1
|
Fahs HZ, Refai FS, Gopinadhan S, Moussa Y, Gan HH, Hunashal Y, Battaglia G, Cipriani PG, Ciancia C, Rahiman N, Kremb S, Xie X, Pearson YE, Butterfoss GL, Maizels RM, Esposito G, Page AP, Gunsalus KC, Piano F. A new class of natural anthelmintics targeting lipid metabolism. Nat Commun 2025; 16:305. [PMID: 39746976 PMCID: PMC11695593 DOI: 10.1038/s41467-024-54965-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 11/26/2024] [Indexed: 01/04/2025] Open
Abstract
Parasitic helminths are a major global health threat, infecting nearly one-fifth of the human population and causing significant losses in livestock and crops. Resistance to the few anthelmintic drugs is increasing. Here, we report a set of avocado fatty alcohols/acetates (AFAs) that exhibit nematocidal activity against four veterinary parasitic nematode species: Brugia pahangi, Teladorsagia circumcincta and Heligmosomoides polygyrus, as well as a multidrug resistant strain (UGA) of Haemonchus contortus. AFA shows significant efficacy in H. polygyrus infected mice. In C. elegans, AFA exposure affects all developmental stages, causing paralysis, impaired mitochondrial respiration, increased reactive oxygen species production and mitochondrial damage. In embryos, AFAs penetrate the eggshell and induce rapid developmental arrest. Genetic and biochemical tests reveal that AFAs inhibit POD-2, encoding an acetyl CoA carboxylase, the rate-limiting enzyme in lipid biosynthesis. These results uncover a new anthelmintic class affecting lipid metabolism.
Collapse
Affiliation(s)
- Hala Zahreddine Fahs
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Fathima S Refai
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Suma Gopinadhan
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Yasmine Moussa
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Hin Hark Gan
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Yamanappa Hunashal
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Gennaro Battaglia
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
- Dipartimento di Scienze Chimiche, Università di Napoli "Federico II", 80138, Naples, Italy
| | - Patricia G Cipriani
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Claire Ciancia
- School of Infection and Immunity, University of Glasgow, Scotland, UK
| | - Nabil Rahiman
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Stephan Kremb
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Xin Xie
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Yanthe E Pearson
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Glenn L Butterfoss
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Rick M Maizels
- School of Infection and Immunity, University of Glasgow, Scotland, UK
| | - Gennaro Esposito
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
- Istituto Nazionale Biostrutture e Biosistemi, 00136, Rome, Italy
| | - Antony P Page
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Scotland, UK
| | - Kristin C Gunsalus
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates.
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA.
| | - Fabio Piano
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates.
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA.
| |
Collapse
|
2
|
Yifu P. A review of antioxidant N-acetylcysteine in addressing polycystic ovary syndrome. Gynecol Endocrinol 2024; 40:2381498. [PMID: 39039898 DOI: 10.1080/09513590.2024.2381498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/12/2024] [Indexed: 07/24/2024] Open
Abstract
N-acetylcysteine (NAC), a compound known for its cysteine and glutathione precursor properties, has been used in therapeutic applications for many years. Recently, there has been increasing interest in exploring the potential benefits of NAC in addressing polycystic ovary syndrome (PCOS). However, the exact mechanisms underlying NAC's therapeutic and clinical uses remain not fully understood. This review aims to specifically investigate how NAC offers protection against PCOS. This involved an extensive systematic review of the literature, and it made use of PubMed, Embase, and Web of Science databases. By analyzing key findings from over 100 research papers, the potential mechanisms through which NAC produces its effects were explored and summarized. Most studies suggest that NAC, whether used on its own or in combination with other medications, has the potential to counteract oxidative stress, utilize its anti-inflammatory and anti-apoptotic properties, and offer benefits in managing PCOS. Moreover, NAC might have the potential to influence specific signaling pathways in insulin target cells and β cells. Diverse biological effects of NAC indicate its potential usefulness as a supplementary or therapeutic approach for managing PCOS. As a result, additional research is required to explore its potential in addressing PCOS.
Collapse
Affiliation(s)
- Pu Yifu
- Laboratory of Genetic Disease and Perinatal Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Umashankar B, Eliasson L, Ooi CY, Kim KW, Shaw JAM, Waters SA. Beyond insulin: Unraveling the complex interplay of ER stress, oxidative damage, and CFTR modulation in CFRD. J Cyst Fibros 2024; 23:842-852. [PMID: 38897882 DOI: 10.1016/j.jcf.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/10/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
CF-related diabetes (CFRD) is a prevalent comorbidity in people with Cystic Fibrosis (CF), significantly impacting morbidity and mortality rates. This review article critically evaluates the current understanding of CFRD molecular mechanisms, including the role of CFTR protein, oxidative stress, unfolded protein response (UPR) and intracellular communication. CFRD manifests from a complex interplay between exocrine pancreatic damage and intrinsic endocrine dysfunction, further complicated by the deleterious effects of misfolded CFTR protein on insulin secretion and action. Studies indicate that ER stress and subsequent UPR activation play critical roles in both exocrine and endocrine pancreatic cell dysfunction, contributing to β-cell loss and insulin insufficiency. Additionally, oxidative stress and altered calcium flux, exacerbated by CFTR dysfunction, impair β-cell survival and function, highlighting the significance of antioxidant pathways in CFRD pathogenesis. Emerging evidence underscores the importance of exosomal microRNAs (miRNAs) in mediating inflammatory and stress responses, offering novel insights into CFRD's molecular landscape. Despite insulin therapy remaining the cornerstone of CFRD management, the variability in response to CFTR modulators underscores the need for personalized treatment approaches. The review advocates for further research into non-CFTR therapeutic targets, emphasizing the need to address the multifaceted pathophysiology of CFRD. Understanding the intricate mechanisms underlying CFRD will pave the way for innovative treatments, moving beyond insulin therapy to target the disease's root causes and improve the quality of life for individuals with CF.
Collapse
Affiliation(s)
- Bala Umashankar
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia; Molecular and Integrative Cystic Fibrosis Research Centre, University of New South Wales, Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Lena Eliasson
- Department of Clinical Sciences, Unit of Islet Cell Exocytosis, Lund University Diabetes Centre, Scania University Hospital, Malmö, Scania, Sweden
| | - Chee Y Ooi
- Molecular and Integrative Cystic Fibrosis Research Centre, University of New South Wales, Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia; Department of Gastroenterology, Sydney Children's Hospital Randwick, NSW, Australia
| | - Ki Wook Kim
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia; Virology and Serology Division (SaViD), New South Wales Health Pathology, Prince of Wales Hospital, Randwick, NSW, Australia
| | - James A M Shaw
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Shafagh A Waters
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia; Molecular and Integrative Cystic Fibrosis Research Centre, University of New South Wales, Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
4
|
Al-Qahtani Z, Al-Kuraishy HM, Ali NH, Elewa YHA, Batiha GES. Kynurenine pathway in type 2 diabetes: Role of metformin. Drug Dev Res 2024; 85:e22243. [PMID: 39129450 DOI: 10.1002/ddr.22243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/08/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024]
Abstract
The Kynurenine pathway (KP) which is involved in the synthesis of nicotinamide adenine dinucleotide (NAD) from tryptophan (Trp) is intricate in the development of insulin resistance (IR) and type 2 diabetes (T2D). Inflammatory reactions in response to cardiometabolic disorders can induce the development of IR through the augmentation of KP. However, kynurenine (KYN), a precursor of kynurenic acid (KA) is increased following physical exercise and involved in the reduction of IR. Consequently, KP metabolites KA and KYN have anti-diabetogenic effects while other metabolites have diabetogenic effects. KP modulators, either inhibitors or activators, affect glucose homeostasis and insulin sensitivity in T2D in a bidirectional way, either protective or detrimental, that is not related to the KP effect. However, metformin through inhibition of inflammatory signaling pathways can reduce the activation of KP in T2D. These findings indicated a strong controversy regarding the role of KP in T2D. Therefore, the objectives of this mini review were to clarify how KP induces the development of IR and T2D. In addition, this review aimed to find the mechanistic role of antidiabetic drug metformin on the KP, and how KP modulators affect the pathogenesis of T2D.
Collapse
Affiliation(s)
- Zainah Al-Qahtani
- Internal Medicine Department, Neurology Section, College of Medicine, King Khaled university, Abha, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Naif H Ali
- Department of internal medicine, Medical College, Najran University, Najran, Saudi Arabia
| | - Yaser Hosny Ali Elewa
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhur University, Damanhur, Egypt
| |
Collapse
|
5
|
Adel O, El-Sherbiny HR, M Shahat A, Ismail ST. N-Acetylcysteine Supplementation Improves Testicular Haemodynamics, Testosterone Levels, Seminal Antioxidant Capacity and Semen Quality in Heat-Stressed Goat Bucks. Reprod Domest Anim 2024; 59:e14709. [PMID: 39189388 DOI: 10.1111/rda.14709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/03/2024] [Accepted: 08/08/2024] [Indexed: 08/28/2024]
Abstract
Heat stress (HS) disrupts testicular homeostasis because of oxidative stress. N-acetylcysteine (NAC) is a thiol compound with antioxidants, anti-inflammatory and anti-apoptotic properties. As a sequel, this research aimed to assess the ameliorative effects of NAC supplementation on the reproductive performance of goat bucks kept under environmental HS. Primarily, Doppler examination as well as semen collection and evaluation were conducted on 12 mature bucks for 2 weeks (W) as pre-heat stress control (W1 and W2) during winter (February 2023). The temperature-humidity index (THI) was 63.4-64.3 (winter season). Then during summer HS conditions (from the beginning of July till the end of August 2023) bucks were assessed before NAC supplementation (W0), afterwards they were arbitrarily assigned into two groups. The control group (CON; n = 6) received the basal diet while the NAC group (n = 6) received the basal diet in addition to oral NAC daily for 7 weeks (W1-W7). The THI was 78.1-81.6 (summer season). Testicular blood flow parameters, serum concentration of nitric oxide (NO) and testosterone were measured. Additionally, total antioxidant capacity (TAC) and malondialdehyde (MDA) content in seminal plasma and semen quality parameters were evaluated. There were marked reductions (p < 0.05) in the resistive index (RI; W1, W4 and W5), pulsatility index (PI; W2 and W4-W7), and systolic/diastolic ratio (S/D; W4-W7) in the NAC group compared to the CON group. Furthermore, testosterone and NO levels were higher (p < 0.01 and p < 0.05, respectively) in the NAC group (W2, W3, W5 and W3-W5, respectively). Seminal plasma TAC increased (p < 0.05) and MDA decreased (p < 0.05) in the NAC group (W2, W4 and W5) compared to the CON group. Moreover, there were marked improvements (p < 0.05) in semen quality parameters (mass motility, total motility, viability and normal morphology) in the NAC group. In conclusion, oral NAC supplementation could be used to enhance the reproductive performance of goat bucks during HS conditions which is supported by remarkable enhancement in testicular haemodynamics, NO, testosterone levels and semen quality parameters.
Collapse
Affiliation(s)
- Ola Adel
- Theriogenology Department, Faculty of Veterinary Medicine, Cairo University, Giza Square, Egypt
| | - Hossam R El-Sherbiny
- Theriogenology Department, Faculty of Veterinary Medicine, Cairo University, Giza Square, Egypt
| | - Abdallah M Shahat
- Theriogenology Department, Faculty of Veterinary Medicine, Cairo University, Giza Square, Egypt
| | - Sayed Taha Ismail
- Theriogenology Department, Faculty of Veterinary Medicine, Cairo University, Giza Square, Egypt
| |
Collapse
|
6
|
Jain SK, Justin Margret J, Abrams SA, Levine SN, Bhusal K. The Impact of Vitamin D and L-Cysteine Co-Supplementation on Upregulating Glutathione and Vitamin D-Metabolizing Genes and in the Treatment of Circulating 25-Hydroxy Vitamin D Deficiency. Nutrients 2024; 16:2004. [PMID: 38999752 PMCID: PMC11243476 DOI: 10.3390/nu16132004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Vitamin D receptors are expressed in many organs and tissues, which suggests that vitamin D (VD) affects physiological functions beyond its role in maintaining bone health. Deficiency or inadequacy of 25(OH)VD is widespread globally. Population studies demonstrate that a positive association exists between a high incidence of VD deficiency and a high incidence of chronic diseases, including dementia, diabetes, and heart disease. However, many subjects have difficulty achieving the required circulating levels of 25(OH)VD even after high-dose VD supplementation, and randomized controlled clinical trials have reported limited therapeutic success post-VD supplementation. Thus, there is a discordance between the benefits of VD supplementation and the prevention of chronic diseases in those with VD deficiency. Why this dissociation exists is currently under debate and is of significant public interest. This review discusses the downregulation of VD-metabolizing genes needed to convert consumed VD into 25(OH)VD to enable its metabolic action exhibited by subjects with metabolic syndrome, obesity, and other chronic diseases. Research findings indicate a positive correlation between the levels of 25(OH)VD and glutathione (GSH) in both healthy and diabetic individuals. Cell culture and animal experiments reveal a novel mechanism through which the status of GSH can positively impact the expression of VD metabolism genes. This review highlights that for better success, VD deficiency needs to be corrected at multiple levels: (i) VD supplements and/or VD-rich foods need to be consumed to provide adequate VD, and (ii) the body needs to be able to upregulate VD-metabolizing genes to convert VD into 25(OH)VD and then to 1,25(OH)2VD to enhance its metabolic action. This review outlines the association between 25(OH)VD deficiency/inadequacy and decreased GSH levels, highlighting the positive impact of combined VD+LC supplementation on upregulating GSH, VD-metabolizing genes, and VDR. These effects have the potential to enhance 25(OH)VD levels and its therapeutic efficacy.
Collapse
Affiliation(s)
- Sushil K. Jain
- Department of Pediatrics, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA;
| | - Jeffrey Justin Margret
- Department of Pediatrics, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA;
| | - Steven A. Abrams
- Department of Pediatrics and Dell Pediatric Research Institute, Dell Medical School at the University of Texas at Austin, Austin, TX 78723, USA;
| | - Steven N. Levine
- Department of Medicine, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA; (S.N.L.); (K.B.)
| | - Kamal Bhusal
- Department of Medicine, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA; (S.N.L.); (K.B.)
| |
Collapse
|
7
|
Abdelaziz SA, Ahmed EM, Sadek M. Synthesis of homologous series of surfactants from renewable resources, structure-properties relationship, surface active performance, evaluation of their antimicrobial and anticancer potentialities. Sci Rep 2024; 14:13201. [PMID: 38851845 PMCID: PMC11162424 DOI: 10.1038/s41598-024-62905-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/22/2024] [Indexed: 06/10/2024] Open
Abstract
Sugar esters display surface-active properties, wetting, emulsifying, and other physicochemical phenomena following their amphipathic nature and recognize distinct biological activity. The development of nutritional pharmaceuticals and other applications remains of great interest. Herein, three novel homologous series of several N-mono-fatty acyl amino acid glucosyl esters were synthesized, and their physicochemical properties and biological activities were evaluated. The design and preparation of these esters were chemically performed via the reaction of glucose with different fatty acyl amino acids as renewable starting materials, with the suggestion that they would acquire functional characteristics superior and competitive to certain conventional surfactants. The synthesized products are characterized using FTIR, 1H-NMR, and 13C-NMR spectroscopy. Further, their physicochemical properties, such as HLB, CMC, Γmax, γCMC, and Amin, were determined. Additionally, their antimicrobial and anticancer efficiency were assessed. The results indicate that the esters' molecular structure, including the acyl chain length and the type of amino acid, significantly influences their properties. The measured HLB ranged from 8.84 to 12.27, suggesting their use as oil/water emulsifiers, wetting, and cleansing agents. All esters demonstrate promising surface-active characteristics, with moderate to high foam production with good stability. Notably, compounds 6-O-(N-dodecanoyl, tetradecanoyl cysteine)-glucopyranose (34, 35), respectively and 6-O-(N-12-hydroxy-9-octadecenoyl cysteine)-glucopyranose (38) display superior foamability. Wetting efficiency increased with decreasing the chain length of the acyl group. The storage results reveal that increasing the fatty acyl hydrophobe length enhances the derived emulsion's stability for up to 63 days. Particularly, including cysteine in these glucosyl esters improves wetting, foaming, and emulsifying potentialities. Furthermore, the esters exhibit antibacterial activity against several tested Gram-positive and Gram-negative bacteria and fungi. On the other hand, they show significant antiproliferative effects on some liver tumor cell lines. For instance, compounds 6-O-(N-12-hydroxy-9-octadecenoylglycine)-glucopyranose (28), 6-O-(N-dodecanoyl, hexadecanoyl, 9-octadecenoyl and 12-hydroxy-9-octadecenoylvaline)- glucopyranose (29, 31, 32 and 33), respectively in addition to the dodecanoyl, hexadecanoyl, 9-octadecenoyl and 12-hydroxy-9-octadecenoyl cysteine glucopyranose (34, 36, 37 and 38), respectively significantly inhibit the examined cancer cells.
Collapse
Affiliation(s)
- Shimaa A Abdelaziz
- Chemistry Department, Faculty of Science, Al-Azhar University (Girls), Cairo, Egypt.
| | - Entesar M Ahmed
- Chemistry Department, Faculty of Science, Al-Azhar University (Girls), Cairo, Egypt
| | - M Sadek
- Chemistry Department, Faculty of Science, Al-Azhar University (Girls), Cairo, Egypt.
| |
Collapse
|
8
|
Cao H, Wang J, Hao Z, Zhao D. Gelatin-based biomaterials and gelatin as an additive for chronic wound repair. Front Pharmacol 2024; 15:1398939. [PMID: 38751781 PMCID: PMC11094280 DOI: 10.3389/fphar.2024.1398939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
Disturbing or disrupting the regular healing process of a skin wound may result in its progression to a chronic state. Chronic wounds often lead to increased infection because of their long healing time, malnutrition, and insufficient oxygen flow, subsequently affecting wound progression. Gelatin-the main structure of natural collagen-is widely used in biomedical fields because of its low cost, wide availability, biocompatibility, and degradability. However, gelatin may exhibit diverse tailored physical properties and poor antibacterial activity. Research on gelatin-based biomaterials has identified the challenges of improving gelatin's poor antibacterial properties and low mechanical properties. In chronic wounds, gelatin-based biomaterials can promote wound hemostasis, enhance peri-wound antibacterial and anti-inflammatory properties, and promote vascular and epithelial cell regeneration. In this article, we first introduce the natural process of wound healing. Second, we present the role of gelatin-based biomaterials and gelatin as an additive in wound healing. Finally, we present the future implications of gelatin-based biomaterials.
Collapse
Affiliation(s)
- Hongwei Cao
- Department of Otorhinolaryngology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jingren Wang
- Department of Prosthodontics, Affiliated Stomatological Hospital of China Medical University, Shenyang, China
| | - Zhanying Hao
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Danyang Zhao
- Department of emergency Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
9
|
Tuell D, Ford G, Los E, Stone W. The Role of Glutathione and Its Precursors in Type 2 Diabetes. Antioxidants (Basel) 2024; 13:184. [PMID: 38397782 PMCID: PMC10885928 DOI: 10.3390/antiox13020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Type 2 diabetes (T2D) is a major worldwide health crisis affecting about 6.2% of the world's population. Alarmingly, about one in five children in the USA have prediabetes. Glutathione (GSH) and its precursors play a promising role in the prevention and management of type T2D. Oxidative stress (OxS) is a probable factor in both T2D initiation and progression. GSH is the major cytosolic water-soluble chemical antioxidant and emerging evidence supports its role in improving T2D outcomes. Dietary supplementation with N-acetyl-cysteine (NAC) and/or glycine (GLY), which are GSH precursors, has also been studied for possible beneficial effects on T2D. This review will focus on the underlying pathophysiological and molecular mechanisms linking GSH and its precursors with T2D and OxS. In addition to their traditional antioxidant roles, the in vivo effects of GSH/NAC/GLY supplements will be evaluated for their potential abilities to modulate the complex pro-oxidant pathophysiological factors (e.g., hyperglycemia) driving T2D progression. Positive feedback loops that amplify OxS over long time intervals are likely to result in irreversible T2D micro- and macro-vascular damage. Most clinical studies with GSH/NAC/GLY have focused on adults or the elderly. Future research with pediatric populations should be a high priority since early intervention is critical.
Collapse
|
10
|
Tieu S, Charchoglyan A, Paulsen L, Wagter-Lesperance LC, Shandilya UK, Bridle BW, Mallard BA, Karrow NA. N-Acetylcysteine and Its Immunomodulatory Properties in Humans and Domesticated Animals. Antioxidants (Basel) 2023; 12:1867. [PMID: 37891946 PMCID: PMC10604897 DOI: 10.3390/antiox12101867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
N-acetylcysteine (NAC), an acetylated derivative of the amino acid L-cysteine, has been widely used as a mucolytic agent and antidote for acetaminophen overdose since the 1960s and the 1980s, respectively. NAC possesses antioxidant, cytoprotective, anti-inflammatory, antimicrobial, and mucolytic properties, making it a promising therapeutic agent for a wide range of diseases in both humans and domesticated animals. Oxidative stress and inflammation play a major role in the onset and progression of all these diseases. NAC's primary role is to replenish glutathione (GSH) stores, the master antioxidant in all tissues; however, it can also reduce levels of pro-inflammatory tumor necrosis factor-alpha (TNF-∝) and interleukins (IL-6 and IL-1β), inhibit the formation of microbial biofilms and destroy biofilms, and break down disulfide bonds between mucin molecules. Many experimental studies have been conducted on the use of NAC to address a wide range of pathological conditions; however, its effectiveness in clinical trials remains limited and studies often have conflicting results. The purpose of this review is to provide a concise overview of promising NAC usages for the treatment of different human and domestic animal disorders.
Collapse
Affiliation(s)
- Sophie Tieu
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (S.T.); (U.K.S.)
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.P.); (L.C.W.-L.); (B.W.B.); (B.A.M.)
| | - Armen Charchoglyan
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada
- Advanced Analysis Centre, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Lauryn Paulsen
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.P.); (L.C.W.-L.); (B.W.B.); (B.A.M.)
| | - Lauri C. Wagter-Lesperance
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.P.); (L.C.W.-L.); (B.W.B.); (B.A.M.)
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada
| | - Umesh K. Shandilya
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (S.T.); (U.K.S.)
| | - Byram W. Bridle
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.P.); (L.C.W.-L.); (B.W.B.); (B.A.M.)
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada
| | - Bonnie A. Mallard
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.P.); (L.C.W.-L.); (B.W.B.); (B.A.M.)
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada
| | - Niel A. Karrow
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (S.T.); (U.K.S.)
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada
| |
Collapse
|
11
|
Li X, Ni J, Chen L. Advances in the study of acetaminophen-induced liver injury. Front Pharmacol 2023; 14:1239395. [PMID: 37601069 PMCID: PMC10436315 DOI: 10.3389/fphar.2023.1239395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/28/2023] [Indexed: 08/22/2023] Open
Abstract
Acetaminophen (APAP) overdose is a significant cause of drug-induced liver injury and acute liver failure. The diagnosis, screening, and management of APAP-induced liver injury (AILI) is challenging because of the complex mechanisms involved. Starting from the current studies on the mechanisms of AILI, this review focuses on novel findings in the field of diagnosis, screening, and management of AILI. It highlights the current issues that need to be addressed. This review is supposed to summarize the recent research progress and make recommendations for future research.
Collapse
Affiliation(s)
- Xinghui Li
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Jiaqi Ni
- West China School of Pharmacy, Sichuan University, Chengdu, China
- Department of Pharmacy, Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Li Chen
- Department of Pharmacy, Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| |
Collapse
|
12
|
Giustarini D, Milzani A, Dalle-Donne I, Rossi R. How to Increase Cellular Glutathione. Antioxidants (Basel) 2023; 12:antiox12051094. [PMID: 37237960 DOI: 10.3390/antiox12051094] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/29/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Glutathione (GSH) has special antioxidant properties due to its high intracellular concentration, ubiquity, and high reactivity towards electrophiles of the sulfhydryl group of its cysteine moiety. In most diseases where oxidative stress is thought to play a pathogenic role, GSH concentration is significantly reduced, making cells more susceptible to oxidative damage. Therefore, there is a growing interest in determining the best method(s) to increase cellular glutathione for both disease prevention and treatment. This review summarizes the major strategies for successfully increasing cellular GSH stores. These include GSH itself, its derivatives, NRf-2 activators, cysteine prodrugs, foods, and special diets. The possible mechanisms by which these molecules can act as GSH boosters, their related pharmacokinetic issues, and their advantages and disadvantages are discussed.
Collapse
Affiliation(s)
- Daniela Giustarini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Aldo Milzani
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | | | - Ranieri Rossi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| |
Collapse
|
13
|
Lin Q, Li K, Chen Y, Xie J, Wu C, Cui C, Deng B. Oxidative Stress in Diabetic Peripheral Neuropathy: Pathway and Mechanism-Based Treatment. Mol Neurobiol 2023:10.1007/s12035-023-03342-7. [PMID: 37115404 DOI: 10.1007/s12035-023-03342-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/04/2023] [Indexed: 04/29/2023]
Abstract
Diabetic peripheral neuropathy (DPN) is a major complication of diabetes mellitus with a high incidence. Oxidative stress, which is a crucial pathophysiological pathway of DPN, has attracted much attention. The distortion in the redox balance due to the overproduction of reactive oxygen species (ROS) and the deregulation of antioxidant defense systems promotes oxidative damage in DPN. Therefore, we have focused on the role of oxidative stress in the pathogenesis of DPN and elucidated its interaction with other physiological pathways, such as the glycolytic pathway, polyol pathway, advanced glycosylation end products, protein kinase C pathway, inflammation, and non-coding RNAs. These interactions provide novel therapeutic options targeting oxidative stress for DPN. Furthermore, our review addresses the latest therapeutic strategies targeting oxidative stress for the rehabilitation of DPN. Antioxidant supplements and exercise have been proposed as fundamental therapeutic strategies for diabetic patients through ROS-mediated mechanisms. In addition, several novel drug delivery systems can improve the bioavailability of antioxidants and the efficacy of DPN.
Collapse
Affiliation(s)
- Qingxia Lin
- Department of Psychiatry, First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Kezheng Li
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
- First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yinuo Chen
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
- First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Jiali Xie
- Department of Neurology, Shanghai East Hospital, Tongji University, Shanghai, People's Republic of China
| | - Chunxue Wu
- Department of Neurology, Wencheng County People's Hospital, Wenzhou, People's Republic of China
| | - Can Cui
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Binbin Deng
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.
| |
Collapse
|
14
|
Development of Dipeptide N–acetyl–L–cysteine Loaded Nanostructured Carriers Based on Inorganic Layered Hydroxides. Pharmaceutics 2023; 15:pharmaceutics15030955. [PMID: 36986816 PMCID: PMC10054814 DOI: 10.3390/pharmaceutics15030955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/21/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023] Open
Abstract
N–acetyl–L–cysteine (NAC), a derivative of the L–cysteine amino acid, presents antioxidant and mucolytic properties of pharmaceutical interest. This work reports the preparation of organic-inorganic nanophases aiming for the development of drug delivery systems based on NAC intercalation into layered double hydroxides (LDH) of zinc–aluminum (Zn2Al–NAC) and magnesium–aluminum (Mg2Al–NAC) compositions. A detailed characterization of the synthesized hybrid materials was performed, including X-ray diffraction (XRD) and pair distribution function (PDF) analysis, infrared and Raman spectroscopies, solid-state 13carbon and 27aluminum nuclear magnetic resonance (NMR), simultaneous thermogravimetric and differential scanning calorimetry coupled to mass spectrometry (TG/DSC–MS), scanning electron microscopy (SEM), and elemental chemical analysis to assess both chemical composition and structure of the samples. The experimental conditions allowed to isolate Zn2Al–NAC nanomaterial with good crystallinity and a loading capacity of 27.3 (m/m)%. On the other hand, NAC intercalation was not successful into Mg2Al–LDH, being oxidized instead. In vitro drug delivery kinetic studies were performed using cylindrical tablets of Zn2Al–NAC in a simulated physiological solution (extracellular matrix) to investigate the release profile. After 96 h, the tablet was analyzed by micro-Raman spectroscopy. NAC was replaced by anions such as hydrogen phosphate by a slow diffusion-controlled ion exchange process. Zn2Al–NAC fulfil basic requirements to be employed as a drug delivery system with a defined microscopic structure, appreciable loading capacity, and allowing a controlled release of NAC.
Collapse
|
15
|
Usui N, Kobayashi H, Shimada S. Neuroinflammation and Oxidative Stress in the Pathogenesis of Autism Spectrum Disorder. Int J Mol Sci 2023; 24:ijms24065487. [PMID: 36982559 PMCID: PMC10049423 DOI: 10.3390/ijms24065487] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder (NDD) characterized by impairments in social communication, repetitive behaviors, restricted interests, and hyperesthesia/hypesthesia caused by genetic and/or environmental factors. In recent years, inflammation and oxidative stress have been implicated in the pathogenesis of ASD. In this review, we discuss the inflammation and oxidative stress in the pathophysiology of ASD, particularly focusing on maternal immune activation (MIA). MIA is a one of the common environmental risk factors for the onset of ASD during pregnancy. It induces an immune reaction in the pregnant mother’s body, resulting in further inflammation and oxidative stress in the placenta and fetal brain. These negative factors cause neurodevelopmental impairments in the developing fetal brain and subsequently cause behavioral symptoms in the offspring. In addition, we also discuss the effects of anti-inflammatory drugs and antioxidants in basic studies on animals and clinical studies of ASD. Our review provides the latest findings and new insights into the involvements of inflammation and oxidative stress in the pathogenesis of ASD.
Collapse
Affiliation(s)
- Noriyoshi Usui
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
- United Graduate School of Child Development, Osaka University, Suita 565-0871, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Suita 565-0871, Japan
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka 541-8567, Japan
- Correspondence: ; Tel.: +81-668-79-3124
| | - Hikaru Kobayashi
- SANKEN (Institute of Scientific and Industrial Research), Osaka University, Suita 567-0047, Japan
| | - Shoichi Shimada
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
- United Graduate School of Child Development, Osaka University, Suita 565-0871, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Suita 565-0871, Japan
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka 541-8567, Japan
| |
Collapse
|
16
|
Anastasi E, Scaramuzzino S, Viscardi MF, Viggiani V, Piccioni MG, Cacciamani L, Merlino L, Angeloni A, Muzii L, Porpora MG. Efficacy of N-Acetylcysteine on Endometriosis-Related Pain, Size Reduction of Ovarian Endometriomas, and Fertility Outcomes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4686. [PMID: 36981595 PMCID: PMC10048621 DOI: 10.3390/ijerph20064686] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Endometriosis is a chronic, estrogen-dependent, inflammatory disease, whose pivotal symptoms are dysmenorrhea, dyspareunia, and chronic pelvic pain (CPP). Besides the usual medical treatments, recent evidence suggests there are potential benefits of oral N-acetylcysteine (NAC) on endometriotic lesions and pain. The primary objective of this prospective single-cohort study was to confirm the effectiveness of NAC in reducing endometriosis-related pain and the size of ovarian endometriomas. The secondary objective was to assess if NAC may play a role in improving fertility and reducing the Ca125 serum levels. METHODS Patients aged between 18-45 years old with a clinical/histological diagnosis of endometriosis and no current hormonal treatment or pregnancy were included in the study. All patients received quarterly oral NAC 600 mg, 3 tablets/day for 3 consecutive days of the week for 3 months. At baseline and after 3 months, dysmenorrhea, dyspareunia and CPP were assessed using the Visual Analog Scale score (VAS), while the size of the endometriomas was estimated through a transvaginal ultrasound. Analgesics (NSAIDs) intake, the serum levels of Ca125 and the desire for pregnancy were also investigated. Finally, the pregnancy rate of patients with reproductive desire was evaluated. RESULTS One hundred and twenty patients were recruited. The intensity of dysmenorrhea, dyspareunia and CPP significantly improved (p < 0.0001). The use of NSAIDs (p = 0.001), the size of the endometriomas (p < 0.0001) and the serum levels of Ca125 (p < 0.0001) significantly decreased. Among the 52 patients with reproductive desire, 39 successfully achieved pregnancy within 6 months of starting therapy (p = 0.001). CONCLUSIONS Oral NAC improves endometriosis-related pain and the size of endometriomas. Furthermore, it decreases Ca125 serum levels and may improve fertility in patients with endometriosis.
Collapse
Affiliation(s)
- Emanuela Anastasi
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Sara Scaramuzzino
- Department of Maternal and Child Health and Urological Sciences, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy
| | - Maria Federica Viscardi
- Department of Maternal and Child Health and Urological Sciences, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy
| | - Valentina Viggiani
- Department of Molecular Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Maria Grazia Piccioni
- Department of Maternal and Child Health and Urological Sciences, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy
| | - Laura Cacciamani
- Department of Maternal and Child Health and Urological Sciences, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy
| | - Lucia Merlino
- Department of Maternal and Child Health and Urological Sciences, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy
| | - Antonio Angeloni
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Ludovico Muzii
- Department of Maternal and Child Health and Urological Sciences, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy
| | - Maria Grazia Porpora
- Department of Maternal and Child Health and Urological Sciences, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
17
|
Azarova I, Polonikov A, Klyosova E. Molecular Genetics of Abnormal Redox Homeostasis in Type 2 Diabetes Mellitus. Int J Mol Sci 2023; 24:ijms24054738. [PMID: 36902173 PMCID: PMC10003739 DOI: 10.3390/ijms24054738] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Numerous studies have shown that oxidative stress resulting from an imbalance between the production of free radicals and their neutralization by antioxidant enzymes is one of the major pathological disorders underlying the development and progression of type 2 diabetes (T2D). The present review summarizes the current state of the art advances in understanding the role of abnormal redox homeostasis in the molecular mechanisms of T2D and provides comprehensive information on the characteristics and biological functions of antioxidant and oxidative enzymes, as well as discusses genetic studies conducted so far in order to investigate the contribution of polymorphisms in genes encoding redox state-regulating enzymes to the disease pathogenesis.
Collapse
Affiliation(s)
- Iuliia Azarova
- Department of Biological Chemistry, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia
| | - Alexey Polonikov
- Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia
- Correspondence:
| | - Elena Klyosova
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia
| |
Collapse
|
18
|
Yu Q, Shen C, Wang X, Wang Z, Liu L, Zhang J. Graphene Oxide/Gelatin Nanofibrous Scaffolds Loaded with N-Acetyl Cysteine for Promoting Wound Healing. Int J Nanomedicine 2023; 18:563-578. [PMID: 36756050 PMCID: PMC9900644 DOI: 10.2147/ijn.s392782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/03/2023] [Indexed: 02/05/2023] Open
Abstract
Purpose We aimed to develop an antioxidant dressing material with pro-angiogenic potential that could promote wound healing. Gelatin (Gel) was selected to improve the biocompatibility of the scaffolds, while graphene oxide (GO) was added to enhance their mechanical property. The loaded N-Acetyl cysteine (NAC) was performing the effect of scavenging reactive oxygen species (ROS) at the wound site. Materials and Methods The physicochemical and mechanical properties, NAC releases, and biocompatibility of the NAC-GO-Gel scaffolds were evaluated in vitro. The regeneration capability of the scaffolds was systemically investigated in vivo using the excisional wound-splinting model in mice. Results The NAC-GO-Gel scaffold had a stronger mechanical property and sustainer NAC release ability than the single Gel scaffold, which resulted in a better capacity for cell proliferation and migration. Mice wound-splinting models revealed that the NAC-GO-Gel scaffold effectively accelerated wound healing, promoted re-epithelialization, enhanced neovascularization, and reduced scar formation. Conclusion The NAC-GO-Gel scaffold not only promotes wound healing but also reduces scar formation, showing a great potential application for the repair of skin defects.
Collapse
Affiliation(s)
- Qian Yu
- Research Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, People’s Republic of China
| | - Chentao Shen
- Department of Gastrointestinal Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China,Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Xiangsheng Wang
- Department of Plastic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People’s Republic of China
| | - Zhenxing Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, People’s Republic of China
| | - Lu Liu
- Department of Gastrointestinal Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China,Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Jufang Zhang
- Department of Plastic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People’s Republic of China,Correspondence: Jufang Zhang; Lu Liu, Tel +86-18800293916; +86-13476226821, Fax +86-571-87914773; +86-27-83662640, Email ;
| |
Collapse
|
19
|
Elkin ER, Su AL, Dou JF, Colacino JA, Bridges D, Padmanabhan V, Harris SM, Boldenow E, Loch-Caruso R, Bakulski KM. Sexually concordant and dimorphic transcriptional responses to maternal trichloroethylene and/or N-acetyl cysteine exposure in Wistar rat placental tissue. Toxicology 2023; 483:153371. [PMID: 36396003 PMCID: PMC10078828 DOI: 10.1016/j.tox.2022.153371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/20/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022]
Abstract
Numerous Superfund sites are contaminated with the volatile organic chemical trichloroethylene (TCE). In women, exposure to TCE in pregnancy is associated with reduced birth weight. Our previous study reported that TCE exposure in pregnant rats decreased fetal weight and elevated oxidative stress biomarkers in placentae, suggesting placental injury as a potential mechanism of TCE-induced adverse birth outcomes. In this study, we investigated if co-exposure with the antioxidant N-acetylcysteine (NAC) attenuates TCE exposure effects on RNA expression. Timed-pregnant Wistar rats were exposed orally to 480 mg TCE/kg/day on gestation days 6-16. Exposure of 200 mg NAC/kg/day alone or as a pre/co-exposure with TCE occurred on gestation days 5-16 to stimulate antioxidant genes prior to TCE exposure. Tissue was collected on gestation day 16. In male and female placentae, we evaluated TCE- and/or NAC-induced changes to gene expression and pathway enrichment analyses using false discovery rate (FDR) and fold-change criteria. In female placentae, exposure to TCE caused significant differential expression 129 genes while the TCE+NAC altered 125 genes, compared with controls (FDR< 0.05 + fold-change >1). In contrast, in male placentae TCE exposure differentially expressed 9 genes and TCE+NAC differentially expressed 35 genes, compared with controls (FDR< 0.05 + fold-change >1). NAC alone did not significantly alter gene expression in either sex. Differentially expressed genes observed with TCE exposure were enriched in mitochondrial biogenesis and oxidative phosphorylation pathways in females whereas immune system pathways and endoplasmic reticulum stress pathways were differentially expressed in both sexes (FDR<0.05). TCE treatment was differentially enriched for genes regulated by the transcription factors ATF6 (both sexes) and ATF4 (males only), indicating a cellular condition triggered by misfolded proteins during endoplasmic reticulum stress. This study demonstrates novel genes and pathways involved in TCE-induced placental injury and showed antioxidant co-treatment largely did not attenuate TCE exposure effects.
Collapse
Affiliation(s)
- Elana R Elkin
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA.
| | - Anthony L Su
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - John F Dou
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Justin A Colacino
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA; Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Dave Bridges
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Vasantha Padmanabhan
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA; Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA; Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, USA; Department of Obstetrics and Gynecology, Michigan Medicine, Ann Arbor, MI, USA
| | - Sean M Harris
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Erica Boldenow
- Department of Biology, Calvin University, Grand Rapids, MI, USA
| | - Rita Loch-Caruso
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Kelly M Bakulski
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
20
|
Eivazkhani F, Ebrahimi B, Yousefi B, Fatehi R, Fathi R, Akbarinejad V. Effects of N-Acetyl-L-Cystein Antioxidant on Ex Vivo Culture of Vitrified Premature Mouse Ovarian Tissue. Biopreserv Biobank 2022; 20:331-339. [PMID: 35507947 DOI: 10.1089/bio.2021.0147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Optimization of practical ways to obtain mature follicles from cryopreserved ovarian tissues, especially in patients suffering from ovarian dysfunction, is very important. In vitro ovarian tissue culture allows faster screening of follicle development and reduces follicle isolation damage. During ovarian tissue culture, controlling oxidative stress is critical to support better follicular development and less damage. Immature Naval Medical Research Institute (NMRI) mouse ovaries (8-days-old) were randomly distributed into four cultured groups; non-vitrified, vitrified, non-vitrified N-acetyl-L-cysteine (NAC)+, and vitrified NAC+. Ovaries of vitrified groups along with non-vitrified ovaries were cultured on agar gel in the presence or absence of NAC for 5 days. Afterward, morphological evaluations, mRNA expressions of Gdf9, Bmp6, Lif, Amh, Bax, and Bcl2 genes, malondialdehyde, and total antioxidant capacities were compared between four groups at the first and last day of culture. Good preservation of tissue integrity and an increase of follicular development were observed in all groups. In addition, the expression of Gdf9, Lif, Bax, and Bcl2 genes were increased and Amh was decreased in groups cultured in the presence of NAC compared to groups cultured without NAC. Although total antioxidant capacity was not significantly different between the experimental groups, the lipid peroxidation and apoptotic index were significantly reduced in the presence of NAC. Thus, it appears that NAC antioxidant acts as a contributory factor for the ex vivo culture of ovarian tissue and reduces oxidative stress, apoptotic index, and improves follicular development, especially in non-vitrified groups.
Collapse
Affiliation(s)
- Farideh Eivazkhani
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.,Abnormal Uterine Bleeding Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Bita Ebrahimi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Behpour Yousefi
- Abnormal Uterine Bleeding Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Roya Fatehi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Rouhollah Fathi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Vahid Akbarinejad
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
21
|
Schuurman M, Wallace M, Sahi G, Barillaro M, Zhang S, Rahman M, Sawyez C, Borradaile N, Wang R. N-acetyl-L-cysteine treatment reduces beta-cell oxidative stress and pancreatic stellate cell activity in a high fat diet-induced diabetic mouse model. Front Endocrinol (Lausanne) 2022; 13:938680. [PMID: 36093092 PMCID: PMC9452715 DOI: 10.3389/fendo.2022.938680] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity plays a major role in type II diabetes (T2DM) progression because it applies metabolic and oxidative stress resulting in dysfunctional beta-cells and activation of intra-islet pancreatic stellate cells (PaSCs) which cause islet fibrosis. Administration of antioxidant N-acetyl-L-cysteine (NAC) in vivo improves metabolic outcomes in diet-induced obese diabetic mice, and in vitro inhibits PaSCs activation. However, the effects of NAC on diabetic islets in vivo are unknown. This study examined if dosage and length of NAC treatment in HFD-induced diabetic mice effect metabolic outcomes associated with maintaining healthy beta-cells and quiescent PaSCs, in vivo. Male C57BL/6N mice were fed normal chow (ND) or high-fat (HFD) diet up to 30 weeks. NAC was administered in drinking water to HFD mice in preventative treatment (HFDpNAC) for 23 weeks or intervention treatment for 10 (HFDiNAC) or 18 (HFDiNAC+) weeks, respectively. HFDpNAC and HFDiNAC+, but not HFDiNAC, mice showed significantly improved glucose tolerance and insulin sensitivity. Hyperinsulinemia led by beta-cell overcompensation in HFD mice was significantly rescued in NAC treated mice. A reduction of beta-cell nuclear Pdx-1 localization in HFD mice was significantly improved in NAC treated islets along with significantly reduced beta-cell oxidative stress. HFD-induced intra-islet PaSCs activation, labeled by αSMA, was significantly diminished in NAC treated mice along with lesser intra-islet collagen deposition. This study determined that efficiency of NAC treatment is beneficial at maintaining healthy beta-cells and quiescent intra-islet PaSCs in HFD-induced obese T2DM mouse model. These findings highlight an adjuvant therapeutic potential in NAC for controlling T2DM progression in humans.
Collapse
Affiliation(s)
- Meg Schuurman
- Children’s Health Research Institute, London, ON, Canada
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada
| | - Madison Wallace
- Children’s Health Research Institute, London, ON, Canada
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, ON, Canada
| | - Gurleen Sahi
- Children’s Health Research Institute, London, ON, Canada
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada
| | - Malina Barillaro
- Children’s Health Research Institute, London, ON, Canada
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada
| | - Siyi Zhang
- Children’s Health Research Institute, London, ON, Canada
| | - Mushfiqur Rahman
- Children’s Health Research Institute, London, ON, Canada
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada
| | - Cynthia Sawyez
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada
| | - Nica Borradaile
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada
| | - Rennian Wang
- Children’s Health Research Institute, London, ON, Canada
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada
- *Correspondence: Rennian Wang,
| |
Collapse
|
22
|
Hu M, Zhang Y, Ma S, Li J, Wang X, Liang M, Sferruzzi-Perri AN, Wu X, Ma H, Brännström M, Shao LR, Billig H. Suppression of uterine and placental ferroptosis by N-acetylcysteine in a rat model of polycystic ovary syndrome. Mol Hum Reprod 2021; 27:gaab067. [PMID: 34850077 DOI: 10.1093/molehr/gaab067] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/09/2021] [Indexed: 12/15/2022] Open
Abstract
The mechanisms that link hyperandrogenism and insulin (INS) resistance (HAIR) to the increased miscarriage rate in women with polycystic ovary syndrome (PCOS) remain elusive. Previous studies demonstrate that increased uterine and placental ferroptosis is associated with oxidative stress-induced fetal loss in a pre-clinical PCOS-like rat model. Here, we investigated the efficacy and molecular mechanism of action of the antioxidant N-acetylcysteine (NAC) in reversing gravid uterine and placental ferroptosis in pregnant rats exposed to 5α-dihydrotestosterone (DHT) and INS. Molecular and histological analyses showed that NAC attenuated DHT and INS-induced uterine ferroptosis, including dose-dependent increases in anti-ferroptosis gene content. Changes in other molecular factors after NAC treatment were also observed in the placenta exposed to DHT and INS, such as increased glutathione peroxidase 4 protein level. Furthermore, increased apoptosis-inducing factor mitochondria-associated 2 mRNA expression was seen in the placenta but not in the uterus. Additionally, NAC was not sufficient to rescue DHT + INS-induced mitochondria-morphological abnormalities in the uterus, whereas the same treatment partially reversed such abnormalities in the placenta. Finally, we demonstrated that NAC selectively normalized uterine leukemia inhibitory factor, osteopontin/secreted phosphoprotein 1, progesterone receptor, homeobox A11 mRNA expression and placental estrogen-related receptor beta and trophoblast-specific protein alpha mRNA expression. Collectively, our data provide insight into how NAC exerts beneficial effects on differentially attenuating gravid uterine and placental ferroptosis in a PCOS-like rat model with fetal loss. These results indicate that exogenous administration of NAC represents a potential therapeutic strategy in the treatment of HAIR-induced uterine and placental dysfunction.
Collapse
Affiliation(s)
- Min Hu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Integrated Traditional Chinese Medicine and Western Medicine, Guangzhou Medical University, Guangzhou, China
- Department of Physiology and Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Yuehui Zhang
- Department of Physiology and Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shuting Ma
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Juanli Li
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xu Wang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Mengmeng Liang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Amanda Nancy Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Xiaoke Wu
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hongxia Ma
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Integrated Traditional Chinese Medicine and Western Medicine, Guangzhou Medical University, Guangzhou, China
| | - Mats Brännström
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Linus R Shao
- Department of Physiology and Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Håkan Billig
- Department of Physiology and Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
23
|
Bourne LE, Patel JJ, Davies BK, Neven E, Verhulst A, D'Haese PC, Wheeler-Jones CPD, Orriss IR. N-acetylcysteine (NAC) differentially affects arterial medial calcification and bone formation: The role of l-cysteine and hydrogen sulphide. J Cell Physiol 2021; 237:1070-1086. [PMID: 34658034 DOI: 10.1002/jcp.30605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 12/29/2022]
Abstract
Arterial medial calcification (AMC) is the deposition of calcium phosphate in the arteries. AMC is widely thought to share similarities with physiological bone formation; however, emerging evidence suggests several key differences between these processes. N-acetylcysteine (NAC) displays antioxidant properties and can generate hydrogen sulphide (H2 S) and glutathione (GSH) from its deacetylation to l-cysteine. This study found that NAC exerts divergent effects in vitro, increasing osteoblast differentiation and bone formation by up to 5.5-fold but reducing vascular smooth muscle cell (VSMC) calcification and cell death by up to 80%. In vivo, NAC reduced AMC in a site-specific manner by 25% but had no effect on the bone. The actions of l-cysteine and H2 S mimicked those of NAC; however, the effects of H2 S were much less efficacious than NAC and l-cysteine. Pharmacological inhibition of H2 S-generating enzymes did not alter the actions of NAC or l-cysteine; endogenous production of H2 S was also unaffected. In contrast, NAC and l-cysteine increased GSH levels in calcifying VSMCs and osteoblasts by up to 3-fold. This suggests that the beneficial actions of NAC are likely to be mediated via the breakdown of l-cysteine and the subsequent GSH generation. Together, these data show that while the molecular mechanisms driving the actions of NAC appear similar, the downstream effects on cell function differ significantly between osteoblasts and calcifying VSMCs. The ability of NAC to exert these differential actions further supports the notion that there are differences between the development of pathological AMC and physiological bone formation. NAC could represent a therapeutic option for treating AMC without exerting negative effects on bone.
Collapse
Affiliation(s)
- Lucie E Bourne
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Jessal J Patel
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Bethan K Davies
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Ellen Neven
- Department of Biomedical Sciences, Laboratory of Pathophysiology, University of Antwerp, Antwerp, Belgium
| | - Anja Verhulst
- Department of Biomedical Sciences, Laboratory of Pathophysiology, University of Antwerp, Antwerp, Belgium
| | - Patrick C D'Haese
- Department of Biomedical Sciences, Laboratory of Pathophysiology, University of Antwerp, Antwerp, Belgium
| | | | - Isabel R Orriss
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| |
Collapse
|
24
|
Magalhães TFF, Costa MC, Holanda RA, Ferreira GF, Carvalho VSD, Freitas GJC, Ribeiro NQ, Emídio ECP, Carmo PHF, de Brito CB, de Souza DG, Rocha CEV, Paixão TA, de Resende-Stoianoff MA, Santos DA. N-acetylcysteine reduces amphotericin B deoxycholate nephrotoxicity and improves the outcome of murine cryptococcosis. Med Mycol 2021; 58:835-844. [PMID: 31919505 DOI: 10.1093/mmy/myz129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/25/2019] [Accepted: 12/11/2019] [Indexed: 12/13/2022] Open
Abstract
Cryptococcosis is a life-threatening fungal infection, and its current treatment is toxic and subject to resistance. Drug repurposing represents an interesting approach to find drugs to reduce the toxicity of antifungals. In this study, we evaluated the combination of N-acetylcysteine (NAC) with amphotericin B (AMB) for the treatment of cryptococcosis. We examined the effects of NAC on fungal morphophysiology and on the macrophage fungicidal activity 3 and 24 hours post inoculation. The therapeutic effects of NAC combination with AMB were investigated in a murine model with daily treatments regimens. NAC alone reduced the oxidative burst generated by AMB in yeast cells, but did not inhibit fungal growth. The combination NAC + AMB decreased capsule size, zeta potential, superoxide dismutase activity and lipid peroxidation. In macrophage assays, NAC + AMB did not influence the phagocytosis, but induced fungal killing with different levels of oxidative bursts when compared to AMB alone: there was an increased reactive oxygen species (ROS) after 3 hours and reduced levels after 24 hours. By contrast, ROS remained elevated when AMB was tested alone, demonstrating that NAC reduced AMB oxidative effects without influencing its antifungal activity. Uninfected mice treated with NAC + AMB had lower concentrations of serum creatinine and glutamate-pyruvate transaminase in comparison to AMB. The combination of NAC + AMB was far better than AMB alone in increasing survival and reducing morbidity in murine-induced cryptococcosis, leading to reduced fungal burden in lungs and brain and also lower concentrations of pro-inflammatory cytokines in the lungs. In conclusion, NAC + AMB may represent an alternative adjuvant for the treatment of cryptococcosis.
Collapse
Affiliation(s)
- Thais Furtado Ferreira Magalhães
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marliete Carvalho Costa
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rodrigo Assunção Holanda
- Parasite Biology Laboratory, CEUMA University - Rua dos Castanheiros, São Luís, Maranhão, Brazil
| | - Gabriela Freitas Ferreira
- Departamento de Farmácia, Universidade Federal de Juiz de Fora-Campus Governador Valadares, Centro, Governador Valadares, Minas Gerais, Brazil
| | - Vanessa Silva Dutra Carvalho
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gustavo Jose Cota Freitas
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Noelly Queiroz Ribeiro
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Elúzia Castro Peres Emídio
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paulo Henrique Fonseca Carmo
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Camila Bernardo de Brito
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniele Glória de Souza
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Cláudia Emanuela Viana Rocha
- Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tatiane Alves Paixão
- Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Daniel Assis Santos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
25
|
Genç F, Peker EGGÜ. Does Short-Term and Low-Dose N-Acetylcysteine Affect Oxidative Stress and Inflammation in The Liver Tissues of Diabetic Rats? Biol Res Nurs 2021; 23:568-574. [PMID: 33739173 DOI: 10.1177/10998004211003668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Diabetes mellitus is a serious chronic disease in which the oxidant-antioxidant balance is impaired, causing many complications, including hepatopathy. In this study, the effects of short-term and low-dose N-acetylcysteine (NAC) administration on the biochemical, proinflammatory, and oxidative stress parameters in the liver tissue of diabetic rats were investigated. Twenty-four adult male Wistar albino rats weighing approximately 250-300 g were divided into 4 groups (n = 6): Control, Streptozotosin (STZ)-induced diabetes (DM), NAC treatment (60 mg/kg), and STZ-induced diabetes treated with NAC (DM+NAC; 60 mg/kg). NAC treatment was administered intraperitoneally as a single daily dose for 7 days. At the end of the experiment (3 weeks), blood and liver samples were collected for biochemical parameter analysis. Lipid peroxidation, antioxidant parameters, and nitric oxide (NOx) levels were determined by spectrophotometric method. Tissue inflammation parameters were evaluated by ELISA. Lipid peroxidation, proinflammatory cytokines, alanine aminotransferase (ALT), and aspartate aminotransferase (AST) values increased significantly with diabetes. NAC treatment significantly decreased serum ALT and AST levels and proinflammatory cytokines in the diabetic group. Liver glutathione (GSH) and NOx levels increased significantly in the DM+NAC group (p < 0.05). While NAC treatment reduced lipid peroxidation in the liver, it improved the inflammatory response and antioxidant status. The beneficial effect of NAC treatment may be due to its antioxidant activity and the resulting increased level of GSH. The results show that low-dose and short-term NAC treatment had a positive effect on oxidative damage and inflammation in liver tissue. NAC can be used as a potential antioxidant in diabetes to prevent hepatopathy.
Collapse
Affiliation(s)
- Fatma Genç
- Department of Nursing, Faculty of Health Sciences, 187438Giresun University, Turkey
| | | |
Collapse
|
26
|
Ommati MM, Amjadinia A, Mousavi K, Azarpira N, Jamshidzadeh A, Heidari R. N-acetyl cysteine treatment mitigates biomarkers of oxidative stress in different tissues of bile duct ligated rats. Stress 2021; 24:213-228. [PMID: 32510264 DOI: 10.1080/10253890.2020.1777970] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cholestasis is a multifaceted clinical complication. Obstructive jaundice induced by bile duct ligation (BDL) is known as an animal model to investigate cholestasis and its associated complications. N-acetyl cysteine (NAC) is an antioxidant, radical scavenger, and thiol reductant widely investigated for its cytoprotective properties. The current investigation was designed to evaluate the role of NAC treatment on biomarkers of oxidative stress and organ histopathological alterations in a rat model of cholestasis/cirrhosis. BDL animals were supplemented with NAC (100 and 300 mg/kg, i.p, 42 consecutive days). Biomarkers of oxidative stress in the liver, brain, heart, skeletal muscle, lung, serum, and kidney tissue, as well as organ histopathological changes, were monitored. A significant increase in reactive oxygen species, lipid peroxidation, and protein carbonylation were detected in different tissues of BDL rats. Moreover, tissue antioxidant capacity was hampered, glutathione (GSH) reservoirs were depleted, and oxidized glutathione (GSSG) levels were significantly increased in the BDL group. Significant tissue histopathological alterations were evident in cirrhotic animals. It was found that NAC treatment (100 and 300 mg/kg, i.p) significantly mitigated biomarkers of oxidative stress and alleviated tissue histopathological changes in cirrhotic rats. These data represent NAC as a potential protective agent with therapeutic capability in cirrhosis and its associated complications.HIGHLIGHTSCholestasis is a multifaceted clinical complication that affects different organsOxidative stress plays a pivotal role in cholestasis-associated complicationsTissue antioxidant capacity is hampered in different tissues of cholestatic animalsAntioxidant therapy might play a role in the management of cholestasis-induced organ injuryNAC alleviated biomarkers of oxidative stress in cholestatic animalsNAC significantly improved tissues histopathological alterations in cholestatic rats.
Collapse
Affiliation(s)
- Mohammad Mehdi Ommati
- College of Life Sciences, Shanxi Agricultural University, Taigu, Peoples' Republic of China
| | - Ali Amjadinia
- Pharmacology and Toxicology Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Khadijeh Mousavi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Akram Jamshidzadeh
- Pharmacology and Toxicology Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
27
|
Rind L, Ahmad M, Khan MI, Badruddeen, Akhtar J, Ahmad U, Yadav C, Owais M. An insight on safety, efficacy, and molecular docking study reports of N-acetylcysteine and its compound formulations. J Basic Clin Physiol Pharmacol 2021; 33:223-233. [PMID: 33638319 DOI: 10.1515/jbcpp-2020-0099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 09/12/2020] [Indexed: 01/07/2023]
Abstract
N-acetylcysteine (NAC) is considered as the body's major antioxidant molecules with diverse biological properties. In this review, the pharmacokinetics, safety and efficacy report on both the preclinical and clinical summary of NAC is discussed. Both in vitro and in vivo preclinical studies along with the clinical data have shown that NAC has enormous biological properties. NAC is used in the treatment of acetaminophen poisoning, diabetic nephropathy, Alzheimer's disease, schizophrenia, and ulcerative colitis, etc. Numerous analytical techniques, for instance, UPLC, LC-MS, HPLC, RP-IPC are primarily employed for the estimation of NAC in different single and fixed-dose combinations. The molecular docking studies on NAC demonstrate the binding within Sudlow's site-I hydrogen bonds and formation of NAC and BSA complexes. Various hydrophobic and hydrophilic amino acids generally exist in making contact with NAC as NAC-BSA complexes. Docking studies of NAC with the active site of the urease exposed an O-coordinated bond through nickel 3002 and a hydrogen bond through His-138. NAC and its analogs also made the allosteric pockets that helped to describe almost all favorable pose for the chaperone in a complex through the protein. Thus, we intended to highlight the several health benefits of this antioxidant compound and applications in pharmaceutical product development.
Collapse
Affiliation(s)
- Laiba Rind
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Mohammad Ahmad
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | | | - Badruddeen
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Juber Akhtar
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Usama Ahmad
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Chandan Yadav
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Mohammad Owais
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
28
|
Bio-funcional components in mushrooms, a health opportunity: Ergothionine and huitlacohe as recent trends. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104326] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
29
|
Natural Antioxidants: A Novel Therapeutic Approach to Autism Spectrum Disorders? Antioxidants (Basel) 2020; 9:antiox9121186. [PMID: 33256243 PMCID: PMC7761361 DOI: 10.3390/antiox9121186] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/20/2022] Open
Abstract
Autism spectrum disorders (ASD) are a group of neurodevelopmental syndromes with both genetic and environmental origins. Several recent studies have shown that inflammation and oxidative stress may play a key role in supporting the pathogenesis and the severity of ASD. Thus, the administration of anti-inflammatory and antioxidant molecules may represent a promising strategy to counteract pathological behaviors in ASD patients. In the current review, results from recent literature showing how natural antioxidants may be beneficial in the context of ASD will be discussed. Interestingly, many antioxidant molecules available in nature show anti-inflammatory activity. Thus, after introducing ASD and the role of the vitamin E/vitamin C/glutathione network in scavenging intracellular reactive oxygen species (ROS) and the impairments observed with ASD, we discuss the concept of functional food and nutraceutical compounds. Furthermore, the effects of well-known nutraceutical compounds on ASD individuals and animal models of ASD are summarized. Finally, the importance of nutraceutical compounds as support therapy useful in reducing the symptoms in autistic people is discussed.
Collapse
|
30
|
Devi N, Boya C, Chhabra M, Bansal D. N-acetyl-cysteine as adjuvant therapy in female infertility: a systematic review and meta-analysis. J Basic Clin Physiol Pharmacol 2020; 32:899-910. [PMID: 34592079 DOI: 10.1515/jbcpp-2020-0107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/22/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The objective of this study is to explore the efficacy and safety of N-acetyl-cysteine (NAC) as adjuvant therapy in female infertility. CONTENT We performed a systematic literature search of PubMed, Cochrane Library, Embase, and Ovid databases through April 2019 for Randomized Controlled Trials (RCTs) evaluating the effectiveness and safety of NAC as adjuvant therapy in female infertility. The outcomes assessed were rates of ovulation, pregnancy, miscarriage and multiple pregnancy, presented as pooled odds ratio with 95% confidence interval (CI) using the random-effects model. Heterogeneity and inconsistency of the measurements were identified through Cochrane's Q statistic and I2 statistic. We also performed a sensitivity analysis, publication bias (using funnel plot and Begg's test), and subgroup analysis. SUMMARY Fifteen RCTs recruiting 2330 female receiving NAC were included. The pooled estimate showed the statistically insignificant improvement in outcomes; clinical pregnancy rate 1.55 (95% CI 0.98-2.47; I2=68%; p<0.01), ovulation rate 1.77 (95% CI 0.76-4.14; I2=90%; p<0.01), multiple pregnancy rate 0.83 (95% CI 0.34-1.99; I2=10%; p=0.31) and miscarriage rate 0.76 (95% CI= 0.37, 1.53; I2=0%; p=0.69) . NAC was found less efficacious and safe than metformin in all outcomes. Overall, NAC showed statistically insignificant (OR=0.98-2.47). OUTLOOK NAC can be an effective adjuvant in PCOS related and unexplained female infertility. The effect could be more profound in women with high BMI, insulin resistance, and oxidative stress. However, the findings need further confirmation in well-designed randomized controlled trials to examine clinical outcomes such as live birth rate in more extended follow-up periods.
Collapse
Affiliation(s)
- Nagita Devi
- Pharmacy Practice, National Institute of Pharmaceutical Education and Research, SAS Nagar, India
| | - Chandrasekhar Boya
- Pharmacy Practice, National Institute of Pharmaceutical Education and Research, SAS Nagar, India
| | - Manik Chhabra
- Pharmacy Practice, National Institute of Pharmaceutical Education and Research, SAS Nagar, India
| | - Dipika Bansal
- Pharmacy Practice, National Institute of Pharmaceutical Education and Research, SAS Nagar, India
| |
Collapse
|
31
|
Current etiological comprehension and therapeutic targets of acetaminophen-induced hepatotoxicity. Pharmacol Res 2020; 161:105102. [DOI: 10.1016/j.phrs.2020.105102] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/03/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023]
|
32
|
Luo J, Ao Z, Duan Z, Ao Y, Wei S, Chen W, Chen X. Effects of N-Acetylcysteine on the reproductive performance, oxidative stress and RNA sequencing of Nubian goats. Vet Med Sci 2020; 7:156-163. [PMID: 32812379 PMCID: PMC7840200 DOI: 10.1002/vms3.338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/18/2020] [Accepted: 07/20/2020] [Indexed: 12/31/2022] Open
Abstract
N-acetylcysteine (NAC) has been found to enhance the protective ability of cells to counter balance oxidative stress and inflammation. To investigate the effects of dietary NAC supplementation on the reproductive performance of goats, the reproductive performance and endometrial transcriptome of goats fed with diets with NAC (NAC group) and without NAC supplementation (control group) were compared. Results showed that the goats fed with 0.03% and 0.05% NAC had similar litter size, birth weight, nitric oxide (NO), sex hormones and amino acids levels compared with the goats of the control group. However, feeding with 0.07% NAC supplementation from day 0 to day 30 of gestation remarkably increased the litter size of goats. The goats of the 0.07% NAC group presented increased levels of NO relative to the control group, but their sex hormones and amino acids showed no differences. Comparative transcriptome analysis identified 207 differentially expressed genes (DEGs) in the endometrium between the control and the 0.07% NAC groups. These DEGs included 146 upregulated genes and 61 downregulated genes in the 0.07% NAC group. They were primarily involved in the cellular response to toxic substances, oxidoreductase activity, immune receptor activity, signalling receptor binding, cytokine-cytokine receptor interactions, PI3K-Akt signalling pathway and PPAR signalling pathway. In conclusion, results showed that dietary 0.07% NAC supplementation exerted a beneficial effect on the survival of goat embryos at the early pregnancy stage. Such positive outcome might be due to the increased NO production and affected expression of genes involved in the anti-inflammation pathways of the endometrium.
Collapse
Affiliation(s)
- Jinhong Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China.,Guizhou Institute of Prataculture, Guiyang, China
| | - Zheng Ao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China.,College of Animal Science, Guizhou University, Guiyang, China
| | - Zhiqiang Duan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China.,College of Animal Science, Guizhou University, Guiyang, China
| | - Ye Ao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China.,College of Animal Science, Guizhou University, Guiyang, China
| | - Shinan Wei
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China.,College of Animal Science, Guizhou University, Guiyang, China
| | - Wei Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China.,College of Animal Science, Guizhou University, Guiyang, China
| | - Xiang Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China.,College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|
33
|
Tun S, Spainhower CJ, Cottrill CL, Lakhani HV, Pillai SS, Dilip A, Chaudhry H, Shapiro JI, Sodhi K. Therapeutic Efficacy of Antioxidants in Ameliorating Obesity Phenotype and Associated Comorbidities. Front Pharmacol 2020; 11:1234. [PMID: 32903449 PMCID: PMC7438597 DOI: 10.3389/fphar.2020.01234] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Obesity has been a worldwide epidemic for decades. Despite the abundant increase in knowledge regarding the etiology and pathogenesis of obesity, the prevalence continues to rise with estimates predicting considerably higher numbers by the year 2030. Obesity is characterized by an abnormal lipid accumulation, however, the physiological consequences of obesity are far more concerning. The development of the obesity phenotype constitutes dramatic alterations in adipocytes, along with several other cellular mechanisms which causes substantial increase in systemic oxidative stress mediated by reactive oxygen species (ROS). These alterations promote a chronic state of inflammation in the body caused by the redox imbalance. Together, the systemic oxidative stress and chronic inflammation plays a vital role in maintaining the obese state and exacerbating onset of cardiovascular complications, Type II diabetes mellitus, dyslipidemia, non-alcoholic steatohepatitis, and other conditions where obesity has been linked as a significant risk factor. Because of the apparent role of oxidative stress in the pathogenesis of obesity, there has been a growing interest in attenuating the pro-oxidant state in obesity. Hence, this review aims to highlight the therapeutic role of antioxidants, agents that negate pro-oxidant state of cells, in ameliorating obesity and associated comorbidities. More specifically, this review will explore how various antioxidants target unique and diverse pathways to exhibit an antioxidant defense mechanism.
Collapse
Affiliation(s)
- Steven Tun
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Caleb James Spainhower
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Cameron Lee Cottrill
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Hari Vishal Lakhani
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Sneha S Pillai
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Anum Dilip
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Hibba Chaudhry
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Joseph I Shapiro
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Komal Sodhi
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| |
Collapse
|
34
|
Lima A, Ferin R, Fontes A, Santos E, Martins D, Baptista J, Pavão ML. Cysteine is a better predictor of coronary artery disease than conventional homocysteine in high-risk subjects under preventive medication. Nutr Metab Cardiovasc Dis 2020; 30:1281-1288. [PMID: 32522470 DOI: 10.1016/j.numecd.2020.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 04/01/2020] [Accepted: 04/08/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND AND AIMS In Portugal, The Azores Archipelago has the highest standardized mortality rate for CAD. Therefore, the aim of this study was to evaluate conventional risk factors, as well as plasma and erythrocyte aminothiol concentration in high-risk Azorean patients undergoing elective coronary angiography and to investigate whether any aminothiol was associated with CAD risk and severity. METHODS AND RESULTS 174 subjects with symptomatic CAD (age 56±9y; 68% men) submitted to coronary angiography were split into 2 groups: one formed by CAD patients (≥50% stenosis in at least one major coronary vessel) and the other by non-CAD patients (<50% stenosis). Both groups were age-, sex- and BMI-matched. Plasma and erythrocyte aminothiol profiles were evaluated by RP-HPLC/FLD. CAD patients significantly exhibited both higher concentrations of plasma Cys and hypercysteinemia (Cys ≥ 300 μM) prevalence than those in the non-CAD group (261 ± 58 μM vs. 243 ± 56 μM; 22% vs. 10%, respectively). No differences were observed between groups regarding plasma Hcy levels or hyperhomocysteinemia prevalence. After adjustment for several confounders (including Hcy), subjects in the highest quartile of plasma Cys had a 3.31 (95% CI, 1.32-8.30, p = 0.011) fold risk for CAD, compared with those in the lowest quartiles. Furthermore, plasma Cys levels (but not Hcy) tended to increase with the number of stenotic vessels (1VD: 253 ± 64 μM; 2VD: 262 ± 52 μM; 3VD: 279 ± 57 μM, p = 0.129). CONCLUSION Hypercysteinemia revealed to be a better predictor of CAD than hyperhomocysteinemia. Moreover, plasma Cys showed to be a useful biomarker for CAD both in primary and secondary preventions, seeming to resist better than Hcy to oral medication therapy.
Collapse
Affiliation(s)
- Ana Lima
- DCFQE/ Faculty of Sciences and Technology, University of the Azores, 9501-855, Ponta Delgada, Azores, Portugal
| | - Rita Ferin
- DCFQE/ Faculty of Sciences and Technology, University of the Azores, 9501-855, Ponta Delgada, Azores, Portugal
| | - António Fontes
- Cardiology Department, Hospital Divino Espírito Santo de Ponta Delgada-EPER, Avenida D. Manuel, 9500-782, Ponta Delgada, Azores, Portugal
| | - Emília Santos
- Cardiology Department, Hospital Divino Espírito Santo de Ponta Delgada-EPER, Avenida D. Manuel, 9500-782, Ponta Delgada, Azores, Portugal
| | - Dinis Martins
- Cardiology Department, Hospital Divino Espírito Santo de Ponta Delgada-EPER, Avenida D. Manuel, 9500-782, Ponta Delgada, Azores, Portugal
| | - José Baptista
- DCFQE/ Faculty of Sciences and Technology, University of the Azores, 9501-855, Ponta Delgada, Azores, Portugal
| | - Maria L Pavão
- DCFQE/ Faculty of Sciences and Technology, University of the Azores, 9501-855, Ponta Delgada, Azores, Portugal.
| |
Collapse
|
35
|
Zhang P, Li T, Wu X, Nice EC, Huang C, Zhang Y. Oxidative stress and diabetes: antioxidative strategies. Front Med 2020; 14:583-600. [PMID: 32248333 DOI: 10.1007/s11684-019-0729-1] [Citation(s) in RCA: 242] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 10/29/2019] [Indexed: 12/20/2022]
Abstract
Diabetes mellitus is one of the major public health problems worldwide. Considerable recent evidence suggests that the cellular reduction-oxidation (redox) imbalance leads to oxidative stress and subsequent occurrence and development of diabetes and related complications by regulating certain signaling pathways involved in β-cell dysfunction and insulin resistance. Reactive oxide species (ROS) can also directly oxidize certain proteins (defined as redox modification) involved in the diabetes process. There are a number of potential problems in the clinical application of antioxidant therapies including poor solubility, storage instability and nonselectivity of antioxidants. Novel antioxidant delivery systems may overcome pharmacokinetic and stability problem and improve the selectivity of scavenging ROS. We have therefore focused on the role of oxidative stress and antioxidative therapies in the pathogenesis of diabetes mellitus. Precise therapeutic interventions against ROS and downstream targets are now possible and provide important new insights into the treatment of diabetes.
Collapse
Affiliation(s)
- Pengju Zhang
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Tao Li
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xingyun Wu
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Canhua Huang
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| | - Yuanyuan Zhang
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
36
|
Rabaça A, Ferreira C, Bernardino R, Alves M, Oliveira P, Viana P, Barros A, Sousa M, Sá R. Use of antioxidant could ameliorate the negative impact of etoposide on human sperm DNA during chemotherapy. Reprod Biomed Online 2020; 40:856-866. [PMID: 32376314 DOI: 10.1016/j.rbmo.2020.01.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 12/31/2019] [Accepted: 01/30/2020] [Indexed: 01/07/2023]
Abstract
RESEARCH QUESTION A previous study showed that N-acetylcysteine (NAC), used after in-vitro exposure to the gonadotoxic chemotherapeutic drug etoposide, has the ability to decrease DNA damage in human spermatozoa; however, it showed no benefit when used before exposure. This study aimed to evaluate the impact of the NAC on the preservation of sperm quality during in-vitro exposure to etoposide. DESIGN Twenty semen samples were submitted to four experimental conditions: control, NAC-only incubation, etoposide-only incubation, and concomitant etoposide and NAC incubation. After in-vitro incubation, semen parameters, sperm chromatin condensation, sperm DNA fragmentation, sperm oxidative stress and sperm metabolism were used to evaluate the role of NAC in protecting human spermatozoa from etoposide. RESULTS Etoposide did not affect semen parameters, nor did it cause sperm oxidative damage or alterations in glycolytic profile. However, it induced chromatin decondensation and DNA fragmentation, which were fully prevented by NAC. CONCLUSIONS NAC was able to protect sperm DNA integrity during etoposide treatment in vitro, suggesting that NAC may be useful as an adjuvant agent in preserving male fertility during chemotherapy treatments.
Collapse
Affiliation(s)
- Ana Rabaça
- Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (UP), Porto, Portugal
| | - Carolina Ferreira
- Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (UP), Porto, Portugal
| | - Raquel Bernardino
- Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (UP), Porto, Portugal; Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal
| | - Marco Alves
- Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (UP), Porto, Portugal; Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal
| | - Pedro Oliveira
- Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (UP), Porto, Portugal; Department of Genetics, Faculty of Medicine, University of Porto, Porto, Portugal; Health Institute of Research and Innovation (IPATIMUP/i3S), University of Porto, Porto, Portugal
| | - Paulo Viana
- Centre for Reproductive Genetics A. Barros (CGR), Porto, Portugal
| | - Alberto Barros
- Department of Genetics, Faculty of Medicine, University of Porto, Porto, Portugal; Health Institute of Research and Innovation (IPATIMUP/i3S), University of Porto, Porto, Portugal; Centre for Reproductive Genetics A. Barros (CGR), Porto, Portugal
| | - Mário Sousa
- Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (UP), Porto, Portugal; Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal.
| | - Rosália Sá
- Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (UP), Porto, Portugal; Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal
| |
Collapse
|
37
|
Alnahdi A, John A, Raza H. Mitigation of Glucolipotoxicity-Induced Apoptosis, Mitochondrial Dysfunction, and Metabolic Stress by N-Acetyl Cysteine in Pancreatic β-Cells. Biomolecules 2020; 10:biom10020239. [PMID: 32033264 PMCID: PMC7072690 DOI: 10.3390/biom10020239] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/19/2020] [Accepted: 01/24/2020] [Indexed: 12/18/2022] Open
Abstract
Glucolipotoxicity caused by hyperglycemia and hyperlipidemia are the common features of diabetes-induced complications. Metabolic adaptation, particularly in energy metabolism; mitochondrial dysfunction; and increased inflammatory and oxidative stress responses are considered to be the main characteristics of diabetes and metabolic syndrome. However, due to various fluctuating endogenous and exogenous stimuli, the precise role of these factors under in vivo conditions is not clearly understood. In the present study, we used pancreatic β-cells, Rin-5F, to elucidate the molecular and metabolic changes in glucolipotoxicity. Cells treated with high glucose (25 mM) and high palmitic acid (up to 0.3 mM) for 24 h exhibited increased caspase/poly-ADP ribose polymerase (PARP)-dependent apoptosis followed by DNA fragmentation, alterations in mitochondrial membrane permeability, and bioenergetics, accompanied by alterations in glycolytic and mitochondrial energy metabolism. Our results also demonstrated alterations in the expression of mammalian target of rapamycin (mTOR)/5′ adenosine monophosphate-activated protein kinase (AMPK)-dependent apoptotic and autophagy markers. Furthermore, pre-treatment of cells with 10 mM N-acetyl cysteine attenuated the deleterious effects of high glucose and high palmitic acid with improved cellular functions and survival. These results suggest that the presence of high energy metabolites enhance mitochondrial dysfunction and apoptosis by suppressing autophagy and adapting energy metabolism, mediated, at least in part, via enhanced oxidative DNA damage and mTOR/AMPK-dependent cell signaling.
Collapse
|
38
|
Effect of N-acetylcysteine on liver and kidney function tests after surgical bypass in obstructive jaundice: A randomized controlled trial. Asian J Surg 2020; 43:322-329. [DOI: 10.1016/j.asjsur.2019.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/17/2019] [Accepted: 05/28/2019] [Indexed: 12/15/2022] Open
|
39
|
Alnahdi A, John A, Raza H. N-acetyl cysteine attenuates oxidative stress and glutathione-dependent redox imbalance caused by high glucose/high palmitic acid treatment in pancreatic Rin-5F cells. PLoS One 2019; 14:e0226696. [PMID: 31860682 PMCID: PMC6924679 DOI: 10.1371/journal.pone.0226696] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/02/2019] [Indexed: 02/07/2023] Open
Abstract
Elevated levels of glucose and fatty acids are the main characteristics of diabetes, obesity and other metabolic disorders, associated with increased oxidative stress, mitochondrial dysfunction and inflammation. Once the primary pathogenesis of diabetes is established, which is potentially linked to both genetic and environmental factors, hyperglycemia and hyperlipidemia exert further destructive and/or toxic effects on β-cells. The concept of glucolipotoxicity has arisen from the combination of deleterious effects of chronic elevation of glucose and fatty acid levels on pancreatic β- cell function and/or survival. Though numerous studies have been conducted in this field, the exact molecular mechanisms and causative factors still need to be established. The aim of the present work was to elucidate the molecular mechanisms of oxidative stress, and inflammatory/antioxidant responses in the presence of high concentrations of glucose/fatty acids in a cell-culture system using an insulin-secreting pancreatic β-cell line (Rin-5F) and to study the effects of the antioxidant, N-acetyl cysteine (NAC) on β-cell toxicity. In our study, we investigated the molecular mechanism of cytotoxicity in the presence of high glucose (up to 25 mM) and high palmitic acid (up to 0.3 mM) on Rin-5F cells. Our results suggest that the cellular and molecular mechanisms underlying β-cell toxicity are mediated by increased oxidative stress, imbalance of redox homeostasis, glutathione (GSH) metabolism and alterations in inflammatory responses. Pre-treatment with NAC attenuated oxidative stress and alterations in GSH metabolism associated with β-cells cytotoxicity.
Collapse
Affiliation(s)
- Arwa Alnahdi
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Annie John
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Haider Raza
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- * E-mail:
| |
Collapse
|
40
|
Pan J, Liu H, Ting W, Hsu H, Chen K. Surface modification by deposition of IPA plasma and gellan gum/chitosan hybrid hydrogel onto thermoplastic polyurethane for controlled release of N‐acetylcysteine. J CHIN CHEM SOC-TAIP 2019. [DOI: 10.1002/jccs.201800297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jiunn‐An Pan
- Graduate Institution of Engineering Technology‐Doctoral DepartmentNational Taipei University of Technology Taipei Taiwan
- Department of physics and chemistry, New Taipei Municipal Yonghe Junior High School New Taipei Taiwan
| | - Hsuan‐Liang Liu
- Department of Chemical Engineering and BiotechnologyNational Taipei University of Technology Taipei Taiwan
| | - Wei‐Ting Ting
- Department of Chemical EngineeringNational Taiwan University of Science and Technology Taipei Taiwan
| | - Hong‐Kai Hsu
- Department of Materials EngineeringTatung University Taipei Taiwan
| | - Ko‐Shao Chen
- Department of Materials EngineeringTatung University Taipei Taiwan
| |
Collapse
|
41
|
Argaev Frenkel L, Rozenfeld H, Rozenberg K, Sampson SR, Rosenzweig T. N-Acetyl-l-Cysteine Supplement in Early Life or Adulthood Reduces Progression of Diabetes in Nonobese Diabetic Mice. Curr Dev Nutr 2019; 3:nzy097. [PMID: 30993256 PMCID: PMC6459986 DOI: 10.1093/cdn/nzy097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 11/26/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Oxidative stress contributes to the pathologic process leading to the development, progression, and complications of type 1 diabetes (T1D). OBJECTIVE The aim of this study was to investigate the effect of the antioxidant N-acetyl-l-cysteine (NAC), supplemented during early life or adulthood on the development of T1D. METHODS NAC was administered to nonobese diabetic (NOD) female mice during pregnancy and lactation, and the development of diabetes was followed in offspring. In an additional set of experiments, offspring of untreated mice were given NAC during adulthood, and the development of T1D was followed. Morbidity rate, insulitis and serum cytokines were measured in the 2 sets of experiments. In addition, markers of oxidative stress, glutathione, lipid peroxidation, total antioxidant capacity and activity of antioxidant enzymes, were followed. RESULTS Morbidity rate was reduced in both treatment protocols. A decrease in interferon γ, tumor necrosis factor α, interleukin 1α, and other type 1 diabetes-associated proinflammatory cytokines was found in mice supplemented with NAC in adulthood or during early life compared with control NOD mice. The severity of insulitis was higher in control NOD mice than in treated groups. NAC administration significantly reduced oxidative stress, as determined by reduced lipid peroxidation and increased total antioxidant capacity in serum and pancreas of mice treated in early life or in adulthood and increased pancreatic glutathione when administrated in adulthood. The activity of antioxidant enzymes was not affected in mice given NAC in adulthood, whereas an increase in the activity of superoxide dismutase and catalase was demonstrated in the pancreas of their offspring. CONCLUSION NAC decreased morbidity of NOD mice by attenuating the immune response, presumably by eliminating oxidative stress, and might be beneficial in reducing morbidity rates of T1D in high-risk individuals.
Collapse
Affiliation(s)
- Lital Argaev Frenkel
- Department of Molecular Biology, School of Health Sciences, Ariel University, Ariel, Israel
- Department of Nutrition Sciences, School of Health Sciences, Ariel University, Ariel, Israel
| | - Hava Rozenfeld
- Department of Molecular Biology, School of Health Sciences, Ariel University, Ariel, Israel
- Department of Nutrition Sciences, School of Health Sciences, Ariel University, Ariel, Israel
| | - Konstantin Rozenberg
- Department of Molecular Biology, School of Health Sciences, Ariel University, Ariel, Israel
- Department of Nutrition Sciences, School of Health Sciences, Ariel University, Ariel, Israel
| | - Sanford R Sampson
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tovit Rosenzweig
- Department of Molecular Biology, School of Health Sciences, Ariel University, Ariel, Israel
- Department of Nutrition Sciences, School of Health Sciences, Ariel University, Ariel, Israel
| |
Collapse
|
42
|
Zheng J, Yuan X, Zhang C, Jia P, Jiao S, Zhao X, Yin H, Du Y, Liu H. N-Acetylcysteine alleviates gut dysbiosis and glucose metabolic disorder in high-fat diet-fed mice. J Diabetes 2019; 11:32-45. [PMID: 29845722 DOI: 10.1111/1753-0407.12795] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/17/2018] [Accepted: 05/25/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND N-Acetylcysteine (NAC), an antioxidative reagent for clinical diseases, shows potential in the treatment of diabetes and other metabolic diseases. However, it is unknown how NAC modulates the gut microbiota of mice with metabolic syndrome. The aim of the present study was to demonstrate the preventive effect of NAC on intestinal dysbiosis and glucose metabolic disorder. METHODS Mice (C57BL/6J strain) were fed either a normal chow diet (NCD), NCD plus NAC, a high-fat diet (HFD), or HFD plus NAC for 5 months, after which glucose levels, circulating endotoxins and key metabolism-related proteins were determined. Fecal samples were analyzed by 16S rRNA sequencing. A novel analysis was performed to predict functional changes in gut microbiota. In addition, Spearman's correlation analysis was performed between metabolic biomarkers and bacterial abundance. RESULTS Treatment with NAC significantly reversed the glucose intolerance, fasting glucose concentrations, and gains in body weight and plasma endotoxin in HFD-fed mice. Further, NAC upregulated occludin and mucin glycoprotein levels in the proximal colon of HFD-treated mice. Noticeably, NAC promoted the growth of beneficial bacteria (i.e. Akkermansia, Bifidobacterium, Lactobacillus and Allobaculum) and decreased populations of diabetes-related genera, including Desulfovibrio and Blautia. In addition, NAC may affect the metabolic pathways of intestinal bacteria, including lipopolysaccharide biosynthesis, oxidative stress, and bacterial motility. Finally, the modified gut microbiota was closely associated with the metabolic changes in NAC-treated HFD-fed mice. CONCLUSIONS N-Acetylcysteine may be a potential drug to prevent glucose metabolic disturbances by reshaping the structure of the gut microbiota.
Collapse
Affiliation(s)
- Junping Zheng
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Xubing Yuan
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Chen Zhang
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Peiyuan Jia
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Siming Jiao
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Xiaoming Zhao
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Heng Yin
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yuguang Du
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Hongtao Liu
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou, China
| |
Collapse
|
43
|
Mediator effects of parameters of inflammation and neurogenesis from a N-acetyl cysteine clinical-trial for bipolar depression. Acta Neuropsychiatr 2018; 30:334-341. [PMID: 30008280 DOI: 10.1017/neu.2018.13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE This study aimed to explore effects of adjunctive treatment with N-acetyl cysteine (NAC) on markers of inflammation and neurogenesis in bipolar depression. METHODS This is a secondary analysis of a placebo-controlled randomised trial. Serum samples were collected at baseline, week 8, and week 32 of the open-label and maintenance phases of the clinical trial to determine changes in interleukin (IL)-6, IL-8, IL-10, tumour necrosis factor-α (TNF-α), C-reactive protein (CRP) and brain-derived neurotrophic factor (BDNF) following adjunctive NAC treatment, and to explore mediation and moderator effects of the listed markers. RESULTS Levels of brain-derived neurotrophic factor (BDNF), tumour necrosis factor-α (TNF-α), C-reactive protein (CRP), interleukins (IL) -6, 8, or 10 were not significantly changed during the course of the trial or specifically in the open-label and maintenance phases. There were no mediation or moderation effects of the biological factors on the clinical parameters. CONCLUSION The results suggest that these particular biological parameters may not be directly involved in the therapeutic mechanism of action of adjunctive NAC in bipolar depression.
Collapse
|
44
|
Saeedi Borujeni MJ, Esfandiary E, Baradaran A, Valiani A, Ghanadian M, Codoñer-Franch P, Basirat R, Alonso-Iglesias E, Mirzaei H, Yazdani A. Molecular aspects of pancreatic β-cell dysfunction: Oxidative stress, microRNA, and long noncoding RNA. J Cell Physiol 2018; 234:8411-8425. [PMID: 30565679 DOI: 10.1002/jcp.27755] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/23/2018] [Indexed: 02/06/2023]
Abstract
Metabolic syndrome is known as a frequent precursor of type 2 diabetes mellitus (T2D). This disease could affect 8% of the people worldwide. Given that pancreatic β-cell dysfunction and loss have central roles in the initiation and progression of the disease, the understanding of cellular and molecular pathways associated with pancreatic β-cell dysfunction can provide more information about the underlying pathways involved in T2D. Multiple lines evidence indicated that oxidative stress, microRNA, and long noncoding RNA play significant roles in various steps of diseases. Oxidative stress is one of the important factors involved in T2D pathogenesis. This could affect the function and survival of the β cell via activation or inhibition of several processes and targets, such as receptor-signal transduction, enzyme activity, gene expression, ion channel transport, and apoptosis. Besides oxidative stress, microRNAs and noncoding RNAs have emerged as epigenetic regulators that could affect pancreatic β-cell dysfunction. These molecules exert their effects via targeting a variety of cellular and molecular pathways involved in T2D pathogenesis. Here, we summarized the molecular aspects of pancreatic β-cell dysfunction. Moreover, we highlighted the roles of oxidative stress, microRNAs, and noncoding RNAs in pancreatic β-cell dysfunction.
Collapse
Affiliation(s)
- Mohammad Javad Saeedi Borujeni
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ebrahim Esfandiary
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azar Baradaran
- Department of Pathology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Valiani
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mustafa Ghanadian
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pilar Codoñer-Franch
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia, Spain
| | - Reyhane Basirat
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Amid Yazdani
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
45
|
Sircana A, Framarin L, Leone N, Berrutti M, Castellino F, Parente R, De Michieli F, Paschetta E, Musso G. Altered Gut Microbiota in Type 2 Diabetes: Just a Coincidence? Curr Diab Rep 2018; 18:98. [PMID: 30215149 DOI: 10.1007/s11892-018-1057-6] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW In the last decade many studies have suggested an association between the altered gut microbiota and multiple systemic diseases including diabetes. In this review, we will discuss potential pathophysiological mechanisms, the latest findings regarding the mechanisms linking gut dysbiosis and type 2 diabetes (T2D), and the results obtained with experimental modulation of microbiota. RECENT FINDINGS In T2D, gut dysbiosis contributes to onset and maintenance of insulin resistance. Different strategies that reduce dysbiosis can improve glycemic control. Evidence in animals and humans reveals differences between the gut microbial composition in healthy individuals and those with T2D. Changes in the intestinal ecosystem could cause inflammation, alter intestinal permeability, and modulate metabolism of bile acids, short-chain fatty acids and metabolites that act synergistically on metabolic regulation systems contributing to insulin resistance. Interventions that restore equilibrium in the gut appear to have beneficial effects and improve glycemic control. Future research should examine in detail and in larger studies other possible pathophysiological mechanisms to identify specific pathways modulated by microbiota modulation and identify new potential therapeutic targets.
Collapse
Affiliation(s)
| | - Luciana Framarin
- HUMANITAS Gradenigo, University of Turin, C.so Regina Margherita 8, 10132, Turin, Italy
| | - Nicola Leone
- HUMANITAS Gradenigo, University of Turin, C.so Regina Margherita 8, 10132, Turin, Italy
| | - Mara Berrutti
- HUMANITAS Gradenigo, University of Turin, C.so Regina Margherita 8, 10132, Turin, Italy
| | - Francesca Castellino
- HUMANITAS Gradenigo, University of Turin, C.so Regina Margherita 8, 10132, Turin, Italy
| | - Renato Parente
- HUMANITAS Gradenigo, University of Turin, C.so Regina Margherita 8, 10132, Turin, Italy
| | - Franco De Michieli
- Department of Medical Sciences, San Giovanni Battista Hospital, University of Turin, Turin, Italy
| | - Elena Paschetta
- HUMANITAS Gradenigo, University of Turin, C.so Regina Margherita 8, 10132, Turin, Italy
| | - Giovanni Musso
- HUMANITAS Gradenigo, University of Turin, C.so Regina Margherita 8, 10132, Turin, Italy.
| |
Collapse
|
46
|
Krause BJ, Casanello P, Dias AC, Arias P, Velarde V, Arenas GA, Preite MD, Iturriaga R. Chronic Intermittent Hypoxia-Induced Vascular Dysfunction in Rats is Reverted by N-Acetylcysteine Supplementation and Arginase Inhibition. Front Physiol 2018; 9:901. [PMID: 30087615 PMCID: PMC6066978 DOI: 10.3389/fphys.2018.00901] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/21/2018] [Indexed: 01/07/2023] Open
Abstract
Chronic intermittent hypoxia (CIH), the main attribute of obstructive sleep apnea (OSA), produces oxidative stress, endothelial dysfunction, and hypertension. Nitric oxide (NO) plays a critical role in controlling the vasomotor tone. The NO level depends on the L-arginine level, which can be reduced by arginase enzymatic activity, and its reaction with the superoxide radical to produce peroxynitrite. Accordingly, we hypothesized whether a combination of an arginase inhibitor and an antioxidant may restore the endothelial function and reduced arterial blood pressure (BP) in CIH-induced hypertensive rats. Male Sprague-Dawley rats 200 g were exposed either to CIH (5% O2, 12 times/h 8 h/day) or sham condition for 35 days. BP was continuously measured by radio-telemetry in conscious animals. After 14 days, rats were treated with 2(S)-amino-6-boronohexanoic acid (ABH 400 μg/kg day, osmotic pump), N-acetylcysteine (NAC 100 mg/kg day, drinking water), or the combination of both drugs until day 35. At the end of the experiments, external carotid and femoral arteries were isolated to determine vasoactive contractile responses induced by KCL and acetylcholine (ACh) with wire-myography. CIH-induced hypertension (~8 mmHg) was reverted by ABH, NAC, and ABH/NAC administration. Carotid arteries from CIH-treated rats showed higher contraction induced by KCl (3.4 ± 0.4 vs. 2.4 ± 0.2 N/m2) and diminished vasorelaxation elicits by ACh compared to sham rats (12.8 ± 1.5 vs. 30.5 ± 4.6%). ABH reverted the increased contraction (2.5 ± 0.2 N/m2) and the reduced vasorelaxation induced by ACh in carotid arteries from CIH-rats (38.1 ± 4.9%). However, NAC failed to revert the enhanced vasocontraction (3.9 ± 0.6 N/m2) induced by KCl and the diminished ACh-induced vasorelaxation in carotid arteries (10.7 ± 0.8%). Femoral arteries from CIH rats showed an increased contractile response, an effect partially reverted by ABH, but completely reverted by NAC and ABH/NAC. The impaired endothelial-dependent relaxation in femoral arteries from CIH rats was reverted by ABH and ABH/NAC. In addition, ABH/NAC at high doses had no effect on liver and kidney gross morphology and biochemical parameters. Thus, although ABH, and NAC alone and the combination of ABH/NAC were able to normalize the elevated BP, only the combined treatment of ABH/NAC normalized the vascular reactivity and the systemic oxidative stress in CIH-treated rats.
Collapse
Affiliation(s)
- Bernardo J Krause
- Division of Pediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paola Casanello
- Division of Pediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Division of Obstetrics & Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ana C Dias
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paulina Arias
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Victoria Velarde
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - German A Arenas
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcelo D Preite
- Departamento de Química Orgánica, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Iturriaga
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
47
|
Benedikter BJ, Weseler AR, Wouters EFM, Savelkoul PHM, Rohde GGU, Stassen FRM. Redox-dependent thiol modifications: implications for the release of extracellular vesicles. Cell Mol Life Sci 2018; 75:2321-2337. [PMID: 29594387 PMCID: PMC5986851 DOI: 10.1007/s00018-018-2806-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/09/2018] [Accepted: 03/22/2018] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles (EVs), including microvesicles and exosomes, are emerging as important regulators of homeostasis and pathophysiology. During pro-inflammatory and pro-oxidant conditions, EV release is induced. As EVs released under such conditions often exert pro-inflammatory and procoagulant effects, they may actively promote the pathogenesis of chronic diseases. There is evidence that thiol group-containing antioxidants can prevent EV induction by pro-inflammatory and oxidative stimuli, likely by protecting protein thiols of the EV-secreting cells from oxidation. As the redox state of protein thiols greatly impacts three-dimensional protein structure and, consequently, function, redox modifications of protein thiols may directly modulate EV release in response to changes in the cell's redox environment. In this review article, we discuss targets of redox-dependent thiol modifications that are known or expected to be involved in the regulation of EV release, namely redox-sensitive calcium channels, N-ethylmaleimide sensitive factor, protein disulfide isomerase, phospholipid flippases, actin filaments, calpains and cell surface-exposed thiols. Thiol protection is proposed as a strategy for preventing detrimental changes in EV signaling in response to inflammation and oxidative stress. Identification of the thiol-containing proteins that modulate EV release in pro-oxidant environments could provide a rationale for broad application of thiol group-containing antioxidants in chronic inflammatory diseases.
Collapse
Affiliation(s)
- Birke J Benedikter
- Department of Medical Microbiology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, PO Box 5800, 6202 AZ, Maastricht, The Netherlands
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, PO Box 5800, 6202 AZ, Maastricht, The Netherlands
| | - Antje R Weseler
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands
| | - Emiel F M Wouters
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, PO Box 5800, 6202 AZ, Maastricht, The Netherlands
| | - Paul H M Savelkoul
- Department of Medical Microbiology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, PO Box 5800, 6202 AZ, Maastricht, The Netherlands
- Department of Medical Microbiology and Infection Control, VU University Medical Center, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Gernot G U Rohde
- Medical Clinic I, Department of Respiratory Medicine, Goethe University Hospital, Frankfurt/Main, Germany
| | - Frank R M Stassen
- Department of Medical Microbiology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, PO Box 5800, 6202 AZ, Maastricht, The Netherlands.
| |
Collapse
|
48
|
Polyak E, Ostrovsky J, Peng M, Dingley SD, Tsukikawa M, Kwon YJ, McCormack SE, Bennett M, Xiao R, Seiler C, Zhang Z, Falk MJ. N-acetylcysteine and vitamin E rescue animal longevity and cellular oxidative stress in pre-clinical models of mitochondrial complex I disease. Mol Genet Metab 2018; 123. [PMID: 29526616 PMCID: PMC5891356 DOI: 10.1016/j.ymgme.2018.02.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Oxidative stress is a known contributing factor in mitochondrial respiratory chain (RC) disease pathogenesis. Yet, no efficient means exists to objectively evaluate the comparative therapeutic efficacy or toxicity of different antioxidant compounds empirically used in human RC disease. We postulated that pre-clinical comparative analysis of diverse antioxidant drugs having suggested utility in primary RC disease using animal and cellular models of RC dysfunction may improve understanding of their integrated effects and physiologic mechanisms, and enable prioritization of lead antioxidant molecules to pursue in human clinical trials. Here, lifespan effects of N-acetylcysteine (NAC), vitamin E, vitamin C, coenzyme Q10 (CoQ10), mitochondrial-targeted CoQ10 (MS010), lipoate, and orotate were evaluated as the primary outcome in a well-established, short-lived C. elegans gas-1(fc21) animal model of RC complex I disease. Healthspan effects were interrogated to assess potential reversal of their globally disrupted in vivo mitochondrial physiology, transcriptome profiles, and intermediary metabolic flux. NAC or vitamin E fully rescued, and coenzyme Q, lipoic acid, orotic acid, and vitamin C partially rescued gas-1(fc21) lifespan toward that of wild-type N2 Bristol worms. MS010 and CoQ10 largely reversed biochemical pathway expression changes in gas-1(fc21) worms. While nearly all drugs normalized the upregulated expression of the "cellular antioxidant pathway", they failed to rescue the mutant worms' increased in vivo mitochondrial oxidant burden. NAC and vitamin E therapeutic efficacy were validated in human fibroblast and/or zebrafish complex I disease models. Remarkably, rotenone-induced zebrafish brain death was preventable partially with NAC and fully with vitamin E. Overall, these pre-clinical model animal data demonstrate that several classical antioxidant drugs do yield significant benefit on viability and survival in primary mitochondrial disease, where their major therapeutic benefit appears to result from targeting global cellular, rather than intramitochondria-specific, oxidative stress. Clinical trials are needed to evaluate whether the two antioxidants, NAC and vitamin E, that show greatest efficacy in translational model animals significantly improve the survival, function, and feeling of human subjects with primary mitochondrial RC disease.
Collapse
Affiliation(s)
- Erzsebet Polyak
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Julian Ostrovsky
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Min Peng
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Stephen D Dingley
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Mai Tsukikawa
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Young Joon Kwon
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Shana E McCormack
- Division of Endocrinology and Diabetes, Department of Pediatrics, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Michael Bennett
- Department of Pathology and Lab Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA; Department of Pathology, University of Pennsylvania Perelman School of Medicine, PA 19104, USA
| | - Rui Xiao
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Biostatistics and Epidemiology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Christoph Seiler
- Zebrafish Core Facility, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Zhe Zhang
- Center for Biomedical Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Marni J Falk
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
49
|
Rosa LRDO, Kaga AK, Barbanera PO, Queiroz PM, do Carmo NOL, Fernandes AAH. Beneficial effects of N-acetylcysteine on hepatic oxidative stress in streptozotocin-induced diabetic rats. Can J Physiol Pharmacol 2018; 96:412-418. [DOI: 10.1139/cjpp-2017-0559] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Diabetes is one of the leading diseases worldwide and, thus, finding new therapeutic alternatives is essential. The development of non-alcoholic fatty liver disease is a notable diabetic complication. Therefore, antioxidant therapy became a leading topic in the world of diabetes research. The objective of this present study was to evaluate the effects of antioxidant N-acetylcysteine (NAC) administration on serum biochemical parameters and oxidative stress parameters in hepatic tissue of the diabetic rats. Thirty-two animals were divided in 4 groups (n = 8): G1, normal rats; G2, normal rats + NAC; G3, diabetic rats; and G4, diabetic rats + NAC. Diabetes was induced in diabetic groups through streptozotocin. NAC administration was effective in improving hyperglycemia and hypoinsulinemia, as well as reducing serum alanine-aminotransferase and urea, hepatic triglycerides accumulation, and oxidative stress biomarkers in the diabetic liver, as well as improving the activity of hepatic antioxidant enzymes. This effect was likely due to NAC’s ability of restoring intracellular glutathione, an important compound for the antioxidant defense, as well as due to NAC’s direct antioxidant properties. Thus, NAC administration was useful for reducing hepatic oxidative stress and decreased the deposit of triacylglycerols, minimizing diabetic hepatic damage, making it a promising therapeutic adjuvant in the future.
Collapse
Affiliation(s)
- Lucas Rodolfo de Oliveira Rosa
- Department of Chemistry and Biochemistry, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil 18618-970
- Department of Chemistry and Biochemistry, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil 18618-970
| | - Anderson Kiyoshi Kaga
- Department of Chemistry and Biochemistry, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil 18618-970
- Department of Chemistry and Biochemistry, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil 18618-970
| | - Pedro Octavio Barbanera
- Department of Chemistry and Biochemistry, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil 18618-970
- Department of Chemistry and Biochemistry, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil 18618-970
| | - Priscila Manfio Queiroz
- Department of Chemistry and Biochemistry, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil 18618-970
- Department of Chemistry and Biochemistry, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil 18618-970
| | - Nágilla Orleanne Lima do Carmo
- Department of Chemistry and Biochemistry, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil 18618-970
- Department of Chemistry and Biochemistry, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil 18618-970
| | - Ana Angélica Henrique Fernandes
- Department of Chemistry and Biochemistry, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil 18618-970
- Department of Chemistry and Biochemistry, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil 18618-970
| |
Collapse
|
50
|
Qiu J, Fang Q, Xu T, Wu C, Xu L, Wang L, Yang X, Yu S, Zhang Q, Ding F, Sun H. Mechanistic Role of Reactive Oxygen Species and Therapeutic Potential of Antioxidants in Denervation- or Fasting-Induced Skeletal Muscle Atrophy. Front Physiol 2018; 9:215. [PMID: 29593571 PMCID: PMC5861206 DOI: 10.3389/fphys.2018.00215] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/26/2018] [Indexed: 01/07/2023] Open
Abstract
Skeletal muscle atrophy occurs under various conditions, such as disuse, denervation, fasting, aging, and various diseases. Although the underlying molecular mechanisms are still not fully understood, skeletal muscle atrophy is closely associated with reactive oxygen species (ROS) overproduction. In this study, we aimed to investigate the involvement of ROS in skeletal muscle atrophy from the perspective of gene regulation, and further examine therapeutic effects of antioxidants on skeletal muscle atrophy. Microarray data showed that the gene expression of many positive regulators for ROS production were up-regulated and the gene expression of many negative regulators for ROS production were down-regulated in mouse soleus muscle atrophied by denervation (sciatic nerve injury). The ROS level was significantly increased in denervated mouse soleus muscle or fasted C2C12 myotubes that had suffered from fasting (nutrient deprivation). These two muscle samples were then treated with N-acetyl-L-cysteine (NAC, a clinically used antioxidant) or pyrroloquinoline quinone (PQQ, a naturally occurring antioxidant), respectively. As compared to non-treatment, both NAC and PQQ treatment (1) reversed the increase in the ROS level in two muscle samples; (2) attenuated the reduction in the cross-sectional area (CSA) of denervated mouse muscle or in the diameter of fasted C2C12 myotube; (3) increased the myosin heavy chain (MHC) level and decreased the muscle atrophy F-box (MAFbx) and muscle-specific RING finger-1 (MuRF-1) levels in two muscle samples. Collectively, these results suggested that an increased ROS level was, at least partly, responsible for denervation- or fasting-induced skeletal muscle atrophy, and antioxidants might resist the atrophic effect via ROS-related mechanisms.
Collapse
Affiliation(s)
- Jiaying Qiu
- Laboratory of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Qingqing Fang
- Laboratory of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Tongtong Xu
- School of Medicine, Nantong University, Nantong, China
| | - Changyue Wu
- School of Medicine, Nantong University, Nantong, China
| | - Lai Xu
- Laboratory of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Lingbin Wang
- Laboratory of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xiaoming Yang
- Laboratory of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Shu Yu
- Laboratory of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Qi Zhang
- Laboratory of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Fei Ding
- Laboratory of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Hualin Sun
- Laboratory of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|