) to the surface with subsequent biofilm formation resistant to immune cell recognition and antibiotic activity. In this study, we demonstrate that blood-derived primary leukocytes and bone marrow-derived MSCs cannot inhibit colony-forming abilities of planktonic or biofilm-associated SA. However, we show that hydrogels loaded with MSCs and minocycline significantly inhibit colony-forming abilities of planktonic SA while maintaining MSC viability and multipotency. Our results suggest that minocycline and MSC-loaded hydrogels may decrease the bioburden of SA at implant sites in wounds, and may improve the wound healing capabilities of MSC-loaded hydrogels.
Collapse
Affiliation(s)
- Alberto Daniel Guerra
- School of Pharmacy, Division of Pharmaceutical Sciences, Pharmacy Practice Division, University of Wisconsin-Madison, 777 Highland Avenue, 7123 Rennebohm Hall, Madison, WI, 53705, USA
| | | | | | | | | | | |
Collapse
|
38
|
Chen W, Hua K, Gu H, Zhang J, Wang L. Methylenetetrahydrofolate reductase C667T polymorphism is associated with increased risk of coronary artery disease in a Chinese population. Scand J Immunol 2015; 80:346-53. [PMID: 25124382 DOI: 10.1111/sji.12215] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 07/14/2014] [Indexed: 01/15/2023]
Abstract
Coronary artery disease (CAD) is a complex disease resulting from a combination of environmental and genetic factors. We hypothesized that polymorphisms in methylenetetrahydrofolate reductase (MTHFR) rs1801133 C/T, matrix metalloproteinases (MMPs)-2, tumour necrosis factor (TNF)-α, macrophage migration inhibitory factor (MIF) rs755622 G/C and cyclin D1 (CCND1) rs678653 G/C contribute to CAD susceptibility. We examined the association between the five polymorphisms and the risk of CAD in a Chinese population of 435 CAD patients and 480 controls. Genotyping was performed using matrix-assisted laser desorption ionization/time-of-flight mass spectrometry (MALDI/TOF MS). When the MTHFR rs1801133 CC homozygote genotype was used as the reference group, the TT or CT/TT genotypes were associated with a significantly increased risk for CAD. The CT heterozygote genotype was not associated with the risk for CAD. Logistic regression analyses revealed that MMP-2 rs243865 C/T, TNF-α rs1800629 A/G, MIF rs755622 G/C and CCND1 rs678653 G/C polymorphisms were not associated with the risk of CAD. These findings suggest that the MTHFR rs1801133 C/T polymorphism is associated with CAD development. Future larger studies with other ethnic populations are required to confirm current findings.
Collapse
Affiliation(s)
- W Chen
- Department of Cardiovascular Medicine, Cardiovascular Clinical College of Tianjin Medical University, TEDA International Cardiovascular Hospital, Tianjin, China
| | | | | | | | | |
Collapse
|
39
|
Chalmers SA, Chitu V, Herlitz LC, Sahu R, Stanley ER, Putterman C. Macrophage depletion ameliorates nephritis induced by pathogenic antibodies. J Autoimmun 2014; 57:42-52. [PMID: 25554644 DOI: 10.1016/j.jaut.2014.11.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 11/27/2014] [Accepted: 11/27/2014] [Indexed: 02/07/2023]
Abstract
Kidney involvement affects 40-60% of patients with lupus, and is responsible for significant morbidity and mortality. Using depletion approaches, several studies have suggested that macrophages may play a key role in the pathogenesis of lupus nephritis. However, "off target" effects of macrophage depletion, such as altered hematopoiesis or enhanced autoantibody production, impeded the determination of a conclusive relationship. In this study, we investigated the role of macrophages in mice receiving rabbit anti-glomerular antibodies, or nephrotoxic serum (NTS), an experimental model which closely mimics the immune complex mediated disease seen in murine and human lupus nephritis. GW2580, a selective inhibitor of the colony stimulating factor-1 (CSF-1) receptor kinase, was used for macrophage depletion. We found that GW2580-treated, NTS challenged mice did not develop the increased levels of proteinuria, serum creatinine, and BUN seen in control-treated, NTS challenged mice. NTS challenged mice exhibited significantly increased kidney expression of inflammatory cytokines including RANTES, IP-10, VCAM-1 and iNOS, whereas GW2580-treated mice were protected from the robust expression of these inflammatory cytokines that are associated with lupus nephritis. Quantification of macrophage related gene expression, flow cytometry analysis of kidney single cell suspensions, and immunofluorescence staining confirmed the depletion of macrophages in GW2580-treated mice, specifically within renal glomeruli. Our results strongly implicate a specific and necessary role for macrophages in the development of immune glomerulonephritis mediated by pathogenic antibodies, and support the development of macrophage targeting approaches for the treatment of lupus nephritis.
Collapse
Affiliation(s)
- Samantha A Chalmers
- The Department of Microbiology and Immunology and the Division of Rheumatology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Violeta Chitu
- The Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Leal C Herlitz
- Department of Pathology, Columbia-Presbyterian Medical Center, New York, NY 10032, USA
| | - Ranjit Sahu
- The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - E Richard Stanley
- The Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Chaim Putterman
- The Department of Microbiology and Immunology and the Division of Rheumatology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
40
|
Bahrehmand F, Vaisi-Raygani A, Kiani A, Rahimi Z, Tavilani H, Ardalan M, Vaisi-Raygani H, Shakiba E, Pourmotabbed T. Matrix metalloproteinase 9 polymorphisms and systemic lupus erythematosus: correlation with systemic inflammatory markers and oxidative stress. Lupus 2014; 24:597-605. [DOI: 10.1177/0961203314559085] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 10/16/2014] [Indexed: 11/15/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that involves multiple organs and is characterized by persistent systemic inflammation. Among the effects of inflammatory mediators, the induction of matrix metalloproteinases-2 and -9 (MMP-2 and MMP-9) and oxidative stress has been demonstrated to be important in the development of SLE. In this study, the possible association between MMP-9 and MMP-2 functional promoter polymorphism, stress, and inflammatory markers with development of severe cardiovascular disease (CVD), high blood pressure (HBP), and lupus nephropathy (LN) in SLE patients was investigated. The present case-control study consisted of 109 SLE patients with and without CVD, HBP and LN and 101 gender- and age-matched unrelated healthy controls from a population in western Iran. MMP-2 –G1575A and MMP-9 –C1562T polymorphisms were detected by PCR-RFLP, serum MMP-2 and MMP-9, neopterin, malondialdehyde (MDA) and lipid levels were determined by ELISA, HPLC and enzyme assay, respectively. We found that MMP-9 –C1562 T and MMP-2 –G1575A alleles act synergistically to increase the risk of SLE by 2.98 times ( p = 0.015). Findings of this study also demonstrated that there is a significant increase in the serum levels of MMP-2, neopterin and MDA and a significant decrease in serum level of MMP-9 in the presence of MMP-9-C1562 T and MMP-2 –G1575A alleles in SLE patients compared to controls. Further, SLE patients with MMP-9 (C/T + T/T) genotype had significantly higher serum concentrations of MMP-2, neopterin, MDA and LDL-C, but lower serum MMP-9 and HDL-C levels than corresponding members of the control group. MMP-9 (C/T + T/T) genotype increased risk of hypertension in SLE patients 2.71-fold. This study for the first time not only suggests that MMP-9 –C1562 T and MMP-2 –G1575A alleles synergistically increase the risk of SLE but also high serum levels of MDA, neopterin, and circulatory levels of MMP-2 and lower MMP-9 in SLE patients. This information may be important in the evaluation of SLE progression and in the elucidation of the mechanisms of the disease pathogenesis.
Collapse
Affiliation(s)
- F Bahrehmand
- Fertility and Infertility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Molecular Diagnostic Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Clinical Biochemistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - A Vaisi-Raygani
- Fertility and Infertility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Molecular Diagnostic Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Clinical Biochemistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - A Kiani
- Molecular Diagnostic Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Toxicology and Pharmacology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Z Rahimi
- Department of Clinical Biochemistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - H Tavilani
- Department of Clinical Biochemistry, Hamedan University of Medical Sciences, Kermanshah, Iran
| | - M Ardalan
- Kidney Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - H Vaisi-Raygani
- Department of Chemistry, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | - E Shakiba
- Department of Clinical Biochemistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - T Pourmotabbed
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee, Health Science Center, USA
| |
Collapse
|
41
|
Lee KH, Abas F, Mohamed Alitheen NB, Shaari K, Lajis NH, Israf DA, Syahida A. Chemopreventive effects of a curcumin-like diarylpentanoid [2,6-bis(2,5-dimethoxybenzylidene)cyclohexanone] in cellular targets of rheumatoid arthritis in vitro. Int J Rheum Dis 2014; 18:616-27. [PMID: 24832356 DOI: 10.1111/1756-185x.12341] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
AIM Synovial fibroblast has emerged as a potential cellular target in progressive joint destruction in rheumatoid arthritis development. In this study, BDMC33 (2,6-bis[2,5-dimethoxybenzylidene]cyclohexanone), a curcumin analogue with enhanced anti-inflammatory activity has been synthesized and the potency of BDMC33 on molecular and cellular basis of synovial fibroblasts (SF) were evaluated in vitro. METHODS Synovial fibroblast cells (HIG-82) were cultured in vitro and induced by phorbol-12-myristate acetate (PMA) to stimulate the expression of matrix metalloproteinase (MMPs) and pro-inflammatory cytokines. The protective effects of BDMC33 were evaluated toward MMP activities, pro-inflammatory cytokine expression and nuclear factor kappa-B (NF-κB) activation by using various bioassay methods, including zymography, Western blotting, reverse transcription polymerase chain reaction, immunofluorescense microscopy and electrophoretic mobility shift assay. RESULTS The results showed that BDMC33 significantly inhibited the pro-gelatinase B (pro-MMP-9) and collagenase activities via suppression of MMP-1 in activated SF. In addition, BDMC33 strongly suppressed MMP-3 gene expression as well as inhibited COX-2 and IL-6 pro-inflammatory gene expression. We also demonstrated that BDMC33 abolished the p65 NF-κB nuclear translocation and NF-κB DNA binding activity in PMA-stimulated SF. CONCLUSIONS BDMC33 represents an effective chemopreventive agent and could be used as a promising lead compound for further development of rheumatoid arthritis therapeutic intervention.
Collapse
Affiliation(s)
- Ka-Heng Lee
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Kuala Lumpur, Selangor, Malaysia
| | - Faridah Abas
- Institute of Bioscience, Universiti Putra Malaysia, Kuala Lumpur, Selangor, Malaysia.,Faculty of Food Science and Technology, Universiti Putra Malaysia, Kuala Lumpur, Selangor, Malaysia
| | | | - Khozirah Shaari
- Institute of Bioscience, Universiti Putra Malaysia, Kuala Lumpur, Selangor, Malaysia.,Faculty of Science, Universiti Putra Malaysia, Kuala Lumpur, Selangor, Malaysia
| | - Nordin Haji Lajis
- Institute of Bioscience, Universiti Putra Malaysia, Kuala Lumpur, Selangor, Malaysia.,Faculty of Science, Universiti Putra Malaysia, Kuala Lumpur, Selangor, Malaysia
| | - Daud Ahmad Israf
- Institute of Bioscience, Universiti Putra Malaysia, Kuala Lumpur, Selangor, Malaysia.,Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Kuala Lumpur, Selangor, Malaysia
| | - Ahmad Syahida
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Kuala Lumpur, Selangor, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, Kuala Lumpur, Selangor, Malaysia
| |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW With improved management of the classical disease manifestations of systemic lupus erythematosus (SLE), cardiovascular disease (CVD) has emerged as one of the most important causes of morbidity and mortality. This review in particular focuses on progress over the past year in clinical and basic aspects of SLE-driven accelerated atherosclerosis. RECENT FINDINGS Both subclinical CVD and CV events continue to be recognized at increased frequency in previously unstudied lupus cohorts and populations. Novel associations have been identified between lupus CVD and cognitive impairment, depression, and low-income status. In terms of pathogenesis, there is an ever-increasing focus on the innate immune system and, in particular, type I interferons (IFNs). Recent studies have drawn connections in both human and murine models between neutrophils, plasmacytoid dendritic cells, type I IFNs, and endothelial dysfunction. Whether treatments such as mycophenolate mofetil or statins have a role in prevention of lupus CVD is an area of intensive study. SUMMARY CVD is a major complication of lupus and is now a leading cause of death among people living with this disease. As such, additional studies are needed in order to identify the most effective preventive strategies and most predictive vascular risk biomarkers. Type I IFNs may play a critical role in lupus CVD pathogenesis, and it is recommended that vascular outcomes be included in ongoing trials testing the efficacy of anti-IFN biologics.
Collapse
|
43
|
Sun R, Huang Y, Zhang H, Liu R. MMP-2, TNF-α and NLRP1 polymorphisms in Chinese patients with ankylosing spondylitis and rheumatoid arthritis. Mol Biol Rep 2013; 40:6303-8. [DOI: 10.1007/s11033-013-2743-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 09/14/2013] [Indexed: 01/07/2023]
|
44
|
Synergistic protection of MLC 1 against cardiac ischemia/reperfusion-induced degradation: a novel therapeutic concept for the future. Future Med Chem 2013; 5:389-98. [PMID: 23495687 DOI: 10.4155/fmc.13.19] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Cardiovascular diseases are a major burden to society and a leading cause of morbidity and mortality in the developed world. Despite clinical and scientific advances in understanding the molecular mechanisms and treatment of heart injury, novel therapeutic strategies are needed to prevent morbidity and mortality due to cardiac events. Growing evidence reported over the last decade has focused on the intracellular targets for proteolytic degradation by MMP-2. Of particular interest is the establishment of MMP-2-dependent degradation of cardiac contractile proteins in response to increased oxidative stress conditions, such as ischemia/reperfusion. The authors' laboratory has identified a promising preventive therapeutic target using the classical pharmacological concept of synergy to target MMP-2 activity and its proteolytic action on a cardiac contractile protein. This manuscript provides an overview of the body of evidence that supports the importance of cardiac contractile protein degradation in ischemia/reperfusion injury and the use of synergy to protect against it.
Collapse
|
45
|
Al-Kashi A, Montero-Melendez T, Moradi-Bidhendi N, Gilligan JP, Mehta N, Perretti M. The calcitonin and glucocorticoids combination: mechanistic insights into their class-effect synergy in experimental arthritis. PLoS One 2013; 8:e54299. [PMID: 23393556 PMCID: PMC3564948 DOI: 10.1371/journal.pone.0054299] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 12/10/2012] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Previous work reported the anti-arthritic synergy afforded by combining calcitonin (CT) and glucocorticoids (GC). Here we focus on the pairing of elcatonin (eCT) and dexamethasone (Dex), querying whether: i) this was a class-effect action; ii) mechanistic insights could be unveiled; iii) the synergy affected canonical GC adverse effects. METHODS Using the rat collagen-induced arthritis model, different combinations of eCT and Dex, were administered from disease onset to peak (day 11 to 18). Macroscopic disease score was monitored throughout, with biochemical and histological analyses conducted on plasma and tissues at day 18. The effect on acute hyperglycaemia and liver enzyme message were also assessed. RESULTS Whilst eCT alone was inactive, it synergised at 1 µg/kg with low doses of Dex (7.5 or 15 µg/kg) to yield an anti-arthritic efficacy equivalent to a 4- to 7-fold higher Dex dose. Mechanistically, the anti-arthritic synergy corresponded to a marked attenuation in RA-relevant analytes. CXCL5 expression, in both plasma and joint, was markedly inhibited by the co-therapy. Finally, co-administration of eCT did not exacerbate metrics of GC adverse effects, and rescued some of them. CONCLUSIONS We present evidence of a class-effect action for the anti-arthritic synergy of CT/GC combination, underpinned by the powerful inhibition of joint destruction markers. Furthermore, we identify CXCL5 as a marker for the combination therapy with potential diagnostic and prognostic utility. Substantial GC dose reduction, together with the absence of exacerbated adverse effects, indicated a significant clinical potential for this co-therapy in RA and beyond.
Collapse
Affiliation(s)
- Adam Al-Kashi
- The William Harvey Research Institute, Barts and The London School of Medicine, London, United Kingdom
| | - Trinidad Montero-Melendez
- The William Harvey Research Institute, Barts and The London School of Medicine, London, United Kingdom
| | - Niloufar Moradi-Bidhendi
- The William Harvey Research Institute, Barts and The London School of Medicine, London, United Kingdom
| | - James P. Gilligan
- Tarsa Therapeutics, Philadelphia, Pennsylvania, United States of America
| | - Nozer Mehta
- Unigene Corporation, Fairfield, New Jersey, United States of America
| | - Mauro Perretti
- The William Harvey Research Institute, Barts and The London School of Medicine, London, United Kingdom
| |
Collapse
|
46
|
Impaired DNA methylation and its mechanisms in CD4(+)T cells of systemic lupus erythematosus. J Autoimmun 2013; 41:92-9. [PMID: 23340289 DOI: 10.1016/j.jaut.2013.01.005] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 01/02/2013] [Indexed: 12/11/2022]
Abstract
Systemic lupus erythematosus (SLE) is a prototypical autoimmune disease characterized by production of autoantibodies against a series of nuclear antigens. Although the exact cause of SLE is still unknown, the influence of environment, which is largely reflected by the epigenetic mechanisms, with DNA methylation changes in particular, are generally considered as key players in the pathogenesis of SLE. As an important post-translational modification, DNA methylation mainly suppresses the expression of relevant genes. Accumulating evidence has indicated that abnormal DNA hypomethylation in T cells is an important epigenetic hallmark in SLE. Apart from those classic methylation-sensitive autoimmunity-related genes in lupus, such as CD11a (ITGAL), Perforin (PRF1), CD70 (TNFSF7), CD40 ligand (TNFSF5) and PP2Acα, the genome-wide methylation pattern has also been explored recently, providing us a more and more full-scale picture of the abnormal status of DNA methylation in SLE. On the other hand, certain miRNAs, RFX1, defective ERK pathway signaling, Gadd45α and DNA hydroxymethylation have been proposed as potential mechanisms leading to DNA hypomethylation in lupus. In this review, we summarize current understanding of T cell DNA methylation changes and the consequently altered gene expressions in lupus, and how they contribute to the development of SLE. Possible mechanisms underlying these aberrancies are also discussed based on the reported literature and our own findings.
Collapse
|
47
|
Hot A, Zrioual S, Lenief V, Miossec P. IL-17 and tumour necrosis factor α combination induces a HIF-1α-dependent invasive phenotype in synoviocytes. Ann Rheum Dis 2012; 71:1393-401. [PMID: 22532631 DOI: 10.1136/annrheumdis-2011-200867] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVES To examine the effect of interleukin-17 (IL-17) on rheumatoid arthritis (RA) synoviocyte migration and invasiveness. METHODS IL-17A and tumour necrosis factor α (TNFα)-induced messenger RNA expression in RA synoviocytes was analysed using Affymetrix U133A microarrays. The capacity of IL-17 alone or in combination with TNFα to induce synoviocyte migration and invasion was tested using Boyden and transwell Matrigel invasion chambers. A functional DNA binding assay was used to evaluate the regulation of the key hypoxia-related gene hypoxia-inducible factor 1 (HIF-1α) expression and activation. The role of metalloproteinase 2 (MMP2) in IL-17-induced invasiveness was assessed using small interfering RNA. Hypoxia pathway gene expression was measured in the blood of RA patients and healthy volunteers using Affymetrix microarrays. RESULTS Among the genes induced by IL-17A in RA synoviocytes, a molecular pattern of inflammation hypoxia-related genes, including CXC chemokine receptor 4 (CXCR4) and MMP2 was identified. Using immunofluorescence microscopy, the expression of CXCR4 was confirmed on synoviocytes. IL-17A and TNFα induced synoviocyte migration and invasion through a CXCR4-dependent mechanism with a synergistic effect. Their combination activated HIF-1α through the nuclear factor κB pathway. IL-17 enhanced invasion through MMP2 induction as demonstrated using siRNA. Finally, hypoxia genes were overexpressed in the blood of RA patients. CONCLUSION IL-17A, specifically when combined with TNFα may contribute to the progression of RA, notably through their effect on synoviocyte aggressiveness. Part of this effect results from activation of the CXCR4/stromal cell-derived factor 1 and hypoxia-mediated pathways.
Collapse
Affiliation(s)
- Arnaud Hot
- Department of Clinical Immunology and Rheumatology and Immunogenomics and Inflammation Research Unit, Hopital Edouard Herriot, University of Lyon 1, Lyon, France
| | | | | | | |
Collapse
|
48
|
The beneficial role of vitamin D in systemic lupus erythematosus (SLE). Clin Rheumatol 2012; 31:1423-35. [DOI: 10.1007/s10067-012-2033-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 07/04/2012] [Indexed: 02/06/2023]
|
49
|
|
50
|
Xu JX, Zhang Y, Zhang XZ, Ma YY. [Anti-angiogenic effects of genistein on synovium in a rat model of type II collagen-induced arthritis]. ACTA ACUST UNITED AC 2012; 9:186-93. [PMID: 21288455 DOI: 10.3736/jcim20110212] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To explore the anti-angiogenic effects of genistein on synovium in a rat model of type II collagen-induced arthritis (CIA). METHODS Forty SD rats were randomly divided into normal group, model group, genistein group, methotrexate (MTX) group and Gen plus MTX group with 8 rats in each group. Arthritis in rats was induced by subcutaneous injection of type II collagen combined with complete Freund's adjuvant (CFA). On the second day after the injection, 1 mL of suspension liquid of genistein (30 mg/kg body weight, once daily) and MTX (0.2 mg/kg body weight, once a week) were administered by oral gavage respectively. The rats in normal group and model group were administered with normal saline in the same volume. Synovium of knee joints and peripheral serum were collected from the CIA rats. Microvessel density in synovium (MVD) was detected by immunohistochemical method and serum vascular endothelial growth factor (VEGF) and matrix metallopeptidase (MMP)-1, 2 and 9 levels were detected by using Western blotting. RESULTS Arthritis index score, paw volume of rats in the model group were significantly higher than those in the normal group (P<0.05), which suggested that a model of CIA induced by injection of type II collagen and CFA was successfully constructed. The arthritis index scores of rats in the treatment groups were decreased compared with the model group. The results of Western blotting showed that genistein obviously attenuate the levels of VEGF and MMP-1, 2 and 9 in serum (P<0.05). Immunohistochemical method showed that MVDs in the treatment groups were reduced as compared with the model group. CONCLUSION The expressions of VEGF and MMP-1, 2 and 9 are related to the synovial pannus formation in CIA rats. The anti-angiogenic activity of genistein may correlate to its inhibitory effect on the expressions of VEGF and MMP-1, 2 and 9 in serum of CIA rats; genistein plus MTX are superior to single agents in treating rheumatoid arthritis.
Collapse
Affiliation(s)
- Jin-xin Xu
- Department of Hematopathy and Rheumatism, Clinical Medicine College, Yangzhou University, Yangzhou 225001, Jiangsu Province, China
| | | | | | | |
Collapse
|