1
|
Huang FF, Di XF, Bai MH. Analysis of urine cell-free DNA in bladder cancer diagnosis by emerging bioactive technologies and materials. Front Bioeng Biotechnol 2024; 12:1458362. [PMID: 39295845 PMCID: PMC11408225 DOI: 10.3389/fbioe.2024.1458362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/23/2024] [Indexed: 09/21/2024] Open
Abstract
Urinary cell-free DNA (UcfDNA) is gaining recognition as an important biomarker for diagnosing bladder cancer. UcfDNA contains tumor derived DNA sequences, making it a viable candidate for non-invasive early detection, diagnosis, and surveillance of bladder cancer. The quantification and qualification of UcfDNA have demonstrated high sensitivity and specificity in the molecular characterization of bladder cancer. However, precise analysis of UcfDNA for clinical bladder cancer diagnosis remains challenging. This review summarizes the history of UcfDNA discovery, its biological properties, and the quantitative and qualitative evaluations of UcfDNA for its clinical significance and utility in bladder cancer patients, emphasizing the critical role of UcfDNA in bladder cancer diagnosis. Emerging bioactive technologies and materials currently offer promising tools for multiple UcfDNA analysis, aiming to achieve more precise and efficient capture of UcfDNA, thereby significantly enhancing diagnostic accuracy. This review also highlights breakthroughs in detection technologies and substrates with the potential to revolutionize bladder cancer diagnosis in clinic.
Collapse
Affiliation(s)
- Fei-Fei Huang
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Xiao-Fei Di
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Mo-Han Bai
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Kovács Á, Sükösd F, Kuthi L, Boros IM, Vedelek B. Novel method for detecting frequent TERT promoter hot spot mutations in bladder cancer samples. Clin Exp Med 2024; 24:192. [PMID: 39141194 PMCID: PMC11324672 DOI: 10.1007/s10238-024-01464-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
Telomerase reverse transcriptase promoter (TERTp) mutations are frequently targeted tumor markers, however, they reside in regions with high GC content, which poses challenges when examined with simple molecular techniques or even with next-generation sequencing (NGS). In bladder cancer (BC), TERTp mutations are particularly frequent, however, none of the available tools have demonstrated efficacy in detecting TERTp mutations via a simple noninvasive technique. Therefore, we developed a novel PCR-based method for the detection of the two most common TERTp mutations and demonstrated its use for the analysis of BC samples. The developed SHARD-PCR TERTp mutation detection technique requires PCR and restriction digestion steps that are easily implementable even in less well-equipped laboratories. Cell lines with known mutational status were utilized for method development. Matching urine and tumor tissue samples from BC patients were analyzed, and the results were validated by next-generation sequencing. Analysis of eighteen urine and corresponding tumor tissue samples by SHARD-PCR revealed perfect matches in sample pairs, which paralleled the corresponding NGS results: fourteen samples exhibited mutations at the -124 position, two samples showed mutations at the -146 position, and no mutations were detected in two samples. Our study serves as a proof-of-concept and is limited by its small sample size, nonetheless, it demonstrates that SHARD-PCR is a simple, economic and highly reliable method for detecting TERTp mutations, which are common in different cancer types. For bladder cancer, SHARD-PCR can be performed with the use of noninvasive samples and could replace or complement currently used techniques.
Collapse
Affiliation(s)
- Ákos Kovács
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| | - Farkas Sükösd
- Department of Pathology, University of Szeged, Szeged, Hungary
| | - Levente Kuthi
- Department of Pathology, University of Szeged, Szeged, Hungary
| | - Imre M Boros
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary.
- Hungarian Research Network Biological Research Center, Institute of Biochemistry, Szeged, Hungary.
| | - Balázs Vedelek
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary.
- Hungarian Research Network Biological Research Center, Institute of Genetics, Szeged, Hungary.
| |
Collapse
|
3
|
Linscott JA, Miyagi H, Murthy PB, Yao S, Grass GD, Vosoughi A, Xu H, Wang X, Yu X, Yu A, Zemp L, Gilbert SM, Poch MA, Sexton WJ, Spiess PE, Li R. From Detection to Cure - Emerging Roles for Urinary Tumor DNA (utDNA) in Bladder Cancer. Curr Oncol Rep 2024; 26:945-958. [PMID: 38837106 DOI: 10.1007/s11912-024-01555-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 06/06/2024]
Abstract
PURPOSE OF REVIEW This review sought to define the emerging roles of urinary tumor DNA (utDNA) for diagnosis, monitoring, and treatment of bladder cancer. Building from early landmark studies the focus is on recent studies, highlighting how utDNA could aid personalized care. RECENT FINDINGS Recent research underscores the potential for utDNA to be the premiere biomarker in bladder cancer due to the constant interface between urine and tumor. Many studies find utDNA to be more informative than other biomarkers in bladder cancer, especially in early stages of disease. Points of emphasis include superior sensitivity over traditional urine cytology, broad genomic and epigenetic insights, and the potential for non-invasive, real-time analysis of tumor biology. utDNA shows promise for improving all phases of bladder cancer care, paving the way for personalized treatment strategies. Building from current research, future comprehensive clinical trials will validate utDNA's clinical utility, potentially revolutionizing bladder cancer management.
Collapse
Affiliation(s)
- Joshua A Linscott
- Department of Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| | - Hiroko Miyagi
- Department of Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Prithvi B Murthy
- Department of Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Sijie Yao
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - G Daniel Grass
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Aram Vosoughi
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Hongzhi Xu
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Xuefeng Wang
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Xiaoqing Yu
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Alice Yu
- Department of Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Logan Zemp
- Department of Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Scott M Gilbert
- Department of Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Michael A Poch
- Department of Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Wade J Sexton
- Department of Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Philippe E Spiess
- Department of Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Roger Li
- Department of Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
4
|
Suartz CV, Martinez LM, Cordeiro MD, Botelho LAA, Gallutti FP, Mota JM, Leite KRM, Toren P, Nahas WC, Ribeiro-Filho LA. Honing the Hunt: A Comprehensive Review of Cell-free Tumor DNA to Predict Neoadjuvant Therapy Efficacy in Bladder Cancer. Clin Genitourin Cancer 2024; 22:102087. [PMID: 38688207 DOI: 10.1016/j.clgc.2024.102087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/29/2024] [Indexed: 05/02/2024]
Abstract
OBJECTIVE To provide an updated view on the role of cell-free DNA as a predictor of pathological response to neoadjuvant therapy in patients with muscle-invasive bladder cancer. METHODS A systematic review was conducted from September 2023 to October 2023. Selected studies from the MEDLINE and clinical trial databases were critically analyzed regarding the clinical efficacy of cell-free DNA as a predictive instrument after neoadjuvant therapy in bladder cancer. The methodological quality assessment was based on the QUADAS-2 tool. RESULTS In this systematic review, we analyzed 5 studies encompassing a cumulative patient cohort of 780 individuals diagnosed with muscle-invasive bladder cancer, with a median follow-up ranging from 6 to 23 months. Among these studies, 4 primarily focused on detecting and analyzing circulating tumor DNA in plasma, while 1 study uniquely utilized cell-free tumor DNA in urine samples. The diagnostic accuracy of cell-free DNA in plasma ranges from 79% to 100%, indicating a variable yet significant predictive capability. In contrast, the study utilizing urinary cell-free DNA demonstrated an accuracy of 81% in predicting treatment response post-neoadjuvant chemotherapy. CONCLUSION Cell-free DNA is emerging as a valuable biomarker for predicting response to neoadjuvant chemotherapy in patients with muscle-invasive bladder tumors.
Collapse
Affiliation(s)
- Caio V Suartz
- Division of Urology, Institute of Cancer of São Paulo, University of São Paulo, Brazil; Division of Urology, Department of Surgery, CHU de Québec - Université Laval, Quebec City, QC, Canada.
| | - Lucas Motta Martinez
- Division of Urology, Institute of Cancer of São Paulo, University of São Paulo, Brazil
| | - Maurício D Cordeiro
- Division of Urology, Institute of Cancer of São Paulo, University of São Paulo, Brazil
| | - Luiz A A Botelho
- Division of Urology, Institute of Cancer of São Paulo, University of São Paulo, Brazil
| | - Fábio P Gallutti
- Division of Urology, Institute of Cancer of São Paulo, University of São Paulo, Brazil
| | - José M Mota
- Genitourinary Medical Oncology Service, Institute of Cancer of São Paulo, University of São Paulo, Brazil
| | - Katia R M Leite
- Laboratory of Medical Investigation (LIM55), Urology Department, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Paul Toren
- Division of Urology, Department of Surgery, CHU de Québec - Université Laval, Quebec City, QC, Canada
| | - William C Nahas
- Division of Urology, Institute of Cancer of São Paulo, University of São Paulo, Brazil
| | | |
Collapse
|
5
|
Hemenway G, Anker JF, Riviere P, Rose BS, Galsky MD, Ghatalia P. Advancements in Urothelial Cancer Care: Optimizing Treatment for Your Patient. Am Soc Clin Oncol Educ Book 2024; 44:e432054. [PMID: 38771987 DOI: 10.1200/edbk_432054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
The standard treatment paradigm for muscle invasive bladder cancer has been neoadjuvant cisplatin-based chemotherapy followed by radical cystectomy. However, efforts are ongoing to personalize treatment by incorporating biomarkers to better guide treatment selection. In addition, bladder preservation strategies are aimed at avoiding cystectomy in well-selected patients. Similarly, in the metastatic urothelial cancer space, the standard frontline treatment option of platinum-based chemotherapy has changed with the availability of data from EV-302 trial, making the combination of enfortumab vedotin (EV) and pembrolizumab the preferred first-line treatment option. Here, we examine the optimization of treatment intensity and sequencing, focusing on the challenges and opportunities associated with EV/pembrolizumab therapy, including managing toxicities and exploring alternative dosing approaches. Together, these articles provide a comprehensive overview of contemporary strategies in bladder cancer management, highlighting the importance of individualized treatment approaches, ongoing research, and multidisciplinary collaboration to improve patient outcomes in this complex disease landscape.
Collapse
Affiliation(s)
| | - Jonathan F Anker
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Paul Riviere
- UCSD Radiation Medicine and Applied Sciences, San Diego, CA
| | - Brent S Rose
- UCSD Radiation Medicine and Applied Sciences, San Diego, CA
| | - Matthew D Galsky
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | | |
Collapse
|
6
|
Rakshit I, Mandal S, Pal S, Bhattacharjee P. Advancements in bladder cancer detection: a comprehensive review on liquid biopsy and cell-free DNA analysis. THE NUCLEUS 2024. [DOI: 10.1007/s13237-024-00494-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/04/2024] [Indexed: 01/06/2025] Open
|
7
|
Gan Z, Abudurexiti A, Hu X, Chen W, Zhang N, Sang W. E2F3/5/8 serve as potential prognostic biomarkers and new therapeutic direction for human bladder cancer. Medicine (Baltimore) 2024; 103:e35722. [PMID: 38215110 PMCID: PMC10783276 DOI: 10.1097/md.0000000000035722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/29/2023] [Indexed: 01/14/2024] Open
Abstract
OBJECTS Human bladder cancer (BC) is the most common urogenital system malignancy. E2F transcription factors (E2Fs) have been reported to be involved in the growth of various cancers. However, the expression patterns, prognostic value and immune infiltration in the tumor microenvironment of the 8 E2Fs in BC have yet fully to be explored. METHODS AND STRATEGY We investigated the differential expression of E2Fs in BC patients, the prognostic value and correlation with immune infiltration by analyzing a range of databases. RESULTS We found that the mRNA expression levels of E2F1/2/3/4/5/7/8 were significantly higher in BC patients than that of control tissues. And the increased mRNA expression levels of all E2Fs were associated with tumor stage of BC. The survival analysis revealed that the elevated mRNA expression levels of E2F3/5/8 were significantly correlated with the overall survival (OS) of BC patients. And the genetic changes of E2Fs in BC patients were associated with shorter overall survival (OS) and progression-free survival (PFS). In addition, we revealed that the E2F3/5/8 expressions were closely correlated with tumor-infiltrating lymphocytes (TILs). CONCLUSIONS E2F3/5/8 might serve as promising prognostic biomarkers and new therapeutic direction for BC patients.
Collapse
Affiliation(s)
- Zhilu Gan
- Surgery Department of Urology, The Third People’s Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, P.R. China
| | - Alimujiang Abudurexiti
- Surgery Department of Urology, The Third People’s Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, P.R. China
| | - Xiaogang Hu
- Surgery Department of Urology, The Third People’s Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, P.R. China
| | - Wenxin Chen
- Surgery Department of Urology, The Third People’s Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, P.R. China
| | - Ning Zhang
- Surgery Department of Urology, The Third People’s Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, P.R. China
| | - Wei Sang
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, P.R. China
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, P.R. China
| |
Collapse
|
8
|
Wu Y, Wang X, Zhang M, Wu D. Molecular Biomarkers and Recent Liquid Biopsy Testing Progress: A Review of the Application of Biosensors for the Diagnosis of Gliomas. Molecules 2023; 28:5660. [PMID: 37570630 PMCID: PMC10419986 DOI: 10.3390/molecules28155660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Gliomas are the most common primary central nervous system tumors, with a high mortality rate. Early and accurate diagnosis of gliomas is critical for successful treatment. Biosensors are significant in the detection of molecular biomarkers because they are simple to use, portable, and capable of real-time analysis. This review discusses several important molecular biomarkers as well as various biosensors designed for glioma diagnosis, such as electrochemical biosensors and optical biosensors. We present our perspectives on the existing challenges and hope that this review can promote the improvement of biosensors.
Collapse
Affiliation(s)
- Yuanbin Wu
- Department of Emergency Medicine, The Seventh Medical Center, Chinese PLA General Hospital, Beijing 100700, China;
| | - Xuning Wang
- Department of General Surgery, The Air Force Hospital of Northern Theater PLA, Shenyang 110042, China
| | - Meng Zhang
- Department of Neurosurgery, The Second Hospital of Southern Theater of Chinese Navy, Sanya 572000, China
| | - Dongdong Wu
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
9
|
Rose KM, Huelster HL, Meeks JJ, Faltas BM, Sonpavde GP, Lerner SP, Ross JS, Spiess PE, Grass GD, Jain RK, Kamat AM, Vosoughi A, Wang L, Wang X, Li R. Circulating and urinary tumour DNA in urothelial carcinoma - upper tract, lower tract and metastatic disease. Nat Rev Urol 2023; 20:406-419. [PMID: 36977797 DOI: 10.1038/s41585-023-00725-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2023] [Indexed: 03/30/2023]
Abstract
Precision medicine has transformed the way urothelial carcinoma is managed. However, current practices are limited by the availability of tissue samples for genomic profiling and the spatial and temporal molecular heterogeneity observed in many studies. Among rapidly advancing genomic sequencing technologies, non-invasive liquid biopsy has emerged as a promising diagnostic tool to reproduce tumour genomics, and has shown potential to be integrated in several aspects of clinical care. In urothelial carcinoma, liquid biopsies such as plasma circulating tumour DNA (ctDNA) and urinary tumour DNA (utDNA) have been investigated as a surrogates for tumour biopsies and might bridge many shortfalls currently faced by clinicians. Both ctDNA and utDNA seem really promising in urothelial carcinoma diagnosis, staging and prognosis, response to therapy monitoring, detection of minimal residual disease and surveillance. The use of liquid biopsies in patients with urothelial carcinoma could further advance precision medicine in this population, facilitating personalized patient monitoring through non-invasive assays.
Collapse
Affiliation(s)
- Kyle M Rose
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Heather L Huelster
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Joshua J Meeks
- Department of Urology, Northwestern University, Chicago, IL, USA
| | - Bishoy M Faltas
- Department of Hematology/Oncology, Weill-Cornell Medicine, New York, NY, USA
| | - Guru P Sonpavde
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Seth P Lerner
- Department of Urology, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey S Ross
- Foundation Medicine, Inc, Cambridge, MA, USA
- Departments of Urology and Pathology, Upstate Medical University, Syracuse, NY, USA
| | - Philippe E Spiess
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - G Daniel Grass
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Rohit K Jain
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Ashish M Kamat
- Department of Urology, MD Anderson Cancer Center, Houston, TX, USA
| | - Aram Vosoughi
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Liang Wang
- Department of Tumour Biology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Xuefeng Wang
- Department of Biostatistics/Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Roger Li
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA.
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
10
|
Zhao J, Li J, Zhang R. Off the fog to find the optimal choice: Research advances in biomarkers for early diagnosis and recurrence monitoring of bladder cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188926. [PMID: 37230421 DOI: 10.1016/j.bbcan.2023.188926] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023]
Abstract
Bladder cancer (BC) has high morbidity and mortality rates owing to challenges in clinical diagnosis and treatment. Advanced BC is prone to recurrence after surgery, necessitating early diagnosis and recurrence monitoring to improve the prognosis of patients. Traditional detection methods for BC include cystoscopy, cytology, and imaging; however, these methods have drawbacks such as invasiveness, lack of sensitivity, and high costs. Existing reviews on BC focus on treatment and management and lack a comprehensive assessment of biomarkers. Our article reviews various biomarkers for the early diagnosis and recurrence monitoring of BC and outlines the existing challenges associated with their application and possible solutions. Furthermore, this study highlights the potential application of urine biomarkers as a non-invasive, inexpensive adjunctive test for screening high-risk populations or evaluating patients with suspected BC symptoms, thereby alleviating the discomfort and financial burden associated with cystoscopy and improving patient survival.
Collapse
Affiliation(s)
- Jiaxin Zhao
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, PR China; National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China
| | - Jinming Li
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, PR China; National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China.
| | - Rui Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, PR China; National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China.
| |
Collapse
|
11
|
Tan D, Jiang W, Hu R, Li Z, Ou T. Detection of the ADGRG6 hotspot mutations in urine for bladder cancer early screening by ARMS-qPCR. Cancer Med 2023. [PMID: 37081791 DOI: 10.1002/cam4.5879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/09/2023] [Accepted: 03/19/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND In bladder cancer, recurrent ADGRG6 enhancer hotspot mutations (chr. 6: 142,706,206 G>A, chr. 6:142,706,209 C>T) were reported at a high mutation rate of approximately 50%. Thus, ADGRG6 enhancer mutation status might be a candidate for diagnostic biomarker. METHODS To improve test efficacy, an amplification refractory mutation system combined with quantitative real-time PCR (ARMS-qPCR) assay was developed to detect the ADGRG6 mutations in a patient as a clinical diagnostic test. To validate the performance of the ARMS-qPCR assay, artificial plasmids, cell DNA reference standard were used as templates, respectively. To test the clinical diagnostic ability, we detected the cell free DNA (cfDNA) and sediment DNA (sDNA) of 30 bladder cancer patients' urine by ARMS-qPCR comparing with Sanger sequencing, followed by the droplet digital PCR to confirm the results. We also tested the urine of 100 healthy individuals and 90 patients whose diagnoses urinary tract infections or urinary stones but not bladder cancer. RESULTS Sensitivity of 100% and specificity of 96.7% were achieved when the mutation rate of the artificial plasmid was 1%, and sensitivity of 96.7% and specificity of 100% were achieved when the mutation frequency of the reference standard was 0.5%. Sanger sequencing and ARMS-qPCR both detected 30 cases of bladder cancer with 93.3% agreement. For the remaining unmatched sites, ARMS-qPCR results were consistent with droplet digital PCR. Among 100 healthy individuals, three of them carried hotspot mutations by way of ARMS-qPCR. Of 90 patients with urinary tract infections or urinary stones, no mutations were found by ARMS-qPCR. Based on clinical detection, the ARMS-qPCR assay's sensitivity is 83.3%, specificity is 98.4%. CONCLUSION We here present a novel urine test for ADGRG6 hotspot mutations with high accuracy and sensitivity, which may potentially serve as a rapid and non-invasive tool for bladder cancer early screening and follow-up relapse monitoring.
Collapse
Affiliation(s)
- Dan Tan
- Medical Laboratory of Shenzhen Luohu Hospital Group, Shenzhen, 518000, Guangdong, China
- Shenzhen Following Precision Medical Research Institute of Luohu Hospital Group, Shenzhen, 518000, Guangdong, China
- The Affiliated Shenzhen Luohu Hospital of Shantou University Medical College, Shantou University, Shantou, 515063, China
| | - Wenqi Jiang
- Shenzhen Following Precision Medical Research Institute of Luohu Hospital Group, Shenzhen, 518000, Guangdong, China
| | - Rixin Hu
- Shenzhen Following Precision Medical Research Institute of Luohu Hospital Group, Shenzhen, 518000, Guangdong, China
| | - Zhuoran Li
- Shenzhen Following Precision Medical Research Institute of Luohu Hospital Group, Shenzhen, 518000, Guangdong, China
| | - Tong Ou
- Medical Laboratory of Shenzhen Luohu Hospital Group, Shenzhen, 518000, Guangdong, China
- Shenzhen Following Precision Medical Research Institute of Luohu Hospital Group, Shenzhen, 518000, Guangdong, China
- The Affiliated Shenzhen Luohu Hospital of Shantou University Medical College, Shantou University, Shantou, 515063, China
| |
Collapse
|
12
|
Taylor AS, Acosta AM, Al-Ahmadie HA, Mehra R. Precursors of urinary bladder cancer: molecular alterations and biomarkers. Hum Pathol 2023; 133:5-21. [PMID: 35716731 DOI: 10.1016/j.humpath.2022.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 01/04/2023]
Abstract
Clinical surveillance and follow-up of patients diagnosed with or at risk for urinary bladder cancers represent long-term, invasive, and costly processes for which supplemental biomarker information could help provide objective, personalized risk assessment. In particular, there are several precursors and possible precursors to urinary bladder cancer for which clinical behavior is heterogenous and interobserver variability in histopathologic diagnosis make it difficult to standardize management. This review seeks to highlight these precursor lesions from a diagnostic perspective (including flat urothelial lesions, papillary urothelial lesions, squamous lesions, and glandular lesions) and qualify known multiomic biomarkers that may help explain their behavior, predict patient risk, and acknowledge the nuance inherent to the question of whether these lesions are "benign" or "preneoplastic."
Collapse
Affiliation(s)
- Alexander S Taylor
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Andres M Acosta
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Hikmat A Al-Ahmadie
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Rohit Mehra
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Rogel Cancer Center, Michigan Medicine, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Ann Arbor, MI 48109, USA.
| |
Collapse
|
13
|
Cheng L, Zhang S, Wang M, Lopez-Beltran A. Biological and clinical perspectives of TERT promoter mutation detection on bladder cancer diagnosis and management. Hum Pathol 2023; 133:56-75. [PMID: 35700749 DOI: 10.1016/j.humpath.2022.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/05/2022] [Indexed: 02/08/2023]
Abstract
The telomerase reverse transcriptase (TERT) promoter mutations are associated with increased TERT mRNA and TERT protein levels, telomerase activity, and shorter but stable telomere length. TERT promoter mutation is the most common mutation that occurs in approximately 60-80% of patients with bladder cancer. The TERT promoter mutations occur in a wide spectrum of urothelial lesions, including benign urothelial proliferation and tumor-like conditions, benign urothelial tumors, premalignant and putative precursor lesions, urothelial carcinoma and its variants, and nonurothelial malignancies. The prevalence and incidence of TERT promoter mutations in a total of 7259 cases from the urinary tract were systematically reviewed. Different platforms of TERT promoter mutation detection were presented. In this review, we also discussed the significance and clinical implications of TERT promoter mutation detection in urothelial tumorigenesis, surveillance and early detection, diagnosis, differential diagnosis, prognosis, prediction of treatment responses, and clinical outcome. Identification of TERT promoter mutations from urine or plasma cell-free DNA (liquid biopsy) will facilitate bladder cancer screening program and optimal clinical management. A better understanding of TERT promoter mutation and its pathway would open new therapeutic avenues for patients with bladder cancer.
Collapse
Affiliation(s)
- Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University and Lifespan Academic Medical Center, Providence, RI, 02903, USA.
| | - Shaobo Zhang
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Mingsheng Wang
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Antonio Lopez-Beltran
- Department of Morphological Sciences, University of Cordoba Medical School, Cordoba, E-14004, Spain
| |
Collapse
|
14
|
Liu T, Li S, Xia C, Xu D. TERT promoter mutations and methylation for telomerase activation in urothelial carcinomas: New mechanistic insights and clinical significance. Front Immunol 2023; 13:1071390. [PMID: 36713366 PMCID: PMC9877314 DOI: 10.3389/fimmu.2022.1071390] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Telomerase, an RNA-dependent DNA polymerase synthesizing telomeric TTAGGG sequences, is primarily silent in normal human urothelial cells (NHUCs), but widely activated in urothelial cell-derived carcinomas or urothelial carcinomas (UCs) including UC of the bladder (UCB) and upper track UC (UTUC). Telomerase activation for telomere maintenance is required for the UC development and progression, and the key underlying mechanism is the transcriptional de-repression of the telomerase reverse transcriptase (TERT), a gene encoding the rate-limiting, telomerase catalytic component. Recent mechanistic explorations have revealed important roles for TERT promoter mutations and aberrant methylation in activation of TERT transcription and telomerase in UCs. Moreover, these TERT-featured genomic and epigenetic alterations have been evaluated for their usefulness in non-invasive UC diagnostics, recurrence monitoring, outcome prediction and response to treatments such as immunotherapy. Importantly, the detection of the mutated TERT promoter and TERT mRNA as urinary biomarkers holds great promise for urine-based UC liquid biopsy. In the present article, we review recent mechanistic insights into altered TERT promoter-mediated telomerase activation in UCs and discuss potential clinical implications. Specifically, we compare differences in senescence and transformation between NHUCs and other types of epithelial cells, address the interaction between TERT promoter mutations and other factors to affect UC progression and outcomes, evaluate the impact of TERT promoter mutations and TERT-mediated activation of human endogenous retrovirus genes on UC immunotherapy including Bacillus Calmette-Guérin therapy and immune checkpoint inhibitors. Finally, we suggest the standardization of a TERT assay and evaluation system for UC clinical practice.
Collapse
Affiliation(s)
- Tiantian Liu
- Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shihong Li
- Department of Pathology, Maternal and Child Health Hospital of Liaocheng, Liaocheng, China
| | - Chuanyou Xia
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China,*Correspondence: Chuanyou Xia, ; Dawei Xu,
| | - Dawei Xu
- Department of Medicine, Bioclinicum and Center for Molecular Medicine (CMM), Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden,*Correspondence: Chuanyou Xia, ; Dawei Xu,
| |
Collapse
|
15
|
Pakmanesh H, Anvari O, Forey N, Weiderpass E, Malekpourafshar R, Iranpour M, Shahesmaeili A, Ahmadi N, Bazrafshan A, Zendehdel K, Kannengiesser C, Ba I, McKay J, Zvereva M, Hosen MI, Sheikh M, Calvez-Kelm FL. TERT Promoter Mutations as Simple and Non-Invasive Urinary Biomarkers for the Detection of Urothelial Bladder Cancer in a High-Risk Region. Int J Mol Sci 2022; 23:14319. [PMID: 36430798 PMCID: PMC9696845 DOI: 10.3390/ijms232214319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/31/2022] [Accepted: 11/09/2022] [Indexed: 11/22/2022] Open
Abstract
Bladder cancer (BC) is the 10th most common cancer in the world. While there are FDA-approved urinary assays to detect BC, none have demonstrated sufficient sensitivity and specificity to be integrated into clinical practice. Telomerase Reverse Transcriptase (TERT) gene mutations have been identified as the most common BC mutations that could potentially be used as non-invasive urinary biomarkers to detect BC. This study aims to evaluate the validity of these tests to detect BC in the Kerman province of Iran, where BC is the most common cancer in men. Urine samples of 31 patients with primary (n = 11) or recurrent (n = 20) bladder tumor and 50 controls were prospectively collected. Total urinary DNA was screened for the TERT promoter mutations (uTERTpm) by Droplet Digital PCR (ddPCR) assays. The performance characteristics of uTERTpm and the influence by disease stage and grade were compared to urine cytology results. The uTERTpm was 100% sensitive and 88% specific to detect primary BC, while it was 50% sensitive and 88% specific in detecting recurrent BC. The overall sensitivity and specificity of uTERTpm to detect bladder cancer were 67.7% and 88.0%, respectively, which were consistent across different tumor stages and grades. The most frequent uTERTpm mutations among BC cases were C228T (18/31), C250T (4/31), and C158A (1/31) with mutant allelic frequency (MAF) ranging from 0.2% to 63.3%. Urine cytology demonstrated a similar sensitivity (67.7%), but lower specificity (62.0%) than uTERTpm in detecting BC. Combined uTERTpm and urine cytology increased the sensitivity to 83.8%, but decreased the specificity to 52.0%. Our study demonstrated promising diagnostic accuracy for the uTERTpm as a non-invasive urinary biomarker to detect, in particular, primary BC in this population.
Collapse
Affiliation(s)
- Hamid Pakmanesh
- Department of Urology, School of Medicine, Shahid Bahonar Hospital, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Omid Anvari
- Department of Urology, School of Medicine, Shahid Bahonar Hospital, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Nathalie Forey
- International Agency for Research on Cancer (IARC), Genomic Epidemiology Branch, 69008 Lyon, France
| | - Elisabete Weiderpass
- International Agency for Research on Cancer (IARC), Genomic Epidemiology Branch, 69008 Lyon, France
| | - Reza Malekpourafshar
- Department of Pathology, Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Maryam Iranpour
- Department of Pathology, Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Armita Shahesmaeili
- HIV/STI Surveillance Research Center, and WHO Collaborating Center for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Nahid Ahmadi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Azam Bazrafshan
- HIV/STI Surveillance Research Center, and WHO Collaborating Center for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Kazem Zendehdel
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran 1419733133, Iran
| | | | - Ibrahima Ba
- Department of Genetics, Bichat Claude Bernard Hospital, 75108 Paris, France
| | - James McKay
- International Agency for Research on Cancer (IARC), Genomic Epidemiology Branch, 69008 Lyon, France
| | - Maria Zvereva
- Chair of Chemistry of Natural Compounds, Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Md Ismail Hosen
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Dhaka, Dhaka 1000, Bangladesh
| | - Mahdi Sheikh
- International Agency for Research on Cancer (IARC), Genomic Epidemiology Branch, 69008 Lyon, France
| | - Florence Le Calvez-Kelm
- International Agency for Research on Cancer (IARC), Genomic Epidemiology Branch, 69008 Lyon, France
| |
Collapse
|
16
|
Mack M, Broche J, George S, Hajjari Z, Janke F, Ranganathan L, Ashouri M, Bleul S, Desuki A, Engels C, Fliedner SM, Hartmann N, Hummel M, Janning M, Kiel A, Köhler T, Koschade S, Lablans M, Lambarki M, Loges S, Lueong S, Meyer S, Ossowski S, Scherer F, Schroeder C, Skowronek P, Thiede C, Uhl B, Vehreschild JJ, von Bubnoff N, Wagner S, Werner TV, Westphalen CB, Fresser P, Sültmann H, Tinhofer I, Winter C. The DKTK EXLIQUID consortium – exploiting liquid biopsies to advance cancer precision medicine for molecular tumor board patients. J LAB MED 2022. [DOI: 10.1515/labmed-2022-0071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Abstract
Abstract
Testing for genetic alterations in tumor tissue allows clinicians to identify patients who most likely will benefit from molecular targeted treatment. EXLIQUID – exploiting liquid biopsies to advance cancer precision medicine – investigates the potential of additional non-invasive tools for guiding therapy decisions and monitoring of advanced cancer patients. The term “liquid biopsy” (LB) refers to non-invasive analysis of tumor-derived circulating material such as cell-free DNA in blood samples from cancer patients. Although recent technological advances allow sensitive and specific detection of LB biomarkers, only few LB assays have entered clinical routine to date. EXLIQUID is a German Cancer Consortium (DKTK)-wide joint funding project that aims at establishing LBs as a minimally-invasive tool to analyze molecular changes in circulating tumor DNA (ctDNA). Here, we present the structure, clinical aim, and methodical approach of the new DKTK EXLIQUID consortium. Within EXLIQUID, we will set up a multicenter repository of high-quality LB samples from patients participating in DKTK MASTER and local molecular tumor boards, which use molecular profiles of tumor tissues to guide targeted therapies. We will develop LB assays for monitoring of therapy efficacy by the analysis of tumor mutant variants and tumor-specific DNA methylation patterns in ctDNA from these patients. By bringing together LB experts from all DKTK partner sites and exploiting the diversity of their particular expertise, complementary skills and technologies, the EXLIQUID consortium addresses the challenges of translating LBs into the clinic. The DKTK structure provides EXLIQUID a unique position for the identification of liquid biomarkers even in less common tumor types, thereby extending the group of patients benefitting from non-invasive LB testing. Besides its scientific aims, EXLIQUID is building a valuable precision oncology cohort and LB platform which will be available for future collaborative research studies within the DKTK and beyond.
Collapse
Affiliation(s)
- Matthias Mack
- School of Medicine , Institute of Clinical Chemistry and Pathobiochemistry, Technical University of Munich , Munich , Germany
- German Cancer Consortium (DKTK), Partner Site Munich , German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Julian Broche
- Institute of Medical Genetics and Applied Genomics, University of Tübingen , Tübingen , Germany
- German Cancer Consortium (DKTK), Partner Site Tübingen , German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Stephen George
- Department of Radiooncology and Radiotherapy , Charité University Hospital Berlin , Berlin , Germany
- German Cancer Consortium (DKTK), Partner Site Berlin , German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Zahra Hajjari
- West German Cancer Center , Bridge Institute of Experimental Tumor Therapy, University Hospital Essen , Essen , Germany
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf , German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Florian Janke
- Division of Cancer Genome Research , German Cancer Research Center (DKFZ) , Heidelberg , Germany
- German Cancer Consortium (DKTK) , Heidelberg , Germay
| | - Lavanya Ranganathan
- Department of Medicine I , Medical Center – University of Freiburg , Freiburg , Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg , German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Mohammadreza Ashouri
- School of Medicine , Institute of Clinical Chemistry and Pathobiochemistry, Technical University of Munich , Munich , Germany
- German Cancer Consortium (DKTK), Partner Site Munich , German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Sabine Bleul
- Department of Medicine I , Medical Center – University of Freiburg , Freiburg , Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg , German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Alexander Desuki
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz , Mainz , Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz , German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Cecilia Engels
- Charité University Hospital Berlin , Berlin , Germany
- German Cancer Consortium (DKTK), Partner Site Berlin , German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Stephanie M.J. Fliedner
- University Cancer Center Schleswig-Holstein, University Medical Center Schleswig-Holstein , Kiel/Lübeck , Germany
| | - Nils Hartmann
- Institute of Pathology, University Medical Center JGU Mainz , Mainz , Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz , German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Michael Hummel
- Charité University Hospital Berlin , Berlin , Germany
- German Cancer Consortium (DKTK), Partner Site Berlin , German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Melanie Janning
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim , Mannheim , Germany
- Division of Personalized Medical Oncology (A420) , German Cancer Research Center (DKFZ) , Heidelberg , Germany
- Department of Personalized Oncology, Medical Faculty Mannheim , University Hospital Mannheim, University of Heidelberg , Mannheim , Germany
| | - Alexander Kiel
- Complex Data Processing in Medical Informatics , University Medical Center Mannheim , Mannheim , Germany
- German Cancer Consortium (DKTK); and Federated Information Systems , German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Thomas Köhler
- Complex Data Processing in Medical Informatics , University Medical Center Mannheim , Mannheim , Germany
- German Cancer Consortium (DKTK); and Federated Information Systems , German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Sebastian Koschade
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz , German Cancer Research Center (DKFZ) , Heidelberg , Germany
- Department of Medicine, Hematology/Oncology , Goethe University , Frankfurt , Germany
| | - Martin Lablans
- Complex Data Processing in Medical Informatics , University Medical Center Mannheim , Mannheim , Germany
- German Cancer Consortium (DKTK); and Federated Information Systems , German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Mohamed Lambarki
- Complex Data Processing in Medical Informatics , University Medical Center Mannheim , Mannheim , Germany
- German Cancer Consortium (DKTK); and Federated Information Systems , German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Sonja Loges
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim , Mannheim , Germany
- Division of Personalized Medical Oncology (A420) , German Cancer Research Center (DKFZ) , Heidelberg , Germany
- Department of Personalized Oncology, Medical Faculty Mannheim , University Hospital Mannheim, University of Heidelberg , Mannheim , Germany
| | - Smiths Lueong
- West German Cancer Center , Bridge Institute of Experimental Tumor Therapy, University Hospital Essen , Essen , Germany
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf , German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Sandra Meyer
- University Hospital Frankfurt , Frankfurt , Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz , German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Stephan Ossowski
- Institute of Medical Genetics and Applied Genomics, University of Tübingen , Tübingen , Germany
- German Cancer Consortium (DKTK), Partner Site Tübingen , German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Florian Scherer
- Department of Medicine I , Medical Center – University of Freiburg , Freiburg , Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg , German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Christopher Schroeder
- Institute of Medical Genetics and Applied Genomics, University of Tübingen , Tübingen , Germany
- German Cancer Consortium (DKTK), Partner Site Tübingen , German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Patrick Skowronek
- Complex Data Processing in Medical Informatics , University Medical Center Mannheim , Mannheim , Germany
- German Cancer Consortium (DKTK); and Federated Information Systems , German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Christian Thiede
- Department of Medicine I , University Hospital Carl Gustav Carus , Dresden , Germany
- German Cancer Consortium (DKTK), Partner Site Dresden , German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Barbara Uhl
- University Hospital Frankfurt , Frankfurt , Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz , German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Jörg Janne Vehreschild
- University Hospital Frankfurt , Frankfurt , Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz , German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Nikolas von Bubnoff
- University Cancer Center Schleswig-Holstein, University Medical Center Schleswig-Holstein , Kiel/Lübeck , Germany
| | - Sebastian Wagner
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz , German Cancer Research Center (DKFZ) , Heidelberg , Germany
- Department of Medicine, Hematology/Oncology , Goethe University , Frankfurt , Germany
| | - Tamara V. Werner
- Medical Center, Medical Faculty , Institute for Surgical Pathology, University of Freiburg , Freiburg , Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg , German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - C. Benedikt Westphalen
- Comprehensive Cancer Center Munich & Department of Medicine III , Ludwig Maximilian University of Munich , Munich , Germany
- German Cancer Consortium (DKTK), Partner Site Munich , German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Patrizia Fresser
- School of Medicine , Institute of Clinical Chemistry and Pathobiochemistry, Technical University of Munich , Munich , Germany
- German Cancer Consortium (DKTK), Partner Site Munich , German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Holger Sültmann
- Division of Cancer Genome Research , German Cancer Research Center (DKFZ) , Heidelberg , Germany
- German Cancer Consortium (DKTK) , Heidelberg , Germay
| | - Ingeborg Tinhofer
- Department of Radiooncology and Radiotherapy , Charité University Hospital Berlin , Berlin , Germany
- German Cancer Consortium (DKTK), Partner Site Berlin , German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Christof Winter
- School of Medicine , Institute of Clinical Chemistry and Pathobiochemistry, Technical University of Munich , Munich , Germany
- German Cancer Consortium (DKTK), Partner Site Munich , German Cancer Research Center (DKFZ) , Heidelberg , Germany
| |
Collapse
|
17
|
Kang SY, Kim DG, Kim H, Cho YA, Ha SY, Kwon GY, Jang KT, Kim KM. Direct comparison of the next-generation sequencing and iTERT PCR methods for the diagnosis of TERT hotspot mutations in advanced solid cancers. BMC Med Genomics 2022; 15:25. [PMID: 35135543 PMCID: PMC8827275 DOI: 10.1186/s12920-022-01175-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 02/02/2022] [Indexed: 01/12/2023] Open
Abstract
Background Mutations in the telomerase reverse transcriptase (TERT) promoter region have been proposed as novel mechanisms for the transcriptional activation of telomerase. Two recurrent mutations in the TERT promoter, C228T and C250T, are prognostic biomarkers. Herein, we directly compared the commercially available iTERT PCR kit with NGS-based deep sequencing to validate the NGS results and determine the analytical sensitivity of the PCR kit.
Methods Of the 2032 advanced solid tumors diagnosed using the TruSight Oncology 500 NGS test, mutations in the TERT promoter region were detected in 103 cases, with 79 cases of C228T, 22 cases of C250T, and 2 cases of C228A hotspot mutations. TERT promoter mutations were detected from 31 urinary bladder, 19 pancreato-biliary, 22 hepatic, 12 malignant melanoma, and 12 other tumor samples. Results In all 103 TERT-mutated cases detected using NGS, the same DNA samples were also tested with the iTERT PCR/Sanger sequencing. PCR successfully verified the presence of the same mutations in all cases with 100% agreement. The average read depth of the TERT promoter region was 320.4, which was significantly lower than that of the other genes (mean, 743.5). Interestingly, NGS read depth was significantly higher at C250 compared to C228 (p < 0.001). Conclusions The NGS test results were validated by a PCR test and iTERT PCR/Sanger sequencing is sensitive for the identification of the TERT promoter mutations.
Collapse
Affiliation(s)
- So Young Kang
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, #81, Irwon-ro, Gangnam-Gu, Seoul, 06351, Korea
| | - Deok Geun Kim
- Department of Clinical Genomic Center, Samsung Medical Center, Seoul, Korea.,Department of Digital Health, Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University, Seoul, Korea
| | - Hyunjin Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, #81, Irwon-ro, Gangnam-Gu, Seoul, 06351, Korea.,Center of Companion Diagnostics, Samsung Medical Center, Seoul, Republic of Korea
| | - Yoon Ah Cho
- Department of Pathology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Sang Yun Ha
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, #81, Irwon-ro, Gangnam-Gu, Seoul, 06351, Korea
| | - Ghee Young Kwon
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, #81, Irwon-ro, Gangnam-Gu, Seoul, 06351, Korea
| | - Kee-Taek Jang
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, #81, Irwon-ro, Gangnam-Gu, Seoul, 06351, Korea.
| | - Kyoung-Mee Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, #81, Irwon-ro, Gangnam-Gu, Seoul, 06351, Korea. .,Department of Clinical Genomic Center, Samsung Medical Center, Seoul, Korea. .,Center of Companion Diagnostics, Samsung Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
18
|
Ferrara F, Zoupanou S, Primiceri E, Ali Z, Chiriacò MS. Beyond liquid biopsy: Toward non-invasive assays for distanced cancer diagnostics in pandemics. Biosens Bioelectron 2021; 196:113698. [PMID: 34688113 PMCID: PMC8527216 DOI: 10.1016/j.bios.2021.113698] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/01/2021] [Accepted: 10/07/2021] [Indexed: 12/11/2022]
Abstract
Liquid biopsy technologies have seen a significant improvement in the last decade, offering the possibility of reliable analysis and diagnosis from several biological fluids. The use of these technologies can overcome the limits of standard clinical methods, related to invasiveness and poor patient compliance. Along with this there are now mature examples of lab-on-chips (LOC) which are available and could be an emerging and breakthrough technology for the present and near-future clinical demands that provide sample treatment, reagent addition and analysis in a sample-in/answer-out approach. The possibility of combining non-invasive liquid biopsy and LOC technologies could greatly assist in the current need for minimizing exposure and transmission risks. The recent and ongoing pandemic outbreak of SARS-CoV-2, indeed, has heavily influenced all aspects of life worldwide. Ordinary tasks have been forced to switch from “in presence” to “distanced”, limiting the possibilities for a large number of activities in all fields of life outside of the home. Unfortunately, one of the settings in which physical distancing has assumed noteworthy consequences is the screening, diagnosis and follow-up of diseases. In this review, we analyse biological fluids that are easily collected without the intervention of specialized personnel and the possibility that they may be used -or not-for innovative diagnostic assays. We consider their advantages and limitations, mainly due to stability and storage and their integration into Point-of-Care diagnostics, demonstrating that technologies in some cases are mature enough to meet current clinical needs.
Collapse
Affiliation(s)
- Francesco Ferrara
- STMicroelectronics s.r.l., via per Monteroni, 73100, Lecce, Italy; CNR NANOTEC - Institute of Nanotechnology, via per Monteroni, 73100, Lecce, Italy.
| | - Sofia Zoupanou
- CNR NANOTEC - Institute of Nanotechnology, via per Monteroni, 73100, Lecce, Italy; University of Salento, Dept. of Mathematics & Physics E. de Giorgi, Via Arnesano, 73100, Lecce, Italy
| | - Elisabetta Primiceri
- CNR NANOTEC - Institute of Nanotechnology, via per Monteroni, 73100, Lecce, Italy
| | - Zulfiqur Ali
- University of Teesside, School of Health & Life Sciences, Healthcare Innovation Centre, Middlesbrough, TS1 3BX, Tees Valley, England, UK
| | | |
Collapse
|
19
|
Hayashi Y, Fujita K, Netto GJ, Nonomura N. Clinical Application of TERT Promoter Mutations in Urothelial Carcinoma. Front Oncol 2021; 11:705440. [PMID: 34395278 PMCID: PMC8358429 DOI: 10.3389/fonc.2021.705440] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/02/2021] [Indexed: 12/03/2022] Open
Abstract
Urothelial carcinoma (UC) is a common urological malignancy with a high rate of disease recurrence. Telomerase activity, a hallmark of cancer characterized by overcoming the replicative senescence, is upregulated in over 90% of patients with UC. Somatic mutations in the promoter region of telomerase reverse transcriptase (TERT) are frequently detected in UC, and drive telomerase activity. Recent studies have demonstrated a strong association between TERT promoter mutation and tumorigenesis of UC. Also, TERT promoter mutation has great potential for diagnosis, as well as prognosis in UC treatment, and this is also applicable for the liquid biopsy techniques. In this review, we discuss the progress in these areas and highlight the challenges, clinical potential, and future direction for developing UC treatment methods.
Collapse
Affiliation(s)
- Yujiro Hayashi
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Urology, Osaka General Medical Center, Osaka, Japan
| | - Kazutoshi Fujita
- Department of Urology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - George J. Netto
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
20
|
Humayun-Zakaria N, Ward DG, Arnold R, Bryan RT. Trends in urine biomarker discovery for urothelial bladder cancer: DNA, RNA, or protein? Transl Androl Urol 2021; 10:2787-2808. [PMID: 34295762 PMCID: PMC8261432 DOI: 10.21037/tau-20-1327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 04/23/2021] [Indexed: 02/01/2023] Open
Abstract
Urothelial bladder cancer is a complex disease displaying a landscape of heterogenous molecular subtypes, mutation profiles and clinical presentations. Diagnosis and surveillance rely on flexible cystoscopy which has high accuracy, albeit accompanied by a high-cost burden for healthcare providers and discomfort for patients. Advances in "omic" technologies and computational biology have provided insights into the molecular pathogenesis of bladder cancer and provided powerful tools to identify markers for disease detection, risk stratification, and predicting responses to therapy. To date, numerous attempts have been made to discover and validate diagnostic biomarkers that could be deployed as an adjunct to the cystoscopic diagnosis and long-term surveillance of bladder cancer. We report a comprehensive literature analysis using PubMed to assess the changing trends in investigating DNA, RNA, or proteins as diagnostic urinary biomarkers over a period of 5 decades: 1970-2020. A gradual shift has been observed in research away from protein biomarkers to nucleic acids including different classes of RNA, and DNA methylation and mutation markers. Until 2000, publications involving protein biomarker discovery constituted 87% of the total number of research articles with DNA comprising 6% and RNA 7%. Since 2000 the proportion of protein biomarker articles has fallen to 40%, and DNA and RNA studies increased to 32% and 28%, respectively. Clearly research focus, perhaps driven by technological innovation, has shifted from proteins to nucleic acids. We optimistically hypothesise that, following thorough validation, a clinically useful detection test for bladder cancer based on a panel of DNA or RNA markers could become reality within 5-10 years.
Collapse
Affiliation(s)
- Nada Humayun-Zakaria
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Douglas G Ward
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Roland Arnold
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Richard T Bryan
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
21
|
Cimmino I, Bravaccini S, Cerchione C. Urinary Biomarkers in Tumors: An Overview. Methods Mol Biol 2021; 2292:3-15. [PMID: 33651347 DOI: 10.1007/978-1-0716-1354-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Recent reports suggest that urine is a useful noninvasive tool for the identification of urogenital tumors, including bladder, prostate, kidney, and other nonurological cancers. As a liquid biopsy, urine represents an important source for the improvement of new promising biomarkers, a suitable tool to identify indolent cancer and avoid overtreatment. Urine is enriched with DNAs, RNAs, proteins, circulating tumor cells, exosomes, and other small molecules which can be detected with several diagnostic methodologies.We provide an overview of the ongoing state of urinary biomarkers underlying both their potential utilities to improve cancer prognosis, diagnosis, and therapeutic strategy and their limitations.
Collapse
Affiliation(s)
- Ilaria Cimmino
- Department of Translational Medicine, University of Naples "Federico II", Naples, Italy
| | - Sara Bravaccini
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Claudio Cerchione
- Hematology Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy.
| |
Collapse
|
22
|
Hayashi Y, Fujita K. Toward urinary cell-free DNA-based treatment of urothelial carcinoma: a narrative review. Transl Androl Urol 2021; 10:1865-1877. [PMID: 33968675 PMCID: PMC8100839 DOI: 10.21037/tau-20-1259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Liquid biopsy technique targeting urinary cell-free DNA (cfDNA) is getting a lot of attention to overcome limitations of the present treatment strategy for urothelial carcinoma, including urothelial bladder carcinoma (UBC) and upper tract urothelial carcinoma (UTUC). Analysis of tumor-derived DNA in urine focusing either on genomic or epigenomic alterations, holds great potential as a noninvasive method for the detection of urothelial carcinoma with high accuracy. It is also predictive of prognosis and response to drugs, and reveals the underlying characteristics of different stages of urothelial carcinoma. Although cfDNA methylation analyses based on a combination of several methylation profiles have demonstrated high sensitivity for UBC diagnosis, there have been few reports involving epigenomic studies of urinary cfDNA. In mutational analyses, frequent gene mutations (TERT promoter, TP53, FGFR3, PIK3CA, RAS, etc.) have been detected in urine supernatant by using remarkable technological innovations such as next-generation sequencing and droplet digital PCR. These methods allow highly sensitive detection of rare mutation alleles while minimizing artifacts. In this review, we summarize the current insights into the clinical applications of urinary cfDNA from patients with urothelial carcinoma. Although it is necessary to conduct prospective multi-institutional clinical trials, noninvasive urine biopsy is expected to play an important role in the realization of precision medicine in patients with urothelial carcinoma in the near future.
Collapse
Affiliation(s)
- Yujiro Hayashi
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kazutoshi Fujita
- Department of Urology, Kindai University Faculty of Medicine, Osakasayama, Japan
| |
Collapse
|
23
|
Herranz R, Oto J, Plana E, Fernández-Pardo Á, Cana F, Martínez-Sarmiento M, Vera-Donoso CD, España F, Medina P. Circulating Cell-Free DNA in Liquid Biopsies as Potential Biomarker for Bladder Cancer: A Systematic Review. Cancers (Basel) 2021; 13:1448. [PMID: 33810039 PMCID: PMC8005001 DOI: 10.3390/cancers13061448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/03/2021] [Accepted: 03/16/2021] [Indexed: 12/24/2022] Open
Abstract
Bladder cancer (BC) is among the most frequent cancer types in the world and is the most lethal urological malignancy. Presently, diagnostic and follow-up methods for BC are expensive and invasive. Thus, the identification of novel predictive biomarkers for diagnosis, progression, and prognosis of BC is of paramount importance. To date, several studies have evidenced that cell-free DNA (cfDNA) found in liquid biopsies such as blood and urine may play a role in the particular scenario of urologic tumors, and its analysis may improve BC diagnosis report about cancer progression or even evaluate the effectiveness of a specific treatment or anticipate whether a treatment would be useful for a specific patient depending on the tumor characteristics. In the present review, we have summarized the up-to-date studies evaluating the value of cfDNA as potential diagnostic, prognostic, or monitoring biomarker for BC in several biofluids.
Collapse
Affiliation(s)
- Raquel Herranz
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain; (R.H.); (J.O.); (E.P.); (Á.F.-P.); (F.C.); (F.E.)
| | - Julia Oto
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain; (R.H.); (J.O.); (E.P.); (Á.F.-P.); (F.C.); (F.E.)
| | - Emma Plana
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain; (R.H.); (J.O.); (E.P.); (Á.F.-P.); (F.C.); (F.E.)
- Angiology and Vascular Surgery Service, La Fe University and Polytechnic Hospital, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Álvaro Fernández-Pardo
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain; (R.H.); (J.O.); (E.P.); (Á.F.-P.); (F.C.); (F.E.)
| | - Fernando Cana
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain; (R.H.); (J.O.); (E.P.); (Á.F.-P.); (F.C.); (F.E.)
| | - Manuel Martínez-Sarmiento
- Department of Urology, La Fe University and Polytechnic Hospital, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain; (M.M.-S.); (C.D.V.-D.)
| | - César D. Vera-Donoso
- Department of Urology, La Fe University and Polytechnic Hospital, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain; (M.M.-S.); (C.D.V.-D.)
| | - Francisco España
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain; (R.H.); (J.O.); (E.P.); (Á.F.-P.); (F.C.); (F.E.)
| | - Pilar Medina
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain; (R.H.); (J.O.); (E.P.); (Á.F.-P.); (F.C.); (F.E.)
| |
Collapse
|
24
|
TERT Promoter Mutation Analysis of Whole-Organ Mapping Bladder Cancers. Genes (Basel) 2021; 12:genes12020230. [PMID: 33562516 PMCID: PMC7915609 DOI: 10.3390/genes12020230] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 12/28/2022] Open
Abstract
Background: Multifocal occurrence is a main characteristic of urothelial bladder cancer (UBC). Whether urothelial transformation is caused by monoclonal events within the urothelium, or by polyclonal unrelated events resulting in several tumor clones is still under debate. TERT promoter mutations are the most common somatic alteration identified in UBC. In this study, we analyzed different histological tissues from whole-organ mapping bladder cancer specimens to reveal TERT mutational status, as well as to discern how tumors develop. Methods: Up to 23 tissues from nine whole-organ mapping bladder tumor specimens, were tested for TERT promoter mutations including tumor associated normal urothelium, non-invasive urothelial lesions (hyperplasia, dysplasia, metaplasia), carcinoma in situ (CIS) and different areas of muscle invasive bladder cancers (MIBC). The mutational DNA hotspot region within the TERT promoter was analyzed by SNaPshot analysis including three hot spot regions (−57, −124 or −146). Telomere length was measured by the Relative Human Telomere Length Quantification qPCR Assay Kit. Results: TERT promoter mutations were identified in tumor associated normal urothelium as well as non-invasive urothelial lesions, CIS and MIBC. Analysis of separate regions of the MIBC showed 100% concordance of TERT promoter mutations within a respective whole-organ bladder specimen. Polyclonal events were observed in five out of nine whole-organ mapping bladder cancers housing tumor associated normal urothelium, non-invasive urothelial lesions and CIS where different TERT promoter mutations were found compared to MIBC. The remaining four whole-organ mapping bladders were monoclonal for TERT mutations. No significant differences of telomere length were observed. Conclusions: Examining multiple whole-organ mapping bladders we conclude that TERT promoter mutations may be an early step in bladder cancer carcinogenesis as supported by TERT mutations detected in tumor associated normal urothelium as well as non-invasive urothelial lesions. Since mutated TERT promoter regions within non-invasive urothelial lesions are not sufficient alone for the establishment of cancerous growth, this points to the contribution of other gene mutations as a requirement for tumor development.
Collapse
|
25
|
Tran L, Xiao JF, Agarwal N, Duex JE, Theodorescu D. Advances in bladder cancer biology and therapy. Nat Rev Cancer 2021; 21:104-121. [PMID: 33268841 PMCID: PMC10112195 DOI: 10.1038/s41568-020-00313-1] [Citation(s) in RCA: 390] [Impact Index Per Article: 97.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/21/2020] [Indexed: 12/26/2022]
Abstract
The field of research in bladder cancer has seen significant advances in recent years. Next-generation sequencing has identified the genes most mutated in bladder cancer. This wealth of information allowed the definition of driver mutations, and identification of actionable therapeutic targets, as well as a clearer picture of patient prognosis and therapeutic direction. In a similar vein, our understanding of the cellular aspects of bladder cancer has grown. The identification of the cellular geography and the populations of different cell types and quantifications of normal and abnormal cell types in tumours provide a better prediction of therapeutic response. Non-invasive methods of diagnosis, including liquid biopsies, have seen major advances as well. These methods will likely find considerable utility in assessing minimal residual disease following treatment and for early-stage diagnosis. A significant therapeutic impact on patients with bladder cancer is found in the use of immune checkpoint inhibitor therapeutics. These therapeutics have been shown to cure some patients with bladder cancer and significantly decrease adverse events. These developments provide patients with better monitoring opportunities, unique therapeutic options and greater hope for prolonged survival.
Collapse
Affiliation(s)
- Linda Tran
- Department of Surgery (Urology), Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
| | - Jin-Fen Xiao
- Department of Surgery (Urology), Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
| | - Neeraj Agarwal
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
- Department of Medicine (Hematology/Oncology), Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jason E Duex
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
| | - Dan Theodorescu
- Department of Surgery (Urology), Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA.
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
26
|
Hentschel AE, van der Toom EE, Vis AN, Ket JC, Bosschieter J, Heymans MW, van Moorselaar RJA, Steenbergen RD, Nieuwenhuijzen JA. A systematic review on mutation markers for bladder cancer diagnosis in urine. BJU Int 2021; 127:12-27. [PMID: 32539176 PMCID: PMC7818192 DOI: 10.1111/bju.15137] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVES To systematically summarise the available evidence on urinary bladder cancer (BC) mutation markers. Gene mutations are expected to provide novel biomarkers for urinary BC diagnosis. To date, evidence on urinary BC mutation markers has not proven sufficient to be adopted by clinical guidelines. In the present systematic review, diagnostic accuracy of urinary mutation analysis is separately assessed for primary BC diagnosis (BC detection) and for follow-up of BC patients (BC surveillance). METHODS A literature search (PubMed, Embase.com and Wiley/Cochrane Library) and systematic review was performed up to 31 October 2019. As studies were too heterogeneous, no quantitative analysis could be performed. RESULTS In total, 25 studies were summarised by qualitative analysis. For BC detection, diagnostic accuracy differed considerably for single mutation markers (sensitivity 1-85%, specificity 84-100%), and for marker panels (sensitivity 50-94%, specificity 43-97%). Similarly, for BC surveillance, diagnostic accuracy was highly variable for single mutation markers (sensitivity 0-85%, specificity 66-100%), and for marker panels (sensitivity 51-84%, specificity 66-96%). CONCLUSION Urinary mutation analysis showed to be a promising diagnostic tool for non-invasive BC diagnosis. Nonetheless, we observed substantial differences in diagnostic accuracy of urinary BC mutation markers among publications. To translate the data summarised in the present review to future clinical practice, heterogeneity in research design, BC population, mutation analysis technique and urinary DNA should be considered. Eventual clinical implementation of urinary BC mutation markers can only be achieved by collecting more and stronger evidence. Combining different molecular assays might overcome current shortcomings of urinary mutation analysis.
Collapse
Affiliation(s)
- Anouk E. Hentschel
- Department ofUrologyAmsterdam University Medical CentersCancer Center AmsterdamVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Emma E. van der Toom
- Department ofUrologyAmsterdam University Medical CentersCancer Center AmsterdamVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - André N. Vis
- Department ofUrologyAmsterdam University Medical CentersCancer Center AmsterdamVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | | | - Judith Bosschieter
- Department ofUrologyAmsterdam University Medical CentersCancer Center AmsterdamVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Martijn W. Heymans
- Amsterdam, Epidemiology & BiostatisticsAmsterdam Public HealthAmsterdamThe Netherlands
| | - R. Jeroen A. van Moorselaar
- Department ofUrologyAmsterdam University Medical CentersCancer Center AmsterdamVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Renske D.M. Steenbergen
- Department ofPathologyAmsterdam University Medical CentersCancer Center AmsterdamVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Jakko A. Nieuwenhuijzen
- Department ofUrologyAmsterdam University Medical CentersCancer Center AmsterdamVrije Universiteit AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
27
|
Huang H, Li H. Tumor heterogeneity and the potential role of liquid biopsy in bladder cancer. Cancer Commun (Lond) 2020; 41:91-108. [PMID: 33377623 PMCID: PMC7896752 DOI: 10.1002/cac2.12129] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/28/2020] [Accepted: 12/23/2020] [Indexed: 12/24/2022] Open
Abstract
Bladder cancer (BC) is a heterogeneous disease that characterized by genomic instability and a high mutation rate. Heterogeneity in tumor may partially explain the diversity of responses to targeted therapies and the various clinical outcomes. A combination of cytology and cystoscopy is the standard methodology for BC diagnosis, prognosis, and disease surveillance. However, genomics analyses of single tumor‐biopsy specimens may underestimate the mutational burden of heterogeneous tumors. Liquid biopsy, as a promising technology, enables analysis of tumor components in the bodily fluids, such as blood and urine, at multiple time points and provides a minimally invasive approach that can track the evolutionary dynamics and monitor tumor heterogeneity. In this review, we describe the multiple faces of BC heterogeneity at the genomic and transcriptional levels and how they affect clinical care and outcomes. We also summarize the outcomes of liquid biopsy in BC, which plays a potential role in revealing tumor heterogeneity. Finally, we discuss the challenges that must be addressed before liquid biopsy can be widely used in clinical treatment.
Collapse
Affiliation(s)
- Hai‐Ming Huang
- Department of Clinical LaboratoryPeking University First HospitalBeijing100034P. R. China
| | - Hai‐Xia Li
- Department of Clinical LaboratoryPeking University First HospitalBeijing100034P. R. China
| |
Collapse
|
28
|
Stasik S, Juratli TA, Petzold A, Richter S, Zolal A, Schackert G, Dahl A, Krex D, Thiede C. Exome sequencing identifies frequent genomic loss of TET1 in IDH-wild-type glioblastoma. Neoplasia 2020; 22:800-808. [PMID: 33142244 PMCID: PMC7642757 DOI: 10.1016/j.neo.2020.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 11/17/2022]
Abstract
Glioblastoma (GBM) is the most common and malignant brain tumor in adults. Genomic and epigenomic alterations of multiple cancer-driving genes are frequent in GBM. To identify molecular alterations associated with epigenetic aberrations, we performed whole exome sequencing-based analysis of DNA copy number variations in 55 adult patients with IDH-wild-type GBM. Beside mutations in common GBM driver genes such as TERTp (76%), TP53 (22%) and PTEN (20%), 67% of patients were affected by amplifications of genes associated with RTK/Rb/p53 cell signaling, including EGFR (45%), CDK4 (13%), and MDM2/4 (both 7%). The minimal deleted region at chromosome 10 was detected at the DNA demethylase TET1 (93%), mainly due to a loss-of-heterozygosity of complete chromosome 10 (53%) or by a mono-allelic microdeletion at 10q21.3 (7%). In addition, bi-allelic TET1 deletions, detected in 18 patients (33%), frequently co-occurred with EGFR amplification and were associated with low levels of TET1 mRNA expression, pointing at loss of TET1 activity. Bi-allelic TET1 loss was not associated with global concentrations of 5-hydroxymethylcytosine, indicating a site-specific effect of TET1 for DNA (de)methylation. Focal amplification of EGFR positively correlated with overall mutational burden, tumor size, and poor long-term survival. Bi-allelic TET1 loss was not an independent prognostic factor, but significantly associated with poor survival in patients with concomitant EGFR amplification. Rates of genomic TET1 deletion were significantly lower in a cohort of IDH1-mutated patients. Despite the relevance of TET1 for DNA demethylation and as potential therapeutic target, a frequent genomic loss of TET1 has not previously been reported in GBM.
Collapse
Affiliation(s)
- Sebastian Stasik
- Department of Medicine I, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Tareq A Juratli
- Department of Neurosurgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Andreas Petzold
- DRESDEN-Concept Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Sven Richter
- Department of Neurosurgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Amir Zolal
- Department of Neurosurgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Department of Spine Surgery and Neurotraumatology, SRH Wald-Klinikum Gera, Gera, Germany
| | - Gabriele Schackert
- Department of Neurosurgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Andreas Dahl
- DRESDEN-Concept Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Dietmar Krex
- Department of Neurosurgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Christian Thiede
- Department of Medicine I, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
29
|
Lee HH, Kim SH. Review of non-invasive urinary biomarkers in bladder cancer. Transl Cancer Res 2020; 9:6554-6564. [PMID: 35117265 PMCID: PMC8798424 DOI: 10.21037/tcr-20-1990] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/18/2020] [Indexed: 12/23/2022]
Abstract
Bladder cancer (BC) is the sixth-most prevalent cancer. The standard diagnostic tool of BC is cystoscopy, whereas cystoscopy has several disadvantages in terms of symptomatic invasiveness and operator-dependency. The urinary markers are attractive because the testing is non-invasive and cost-efficient, and sample collection is easy. Urinary marker is thereby a good tool to detect exfoliated tumor cell in the urine samples for the diagnosis and therapeutic surveillance of BC to supplement the limitations of the cystoscopy. However, they are not recommended as a population-based screening tool because of the low rate of BC prevalence. Although both cystoscopy and urine cytology improve BC diagnostic power, the field still needs additional non-invasive, cost-effective, and highly sensitive and specific diagnostic tools. Various urinary markers with different mechanisms and different targets have been developed and under investigation in these days. However, the accuracy of the urinary marker including its sensitivity and specificity is the most important factor for the diagnosis and surveillance in cancer that this review deals with multiple FDA-approved and non-FDA approved commercialized urinary markers with their accuracy in different purposes for BC. We then discuss more about the potential candidate targets for the future urinary markers in BC.
Collapse
Affiliation(s)
- Hyung-Ho Lee
- Department of Urology, Urological Cancer Center, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| | - Sung Han Kim
- Department of Urology, Urological Cancer Center, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| |
Collapse
|
30
|
Pritchard JJG, Hamilton G, Hurst CD, Fraser S, Orange C, Knowles MA, Jones RJ, Leung HY, Iwata T. Monitoring of urothelial cancer disease status after treatment by digital droplet PCR liquid biopsy assays. Urol Oncol 2020; 38:737.e1-737.e10. [PMID: 32532529 DOI: 10.1016/j.urolonc.2020.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/12/2020] [Accepted: 05/10/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Real-time monitoring of disease status would be beneficial for timely decision making in the treatment of urothelial cancer (UC), and may accelerate the evaluation of clinical trials. Use of cell free tumor DNA (cftDNA) as a biomarker in liquid biopsy is minimally invasive and its successful use has been reported in various cancer types, including UC. The objective of this study was to evaluate the use of digital droplet PCR (ddPCR)-based assays to monitor UC after treatment. METHOD AND MATERIALS Blood, urine and matching formalin fixed, paraffin embedded diagnostic specimens were collected from 20 patients diagnosed with stage T1 (n = 2) and T2/T3 (n = 18) disease. SNaPshot assays, Sanger sequencing and whole exome sequencing were used to identify tumor-specific mutations, and somatic mutation status was confirmed using patient-matched DNAs extracted from buffy coats and peripheral blood mononucleocytes. The ddPCR assays of the tumor-specific mutations were used to detect the fractional abundance of cftDNA in plasma and urine. RESULTS SNaPshot and Sanger sequencing identified point mutations in 70% of the patients that were assayable by ddPCR. Cases of remission and relapse monitored by assays for PIK3CA E542K and TP53 Y163C mutations in plasma and urine concurred with clinical observations up to 48 months from the start of chemotherapy. A new ddPCR assay for the telomerase reverse transcriptase (TERT) promoter (-124) mutation was developed. The TERT assay was able to detect mutations in cases below the limit of detection by SNaPshot. Whole exome sequencing identified a novel mutation, CNTNAP4 G727*. A ddPCR assay designed to detect this mutation was able to distinguish mutant from wild-type alleles. CONCLUSIONS The study demonstrated that ddPCR assays could be used to detect cftDNA in liquid biopsy monitoring of the post-therapy disease status in patients with UC. Overall, 70% of the patients in our study harbored mutations that were assayable by ddPCR.
Collapse
Affiliation(s)
- John J G Pritchard
- School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Graham Hamilton
- Glasgow Polyomics, University of Glasgow, Glasgow, United Kingdom
| | - Carolyn D Hurst
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Sioban Fraser
- Department of Pathology, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Clare Orange
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Margaret A Knowles
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Robert J Jones
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom; Cancer Research UK Beatson Institute, Glasgow, United Kingdom; Beatson West of Scotland Cancer Centre, Glasgow, United Kingdom
| | - Hing Y Leung
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom; Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Tomoko Iwata
- School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
31
|
Zvereva M, Pisarev E, Hosen I, Kisil O, Matskeplishvili S, Kubareva E, Kamalov D, Tivtikyan A, Manel A, Vian E, Kamalov A, Ecke T, Calvez-Kelm FL. Activating Telomerase TERT Promoter Mutations and Their Application for the Detection of Bladder Cancer. Int J Mol Sci 2020; 21:E6034. [PMID: 32839402 PMCID: PMC7503716 DOI: 10.3390/ijms21176034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 01/10/2023] Open
Abstract
This review summarizes state-of-the-art knowledge in early-generation and novel urine biomarkers targeting the telomerase pathway for the detection and follow-up of bladder cancer (BC). The limitations of the assays detecting telomerase reactivation are discussed and the potential of transcription-activating mutations in the promoter of the TERT gene detected in the urine as promising simple non-invasive BC biomarkers is highlighted. Studies have shown good sensitivity and specificity of the urinary TERT promoter mutations in case-control studies and, more recently, in a pilot prospective cohort study, where the marker was detected up to 10 years prior to clinical diagnosis. However, large prospective cohort studies and intervention studies are required to fully validate their robustness and assess their clinical utility. Furthermore, it may be interesting to evaluate whether the clinical performance of urinary TERT promoter mutations could increase when combined with other simple urinary biomarkers. Finally, different approaches for assessment of TERT promoter mutations in urine samples are presented together with technical challenges, thus highlighting the need of careful technological validation and standardization of laboratory methods prior to translation into clinical practice.
Collapse
Affiliation(s)
- Maria Zvereva
- Chair of Chemistry of Natural Compounds, Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
- International Agency for Research on Cancer (IARC), 69372 Lyon, France;
| | - Eduard Pisarev
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Ismail Hosen
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Dhaka, Dhaka 1000, Bangladesh;
| | - Olga Kisil
- Gause Institute of New Antibiotics, 119021 Moscow, Russia;
| | - Simon Matskeplishvili
- Medical Research and Education Center, Lomonosov Moscow State University, 119992 Moscow, Russia; (S.M.); (D.K.); (A.T.); (A.K.)
| | - Elena Kubareva
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia;
| | - David Kamalov
- Medical Research and Education Center, Lomonosov Moscow State University, 119992 Moscow, Russia; (S.M.); (D.K.); (A.T.); (A.K.)
| | - Alexander Tivtikyan
- Medical Research and Education Center, Lomonosov Moscow State University, 119992 Moscow, Russia; (S.M.); (D.K.); (A.T.); (A.K.)
| | | | - Emmanuel Vian
- Department of Urology, Protestant Clinic of Lyon, 69300 Lyon, France;
| | - Armais Kamalov
- Medical Research and Education Center, Lomonosov Moscow State University, 119992 Moscow, Russia; (S.M.); (D.K.); (A.T.); (A.K.)
| | - Thorsten Ecke
- Department of Urology, HELIOS Hospital Bad Saarow, D-15526 Bad Saarow, Germany;
| | | |
Collapse
|
32
|
Arantes LMRB, Cruvinel-Carloni A, de Carvalho AC, Sorroche BP, Carvalho AL, Scapulatempo-Neto C, Reis RM. TERT Promoter Mutation C228T Increases Risk for Tumor Recurrence and Death in Head and Neck Cancer Patients. Front Oncol 2020; 10:1275. [PMID: 32850388 PMCID: PMC7399085 DOI: 10.3389/fonc.2020.01275] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 06/19/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Head and neck squamous cell carcinoma (HNSCC) is usually associated to tobacco and alcohol consumption. Increased telomerase activity has been consistently detected in 80–90% of malignant tumors, including HNSCC. Mutations within the promoter region of telomerase reverse transcriptase (TERT) that confer enhanced TERT promoter activity have been reported in two major hotspots, designated C228T and C250T. Objectives: To evaluate TERT promoter mutations C228T and C250T in HNSCC patients from Brazil and correlate with patients' outcome. Materials and Methods: Formalin-fixed paraffin-embedded tissues were obtained from 88 HNSCC patients and analyzed for TERT promoter mutations C228T and C250T by pyrosequencing. Results: The overall prevalence of hotspot TERT mutations in HNSCC samples was of 27.3%, with 6.8% at locus C228T and 20.5% at C250T. The majority (92%) of mutated cases were located in oral cavity, mainly at the tongue. We observed that 94.4% of the patients harboring TERT promoter mutation C250T were alcohol consumers (p = 0.032) and 66.7% of the patients harboring TERT promoter mutation C228T were not alcohol consumers (p = 0.035). The presence of C228T mutation impacted patient outcome, with a significant decrease in disease-free survival (20.0 vs. 63.0%, p =0.017) and in overall survival (16.7 vs. 45.1%, p = 0.017). Conclusion: This is the first report of a TERT promoter mutations in HNSCC patients from South America. The high prevalence of TERT mutation, as well as its association with poor disease-free survival and overall survival, particular at C228T locus might serve as a prognostic biomarker in HNSCC to help clinicians in the management of treatment.
Collapse
Affiliation(s)
| | | | | | | | - André Lopes Carvalho
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil.,Department of Head and Neck Surgery, Barretos Cancer Hospital, Barretos, Brazil
| | - Cristovam Scapulatempo-Neto
- Department of Pathology, Barretos Cancer Hospital, Barretos, Brazil.,Pathology and Molecular Diagnostics Service, Diagnosticos da América-DASA, Barueri, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil.,Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
33
|
Köhler CU, Walter M, Lang K, Plöttner S, Roghmann F, Noldus J, Tannapfel A, Tam YC, Käfferlein HU, Brüning T. In-Vitro Identification and In-Vivo Confirmation of DNA Methylation Biomarkers for Urothelial Cancer. Biomedicines 2020; 8:biomedicines8080233. [PMID: 32707764 PMCID: PMC7459535 DOI: 10.3390/biomedicines8080233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023] Open
Abstract
We identified DNA methylation targets specific for urothelial cancer (UC) by genome-wide methylation difference analysis of human urothelial (RT4, J82, 5637), prostate (LNCAP, DU-145, PC3) and renal (RCC-KP, CAKI-2, CAL-54) cancer cell lines with their respective primary epithelial cells. A large overlap of differentially methylated targets between all organs was observed and 40 Cytosine-phosphate-Guanine motifs (CpGs) were only specific for UC cells. Of those sites, two also showed high methylation differences (≥47%) in vivo when we further compared our data to those previously obtained in our array-based analyses of urine samples in 12 UC patients and 12 controls. Using mass spectrometry, we finally assessed seven CpG sites in this “bladder-specific” region of interest in urine samples of patients with urothelial (n = 293), prostate (n = 75) and renal (n = 23) cancer, and 143 controls. DNA methylation was significantly increased in UC compared to non-UC individuals. The differences were more pronounced for males rather than females. Male UC cases could be distinguished from non-UC individuals with >30% sensitivity at 95% specificity (Area under the curve (AUC) 0.85). In summary, methylation sites highly specific in UC cell lines were also specific in urine samples of UC patients showing that in-vitro data can be successfully used to identify biomarker candidates of in-vivo relevance.
Collapse
Affiliation(s)
- Christina U. Köhler
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany; (C.U.K.); (K.L.); (S.P.); (T.B.)
| | - Michael Walter
- C.ATG Core Facility for NGS and Microarrays, University of Tübingen, Calwerstr. 7, 72076 Tübingen, Germany;
| | - Kerstin Lang
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany; (C.U.K.); (K.L.); (S.P.); (T.B.)
| | - Sabine Plöttner
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany; (C.U.K.); (K.L.); (S.P.); (T.B.)
| | - Florian Roghmann
- Department of Urology, Marien Hospital Herne, University Hospital of the Ruhr University Bochum, Hölkeskampring 40, 44625 Herne, Germany; (F.R.); (J.N.)
| | - Joachim Noldus
- Department of Urology, Marien Hospital Herne, University Hospital of the Ruhr University Bochum, Hölkeskampring 40, 44625 Herne, Germany; (F.R.); (J.N.)
| | - Andrea Tannapfel
- Institute of Pathology, Georgius Agricola Foundation Ruhr, Ruhr University Bochum, Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany; (A.T.); (Y.C.T.)
| | - Yu Chun Tam
- Institute of Pathology, Georgius Agricola Foundation Ruhr, Ruhr University Bochum, Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany; (A.T.); (Y.C.T.)
| | - Heiko U. Käfferlein
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany; (C.U.K.); (K.L.); (S.P.); (T.B.)
- Correspondence: ; Tel.: +49-30-13001-4401
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany; (C.U.K.); (K.L.); (S.P.); (T.B.)
| |
Collapse
|
34
|
Chaudhuri AA, Pellini B, Pejovic N, Chauhan PS, Harris PK, Szymanski JJ, Smith ZL, Arora VK. Emerging Roles of Urine-Based Tumor DNA Analysis in Bladder Cancer Management. JCO Precis Oncol 2020; 4:PO.20.00060. [PMID: 32923907 PMCID: PMC7448529 DOI: 10.1200/po.20.00060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2020] [Indexed: 12/26/2022] Open
Affiliation(s)
- Aadel A. Chaudhuri
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO
- Department of Genetics, Washington University School of Medicine, St Louis, MO
- Department of Computer Science and Engineering, Washington University in St Louis, St Louis, MO
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO
- Siteman Cancer Center, Barnes Jewish Hospital and Washington University School of Medicine, St Louis, MO
| | - Bruna Pellini
- Siteman Cancer Center, Barnes Jewish Hospital and Washington University School of Medicine, St Louis, MO
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO
| | - Nadja Pejovic
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO
| | - Pradeep S. Chauhan
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO
| | - Peter K. Harris
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO
| | - Jeffrey J. Szymanski
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO
- Siteman Cancer Center, Barnes Jewish Hospital and Washington University School of Medicine, St Louis, MO
| | - Zachary L. Smith
- Siteman Cancer Center, Barnes Jewish Hospital and Washington University School of Medicine, St Louis, MO
- Division of Urologic Surgery, Department of Surgery, Washington University School of Medicine, St Louis, MO
| | - Vivek K. Arora
- Siteman Cancer Center, Barnes Jewish Hospital and Washington University School of Medicine, St Louis, MO
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO
| |
Collapse
|
35
|
Bioinformatics Analysis Identified Key Molecular Changes in Bladder Cancer Development and Recurrence. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3917982. [PMID: 31828101 PMCID: PMC6881748 DOI: 10.1155/2019/3917982] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/16/2019] [Accepted: 09/27/2019] [Indexed: 12/29/2022]
Abstract
Background and Objectives: Bladder cancer (BC) is a complex tumor associated with high recurrence and mortality. To discover key molecular changes in BC, we analyzed next-generation sequencing data of BC and surrounding tissue samples from clinical specimens. Methods. Gene expression profiling datasets of bladder cancer were analyzed online. The Database for Annotation, Visualization, and Integrated Discovery (DAVID, https://david.ncifcrf.gov/) was used to perform Gene Ontology (GO) functional and KEGG pathway enrichment analyses. Molecular Complex Detection (MCODE) in Cytoscape software (Cytoscape_v3.6.1) was applied to identify hub genes. Protein expression and survival data were downloaded from OncoLnc (http://www.oncolnc.org/). Gene expression data were obtained from the ONCOMINE website (https://www.oncomine.org/). Results. We identified 4211 differentially expressed genes (DEGs) by analysis of surrounding tissue vs. cancer tissue (SC analysis) and 410 DEGs by analysis of cancer tissue vs. recurrent tissue cluster (CR analysis). GO function analysis revealed enrichment of DEGs in genes related to the cytoplasm and nucleoplasm for both clusters, and KEGG pathway analysis showed enrichment of DEGs in the PI3K-Akt signaling pathway. We defined the 20 genes with the highest degree of connectivity as the hub genes. Cox regression revealed CCNB1, ESPL1, CENPM, BLM, and ASPM were related to overall survival. The expression levels of CCNB1, ESPL1, CENPM, BLM, and ASPM were 4.795-, 5.028-, 8.691-, 2.083-, and 3.725-fold higher in BC than the levels in normal tissues, respectively. Conclusions. The results suggested that the functions of CCNB1, ESPL1, CENPM, BLM, and ASPM may contribute to BC development and the functions of CCNB1, ESPL1, CENPM, and BLM may also contribute to BC recurrence.
Collapse
|
36
|
Ward DG, Gordon NS, Boucher RH, Pirrie SJ, Baxter L, Ott S, Silcock L, Whalley CM, Stockton JD, Beggs AD, Griffiths M, Abbotts B, Ijakipour H, Latheef FN, Robinson RA, White AJ, James ND, Zeegers MP, Cheng KK, Bryan RT. Targeted deep sequencing of urothelial bladder cancers and associated urinary DNA: a 23-gene panel with utility for non-invasive diagnosis and risk stratification. BJU Int 2019; 124:532-544. [PMID: 31077629 PMCID: PMC6772022 DOI: 10.1111/bju.14808] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES To develop a focused panel of somatic mutations (SMs) present in the majority of urothelial bladder cancers (UBCs), to investigate the diagnostic and prognostic utility of this panel, and to compare the identification of SMs in urinary cell-pellet (cp)DNA and cell-free (cf)DNA as part of the development of a non-invasive clinical assay. PATIENTS AND METHODS A panel of SMs was validated by targeted deep-sequencing of tumour DNA from 956 patients with UBC. In addition, amplicon and capture-based targeted sequencing measured mutant allele frequencies (MAFs) of SMs in 314 urine cpDNAs and 153 urine cfDNAs. The association of SMs with grade, stage, and clinical outcomes was investigated by univariate and multivariate Cox models. Concordance between SMs detected in tumour tissue and cpDNA and cfDNA was assessed. RESULTS The panel comprised SMs in 23 genes: TERT (promoter), FGFR3, PIK3CA, TP53, ERCC2, RHOB, ERBB2, HRAS, RXRA, ELF3, CDKN1A, KRAS, KDM6A, AKT1, FBXW7, ERBB3, SF3B1, CTNNB1, BRAF, C3orf70, CREBBP, CDKN2A, and NRAS; 93.5-98.3% of UBCs of all grades and stages harboured ≥1 SM (mean: 2.5 SMs/tumour). RAS mutations were associated with better overall survival (P = 0.04). Mutations in RXRA, RHOB and TERT (promoter) were associated with shorter time to recurrence (P < 0.05). MAFs in urinary cfDNA and cpDNA were highly correlated; using a capture-based approach, >94% of tumour SMs were detected in both cpDNA and cfDNA. CONCLUSIONS SMs are reliably detected in urinary cpDNA and cfDNA. The technical capability to identify very low MAFs is essential to reliably detect UBC, regardless of the use of cpDNA or cfDNA. This 23-gene panel shows promise for the non-invasive diagnosis and risk stratification of UBC.
Collapse
Affiliation(s)
- Douglas G. Ward
- Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
| | - Naheema S. Gordon
- Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
| | - Rebecca H. Boucher
- Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
| | - Sarah J. Pirrie
- Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
| | - Laura Baxter
- Department of Computer ScienceUniversity of WarwickCoventryUK
| | - Sascha Ott
- Department of Computer ScienceUniversity of WarwickCoventryUK
| | - Lee Silcock
- Nonacus LimtedBirmingham Research ParkBirminghamUK
| | - Celina M. Whalley
- Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
| | - Joanne D. Stockton
- Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
| | - Andrew D. Beggs
- Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
| | - Mike Griffiths
- West Midlands Regional Genetics LaboratoryBirmingham Women's and Children's NHS Foundation TrustBirminghamUK
| | - Ben Abbotts
- Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
| | - Hanieh Ijakipour
- Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
| | | | - Robert A. Robinson
- Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
| | - Andrew J. White
- Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
| | - Nicholas D. James
- Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
| | - Maurice P. Zeegers
- NUTRIM School for Nutrition and Translational Research in Metabolism and CAPHRI Care and Public Health Research InstituteMaastricht UniversityMaastrichtThe Netherlands
| | - K. K. Cheng
- Institute of Applied Health ResearchUniversity of BirminghamBirminghamUK
| | - Richard T. Bryan
- Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
| |
Collapse
|
37
|
Larsen LK, Lind GE, Guldberg P, Dahl C. DNA-Methylation-Based Detection of Urological Cancer in Urine: Overview of Biomarkers and Considerations on Biomarker Design, Source of DNA, and Detection Technologies. Int J Mol Sci 2019; 20:ijms20112657. [PMID: 31151158 PMCID: PMC6600406 DOI: 10.3390/ijms20112657] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 12/11/2022] Open
Abstract
Changes in DNA methylation have been causally linked with cancer and provide promising biomarkers for detection in biological fluids such as blood, urine, and saliva. The field has been fueled by genome-wide characterization of DNA methylation across cancer types as well as new technologies for sensitive detection of aberrantly methylated DNA molecules. For urological cancers, urine is in many situations the preferred "liquid biopsy" source because it contains exfoliated tumor cells and cell-free tumor DNA and can be obtained easily, noninvasively, and repeatedly. Here, we review recent advances made in the development of DNA-methylation-based biomarkers for detection of bladder, prostate, renal, and upper urinary tract cancers, with an emphasis on the performance characteristics of biomarkers in urine. For most biomarkers evaluated in independent studies, there was great variability in sensitivity and specificity. We discuss issues that impact the outcome of DNA-methylation-based detection of urological cancer and account for the great variability in performance, including genomic location of biomarkers, source of DNA, and technical issues related to the detection of rare aberrantly methylated DNA molecules. Finally, we discuss issues that remain to be addressed to fully exploit the potential of DNA-methylation-based biomarkers in the clinic, including the need for prospective trials and careful selection of control groups.
Collapse
Affiliation(s)
| | - Guro Elisabeth Lind
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, the Norwegian Radium Hospital, NO-0424 Oslo, Norway.
| | - Per Guldberg
- Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark.
| | - Christina Dahl
- Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
38
|
Ward DG, Bryan RT. Massively parallel sequencing of urinary DNA-the dawn of non-invasive bladder cancer detection and surveillance? Transl Cancer Res 2019; 8:S204-S207. [PMID: 35117098 PMCID: PMC8797979 DOI: 10.21037/tcr.2019.03.03] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 03/04/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Douglas G Ward
- Institute of Cancer & Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Richard T Bryan
- Institute of Cancer & Genomic Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|