1
|
Peng S, Xu Y, Lin X. Inhibition of FOXO3 ameliorates ropivacaine-induced nerve cell damage through the miR-126-5p/TRAF6 axis. In Vitro Cell Dev Biol Anim 2024; 60:1109-1120. [PMID: 39227495 DOI: 10.1007/s11626-024-00970-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024]
Abstract
Local anesthetics, such as ropivacaine (Ropi), are toxic to nerve cells. We aimed to explore the role of forkhead box O3 (FOXO3) in Ropi-induced nerve injury to provide a theoretical basis for reducing the anesthetic neurotoxicity. SK-N-SH cells were cultured and treated with different concentrations of Ropi. Cell viability, apoptosis, cytotoxicity (LDH/ROS/SOD), and levels of FOXO3, miR-126-5p, and tumor necrosis factor receptor-associated factor 6 (TRAF6) were detected. The enrichment of FOXO3 on the miR-126-5p promoter was analyzed. The binding relationships among FOXO3, miR-126-5p promoter sequence, and TRAF6 3'UTR sequence were verified. Combined experiments detected the regulatory role of FOXO3/miR-126-5p/TRAF6 in Ropi-induced nerve injury. FOXO3 was upregulated in Ropi-induced nerve cell damage. Inhibition of FOXO3 ameliorated Ropi-induced decreased cell viability, and increased apoptosis and cytotoxicity. FOXO3 bound to the miR-126-5p promoter and inhibited its expression, thereby counteracting miR-126-5p-induced repression. miR-126-5p inhibition and TRAF6 overexpression partially reversed the alleviative effect of FOXO3 inhibition on Ropi-induced nerve cell damage. In conclusion, FOXO3 aggravated the neurotoxicity of Ropi through miR-126-5p downregulation and TRAF6 upregulation, suggesting that FOXO3 inhibitor could be an adjuvant agent for local anesthetics, to alleviate local anesthetics-induced neurotoxicity.
Collapse
Affiliation(s)
- Song Peng
- Department of Anesthesiology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | - Yuzeng Xu
- Department of Anesthesiology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | - Xiao Lin
- Department of Anesthesiology, Women's Hospital School of Medicine Zhejiang University, 1 Bachelor Road, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
2
|
Hou D, Zhang L, Hu Y, Yang G, Yu D. Bone Marrow Mesenchymal Stem Cell Exosomal miR-345-3p Ameliorates Cerebral Ischemia-reperfusion Injury by Targeting TRAF6. Curr Neurovasc Res 2023; 20:493-504. [PMID: 37670712 DOI: 10.2174/1567202620666230905121102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/07/2023]
Abstract
INTRODUCTION The purpose of this study was to investigate the effects of bone marrow mesenchymal stem cells (BMSCs) exosomal miR-345-3p and tumor necrosis factor receptorassociated factor 6 (TRAF6) on cerebral ischemia reperfusion (CIR) injury. Exosomes (Exos) derived from BMSCs were isolated and identified. PC12 (rat pheochromocytoma) cells were used to establish an oxygen and glucose deprivation/reoxygenation (OGD/R) model. METHODS Cell counting kit-8, TUNEL staining, lactate dehydrogenase staining, RT-qPCR, and western blotting were utilized for analyzing the functions of miR-345-3p about PC12 cells. Dualluciferase reporter experiment was then to confirm the link between miR-345-3p and TRAF6. Finally, using male SD rats, the middle cerebral artery occlusion (MCAO) model was constructed. Regulation of I/R damage in MCAO rats of miR-345-3p and TRAF6 were further explored in the changes of modified neurological severity score, cerebral infarction pictures, relative infarct volume, and histopathological changes. After OGD/R treatment, neuronal apoptosis was dramatically increased. After treatment with exosomal miR-345-3p, OGD/R-induced neuroapoptosis was dramatically inhibited. Exosomal miR-345-3p inhibited OGD/R-induced neuroapoptosis by downregulating the expression of TRAF6. However, the miR-345-3p inhibitor aggravated the changes caused by OGD/R. RESULTS The corresponding regulations of miR-345-3p were reversed with TRAF6 overexpression. The animal experiments in vivo further verified that miR-345-3p ameliorated brain I/R injury in MCAO rats by targeting TRAF6. CONCLUSION This study found that BMSCs-exosomal miR-345-3p protected against CIR injury by decreasing TRAF6.
Collapse
Affiliation(s)
- Dan Hou
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
| | - Lei Zhang
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
| | - Yujie Hu
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
| | - Guoshuai Yang
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
| | - Dan Yu
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
| |
Collapse
|
3
|
Han B, Zhao Y, Yao J, Li N, Fang T, Wang Y, Meng Z, Liu W. Proteomics on the role of muscone in the "consciousness-restoring resuscitation" effect of musk on ischemic stroke. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115475. [PMID: 35718056 DOI: 10.1016/j.jep.2022.115475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/01/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Musk is a representative drug of aroma-relieving traditional Chinese medicine, and it is a commonly used traditional Chinese medicine for the treatment of ischemic stroke. Muscone is the core medicinal component of musk. AIM OF THE STUDY We sought to identify the target of muscone in the treatment of ischemic stroke using network pharmacology, an animal model of ischemic stroke, and differential proteomics. MATERIALS AND METHODS The drug targets of muscone in the treatment of ischemic stroke were predicted and analyzed using information derived from sources such as the Traditional Chinese Medicine Systems Pharmacology database and Swiss Target Prediction tool. The animal model of focal cerebral ischemia was established by suture-based occlusion of the middle cerebral artery of rats. The rats were divided into six groups: sham-operated control, model, musk, muscone1, muscone2, and muscone3. Neurological deficit scores were calculated after intragastric administration of musk or muscone. The microcirculation blood flow of the pia mater was detected using a laser speckle blood flow meter. The cerebral infarction rate was detected by 2,3,5-triphenyltetrazolium chloride staining. The necrosis rate of the cerebral cortex and the hippocampal neurons was detected by hematoxylin and eosin staining. Blood-brain barrier damage was detected by the Evans blue method. Quantitative proteomics analysis in the sham-operated control, model, and muscone groups was performed using tandem-mass-tags. Considering fold changes exceeding 1.2 as differential protein expression, the quantitative values were compared among groups by analysis of variance. Furthermore, a protein-protein interaction network was constructed, and differentially expressed proteins were analyzed by gene ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. RESULTS Network pharmacology identified 339 targets for the intersection of 17 components of musk and cerebral ischemia-reperfusion injury. The GO and KEGG enrichment items mainly identified regulation of neuronal synaptic structure and transfer function, synaptic neurotransmitters, and receptor activity. Zoopery showed that the model group had a higher behavioral score, cerebral infarction rate, cortical and hippocampal neuron death rate, Evans blue exudation in the brain, and bilateral pia mater microcirculation blood flow differences than the sham-operated control group (P <0.01). Compared with the model group, the behavioral score, infarction rate, hippocampal neuronal mortality, and Evans blue content decreased significantly in the musk, muscone2, and muscone3 groups (P <0.05). Proteomic analysis showed that 160 genes were differentially expressed among the sham-operated control, model, and muscone groups. GO items with high enrichment included neuronal synapses, postsynaptic signal transduction, etc. KEGG items with high enrichment included cholinergic synapses, calcium signaling pathway, dopaminergic synapses, etc. Protein interaction analysis revealed that the top three protein pairs were Ndufa10/Ndufa6, Kcna2/Kcnab2, and Gsk3b/Traf6. CONCLUSIONS Muscone can reduce neuronal necrosis, protect the blood-brain barrier, and improve the neurological damage caused by cerebral ischemia via molecular mechanisms mainly involving the regulation of neuronal synaptic connections. Muscone is an important active component responsible for the "consciousness-restoring resuscitation" effect of musk on ischemic stroke.
Collapse
Affiliation(s)
- Bingbing Han
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Shandong, 250355, PR China.
| | - Yangang Zhao
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine Shandong, 266109, PR China.
| | - Jing Yao
- School of Nursing, Shandong University of Traditional Chinese Medicine, Shandong, 250355, PR China.
| | - Na Li
- School of Nursing, Shandong University of Traditional Chinese Medicine, Shandong, 250355, PR China.
| | - Tianhe Fang
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Shandong, 250355, PR China.
| | - Yuan Wang
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Shandong, 250355, PR China.
| | - Zhaoqing Meng
- Shandong Hongjitang Pharmaceutical Group Co., Ltd., Shandong, 250109, PR China.
| | - Wei Liu
- School of Nursing, Shandong University of Traditional Chinese Medicine, Shandong, 250355, PR China.
| |
Collapse
|
4
|
Xia P, Marjan M, Liu Z, Zhou W, Zhang Q, Cheng C, Zhao M, Tao Y, Wang Z, Ye Z. Chrysophanol postconditioning attenuated cerebral ischemia-reperfusion injury induced NLRP3-related pyroptosis in a TRAF6-dependent manner. Exp Neurol 2022; 357:114197. [PMID: 35932799 DOI: 10.1016/j.expneurol.2022.114197] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/28/2022] [Accepted: 07/31/2022] [Indexed: 11/04/2022]
Abstract
Individuals who suffer from post-CA (cardiac arrest) brain injury experience higher mortality and more severe functional disability. Neuroinflammation has been identified as a vital factor in cerebral ischemia-reperfusion injury (CIRI) following CA. Pyroptosis induces neuronal death by triggering an excessive inflammatory injury. Chrysophanol possesses robust anti-inflammatory features, and it is protective against CIRI. The purpose of this research was to assess the effect of Chrysophanol postconditioning on CIRI-induced pyroptotic cell death, and to explore its underlying mechanisms. CIRI was induced in rats by CA and subsequent cardiopulmonary resuscitation, and PC12 cells were exposed to oxygen-glucose deprivation/reoxygenation (OGD/R) to imitate CIRI in vitro. It was found that post-CA brain injury led to a notable cerebral damage revealed by histopathological changes and neurological outcomes. The existence of pyroptosis was also confirmed in in vivo and in vitro CIRI models. Moreover, we further confirmed that Chrysophanol, the main bioactive ingredient of Rhubarb, significantly suppressed expressions of pyroptosis-associated proteins, e.g., NLRP3, ASC, cleaved-caspase-1 and N-terminal GSDMD, and inhibited the expression of tumor necrosis factor receptor-associated factor 6 (TRAF6). Furthermore, NLRP3 overexpression neutralized the neuroprotection of Chrysophanol postconditioning, suggesting that pyroptosis was the major neuronal death pathway modulated by Chrysophanol postconditioning in OGD/R. Additionally, the neuroprotection of Chrysophanol postconditioning was also abolished by gain-of-function analyses of TRAF6. Finally, the results demonstrated that Chrysophanol postconditioning suppressed the interaction between TRAF6 and NLRP3. Taken together, our findings revealed that Chrysophanol postconditioning was protective against CIRI by inhibiting NLRP3-related pyroptosis in a TRAF6-dependent manner.
Collapse
Affiliation(s)
- Pingping Xia
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, Hunan Province, China; National Clinical Research Center for Geriatric Disorders, Central South University, Changsha 410008, Hunan Province, China
| | - Murat Marjan
- Department of Anesthesiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054 Xinjiang, Uygur Autonomous Region, China
| | - Zhuoyi Liu
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, Hunan Province, China; National Clinical Research Center for Geriatric Disorders, Central South University, Changsha 410008, Hunan Province, China
| | - Wanqing Zhou
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, Hunan Province, China
| | - Qian Zhang
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, Hunan Province, China
| | - Chen Cheng
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, Hunan Province, China
| | - Minxi Zhao
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, Hunan Province, China
| | - Yuanyuan Tao
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, Hunan Province, China
| | - Zhihua Wang
- Department of Anesthesiology, Hainan General Hospital, Haikou, Hainan Province, China
| | - Zhi Ye
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, Hunan Province, China; National Clinical Research Center for Geriatric Disorders, Central South University, Changsha 410008, Hunan Province, China.
| |
Collapse
|
5
|
In Vitro Analysis of TGF-β Signaling Modulation of Porcine Alveolar Macrophages in Porcine Circovirus Type 2b Infection. Vet Sci 2022; 9:vetsci9030101. [PMID: 35324828 PMCID: PMC8951539 DOI: 10.3390/vetsci9030101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 02/06/2023] Open
Abstract
Porcine circovirus 2 (PCV2) has been recognized as an immunosuppressive pathogen. However, the crosstalk between this virus and its host cells in related signaling pathways remains poorly understood. In this study, the expression profiles of 84 genes involved in transforming growth factor-beta (TGF-β) signaling pathway were probed in PCV2b-infected primary porcine alveolar macrophages (PAMs) by using an RT2 profiler PCR array system. The protein expression levels of cytokines involved in the TGF-β signaling pathway were determined with a RayBiotech fluorescent Quantibody® porcine cytokine array system. Results showed that 48, 30, and 42 genes were differentially expressed at 1, 24, and 48 h after infection, respectively. A large number of genes analyzed by a co-expression network and implicated in transcriptional regulation and apoptosis were differentially expressed in PCV2b-infected PAMs. Among these genes, TGF-β, interleukin-10, CCAAT/enhancer-binding protein beta (C/EBPB), growth arrest, and DNA-damage-inducible 45 beta (GADD45B), and BCL2 were upregulated. By contrast, SMAD family member 1 (smad1) and smad3 were downregulated. These results suggested that the TGF-β signaling pathway was repressed in PAMs at the early onset of PCV2 infection. The inhibited apoptosis was indicated by the upregulated C/EBPB, GADD45B, and BCL2, and by the downregulated smad1 and smad3, which possibly increased the duration of PCV2 replication-permissive conditions and caused a persistent infection. Our study may provide insights into the underlying antiviral functional changes in the immune system of PCV2-infected pigs.
Collapse
|
6
|
Alam M, Ali S, Ahmed S, Elasbali AM, Adnan M, Islam A, Hassan MI, Yadav DK. Therapeutic Potential of Ursolic Acid in Cancer and Diabetic Neuropathy Diseases. Int J Mol Sci 2021; 22:12162. [PMID: 34830043 PMCID: PMC8621142 DOI: 10.3390/ijms222212162] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
Ursolic acid (UA) is a pentacyclic triterpenoid frequently found in medicinal herbs and plants, having numerous pharmacological effects. UA and its analogs treat multiple diseases, including cancer, diabetic neuropathy, and inflammatory diseases. UA inhibits cancer proliferation, metastasis, angiogenesis, and induced cell death, scavenging free radicals and triggering numerous anti- and pro-apoptotic proteins. The biochemistry of UA has been examined broadly based on the literature, with alterations frequently having been prepared on positions C-3 (hydroxyl), C12-C13 (double bonds), and C-28 (carboxylic acid), leading to several UA derivatives with increased potency, bioavailability and water solubility. UA could be used as a protective agent to counter neural dysfunction via anti-oxidant and anti-inflammatory effects. It is a potential therapeutic drug implicated in the treatment of cancer and diabetic complications diseases provide novel machinery to the anti-inflammatory properties of UA. The pharmacological efficiency of UA is exhibited by the therapeutic theory of one-drug → several targets → one/multiple diseases. Hence, UA shows promising therapeutic potential for cancer and diabetic neuropathy diseases. This review aims to discuss mechanistic insights into promising beneficial effects of UA. We further explained the pharmacological aspects, clinical trials, and potential limitations of UA for the management of cancer and diabetic neuropathy diseases.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.A.); (S.A.); (A.I.); (M.I.H.)
| | - Sabeeha Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.A.); (S.A.); (A.I.); (M.I.H.)
| | - Sarfraz Ahmed
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India;
| | - Abdelbaset Mohamed Elasbali
- Clinical Laboratory Science, College of Applied Medical Sciences-Qurayyat, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia;
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.A.); (S.A.); (A.I.); (M.I.H.)
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.A.); (S.A.); (A.I.); (M.I.H.)
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, Yeonsu-gu, Incheon 21924, Korea
| |
Collapse
|
7
|
Park HH. Structural feature of TRAFs, their related human diseases and therapeutic intervention. Arch Pharm Res 2021; 44:475-486. [PMID: 33970438 DOI: 10.1007/s12272-021-01330-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/04/2021] [Indexed: 12/22/2022]
Abstract
Several studies have been conducted over the years to unravel the structural information on the receptors that bind to tumor necrosis factor receptor-associated factor (TRAF) and the driving forces for the TRAF/receptor complex. In addition, studies have also been performed to highlight the influence of TRAF malfunctioning and mutations on the development of human disease. However, a holistic study that systematically summarizes the available information and the existing clinical trends towards development of the TRAF-targeting drugs has not been conducted to date. Herein, I reviewed existing research that focused on the structural information of various receptors recognized by the different members of the TRAF family. I also reviewed studies on the different human diseases that occur due to TRAF malfunctioning or mutations as well as the clinical trials undertaken to treat TRAF-associated diseases.
Collapse
Affiliation(s)
- Hyun Ho Park
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea. .,Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
8
|
Donepezil attenuates injury following ischaemic stroke by stimulation of neurogenesis, angiogenesis, and inhibition of inflammation and apoptosis. Inflammopharmacology 2020; 29:153-166. [PMID: 33201349 DOI: 10.1007/s10787-020-00769-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022]
Abstract
Donepezil has proven to be an effective drug to reduce neuronal death and subsequently injury in neurodegenerative diseases. The current study evaluated the neuroprotective effects of donepezil in a rat model of ischaemic stroke and explored possible mechanisms which by this drug may reduce cell death. Temporary middle cerebral artery occlusion (tMCAO) was exerted for 45 min to induce ischaemic stroke. The animals were assigned into five groups: sham, control, and three groups treated with different doses of donepezil. Donepezil was intraperitoneally (IP) injected 4 h after reperfusion for 10 consecutive days. Infarct size was determined using TTC staining. The expression of proteins was evaluated using immunohistochemistry assays. Compared with the control group, infarct size was significantly reduced in tMCAO rats treated with different doses of donepezil. Moreover, our results showed significant decreased expression levels of apoptotic markers and pro-inflammatory mediators after treatment with different doses of donepezil for 10 days (P < 0.05). Likewise, significant increase of brain-derived neurotrophic factor (BDNF) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) proteins were found in tMCAO rats treated with donepezil compared with the control group (P < 0.05). Collectively, our findings show the validity of donepezil as a new therapeutic agent for attenuation of injury following ischaemic stroke through attenuation of inflammation and improvement of mitochondrial function, neurogenesis, and angiogenesis.
Collapse
|
9
|
Fang YC, Chan L, Liou JP, Tu YK, Lai MJ, Chen CI, Vidyanti AN, Lee HY, Hu CJ. HDAC inhibitor protects chronic cerebral hypoperfusion and oxygen-glucose deprivation injuries via H3K14 and H4K5 acetylation-mediated BDNF expression. J Cell Mol Med 2020; 24:6966-6977. [PMID: 32374084 PMCID: PMC7299713 DOI: 10.1111/jcmm.15358] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/16/2020] [Indexed: 12/14/2022] Open
Abstract
Vascular dementia (VaD) is the second most common cause of dementia, but the treatment is still lacking. Although many studies have reported that histone deacetylase inhibitors (HDACis) confer protective effects against ischemic and hypoxic injuries, their role in VaD is still uncertain. Previous studies shown, one HDACi protected against cognitive decline in animals with chronic cerebral hypoperfusion (CCH). However, the underlying mechanisms remain elusive. In this study, we tested several 10,11‐dihydro‐5H‐dibenzo[b,f]azepine hydroxamates, which act as HDACis in the CCH model (in vivo), and SH‐SY5Y (neuroblastoma cells) with oxygen‐glucose deprivation (OGD, in vitro). We identified a compound 13, which exhibited the best cell viability under OGD. The compound 13 could increase, in part, the protein levels of brain‐derived neurotrophic factor (BDNF). It increased acetylation status on lysine 14 residue of histone 3 (H3K14) and lysine 5 of histone 4 (H4K5). We further clarified which promoters (I, II, III, IV or IX) could be affected by histone acetylation altered by compound 13. The results of chromatin immunoprecipitation and Q‐PCR analysis indicate that an increase in H3K14 acetylation leads to an increase in the expression of BDNF promoter II, while an increase in H4K5 acetylation results in an increase in the activity of BDNF promoter II and III. Afterwards, these cause an increase in the expression of BDNF exon II, III and coding exon IX. In summary, the HDACi compound 13 may increase BDNF specific isoforms expression to rescue the ischemic and hypoxic injuries through changes of acetylation on histones.
Collapse
Affiliation(s)
- Yao-Ching Fang
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| | - Lung Chan
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.,TMU Biomedical Commercialization Center, Taipei Medical University, Taipei, Taiwan
| | - Yong-Kwang Tu
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan.,Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Mei-Jung Lai
- TMU Biomedical Commercialization Center, Taipei Medical University, Taipei, Taiwan
| | - Chin-I Chen
- Department of Neurology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Amelia Nur Vidyanti
- Department of Neurology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.,International Master/PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsueh-Yun Lee
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Chaur-Jong Hu
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan.,Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| |
Collapse
|
10
|
Yao Y, Zhu H, Zhu L, Fang Z, Fan Y, Liu C, Tian Y, Chen Y, Tang W, Ren Z, Li J, Yang S, Chen Y, Zhao X, Shen C. A comprehensive contribution of genetic variations of the insulin-like growth factor 1 signalling pathway to stroke susceptibility. Atherosclerosis 2020; 296:59-65. [DOI: 10.1016/j.atherosclerosis.2020.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 12/06/2019] [Accepted: 01/14/2020] [Indexed: 12/20/2022]
|
11
|
Zhou H, Wang X, Cheng R, Hou X, Chen Y, Feng Y, Qiu J. Analysis of long non-coding RNA expression profiles in neonatal rats with hypoxic-ischemic brain damage. J Neurochem 2019; 149:346-361. [PMID: 30802942 DOI: 10.1111/jnc.14689] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 01/26/2023]
Abstract
Hypoxic-ischemic brain damage (HIBD) which is a common cause of acute mortality and neurological dysfunction in neonates still lacks effective therapeutic methods. Long non-coding RNAs (lncRNAs) were demonstrated to play a crucial role in many diseases. To give a foundation for subsequent functional studies of lncRNAs in HIBD, we investigated the profiling of lncRNAs and messenger RNAs (mRNAs) using neonatal HIBD rat model. Six neonatal rats were divided into sham-operated group (n = 3) and HIBD group (n = 3) randomly. Deep RNA sequencing was implemented to find out the meaningful lncRNAs and mRNAs. Quantitative real-time PCR was used to validate expressions of lncRNAs and mRNAs. The Gene Ontology (GO) and kyoto encyclopedia of genes a genomes (KEGG) database were used to predict functions of lncRNAs. A total of 328 differentially expressed lncRNAs (177 down-regulated vs 151 up-regulated) and 7157 differentially expressed mRNAs (2552 down-regulated vs 4605 up-regulated) were identified. The Quantitative real-time PCR results showed significant differential expressions of five lncRNAs and five mRNAs which were consistent with the RNA-Seq data. Gene ontology and KEGG analysis showed these lncRNAs and their expression-correlated mRNAs were closely related to the Janus tyrosine kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway, NF-kappa B signaling pathway, Toll-like receptor signaling pathway, calcium signaling pathway, Notch signaling pathway, mitogen activated protein kinase signaling pathway, neuroactive ligand-receptor interaction pathway and more. The results of our study identified the characterization and expression profiles of lncRNAs in neonatal HIBD and may be a basis for further therapeutic research. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* and *Open Data* because it provided all relevant information to reproduce the study in the manuscript and because it made the data publicly available. The data can be accessed at https://osf.io/yf3da/. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Han Zhou
- Department of Newborn Infants, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuan Wang
- Department of Newborn Infants, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rui Cheng
- Department of Newborn Infants, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuewen Hou
- Department of Newborn Infants, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ying Chen
- Department of Newborn Infants, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yun Feng
- Department of Newborn Infants, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jie Qiu
- Department of Newborn Infants, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
12
|
Nejati M, Tameh AA, Atlasi MA. Role of toll‐like receptors 2 and 4 in the neuroprotective effects of bone marrow–derived mesenchymal stem cells in an experimental model of ischemic stroke. J Cell Biochem 2018. [DOI: 10.1002/jcb.28083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Majid Nejati
- Anatomical Sciences Research Center, Kashan University of Medical Sciences Kashan Iran
| | - Abolfazl Azami Tameh
- Anatomical Sciences Research Center, Kashan University of Medical Sciences Kashan Iran
| | - Mohammad Ali Atlasi
- Anatomical Sciences Research Center, Kashan University of Medical Sciences Kashan Iran
| |
Collapse
|
13
|
Wang Y, Li L, Deng S, Liu F, He Z. Ursolic Acid Ameliorates Inflammation in Cerebral Ischemia and Reperfusion Injury Possibly via High Mobility Group Box 1/Toll-Like Receptor 4/NFκB Pathway. Front Neurol 2018; 9:253. [PMID: 29867706 PMCID: PMC5968106 DOI: 10.3389/fneur.2018.00253] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 04/03/2018] [Indexed: 12/20/2022] Open
Abstract
Toll-like receptors (TLRs) play key roles in cerebral ischemia and reperfusion injury by inducing the production of inflammatory mediators, such as interleukins (ILs) and tumor necrosis factor-alpha (TNF-α). According to recent studies, ursolic acid (UA) regulates TLR signaling and exhibits notable anti-inflammatory properties. In the present study, we explored the mechanism by which UA regulates inflammation in the rat middle cerebral artery occlusion and reperfusion (MCAO/R) model. The MCAO/R model was induced in male Sprague–Dawley rats (MCAO for 2 h, followed by reperfusion for 48 h). UA was administered intragastrically at 0.5, 24, and 47 h after reperfusion. The direct high mobility group box 1 (HMGB1) inhibitor glycyrrhizin (GL) was injected intravenously after 0.5 h of ischemia as a positive control. The degree of brain damage was estimated using the neurological deficit score, infarct volume, histopathological changes, and neuronal apoptosis. We assessed IL-1β, TNF-α, and IL-6 levels to evaluate post-ischemic inflammation. HMGB1 and TLR4 expression and phosphorylation of nuclear factor kappa-light-chain-enhancer of activated B cell (NFκB) were also examined to explore the underlying mechanism. UA (10 and 20 mg/kg) treatment significantly decreased the neurological deficit scores, infarct volume, apoptotic cells, and IL-1β, TNF-α, and IL-6 concentrations. The infarct area ratio was reduced by (33.07 ± 1.74), (27.05 ± 1.13), (27.49 ± 1.87), and (39.74 ± 2.14)% in the 10 and 20 mg/kg UA, GL, and control groups, respectively. Furthermore, UA (10 and 20 mg/kg) treatment significantly decreased HMGB1 release and the TLR4 level and inactivated NFκB signaling. Thus, the effects of intragastric administration of 20 mg/kg of UA and 10 mg/kg of GL were similar. We provide novel evidence that UA reduces inflammatory cytokine production to protect the brain from cerebral ischemia and reperfusion injury possibly through the HMGB1/TLR4/NFκB signaling pathway.
Collapse
Affiliation(s)
- Yanzhe Wang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Lei Li
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shumin Deng
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Fang Liu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhiyi He
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
14
|
Anti-Inflammatory Effect of Columbianetin on Lipopolysaccharide-Stimulated Human Peripheral Blood Mononuclear Cells. Mediators Inflamm 2018; 2018:9191743. [PMID: 29849500 PMCID: PMC5907401 DOI: 10.1155/2018/9191743] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/25/2017] [Accepted: 02/12/2018] [Indexed: 12/15/2022] Open
Abstract
Dysregulated inflammation is increasingly considered as the main cause of many diseases on which NOD1/NF-κB pathway plays an important role. Columbianetin (CBT) is derived from the root of the Chinese herb Radix Angelicae Pubescentis for treating inflammatory diseases. Although the anti-inflammatory effect of CBT has been reported, its anti-inflammatory mechanism was poorly studied. In this study, we explored the anti-inflammatory pathway of CBT in lipopolysaccharide- (LPS-) stimulated human peripheral blood mononuclear cell (PBMC) model. Inflammatory cytokine production in culture supernatant was assessed using ELISA assay, and the possible anti-inflammatory pathway of CBT was screened using qPCR array and enrichment analysis with DAVID6.8. To further confirm the targeted pathway of CBT, we pretreated PBMC with the selective NOD1 inhibitor ML130 and then measured the protein levels of the pathway by Western blotting. The result showed that CBT effectively suppressed the expressions of TNF-α, IL-6, MCP-1, and IL-1β in a dose-dependent manner and significantly downregulated 19 out of 32 differentially expressed genes, most of which were involved in the NOD1/NF-κB pathway, and also showed that CBT remarkably inhibited LPS-induced NOD1, RIP2, and NF-κB activation. Furthermore, the inhibitory effects of CBT on NOD1/NF-κB pathways were blocked by ML130. These findings indicated that CBT inhibits the production of inflammatory cytokines induced by LPS involved in the downregulation of NOD1/NF-κB pathways.
Collapse
|
15
|
Effects of dietary lysine restriction on inflammatory responses in piglets. Sci Rep 2018; 8:2451. [PMID: 29402921 PMCID: PMC5799382 DOI: 10.1038/s41598-018-20689-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 01/23/2018] [Indexed: 02/01/2023] Open
Abstract
The aim of this study was to investigate the effects of lysine restriction on inflammatory responses in piglets. 38 male piglets with similar body weight of 9.62 kg were randomly divided into control group (basal diet) and lysine-restricted group (diet containing 70% lysine of the control diet). The results showed that lysine restriction increased the serum concentration of IgG an IgM. Piglets fed the lysine-restricted diet exhibited overexpression of interleukin-8 (IL-8) in the kidney (P < 0.05) and IL-6 and IL-4 in the spleen (P < 0.05). The mRNA abundances of IL-4 in the kidney (P < 0.05) and IL-10 in the liver (P < 0.05) were significantly lower in the lysine-restricted group compared with the control group. Meanwhile, lysine restriction increased the mRNA level of Tlr8 in the kidney (P < 0.05) but decreased the mRNA level of Tlr8 in the liver (P < 0.05). Finally, lysine restriction markedly enhanced extracellular signal regulated kinases 1/2 (ERK1/2) phosphorylation in the kidney and liver and nuclear transcription factor kappa B (NF-κB) was activated in the liver and spleen in response to dietary lysine restriction. In conclusion, lysine restriction affected inflammatory responses in the kidney, liver, and spleen via mediating serum antibody volume, inflammatory cytokines, Tlrs system, and ERK1/2 and NF-κB signals in piglets.
Collapse
|
16
|
Dou Y, Tian X, Zhang J, Wang Z, Chen G. Roles of TRAF6 in Central Nervous System. Curr Neuropharmacol 2018; 16:1306-1313. [PMID: 29651950 PMCID: PMC6251041 DOI: 10.2174/1570159x16666180412094655] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/22/2017] [Accepted: 02/28/2018] [Indexed: 12/30/2022] Open
Abstract
Tumor necrosis factor receptor-associated factor (TRAF) is an important binding protein of tumor necrosis factor (TNF) superfamily and the toll/IL-1 receptor (TIR) superfamily, which play an important role in innate immunity and acquired immunity. TRAFs family have 7 members (TRAF1-7), and TRAF6 has its special facture and biological function. TRAF6 has two special domains: C-terminal domain and N-terminal domain, which could integrate with multiple kinases and regulate signaling pathway function as an E3 ubiquitin ligase. Studies have increasingly found that TRAF6 is closely related to central nervous system diseases, such as stroke, Traumatic brain injury, neurodegenerative diseases and neuropathic pain. Further research on the pathophysiological mechanism may be expected to become the new targets for the treatment of central nervous system diseases.
Collapse
Affiliation(s)
| | | | | | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou215006, P.R. China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou215006, P.R. China
| |
Collapse
|
17
|
Lalani AI, Zhu S, Gokhale S, Jin J, Xie P. TRAF molecules in inflammation and inflammatory diseases. ACTA ACUST UNITED AC 2017. [PMID: 29527458 DOI: 10.1007/s40495-017-0117-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Purpose of Review This review presents an overview of the current knowledge of TRAF molecules in inflammation with an emphasis on available human evidence and direct in vivo evidence of mouse models that demonstrate the contribution of TRAF molecules in the pathogenesis of inflammatory diseases. Recent Findings The tumor necrosis factor receptor (TNF-R)-associated factor (TRAF) family of cytoplasmic proteins was initially identified as signaling adaptors that bind directly to the intracellular domains of receptors of the TNF-R superfamily. It is now appreciated that TRAF molecules are widely employed in signaling by a variety of adaptive and innate immune receptors as well as cytokine receptors. TRAF-dependent signaling pathways typically lead to the activation of nuclear factor-κBs (NF-κBs), mitogen-activated protein kinases (MAPKs), or interferon-regulatory factors (IRFs). Most of these signaling pathways have been linked to inflammation, and therefore TRAF molecules were expected to regulate inflammation and inflammatory responses since their discovery in 1990s. However, direct in vivo evidence of TRAFs in inflammation and especially in inflammatory diseases had been lacking for many years, partly due to the difficulty imposed by early lethality of TRAF2-/-, TRAF3-/-, and TRAF6-/- mice. With the creation of conditional knockout and lineage-specific transgenic mice of different TRAF molecules, our understanding about TRAFs in inflammation and inflammatory responses has rapidly advanced during the past decade. Summary Increasing evidence indicates that TRAF molecules are versatile and indispensable regulators of inflammation and inflammatory responses and that aberrant expression or function of TRAFs contributes to the pathogenesis of inflammatory diseases.
Collapse
Affiliation(s)
- Almin I Lalani
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, New Jersey 08854
| | - Sining Zhu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, New Jersey 08854
| | - Samantha Gokhale
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, New Jersey 08854
| | - Juan Jin
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Department of Pharmacology, Anhui Medical University, Meishan Road 81st, Shushan District, Hefei, Anhui province, China
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Member, Rutgers Cancer Institute of New Jersey
| |
Collapse
|
18
|
The Ubiquitin E3 Ligase TRAF6 Exacerbates Ischemic Stroke by Ubiquitinating and Activating Rac1. J Neurosci 2017; 37:12123-12140. [PMID: 29114077 DOI: 10.1523/jneurosci.1751-17.2017] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/19/2017] [Accepted: 10/27/2017] [Indexed: 11/21/2022] Open
Abstract
Stroke is one of the leading causes of morbidity and mortality worldwide. Inflammation, oxidative stress, apoptosis, and excitotoxicity contribute to neuronal death during ischemic stroke; however, the mechanisms underlying these complicated pathophysiological processes remain to be fully elucidated. Here, we found that the expression of tumor necrosis factor receptor-associated factor 6 (TRAF6) was markedly increased after cerebral ischemia/reperfusion (I/R) in mice. TRAF6 ablation in male mice decreased the infarct volume and neurological deficit scores and decreased proinflammatory signaling, oxidative stress, and neuronal death after cerebral I/R, whereas transgenic overexpression of TRAF6 in male mice exhibited the opposite effects. Mechanistically, we demonstrated that TRAF6 induced Rac1 activation and consequently promoted I/R injury by directly binding and ubiquitinating Rac1. Either functionally mutating the TRAF6 ubiquitination site on Rac1 or inactivating Rac1 with a specific inhibitor reversed the deleterious effects of TRAF6 overexpression during I/R injury. In conclusion, our study demonstrated that TRAF6 is a key promoter of ischemic signaling cascades and neuronal death after cerebral I/R injury. Therefore, the TRAF6/Rac1 pathway might be a promising target to attenuate cerebral I/R injury.SIGNIFICANCE STATEMENT Stroke is one of the most severe and devastating neurological diseases globally. The complicated pathophysiological processes restrict the translation of potential therapeutic targets into medicine. Further elucidating the molecular mechanisms underlying cerebral ischemia/reperfusion injury may open a new window for pharmacological interventions to promote recovery from stroke. Our study revealed that ischemia-induced tumor necrosis factor receptor-associated factor 6 (TRAF6) upregulation binds and ubiquitinates Rac1 directly, which promotes neuron death through neuroinflammation and neuro-oxidative signals. Therefore, precisely targeting the TRAF6-Rac1 axis may provide a novel therapeutic strategy for stroke recovery.
Collapse
|
19
|
Barton GP, Sepe JJ, McKiernan SH, Aiken JM, Diffee GM. Mitochondrial and Metabolic Gene Expression in the Aged Rat Heart. Front Physiol 2016; 7:352. [PMID: 27601998 PMCID: PMC4993773 DOI: 10.3389/fphys.2016.00352] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 08/02/2016] [Indexed: 02/05/2023] Open
Abstract
Aging is associated with a decline in cardiac function. Exercise intervention has been suggested as a way to improve this decrement. Age-related decline in cardiac function is associated with decreases in fatty acid oxidation, mitochondrial function, and AMP-activated protein kinase (AMPK) activity. The molecular mechanisms involved with age-related changes in mitochondrial function and substrate metabolism are poorly understood. We determined gene expression differences in hearts of Young (6 mo), Old (33 mo), and old exercise trained (Old + EXE) (34 mo) FBN rats, using Qiagen PCR arrays for Glucose, Fatty acid, and Mitochondrial metabolism. Old rats demonstrated decreased (p < 0.05) expression for key genes in fatty acid oxidation, mitochondrial function, and AMPK signaling. There were no differences in the expression of genes involved in glucose metabolism with age. These gene expression changes occurred prior to altered protein translation as we found no differences in the protein content of peroxisome proliferator activated receptor gamma, coactivators 1 alpha (PGC-1α), peroxisome proliferator activated receptor alpha (PPARα), and AMPKα2 between young and old hearts. Four months of exercise training did not attenuate the decline in the gene expression in aged hearts. Despite this lack of change in gene expression, exercise-trained rats demonstrated increased exercise capacity compared to their sedentary counterparts. Taken together, our results show that differential expression of genes associated with fatty acid metabolism, AMPK signaling and mitochondrial function decrease in the aging heart which may play a role in age-related declines in fatty acid oxidation, AMPK activity, and mitochondrial function in the heart.
Collapse
Affiliation(s)
- Gregory P Barton
- Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison Madison, WI, USA
| | - Joseph J Sepe
- Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison Madison, WI, USA
| | - Susan H McKiernan
- Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison Madison, WI, USA
| | - Judd M Aiken
- Departments of Agriculture, Food, and Nutritional Sciences, University of Alberta-Edmonton Edmonton, AB, Canada
| | - Gary M Diffee
- Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison Madison, WI, USA
| |
Collapse
|
20
|
Association Between TRAF6 Gene Polymorphisms and Susceptibility of Ischemic Stroke in Southern Chinese Han Population. J Mol Neurosci 2015; 57:386-92. [PMID: 25999280 DOI: 10.1007/s12031-015-0580-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 05/11/2015] [Indexed: 10/23/2022]
Abstract
The tumor necrosis factor receptor-associated factor 6 (TRAF6) gene encodes a protein that acts downstream of the Toll-like receptor (TLR) pathway. TLRs activate inflammatory cascades and mediate inflammatory injury after cerebral ischemia. However, the role of TFAR6 gene polymorphisms in ischemic stroke (IS) remains unknown. This study aims to investigate the associations of TRAF6 gene polymorphisms with susceptibility to IS and IS-related quantitative traits in Southern Chinese Han population. A total of 816 IS cases and 816 age- and gender-matched controls were included. Two variants of the TRAF6 gene (rs5030411 and rs5030416) were genotyped using the Sequenom MassARRAY iPLEX platform. Our study showed that rs5030416 was significantly associated with increased susceptibility to IS in the additive model [ORadj 1.25(1.04-1.51), P adj = 0.019, P Bc = 0.038] and dominant model [ORadj 1.23(1.04-1.60), P adj = 0.021, P Bc = 0.042] after adjusting by age and sex and applying a Bonferroni correction. No significant association was found between rs5030411 and IS susceptibility (all P > 0.05). The haplotype rs5030416 (allele C)-rs5030411 (allele C) was significantly associated with IS susceptibility (P adj = 0.015). Moreover, a significant association of rs5030411 with TC levels in IS patients under the additive model [β 0.16(0.01-0.30), P adj = 0.034] and recessive model [β 0.45(0.12-0.78), P adj = 0.007] was observed after adjustment by age and sex. This association remained statistically significant under the recessive model (P Bc = 0.042) after Bonferroni correction. Our results suggest that TRAF6 gene polymorphisms may be involved in the pathogenesis of IS.
Collapse
|
21
|
Wang PF, Xiong XY, Chen J, Wang YC, Duan W, Yang QW. Function and mechanism of toll-like receptors in cerebral ischemic tolerance: from preconditioning to treatment. J Neuroinflammation 2015; 12:80. [PMID: 25928750 PMCID: PMC4422156 DOI: 10.1186/s12974-015-0301-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 04/13/2015] [Indexed: 01/13/2023] Open
Abstract
Increasing evidence suggests that toll-like receptors (TLRs) play an important role in cerebral ischemia-reperfusion injury. The endogenous ligands released from ischemic neurons activate the TLR signaling pathway, resulting in the production of a large number of inflammatory cytokines, thereby causing secondary inflammation damage following cerebral ischemia. However, the preconditioning for minor cerebral ischemia or the preconditioning with TLR ligands can reduce cerebral ischemic injury by regulating the TLR signaling pathway following ischemia in brain tissue (mainly, the inhibition of the TLR4/NF-κB signaling pathway and the enhancement of the interferon regulatory factor-dependent signaling), resulting in TLR ischemic tolerance. Additionally, recent studies found that postconditioning with TLR ligands after cerebral ischemia can also reduce ischemic damage through the regulation of the TLR signaling pathway, showing a significant therapeutic effect against cerebral ischemia. These studies suggest that the ischemic tolerance mediated by TLRs can serve as an important target for the prevention and treatment of cerebral ischemia. On the basis of describing the function and mechanism of TLRs in mediating cerebral ischemic damage, this review focuses on the mechanisms of cerebral ischemic tolerance induced by the preconditioning and postconditioning of TLRs and discusses the clinical application of TLRs for ischemic tolerance.
Collapse
Affiliation(s)
- Peng-Fei Wang
- Department of Neurology, Xinqiao Hospital & the Second Affiliated Hospital, the Third Military Medical University, No. 183, Xinqiao Main Street, Shapingba District, Chongqing, 400037, China. .,Department of Neurology, Weihai municipal Hospital, Weihai, 264200, China.
| | - Xiao-Yi Xiong
- Department of Neurology, Xinqiao Hospital & the Second Affiliated Hospital, the Third Military Medical University, No. 183, Xinqiao Main Street, Shapingba District, Chongqing, 400037, China.
| | - Jing Chen
- Department of Neurology, Xinqiao Hospital & the Second Affiliated Hospital, the Third Military Medical University, No. 183, Xinqiao Main Street, Shapingba District, Chongqing, 400037, China.
| | - Yan-Chun Wang
- Department of Neurology, Xinqiao Hospital & the Second Affiliated Hospital, the Third Military Medical University, No. 183, Xinqiao Main Street, Shapingba District, Chongqing, 400037, China.
| | - Wei Duan
- Department of Neurology, Xinqiao Hospital & the Second Affiliated Hospital, the Third Military Medical University, No. 183, Xinqiao Main Street, Shapingba District, Chongqing, 400037, China.
| | - Qing-Wu Yang
- Department of Neurology, Xinqiao Hospital & the Second Affiliated Hospital, the Third Military Medical University, No. 183, Xinqiao Main Street, Shapingba District, Chongqing, 400037, China.
| |
Collapse
|
22
|
Liu HY, Huang CM, Hung YF, Hsueh YP. The microRNAs Let7c and miR21 are recognized by neuronal Toll-like receptor 7 to restrict dendritic growth of neurons. Exp Neurol 2015; 269:202-12. [PMID: 25917529 DOI: 10.1016/j.expneurol.2015.04.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/14/2015] [Accepted: 04/15/2015] [Indexed: 11/25/2022]
Abstract
Inflammatory responses are known to play critical roles in the regulation of neurodevelopment and neurodegeneration. Although microglial cells are recognized as professional immune cells in brains, recent evidence suggests that neurons also express important receptors and regulators of innate immunity, including Toll-like receptor 7 (TLR7), which is a receptor for single-stranded RNAs (ssRNAs). Here, we report that neuronal TLR7 recognizes endogenous ligands such as the miRNAs Let7c and miR21 and plays a negative role in controlling neuronal growth in a cell-autonomous manner. We show here that hippocampal CA1 neurons in Tlr7(-/Y) mice had more complex dendritic arbors compared with those of wild-type littermates at postnatal (P) day 7, but not at P21. This observation strengthens a role of TLR7 in restricting neuronal growth during development. In cultured neurons, transient knockdown of Tlr7 promoted axonal and dendritic growth, supporting the cell-autonomous effect of TLR7 on neuronal growth. We observed perceptible levels of Let7c and miR21 in the exosomes of the neuronal cultures as well as in developing brains. Treatment with Let7c and miR21 restricted dendritic growth of wild-type neurons but not Tlr7(-/-) neurons. Our study suggests that neuronal TLR7 is activated by endogenous ligands and thus regulates neuronal morphology. Neuronal innate immune responses may influence neurodevelopment and neurodegeneration through the regulation of neuronal morphology.
Collapse
Affiliation(s)
- Hsin-Yu Liu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
| | | | - Yun-Fen Hung
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
23
|
X-ray-induced changes in the expression of inflammation-related genes in human peripheral blood. Int J Mol Sci 2014; 15:19516-34. [PMID: 25350114 PMCID: PMC4264126 DOI: 10.3390/ijms151119516] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 10/16/2014] [Accepted: 10/20/2014] [Indexed: 01/28/2023] Open
Abstract
Using quantitative real-time polymerase chain reaction (PCR) array, we explored and compared the expression changes of inflammation-related genes in human peripheral blood irradiated with 0.5, 3, and 10 Gy doses of X-rays 24 h after exposure. Results indicated that the expression of 62 out of 84 genes was significantly altered after X-ray radiation. Among these 62 genes, 35 (such as TNFSF4) are known to be associated with radiation response, but others are novel. At a low radiation dose (0.5 Gy), 9 genes were up-regulated and 19 were down-regulated. With further increased dose to 3 Gy, 8 unique genes were up-regulated and 19 genes were down-regulated. We also identified 48 different genes that were differentially expressed significantly after 10 Gy of irradiation, and among these transcripts, up-regulated genes accounted for only one-third (16 genes) of the total. Of the 62 genes, 31 were significantly altered only at a specific dose, and a total of 10 genes were significantly expressed at all 3 doses. The dose- and time-dependent expression of CCL2 was confirmed by quantitative real-time reverse-transcription PCR. A number of candidate genes reported herein may be useful molecular biomarkers of radiation exposure in human peripheral blood.
Collapse
|
24
|
Ren W, Duan J, Yin J, Liu G, Cao Z, Xiong X, Chen S, Li T, Yin Y, Hou Y, Wu G. Dietary L-glutamine supplementation modulates microbial community and activates innate immunity in the mouse intestine. Amino Acids 2014; 46:2403-13. [PMID: 25023447 DOI: 10.1007/s00726-014-1793-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 06/21/2014] [Indexed: 01/08/2023]
Abstract
This study was conducted to determine effects of dietary supplementation with 1 % L-glutamine for 14 days on the abundance of intestinal bacteria and the activation of intestinal innate immunity in mice. The measured variables included (1) the abundance of Bacteroidetes, Firmicutes, Lactobacillus, Streptococcus and Bifidobacterium in the lumen of the small intestine; (2) the expression of toll-like receptors (TLRs), pro-inflammatory cytokines, and antibacterial substances secreted by Paneth cells and goblet cells in the jejunum, ileum and colon; and (3) the activation of TLR4-nuclear factor kappa B (NF-κB), mitogen-activated protein kinases (MAPK), and phosphoinositide-3-kinases (PI3K)/PI3K-protein kinase B (Akt) signaling pathways in the jejunum and ileum. In the jejunum, glutamine supplementation decreased the abundance of Firmicutes, while increased mRNA levels for antibacterial substances in association with the activation of NF-κB and PI3K-Akt pathways. In the ileum, glutamine supplementation induced a shift in the Firmicutes:Bacteroidetes ratio in favor of Bacteroidetes, and enhanced mRNA levels for Tlr4, pro-inflammatory cytokines, and antibacterial substances participating in NF-κB and JNK signaling pathways. These results indicate that the effects of glutamine on the intestine vary with its segments and compartments. Collectively, dietary glutamine supplementation of mice beneficially alters intestinal bacterial community and activates the innate immunity in the small intestine through NF-κB, MAPK and PI3K-Akt signaling pathways.
Collapse
Affiliation(s)
- Wenkai Ren
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, Hunan, China,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Toll-like receptors (TLRs) are master regulators of innate immunity and play an integral role in the activation of inflammatory response during infections. In addition, TLRs influence the body's response to numerous forms of injury. Recent data have shown that TLRs play a modulating role in ischemic brain damage after stroke. Interestingly, their stimulation before ischemia induces a tolerant state that is neuroprotective. This phenomenon, referred to as TLR preconditioning, is the result of the reprogramming of TLR response to ischemic injury. This review addresses the role of TLRs in brain ischemia and the activation of endogenous neuroprotective pathways in the setting of preconditioning. We highlight the protective role of interferon-related response and the potential site of action for TLR preconditioning involving the blood-brain barrier. Pharmacologic modulation of TLR activation to promote protection against stroke is a promising approach for the development of prophylactic and immediate therapies targeting ischemic brain injury.
Collapse
|
26
|
Ren W, Chen S, Yin J, Duan J, Li T, Liu G, Feng Z, Tan B, Yin Y, Wu G. Dietary arginine supplementation of mice alters the microbial population and activates intestinal innate immunity. J Nutr 2014; 144:988-95. [PMID: 24670969 DOI: 10.3945/jn.114.192120] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Currently, little is known about the function of arginine in the homeostasis of the intestinal immune system. This study was conducted to test the hypothesis that dietary arginine supplementation may alter intestinal microbiota and innate immunity in mice. Mice were fed a basal diet (containing 0.93% l-arginine; grams per gram) or the basal diet supplemented with 0.5% l-arginine for 14 d. We studied the composition of intestinal microbiota, the activation of innate immunity, and the expression of toll-like receptors (Tlrs), proinflammatory cytokines, and antimicrobials in the jejunum, ileum, or colon of mice. Signal transduction pathway activation in the jejunum and ileum, including TLR4-nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), mitogen-activated protein kinase (MAPK), and phosphoinositide-3 kinase (PI3K)/PI3K-protein kinase B (Akt), was analyzed by Western blotting. Quantitative polymerase chain reaction analysis revealed that arginine supplementation induced (P < 0.05) a shift in the Firmicutes-to-Bacteroidetes ratio to favor Bacteroidetes in the jejunum (0.33 ± 0.04 vs. 1.0 ± 0.22) and ileum (0.20 ± 0.08 vs. 1.0 ± 0.27) compared with the control group. This finding coincided with greater (P < 0.05) activation of the innate immune system, including TLR signaling, as well as expression of proinflammatory cytokines, secretory immunoglobulin A, mucins, and Paneth antimicrobials in the jejunum and ileum. Finally, arginine supplementation reduced (P < 0.05) expression of the proteins for NF-κB, MAPK, and PI3K-Akt signaling pathways but activated (P < 0.05) p38 and c-Jun N-terminal protein kinase in the jejunum and the ileum, respectively. Collectively, dietary arginine supplementation of mice changes the intestinal microbiota, contributing to the activation of intestinal innate immunity through NF-κB, MAPK, and PI3K-phosphorylated Akt signaling pathways.
Collapse
Affiliation(s)
- Wenkai Ren
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China; and
| | - Shuai Chen
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China; and
| | - Jie Yin
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China; and
| | - Jielin Duan
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China; and
| | - Tiejun Li
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China; and
| | - Gang Liu
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China; and
| | - Zemeng Feng
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China; and
| | - Bie Tan
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China; and
| | - Yulong Yin
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China; and
| | - Guoyao Wu
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China; and Department of Animal Science, Texas A&M University, College Station, TX
| |
Collapse
|
27
|
Abstract
Toll-like receptors (TLRs) are pattern-recognition receptors that recognize microbial/vial-derived components that trigger innate immune response, which indicate these molecules play a role in host defense against infection. The infection often precedes numerous disorders including glomerular diseases (glomerulonephritis (GN)). It is reported that TLRs are also involved in the risk and progression of GN, and TLRs may be potential therapeutic targets for GN. To date, a number of studies have found that TLRs are involved in the pathogenesis of GN. There is a paucity of reviews in the literature discussing signaling pathways and gene expression for TLRs in GN. This review was performed to provide a relatively complete signaling pathway flowchart for TLRs to the investigators who were interested in the roles of TLRs in the pathogenesis of GN. In the past decades, some studies were also performed to explore the association of TLRs gene expression with the risk of GN. However, the role of TLRs in the pathogenesis of GN remains controversial. Here, the signal transduction pathways of TLRs and its role of gene expression in the pathogenesis of GN were reviewed.
Collapse
Affiliation(s)
- Song Mao
- Department of Nephrology, Nanjing Children's Hospital, Affiliated to Nanjing Medical University , Nanjing , China
| | | |
Collapse
|