1
|
Long X, Du X, Yuan C, Xu J, Liu T, Zhang Y. Finite element analysis of the plantar support for the medial longitudinal arch with flexible flatfoot. PLoS One 2025; 20:e0313546. [PMID: 39752530 PMCID: PMC11698474 DOI: 10.1371/journal.pone.0313546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/25/2024] [Indexed: 01/07/2025] Open
Abstract
PURPOSE The present study is to explore the appropriate plantar support force for its effect on improving the collapse of the medial longitudinal arch with flexible flatfoot. METHODS A finite element model with the plantar fascia attenuation was constructed simulating as flexible flatfoot. The appropriate plantar support force was evaluated. The equivalent stress of the articular surface of the joints in the medial longitudinal arch and the maximum principal stress of the ligaments around the ankle were obtained. RESULTS The height fall is smaller when applying 15% of body-weight-bearing force as the plantar support for the medial longitudinal arch compared with 10% of the body-weight-bearing while 20% of body-weight-bearing force is over plantar support. The equivalent stress on the articular surface of each joint is smallest when applying 15% of body-weight-bearing force compared with 10% or 20% of the body-weight-bearing force. The maximum principal stress of the anterior talofibular ligament is decreased while other ligaments increased when the plantar fascia attenuation under loading. The maximum principal stress of the tibiocalcaneal ligament and the posterior tibiotalar ligament are decreasing while other ligaments increased with the force increasing gradually. CONCLUSIONS Applying 15% of body-weight-bearing to the sole of the foot can restore the height fall of the medial longitudinal arch, and relieve the equivalent articular stress of the talonavicular joint and the talocalcaneal joint as well as the tension stress of the tibiocalcaneal ligament and the posterior tibiotalar ligament.
Collapse
Affiliation(s)
- Xiao Long
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Xiangyu Du
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Chengjie Yuan
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Jian Xu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Tao Liu
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University School of Mechanical Engineering, Hangzhou, P. R. China
| | - Yijun Zhang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
| |
Collapse
|
2
|
Mancera-Campos N, Vidal-Lesso A, Bayod López J. Quantitative Assessment of the Structural Effects in Foot Soft Tissues Depending on the Mechanical Contact Between Joints. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2025; 41:e3888. [PMID: 39623516 DOI: 10.1002/cnm.3888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/15/2024] [Accepted: 11/03/2024] [Indexed: 12/21/2024]
Abstract
Developing realistic numerical foot models is essential to accurately predict the structural behavior of its bones and soft tissues. The representation of the foot joints is a crucial point that must be considered to recreate these models' natural behavior. Numerically, different types of contact represent these interactions, two being the most common: one that allows movement between bones and one that restricts it. However, the structural behavior of the model is affected depending on which type of contact is chosen to simulate the interaction. Therefore, this paper aims to develop a numerical foot model to analyze and quantify both types of mechanical contact and determine their effect on soft tissues by evaluating and comparing different structural parameters. The results show that the TA, CPF, LPF, EDB, and FDBT soft tissues reach the maximum stress and strain levels like the highest displacement values. The differences between models in these tissues reach percentage values of up to 74.69% for the principal stresses and up to 68.42% for the principal strains. Significant differences were also found in the displacements obtained in the anteroposterior axes (X) and the vertical or the load axis (Y) of up to 42.03% and 37.47%, respectively. These results allow us to quantify the impact that the choice of the contact type of the foot joints has over its soft tissues and suggest that the way of simulating the movement between bones contributes significantly to the quantitative variation of the structural parameters, affecting thus, the predictions made in the several studies performed with foot numerical models; a contact type that reproduces the natural joint movement is the better option based on this work results.
Collapse
Affiliation(s)
- N Mancera-Campos
- Departamento de Ingeniería Mecánica, División de Ingeniería Campus Irapuato-Salamanca, Universidad de Guanajuato, Guanajuato, Mexico
| | - A Vidal-Lesso
- Departamento de Ingeniería Mecánica, División de Ingeniería Campus Irapuato-Salamanca, Universidad de Guanajuato, Guanajuato, Mexico
| | - J Bayod López
- Departamento de Ingeniería Mecánica, Escuela de Ingeniería y Arquitectura (EINA), Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
3
|
Yanguma-Muñoz N, Bayod J, Cifuentes-De la Portilla C. A single computational model to simulate the three foot-rocker mechanisms of the gait cycle. Sci Rep 2024; 14:29051. [PMID: 39580507 PMCID: PMC11585600 DOI: 10.1038/s41598-024-77764-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/24/2024] [Indexed: 11/25/2024] Open
Abstract
The use of computational models of the human foot based on finite element analysis offers a promising alternative for understanding the biomechanical internal changes of this structure. However, the evaluation of dynamic scenarios has been challenging. This research aims to design a computational model that accurately simulates foot biomechanics during the stance period of the gait cycle in healthy and flatfoot scenarios. The model is focused on analyzing stress variations in soft tissues such as the plantar fascia and spring ligament to provide valuable insights into the internal biomechanics of the foot. The results were evaluated using maximum principal stress. Validation was performed by measuring clinical angles and comparing the range of motion of foot joints with known values for each phase. Results show that the plantar fascia and spring ligament stress increase during the second and third rockers compared to the first rocker. Additionally, as was expected, flatfoot simulations show stress increments in those evaluated soft tissues, while surgical treatment scenarios contributed to stress reduction in these regions. These findings emphasize the active role of the plantar fascia and spring ligament, particularly during approximately 50% of the stance period when the plantar arch deformity is greater. Results show valuable insights into the internal biomechanics of the foot through computational models.
Collapse
Affiliation(s)
| | - Javier Bayod
- Aragón Institute of Engineering Research (I3A), Universidad de Zaragoza, Zaragoza, Spain
| | | |
Collapse
|
4
|
Rodríguez-Sanz J, Roche-Seruendo LE, López-de-Celis C, Canet-Vintró M, Ordoyo-Martin J, Fernández-Gibello A, Labata-Lezaun N, Pérez-Bellmunt A. Effects of Plantar Fascia Release and the Use of Foot Orthoses Affect Biomechanics of the Medial Longitudinal Arch of the Foot: A Cadaveric Study. Am J Phys Med Rehabil 2024; 103:595-602. [PMID: 38261788 DOI: 10.1097/phm.0000000000002414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
OBJECTIVE The aim of the study is to evaluate the effect of minimally invasive ultrasound-guided fascial release and a foot orthoses with first metatarsal head cutout on the biomechanics of the medial longitudinal arch of the foot in cadaveric specimens. DESIGN A cross-sectional study was designed (20 body donors). Anthropometric measurements of the foot, foot posture index, and the windlass test and force were measured in different conditions: unloaded, loaded position, with foot orthoses, after a 25% plantar fascia release and after a 50% release. RESULTS For the anthropometric measurements of the foot, differences were found in foot length ( P = 0.009), arch height ( P < 0.001), and midfoot width ( P = 0.019) when comparing the unloaded versus foot orthoses condition. When foot orthoses were compared with 25% plantar fascial release, differences were found in foot length ( P = 0.014) and arch height ( P < 0.001). In the comparison with 50% plantar fascial release, differences were found in the arch height ( P < 0.001). A significant interaction between foot orthoses condition and grades was found in the arch height during the windlass test ( P = 0.021). CONCLUSIONS The results indicate that the presence of foot orthoses leads to a significant increase in arch height compared with other conditions. Furthermore, when plantar fascia release is performed, the arch does not exhibit any signs of collapse.
Collapse
Affiliation(s)
- Jacobo Rodríguez-Sanz
- From the Faculty of Medicine and Health Science of Universitat Internacional de Catalunya, Barcelona, Spain (JR-S, CL-D-C, MC-V, NL-L, AP-B); ACTIUM Functional Anatomy Group, Barcelona, Spain (JR-S, CL-D-C, MC-V, NL-L, AP-B); San Jorge University, Zaragoza, Spain (LER-S); Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina, Barcelona, Spain (CL-D-C); Departamento Técnico y Desarrollo, Podotec3D, Barcelona, Spain (JO-M); Clínica Vitruvio, Madrid, Spain (AF-G); and La Salle Centro Universitario, Madrid, Spain (AF-G)
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Zhou H, Xu D, Quan W, Ugbolue UC, Zhou Z, Gu Y. Can the Entire Function of the Foot Be Concentrated in the Forefoot Area during the Running Stance Phase? A Finite Element Study of Different Shoe Soles. J Hum Kinet 2024; 92:5-17. [PMID: 38736608 PMCID: PMC11079938 DOI: 10.5114/jhk/174311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/19/2023] [Indexed: 05/14/2024] Open
Abstract
The goal of this study was to use the finite element (FE) method to compare and study the differences between bionic shoes (BS) and normal shoes (NS) forefoot strike patterns when running. In addition, we separated the forefoot area when forefoot running as a way to create a small and independent area of instability. An adult male of Chinese descent was recruited for this investigation (age: 26 years old; body height: 185 cm; body mass: 82 kg) (forefoot strike patterns). We analyzed forefoot running under two different conditions through FE analysis, and used bone stress distribution feature classification and recognition for further analysis. The metatarsal stress values in forefoot strike patterns with BS were less than with NS. Additionally, the bone stress classification of features and the recognition accuracy rate of metatarsal (MT) 2, MT3 and MT5 were higher than other foot bones in the first 5%, 10%, 20% and 50% of nodes. BS forefoot running helped reduce the probability of occurrence of metatarsal stress fractures. In addition, the findings further revealed that BS may have important implications for the prevention of hallux valgus, which may be more effective in adolescent children. Finally, this study presents a post-processing method for FE results, which is of great significance for further understanding and exploration of FE results.
Collapse
Affiliation(s)
- Huiyu Zhou
- Faculty of Sports Science, Ningbo University, Ningbo, China
- School of Health and Life Sciences, University of the West of Scotland, Scotland, UK
| | - Datao Xu
- Faculty of Sports Science, Ningbo University, Ningbo, China
- Faculty of Engineering, University of Pannonia, Veszprem, Hungary
- Savaria Institute of Technology, Eotvos Lorand University, Budapest, Hungary
| | - Wenjing Quan
- Faculty of Sports Science, Ningbo University, Ningbo, China
- Faculty of Engineering, University of Pannonia, Veszprem, Hungary
- Savaria Institute of Technology, Eotvos Lorand University, Budapest, Hungary
| | - Ukadike Chris Ugbolue
- School of Health and Life Sciences, University of the West of Scotland, Scotland, UK
| | - Zhanyi Zhou
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo, China
- Department of Radiology, Ningbo No. 2 Hospital, Ningbo, China
| |
Collapse
|
6
|
Zhou H, Xu D, Quan W, Ugbolue UC, Gu Y. Effects of different contact angles during forefoot running on the stresses of the foot bones: a finite element simulation study. Front Bioeng Biotechnol 2024; 12:1337540. [PMID: 38390360 PMCID: PMC10882086 DOI: 10.3389/fbioe.2024.1337540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
Introduction: The purpose of this study was to compare the changes in foot at different sole-ground contact angles during forefoot running. This study tried to help forefoot runners better control and improve their technical movements by comparing different sole-ground contact angles. Methods: A male participant of Chinese ethnicity was enlisted for the present study, with a recorded age of 25 years, a height of 183 cm, and a body weight of 80 kg. This study focused on forefoot strike patterns through FE analysis. Results: It can be seen that the peak von Mises stress of M1-5 (Metatarsal) of a (Contact angle: 9.54) is greater than that of b (Contact angle: 7.58) and c (Contact angle: 5.62) in the three cases. On the contrary, the peak von Mises stress of MC (Medial Cuneiform), IC (Intermediate Cuneiform), LC (Lateral Cuneiform), C (Cuboid), N (Navicular), T (Tarsal) in three different cases is opposite, and the peak von Mises stress of c is greater than that of a and b. The peak von Mises stress of b is between a and c. Conclusion: This study found that a reduced sole-ground contact angle may reduce metatarsal stress fractures. Further, a small sole-ground contact angle may not increase ankle joint injury risk during forefoot running. Hence, given the specialized nature of the running shoes designed for forefoot runners, it is plausible that this study may offer novel insights to guide their athletic pursuits.
Collapse
Affiliation(s)
- Huiyu Zhou
- Faculty of Sports Science, Ningbo University, Ningbo, China
- School of Health and Life Sciences, University of the West of Scotland, Paisley, United Kingdom
| | - Datao Xu
- Faculty of Sports Science, Ningbo University, Ningbo, China
- Faculty of Engineering, University of Pannonia, Veszprem, Hungary
| | - Wenjing Quan
- Faculty of Sports Science, Ningbo University, Ningbo, China
- Faculty of Engineering, University of Pannonia, Veszprem, Hungary
| | - Ukadike Chris Ugbolue
- School of Health and Life Sciences, University of the West of Scotland, Paisley, United Kingdom
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo, China
| |
Collapse
|
7
|
Plaut S. Suggesting a mechanism for acupuncture as a global percutaneous needle fasciotomy that respects tensegrity principles for treating fibromyalgia. Front Med (Lausanne) 2023; 9:952159. [PMID: 36777160 PMCID: PMC9911817 DOI: 10.3389/fmed.2022.952159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/30/2022] [Indexed: 01/28/2023] Open
Abstract
Acupuncture is a minimally invasive therapeutic method that uses small caliber needles while inserting them through the skin into various areas of the body. Some empirical studies find evidence to support the use of acupuncture as a treatment for certain medical conditions, however, this peculiar practice is widely considered as the domain of alternative and non-evidence-based medicine. Several mechanisms have been suggested in an attempt to explain the therapeutic action of acupuncture, but the way in which acupuncture alleviates chronic non-cancer pain or psychosomatic and psychiatric disorders is not fully understood. A recent study suggested a theoretical model (coined "Fascial Armoring") with a cellular pathway to help explain the pathogenesis of myofascial pain/fibromyalgia syndrome and functional psychosomatic syndromes. It proposes that these syndromes are a spectrum of a single medical entity that involves myofibroblasts with contractile activity in fascia and aberrant extracellular matrix (ECM) remodeling, which may lead to widespread mechanical tension and compression. This can help explain diverse psycho-somatic manifestations of fibromyalgia-like syndromes. Fascia is a continuous interconnected tissue network that extends throughout the body and has qualities of bio-tensegrity. Previous studies show that a mechanical action by needling induces soft tissue changes and lowers the shear modulus and stiffness in myofascial tissue. This hypothesis and theory paper offers a new mechanism for acupuncture therapy as a global percutaneous needle fasciotomy that respects tensegrity principles (tensegrity-based needling), in light of the theoretical model of "Fascial Armoring." The translation of this model to other medical conditions carries potential to advance therapies. These days opioid overuse and over-prescription are ubiquitous, as well as chronic pain and suffering.
Collapse
Affiliation(s)
- Shiloh Plaut
- *Correspondence: Shiloh Plaut, , ; orcid.org/0000-0001-5823-3390
| |
Collapse
|
8
|
Hara S, Kitano M, Kudo S. The effects of short foot exercises to treat flat foot deformity: A systematic review. J Back Musculoskelet Rehabil 2023; 36:21-33. [PMID: 35871320 DOI: 10.3233/bmr-210374] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Studies on the effects of performing short foot exercises (SFEs) on the medial longitudinal arch (MLA) have been inconclusive. OBJECTIVE This study aimed to conduct a systematic review of the effects of SFEs. METHODS 'SFE' and 'intrinsic foot muscle' were keywords used to search for randomized controlled trials. One researcher screened relevant articles based on their titles and abstracts, and two independent researchers closely read the texts, accepting nine studies for inclusion. Outcomes, intervention duration, frequency, and the number of interventions were investigated. RESULTS Of 299 potential studies identified, the titles and abstracts of 211 studies were reviewed, and 192 were excluded. The full texts of 21 studies were obtained and evaluated according to inclusion and exclusion criteria. Nine studies met the inclusion criteria. Six studies concerning the MLA were identified, with four reporting MLA improvement. There was no consensus concerning the number and frequency of SFEs performed, and the mechanism of MLA improvement was unclear. MLA improvement was observed in participants who undertook ⩾ 5 weeks of interventions. CONCLUSIONS The results suggest that performing SFEs for ⩾ 5 weeks is effective in improving the MLA. Randomized controlled trials with details concerning the number and frequency of treatments are required.
Collapse
Affiliation(s)
- Shigeyuki Hara
- Department of Rehabilitation, Kindai University Nara Hospital, Nara, Japan
| | - Masashi Kitano
- Graduate School of Health Sciences, Morinomiya University of Medical Sciences, Osaka, Japan.,Inclusive Medical Science Research Institute, Morinomiya University of Medical Sciences, Osaka, Japan
| | - Shintarou Kudo
- Graduate School of Health Sciences, Morinomiya University of Medical Sciences, Osaka, Japan.,Inclusive Medical Science Research Institute, Morinomiya University of Medical Sciences, Osaka, Japan.,AR-Ex Medical Research Center, Tokyo, Japan
| |
Collapse
|
9
|
Simonik MM, Pitarresi J, Willing R. Analysis of Intramedullary Beam Designs Using Customized Finite Element Models for Medial Column Arthrodesis of the Foot. J Foot Ankle Surg 2022; 61:508-519. [PMID: 34776331 DOI: 10.1053/j.jfas.2021.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 02/03/2023]
Abstract
Intramedullary beaming is a surgical option for medial column arthrodesis; however, disagreement exists about which beam design should be used. This computational study aimed to analyze the effects that common beam parameters have on medial column arthrodesis using a set of 5 subject-specific finite element models. A full-factorial design of experiments was conducted with 3 factors: implant stiffness (114 GPa Titanium vs 193 GPa Stainless Steel), threaded portion (25 mm Partially Threaded vs 130 mm Fully Threaded) and cannulation (Cannulated vs Solid). Increasing implant stiffness, threaded portion and using a solid beam all significantly increased medial column stiffness from 13.9 to 20.0 N/mm (p < .001), 15.2 to 18.8 N/mm (p = .001) and 13.6 to 20.4 N/mm (p < .001), respectively. Moreover, simultaneously increasing all 3 factors resulted in a 172% increase in medial column stiffness, as well as a 33% decrease in maximum von-Mises stress, 70% decrease in strain energy and 44% decrease in the average normal force in the implant during bending; all of which were significant. There was no significant increase in contact area in any of the joints, but there was a significant decrease in micromotion in each joint, ranging from 63% to 66%. Based on the parameters tested, a stainless steel, fully threaded (design that can apply compression), solid intramedullary device would produce the most stable construct for medial column arthrodesis under ideal conditions. Future studies simulating neuropathic conditions are needed before clinical use; however, this study shows the potential benefits of altering the implant design.
Collapse
Affiliation(s)
| | - James Pitarresi
- Binghamton University, Mechanical Engineering, Binghamton, NY
| | - Ryan Willing
- Western University, Mechanical and Materials Engineering, London, Canada
| |
Collapse
|
10
|
Plaut S. Scoping review and interpretation of myofascial pain/fibromyalgia syndrome: An attempt to assemble a medical puzzle. PLoS One 2022; 17:e0263087. [PMID: 35171940 PMCID: PMC8849503 DOI: 10.1371/journal.pone.0263087] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Myofascial Pain Syndrome (MPS) is a common, overlooked, and underdiagnosed condition and has significant burden. MPS is often dismissed by clinicians while patients remain in pain for years. MPS can evolve into fibromyalgia, however, effective treatments for both are lacking due to absence of a clear mechanism. Many studies focus on central sensitization. Therefore, the purpose of this scoping review is to systematically search cross-disciplinary empirical studies of MPS, focusing on mechanical aspects, and suggest an organic mechanism explaining how it might evolve into fibromyalgia. Hopefully, it will advance our understanding of this disease. METHODS Systematically searched multiple phrases in MEDLINE, EMBASE, COCHRANE, PEDro, and medRxiv, majority with no time limit. Inclusion/exclusion based on title and abstract, then full text inspection. Additional literature added on relevant side topics. Review follows PRISMA-ScR guidelines. PROSPERO yet to adapt registration for scoping reviews. FINDINGS 799 records included. Fascia can adapt to various states by reversibly changing biomechanical and physical properties. Trigger points, tension, and pain are a hallmark of MPS. Myofibroblasts play a role in sustained myofascial tension. Tension can propagate in fascia, possibly supporting a tensegrity framework. Movement and mechanical interventions treat and prevent MPS, while living sedentarily predisposes to MPS and recurrence. CONCLUSIONS MPS can be seen as a pathological state of imbalance in a natural process; manifesting from the inherent properties of the fascia, triggered by a disrupted biomechanical interplay. MPS might evolve into fibromyalgia through deranged myofibroblasts in connective tissue ("fascial armoring"). Movement is an underemployed requisite in modern lifestyle. Lifestyle is linked to pain and suffering. The mechanism of needling is suggested to be more mechanical than currently thought. A "global percutaneous needle fasciotomy" that respects tensegrity principles may treat MPS/fibromyalgia more effectively. "Functional-somatic syndromes" can be seen as one entity (myofibroblast-generated-tensegrity-tension), sharing a common rheuma-psycho-neurological mechanism.
Collapse
Affiliation(s)
- Shiloh Plaut
- School of Medicine, St. George’s University of London, London, United Kingdom
| |
Collapse
|
11
|
Zhu J, Forman J. A Review of Finite Element Models of Ligaments in the Foot and Considerations for Practical Application. J Biomech Eng 2022; 144:1133332. [PMID: 35079785 DOI: 10.1115/1.4053401] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Indexed: 11/08/2022]
Abstract
PURPOSE Finite element (FE) modeling has been used as a research tool for investigating underlying ligaments biomechanics and orthopedic applications. However, FE models of the ligament in the foot have been developed with various configurations, mainly due to their complex 3D geometry, material properties, and boundary conditions. Therefore, the purpose of this review was to summarize the current state of finite element modeling approaches that have been used in the ?eld of ligament biomechanics, to discuss their applicability to foot ligament modeling in a practical setting, and also to acknowledge current limitations and challenges. METHODS A comprehensive literature search was performed. Each article was analyzed in terms of the methods used for: (a) ligament geometry, (b) material property, (c) boundary and loading condition related to its application, and (d) model verification and validation. RESULTS Of the reviewed studies, 80% of the studies used simplified representations of ligament geometry, the non-linear mechanical behavior of ligaments was taken into account in only 19.2% of the studies, 33% of included studies did not include any kind of validation of the FE model. CONCLUSION Further refinement in the functional modeling of ligaments, the micro-structure level characteristics, nonlinearity, and time-dependent response, may be warranted to ensure the predictive ability of the models.
Collapse
Affiliation(s)
- Junjun Zhu
- School of Mechatronic Engineering and Automation, Shanghai University, 333 Nanchen Rd., Shanghai, China, 200444
| | - Jason Forman
- Center for Applied Biomechanics, Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22911, USA
| |
Collapse
|
12
|
Zhang Q, Zhang Y, Huang J, Teo EC, Gu Y. Effect of Displacement Degree of Distal Chevron Osteotomy on Metatarsal Stress: A Finite Element Method. BIOLOGY 2022; 11:127. [PMID: 35053125 PMCID: PMC8772834 DOI: 10.3390/biology11010127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND The stress of foot bone can effectively evaluate the functional damage caused by foot deformity and the results of operation. In this study, the finite element method was used to investigate the degree of displacement of distal chevron osteotomy on metatarsal stress and metatarsophalangeal joint load; Methods: Four finite element models of displacement were established by using the CT images of a patient with moderate hallux valgus (hallux valgus angle and intermetatarsal angle were 26.74° and 14.09°, respectively), and the validity of the model was verified. Each finite element model consisted of bones and various cartilage structures, ligaments, and plantar fascia, as well as encapsulated soft tissue. Except for soft tissue, the material properties of other parts were isotropic linear elastic material, and the encapsulated soft tissue was set as nonlinear hyperelastic material. The mesh was tetrahedral mesh. Link elements were used in ligament and plantar fascia. A ground reaction force with a half-body weight was applied at the bottom of the floor to simulate the ground reaction when standing. The upper surfaces of the encapsulated soft tissue, distal tibia, and distal fibula were fixed. The stress distribution of metatarsals and the stress of cartilage of the first metatarsophalangeal joint were compared and analyzed; Results: Compared with the hallux valgus without osteotomy, the stress of the first metatarsals and second metatarsals of 2-4 mm decreased, and the stress of the interarticular cartilage of the first metatarsophalangeal joint with 4 mm was reduced. In the case of 6 mm, the stress value between the first metatarsal and the first metatarsophalangeal joint increased, and 4 mm was the most suitable distance; Conclusions: Compared with the hallux valgus without osteotomy, the stress of the first metatarsals and second metatarsals of 2-4 mm decreased, and the stress of the interarticular cartilage of the first metatarsophalangeal joint with 4 mm was reduced. In the case of 6 mm, the stress value between the first metatarsal and the first metatarsophalangeal joint increased, and 4 mm was the most suitable distance. For the degree of displacement of the distal chevron osteotomy, the postoperative stability and the stress distribution of metatarsal bone should be considered. Factors such as hallux valgus angle, intermetatarsal angle, patient's age, body weight, and metatarsal width should be considered comprehensively. The factors affecting osteotomy need to be further explored. The degree of displacement of osteotomy can be evaluated by FE method before the operation, and the most suitable distance can be obtained.
Collapse
Affiliation(s)
- Qiaolin Zhang
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China; (Q.Z.); (Y.Z.); (J.H.)
| | - Yan Zhang
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China; (Q.Z.); (Y.Z.); (J.H.)
| | - Jialu Huang
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China; (Q.Z.); (Y.Z.); (J.H.)
| | - Ee Chon Teo
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China; (Q.Z.); (Y.Z.); (J.H.)
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China; (Q.Z.); (Y.Z.); (J.H.)
- Faculty of Engineering, University of Szeged, 6720 Szeged, Hungary
| |
Collapse
|
13
|
Alphin MS, Paul Chandra Kumar J, Tony BJAR. Biomechanical Response of the Human Foot Model Exposed to Vibrations: A Finite Element Analysis. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Prolonged exposure to mechanical vibration has been associated with many musculoskeletal, vascular and sensorineural disorders of the foot from simple Plantar fasciitis and Achilles Tendonitis to complex ones as Tarsal tunnel syndrome (TTS) and Vibration white feet/toes. Foot-transmitted
vibrations (FTV) are exposed to the occupants using vibrating equipment’s or standing on vibrating platforms. Prolonged exposure to foot-transmitted vibrations (FTV) can lead to syndromes like vibration white feet/toes may result in tingling sensation, blanching of the toes and even
numbness in the feet and toes. A multi-layered two dimensional, plane strain finite element model is developed from the actual cross-section of the human foot to study the stresses and strains developed in the skin and soft tissues. The foot is assumed to be in contact with a steel plate,
mimicking the interaction between the foot and the work platform. The skin and the subcutaneous tissue are considered as hyperelastic and viscoelastic. The effects of loading in the form of displacements and the frequency of sinusoidal vibration on a time-dependent stress/strain distribution
at various depths in the subcutaneous tissue of the foot are investigated. The simulations indicate that lower frequency vibrations penetrate deep into the subcutaneous tissue while higher frequencies are concentrated in the outer skin layer. The present biomechanical model may serve as a
valuable tool to study the response of foot of those who work on a vibrating platform.
Collapse
Affiliation(s)
- M. S. Alphin
- Department of Mechanical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai 603110, India
| | - J. Paul Chandra Kumar
- Department of Mechanical Engineering, Jeppiaar Engineering College, Chennai 600119, India
| | - B. Jain A. R. Tony
- Department of Mechanical Engineering, Malla Reddy College of Engineering and Technology, Secunderabad 500100, India
| |
Collapse
|
14
|
CHEN WENMING, CAI YIHENG, YU YUE, GENG XIANG, MA XIN. OPTIMAL MESH CRITERIA IN FINITE ELEMENT MODELING OF HUMAN FOOT: THE DEPENDENCE FOR MULTIPLE MODEL OUTPUTS ON MESH DENSITY AND LOADING BOUNDARY CONDITIONS. J MECH MED BIOL 2021. [DOI: 10.1142/s0219519421400340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The use of finite element models has gained popularity in the field of foot and footwear biomechanics to predict the stress–strain distribution and the treatment effectiveness of therapeutic insoles for pathological foot conditions. However, a comprehensive evaluation of mesh quality is often ignored, meanwhile no golden standard exists for the mesh density and selection of element size at an acceptable accuracy. Here, we make a convergence test and established anatomically-realistic foot models at different mesh densities. The study compared the discrepancy in output variables to the changes of element type and mesh density under barefoot and footwear conditions with compressive and shear loads, which are commonly encountered in foot and footwear biomechanics simulations. For a range of loading conditions simulated in 125 finite element models, the peak plantar pressure consistently converged with optimal mesh size determined at 2.5[Formula: see text]mm. The convergence variable of principal strains and stress tensors, however, varies significantly. The max von-Mises stress showed strong sensitive behavior to the changes of the mesh density. The pattern for contact pressure distribution became less accurate when the element sizes increase to 6.0[Formula: see text]mm; in particular, the locations of the pressure peak do not show remarkable changes, but the size of the area of contact still changes. The current study could offer a general guideline when generating a reasonable accurate finite element models for the analysis of plantar pressure distributions and stress/strain states employed for foot and footwear biomechanics evaluations.
Collapse
Affiliation(s)
- WEN-MING CHEN
- Academy for Engineering & Technology, Fudan University, 220 Handan Road, Shanghai, P. R. China
| | - YI-HENG CAI
- Department of Biomedical Engineering, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - YUE YU
- Department of medical imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, P. R. China
| | - XIANG GENG
- Department of Orthopaedics, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, P. R. China
| | - XIN MA
- Department of Orthopaedics, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, P. R. China
| |
Collapse
|
15
|
Analysis of the main soft tissue stress associated with flexible flatfoot deformity: a finite element study. Biomech Model Mechanobiol 2021; 20:2169-2177. [PMID: 34331169 DOI: 10.1007/s10237-021-01500-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 07/25/2021] [Indexed: 01/01/2023]
Abstract
A better understanding of soft tissue stress and its role in supporting the medial longitudinal arch in flexible flatfoot could help to guide the clinical treatment. In this study, a 3-Dimensional finite element (FE) foot model was reconstructed to measure the stress of the soft tissue, and its variation in different scenarios related to flexible flatfoot. All bones, cartilages, ligaments and related tendons around the ankle, and fat pad were included in the finite element model. The equivalent stress on the articular surface of the joints in the medial longitudinal arch and the maximum principal stress of the ligaments around the ankle were obtained. The results show that the plantar fascia (PF) is the main tissue in maintaining the medial longitudinal arch. The equivalent stress of all the joints in the medial longitudinal arch increases when the PF attenuation and the talonavicular joint increases, while other joints decreases when all the three tissue attenuation. Moreover, the maximum principal stress variation of calcaneofibular ligament is largest when the PF attenuation and the tibionavicular ligament and posterior tibiotalar ligament are largest when the posterior tibial tendon (PTT) attenuation. The maximum principal stress variation of tibionavicular ligament and posterior tibiotalar ligament are even larger when all the three tissue attenuation. These findings support that the PF is the main factor in maintaining the medial longitudinal arch. The medial longitudinal arch collapse mainly affects the talonavicular joint and the calcaneofibular ligament, the tibionavicular ligament and the posterior tibiotalar ligament. This approach could help to improve the understanding of adult-acquired flatfoot deformity (AAFD).
Collapse
|
16
|
Peroneus Longus overload caused by soft tissue deficiencies associated with early adult acquired flatfoot: A finite element analysis. Clin Biomech (Bristol, Avon) 2021; 86:105383. [PMID: 33992889 DOI: 10.1016/j.clinbiomech.2021.105383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 04/03/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Peroneus Longus tendinopathy has been related to overload from cavus and ankle instability. The etiology of isolated Peroneus Longus tendon synovitis has not been elucidated. Loss of foot arch integrity as a cause of isolated Peroneus Longus overload is difficult to establish using cadaver modeling. Our objective was to analyze Peroneus Longus stress changes in pathological scenarios related to flatfoot development. METHODS A three-dimensional finite element foot model which included the foot bones and main soft tissues that maintain the arch was used. Simulations were performed in midstance of gait. Tendon's maximum principal stress and von Mises were calculated in scenarios where the plantar fascia, spring ligament and the posterior tibial tendon were weakened. FINDINGS Decreasing plantar fascia stiffness thus weakening arch integrity increases Peroneus Longus stresses by over three times. Additional failure of tissues that support arch, such as the spring ligament and tibialis posterior tendon further overloads this tendon. The absence of Peroneus Longus also affects stresses in tissues that maintain the arch. Stress concentrations increase in the plantar component of the Peroneus Longus. INTERPRETATION Results offer an explanation into isolated Peroneus Longus overload synovitis. Recognition of failing medial arch structures that occur in early acquired flatfoot as a cause of Peroneus Longus overload could help in its treatment. We caution the practice of transfer of peroneus brevis to longus in surgical treatment of flatfoot as it may further overload an overloaded tendon and focus should be on restoration of arch stability to offload stresses within it.
Collapse
|
17
|
Simonik MM, Pitarresi JM, Willing R. Development of customized finite element models of medial column fixation using an intramedullary beam: A computational sensitivity analysis. Med Eng Phys 2021; 88:32-40. [PMID: 33485511 DOI: 10.1016/j.medengphy.2020.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 11/11/2020] [Accepted: 12/11/2020] [Indexed: 11/26/2022]
Abstract
Intramedullary beaming is commonly used for medial column arthrodesis to prevent or correct rocker-bottom deformities; however, the biomechanics of these reconstructions have not been rigorously studied. Customized FE models of intramedullary beaming of the medial column were developed and compared to a previous cadaveric study, which resulted in a strong correlation in medial column stiffness (ρ = 0.83, p = .079) and implant failure locations. A design of experiments was performed to quantify the models' sensitivities to varying cortical shell and cartilage thicknesses, cancellous bone and cartilage elastic moduli, and surgical medial column compression distance. Cartilage thickness and cartilage elastic modulus had the largest impact on medial column stiffness and compression distance had the greatest effect on cartilage contact area. Cortical shell thickness and cancellous bone properties did not have a significant effect on the measured parameters for the values tested. Overall, the FE models exhibited behavior that is consistent with known mechanical principles related to bending and composite structures as well as the experimental results. This study elucidates the effects of varying commonly assumed model parameters that can aid future studies aimed at screening implant designs.
Collapse
Affiliation(s)
- Melissa M Simonik
- Mechanical Engineering Department, Binghamton University, Vestal, NY, USA.
| | - J M Pitarresi
- Mechanical Engineering Department, Binghamton University, Vestal, NY, USA
| | - R Willing
- Mechanical Engineering Department, Binghamton University, Vestal, NY, USA; Department of Mechanical and Materials Engineering, Western University, London, Canada
| |
Collapse
|
18
|
Strayer ST, Moghaddam SRM, Gusenoff B, Gusenoff J, Beschorner KE. Contact Pressures Between the Rearfoot and a Novel Offloading Insole: Results From a Finite Element Analysis Study. J Appl Biomech 2020; 36:326-333. [PMID: 32736339 DOI: 10.1123/jab.2019-0356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/02/2020] [Accepted: 04/29/2020] [Indexed: 11/18/2022]
Abstract
Pressure offloading is critical to diabetic foot ulcer healing and prevention. A novel product has been proposed to achieve this offloading with an insole that can be easily modified for each user. This insole consists of pressurized bubbles that can be selectively perforated and depressurized to redistribute weight to the nonulcer region of the foot. However, the effect of the insole design parameters, for example, bubble height and stiffness, on offloading effectiveness is unknown. To this end, a 3-dimensional finite element model was developed to simulate contact between the rearfoot and insole. The geometry of the calcaneus bone and soft tissue was based on the medical images of an average male patient, and material properties and loading conditions based on the values reported in the literature were used. The model predicts that increasing bubble height and stiffness leads to a more effectively offloaded region. However, the model also predicts that increasing stiffness leads to increasing contact pressures on the surrounding soft tissue. Thus, a combination of insole design parameters was determined, which completely offloads the desired region, while simultaneously reducing the contact pressure on the surrounding soft tissue. This design is expected to aid in diabetic foot ulcer healing and prevention.
Collapse
|
19
|
Cifuentes-De la Portilla C, Pasapula C, Larrainzar-Garijo R, Bayod J. Finite element analysis of secondary effect of midfoot fusions on the spring ligament in the management of adult acquired flatfoot. Clin Biomech (Bristol, Avon) 2020; 76:105018. [PMID: 32413775 DOI: 10.1016/j.clinbiomech.2020.105018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 03/22/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Surgical treatment of adult acquired flatfoot deformity can involve arthrodesis of the midfoot to stabilize the medial column. Few experimental studies have assessed the biomechanical effects of these fusions, because of the difficulty of measuring these parameters in cadavers. Our objective was to quantify the biomechanical stress caused by various types of midfoot arthrodesis on the Spring ligament. To date this is not known. METHODS An innovative finite element model was used to evaluate flatfoot scenarios treated with various combinations of midfoot arthrodesis. All the bones, cartilages and tissues related to adult acquired flatfoot deformity were included, respecting their biomechanical characteristics. The stress changes on the Spring ligament were quantified. Both foot arch lengthening and falling were measured for each of the midfoot arthrodeses evaluated. FINDINGS Arthrodesis performed for stabilization of the talonavicular joint leads to a higher decrease in stress on the Spring ligament. Talonavicular fusion generated a Spring ligament stress decrease of about 61% with respect to the reference case (without any fusion). However, fusing the naviculocuneiform joints leads to an increase in the stress on the Spring ligament. INTERPRETATION This important finding has been unknown to date. We advocate caution regarding fusion of the naviculocuneiform joint as it leads to increased stresses across the Spring ligament and therefore accelerates the development of planovalgus.
Collapse
Affiliation(s)
| | | | - Ricardo Larrainzar-Garijo
- Applied Mechanics and Bioengineering Group (AMB), Aragón Institute of Engineering Research (I3A), Universidad de Zaragoza, Spain.
| | - Javier Bayod
- Orthopaedics and Trauma Department, Surgery Department - Hospital Universitario Infanta Leonor, Madrid, Spain
| |
Collapse
|
20
|
Cifuentes-De la Portilla C, Larrainzar-Garijo R, Bayod J. Analysis of biomechanical stresses caused by hindfoot joint arthrodesis in the treatment of adult acquired flatfoot deformity: A finite element study. Foot Ankle Surg 2020; 26:412-420. [PMID: 31138491 DOI: 10.1016/j.fas.2019.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 02/04/2023]
Abstract
BACKGROUND Treatments of adult acquired flatfoot deformity in early stages (I-IIa-IIb) are focused on strengthening tendons, in isolation or combined with osteotomies, but in stage III, rigidity of foot deformity requires more restrictive procedures such as hindfoot joint arthrodesis. Few experimental studies have assessed the biomechanical effects of these treatments, because of the difficulty of measuring these parameters in cadavers. Our objective was to quantify the biomechanical stress caused by both isolated hindfoot arthrodesis and triple arthrodesis on the main tissues that support the plantar arch. METHODS An innovative finite element model was used to evaluate some flatfoot scenarios treated with isolated hindfoot arthrodesis and triple arthrodesis. RESULTS AND CONCLUSIONS When arthrodeses are done in situ, talonavicular seems a good option, possible superior to subtalar and at least equivalent to triple. Calcaneocuboid arthrodesis reduces significantly both fascia plantar and spring ligament stresses but concentrates higher stresses around the fused joint.
Collapse
Affiliation(s)
- Christian Cifuentes-De la Portilla
- Applied Mechanics and Bioengineering Group (AMB), Aragón Institute of Engineering Research (I3A), Universidad de Zaragoza, Spain; Facultad de Ciencias Médicas, Universidad Espíritu Santo, Ecuador
| | - Ricardo Larrainzar-Garijo
- Orthopaedics and Trauma Department, Medicine School, Universidad Complutense Hospital Universitario Infanta Leonor, Madrid, Spain.
| | - Javier Bayod
- Applied Mechanics and Bioengineering Group (AMB), Aragón Institute of Engineering Research (I3A), Universidad de Zaragoza, Spain
| |
Collapse
|
21
|
Larrainzar-Garijo R, Cifuentes de la Portilla C, Gutiérrez-Narvarte B, Díez-Nicolás E, Bayod J. Effect of the calcaneal medializing osteotomy on soft tissues supporting the plantar arch: A computational study. Rev Esp Cir Ortop Traumatol (Engl Ed) 2019. [DOI: 10.1016/j.recote.2019.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
22
|
Cifuentes-De la Portilla C, Larrainzar-Garijo R, Bayod J. Analysis of the main passive soft tissues associated with adult acquired flatfoot deformity development: A computational modeling approach. J Biomech 2019; 84:183-190. [DOI: 10.1016/j.jbiomech.2018.12.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 11/14/2018] [Accepted: 12/29/2018] [Indexed: 11/26/2022]
|
23
|
Biomechanical stress analysis of the main soft tissues associated with the development of adult acquired flatfoot deformity. Clin Biomech (Bristol, Avon) 2019; 61:163-171. [PMID: 30580098 DOI: 10.1016/j.clinbiomech.2018.12.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 11/30/2018] [Accepted: 12/10/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Adult acquired flatfoot deformity (AAFD) is traditionally related to a tibialis posterior tendon deficiency. In the intermediate stages, treatments are commonly focused on reinforcing this tissue, but sometimes the deformation appears again over time, necessitating the use of more aggressive options. Tissue stress cannot be consistently evaluated through traditional experimental trials. Computational foot modeling extends knowledge of the disease and could help guide the clinical decisions. This study analyzes the biomechanical stress of the main tissues related to AAFD and their capacity to support the plantar arch. METHODS A FE foot model was reconstructed. All the bones, cartilages and tissues related to AAFD were included, respecting their biomechanical characteristics. The biomechanical tissue stress was quantified. The capacity of each soft tissue to support the plantar arch was measured, following clinical criteria. FINDINGS Biomechanical stress of the tibialis posterior tendon is considerably superior to both the plantar fascia and spring ligament stress. However, it cannot maintain the plantar arch by itself. Both the tibialis posterior tendon and spring ligament act in reducing the hindfoot pronation, while the plantar fascia is the main tissue that prevents arch elongation. The Achilles tendon action increases the plantar tissue stress. INTERPRETATION The tibialis posterior tendon stress increases when the spring ligament or the fascia plantar fails. These findings are consistent with the theory that regards the tibialis posterior tendon as a secondary actor because it cannot support the plantar arch and claudicates when the hindfoot has rotated around the talonavicular joint.
Collapse
|
24
|
Larrainzar-Garijo R, Cifuentes de la Portilla C, Gutiérrez-Narvarte B, Díez-Nicolás E, Bayod J. Effect of the calcaneal medializing osteotomy on soft tissues supporting the plantar arch: A computational study. Rev Esp Cir Ortop Traumatol (Engl Ed) 2018; 63:155-163. [PMID: 29907523 DOI: 10.1016/j.recot.2018.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/07/2018] [Accepted: 04/16/2018] [Indexed: 10/14/2022] Open
Abstract
Medializing calcaneal osteotomy forms part of the treatment options for adult acquired flat foot. The structural correction that is achieved is widely known. However, the effect of this procedure on the soft tissues that support the plantar arch has been little studied, since it is not possible to quantify experimentally the tension and deformation variations generated. Therefore, the objective of this study was to evaluate the effect of medializing calcaneal osteotomy on the soft tissue that supports the plantar arch, using a computational model of the human foot designed with a clinical approach. The proposed finite element model was reconstructed from computerized tomography images of a healthy patient. All the bones of the foot, the plantar fascia, cartilages, plantar ligaments and the calcaneus-navicular ligament were included, respecting their anatomical distribution and biomechanical properties. Simulations were performed emulating the monopodal support phase of the human walk of an adult. The effect on each tissue was evaluated according to clinical and biomechanical criteria. The results show that calcaneal osteotomy reduces the tension normally generated on the evaluated tissues, with the effect on the calcaneus-navicular ligament and the plantar fascia being the most notable. The deformation results obtained are consistent with experimental tests and clinical knowledge. The versatility of this model allows the objective assessment of different conditions and supports decision making for the treatment of adult acquired flat foot in middle and advanced stages.
Collapse
Affiliation(s)
- R Larrainzar-Garijo
- Servicio de Cirugía Ortopédica y Traumatología, Hospital Universitario Infanta Leonor, Madrid, España; Departamento de Cirugía, Facultad Medicina, Universidad Complutense de Madrid, Madrid, España.
| | - C Cifuentes de la Portilla
- Grupo de Mecánica aplicada y Bioingeniería (AMB), Instituto de Investigación en Ingeniería de Aragón (I3A), Universidad de Zaragoza, Zaragoza, España; Facultad de Ciencias médicas - Escuela de Medicina, Universidad Espíritu Santo, Samborondón, Ecuador
| | - B Gutiérrez-Narvarte
- Servicio de Cirugía Ortopédica y Traumatología, Hospital Universitario Infanta Leonor, Madrid, España
| | - E Díez-Nicolás
- Servicio de Cirugía Ortopédica y Traumatología, Hospital Universitario Infanta Leonor, Madrid, España
| | - J Bayod
- Grupo de Mecánica aplicada y Bioingeniería (AMB), Instituto de Investigación en Ingeniería de Aragón (I3A), Universidad de Zaragoza, Zaragoza, España
| |
Collapse
|
25
|
Zhang Y, Awrejcewicz J, Szymanowska O, Shen S, Zhao X, Baker JS, Gu Y. Effects of severe hallux valgus on metatarsal stress and the metatarsophalangeal loading during balanced standing: A finite element analysis. Comput Biol Med 2018; 97:1-7. [DOI: 10.1016/j.compbiomed.2018.04.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/14/2018] [Accepted: 04/14/2018] [Indexed: 11/26/2022]
|
26
|
Okamura K, Kanai S, Hasegawa M, Otsuka A, Oki S. The effect of additional activation of the plantar intrinsic foot muscles on foot dynamics during gait. Foot (Edinb) 2018; 34:1-5. [PMID: 29175714 DOI: 10.1016/j.foot.2017.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/28/2017] [Accepted: 08/13/2017] [Indexed: 02/04/2023]
Abstract
BACKGROUND The plantar intrinsic foot muscles (PIFMs) contribute to support the medial longitudinal arch. But the functional role of the PIFMs during dynamic activities is not clear. The purpose of this study was to examine the change in the foot dynamics during gait accompanied with the change in the PIFMs activity to determine the functional role of the PIFMs during gait. METHODS Twenty healthy male subjects were randomly assigned to the electrical stimulation group (ESG) or control group (CG). In the ESG, the electrical stimulation to the PIFMs was provided from mid-stance to pre-swing using surface electrodes to simulate reinforcement of the PIFMs. The foot dynamics during the stance phase of gait was measured using a 3D motion analysis, and the amount of change from baseline (electrical stimulation was not provided) was compared between groups using an independent sample t-test. RESULTS In the ESG, the timing for the navicular height to reach the minimum value was significantly later, and the vertical ground reaction force (2nd peak) significantly decreased more. There were no group differences in the amount of change from baseline on gait velocity, stance phase duration, minimum navicular height and ground reaction force in other directions. CONCLUSION Results from this study showed that the functions of the PIFMs most likely include shock absorption and facilitation of efficient foot ground force transmission during the stance phase of gait.
Collapse
Affiliation(s)
- Kazunori Okamura
- Graduate School of Comprehensive Scientific Research, Prefectural University of Hiroshima, 1-1 Gakuen-cho, Mihara-shi, Hiroshima 723-0053, Japan.
| | - Shusaku Kanai
- Department of Physical Therapy, Faculty of Health and Welfare, Prefectural University of Hiroshima, 1-1 Gakuen-cho, Mihara-shi, Hiroshima 723-0053, Japan
| | - Masaki Hasegawa
- Department of Physical Therapy, Faculty of Health and Welfare, Prefectural University of Hiroshima, 1-1 Gakuen-cho, Mihara-shi, Hiroshima 723-0053, Japan
| | - Akira Otsuka
- Hiroshima Cosmopolitan University, 3-2-1 Otsuka Higashi Asaminami-ku, Hiroshima-shi, Hiroshima 731-3166, Japan
| | - Sadaaki Oki
- Department of Physical Therapy, Faculty of Health and Welfare, Prefectural University of Hiroshima, 1-1 Gakuen-cho, Mihara-shi, Hiroshima 723-0053, Japan
| |
Collapse
|
27
|
Non-linear finite element model to assess the effect of tendon forces on the foot-ankle complex. Med Eng Phys 2017; 49:71-78. [DOI: 10.1016/j.medengphy.2017.07.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 06/18/2017] [Accepted: 07/24/2017] [Indexed: 11/18/2022]
|
28
|
Suwa M, Imoto T, Kida A, Iwase M, Yokochi T. Age-related reduction and independent predictors of toe flexor strength in middle-aged men. J Foot Ankle Res 2017; 10:15. [PMID: 28360943 PMCID: PMC5369005 DOI: 10.1186/s13047-017-0196-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 03/14/2017] [Indexed: 12/25/2022] Open
Abstract
Background Toe flexor muscles play an important role in posture and locomotion, and poor toe flexor strength is a risk factor for falls. In this cross-sectional study, we estimated the age-related change in toe flexor strength and compared it with that of handgrip strength. Independent factors predicting toe flexor and handgrip strength were also determined. Methods A total of 1401 male (aged 35–59 years) study participants were divided into five groups according to their chronological age; 35–39, 40–44, 45–49, 50–54, and 55–59 years. Toe flexor and handgrip strength, anthropometry, and resting blood pressure were measured. Fasting blood samples were collected to measure blood glucose, triglycerides, high- and low-density lipoprotein-cholesterols, and albumin. A self-administered lifestyle questionnaire was conducted. Results Decline in absolute toe flexor and handgrip strength began in the age groups 50–55 and 55–59 years, respectively. In comparison to the mean values of the youngest group, relative toe flexor strength (87.0 ± 26.6%) was significantly lower than handgrip strength (94.4 ± 13.1%) for the oldest group. Multiple regression analyses showed that independent factors predicting both toe flexor and handgrip strength were lean body mass, age, serum albumin, drinking habit, and fat mass. Additionally, fasting blood glucose, diastolic blood pressure, sleeping time and exercise habit were predicting factors of toe flexor strength but not of handgrip strength. Conclusions Age-related reduction in toe flexor strength was earlier and greater than handgrip strength, and toe flexor strength reflects body composition and metabolic status.
Collapse
Affiliation(s)
- Masataka Suwa
- Health Support Center WELPO, Toyota Motor Corporation, 1-1, Ipponmatsu, Iwakura-cho, Toyota, Aichi 444-2225 Japan
| | - Takayuki Imoto
- Health Support Center WELPO, Toyota Motor Corporation, 1-1, Ipponmatsu, Iwakura-cho, Toyota, Aichi 444-2225 Japan
| | - Akira Kida
- Health Support Center WELPO, Toyota Motor Corporation, 1-1, Ipponmatsu, Iwakura-cho, Toyota, Aichi 444-2225 Japan
| | - Mitsunori Iwase
- Toyota Memorial Hospital, 1-1, Heiwa-cho, Toyota, Aichi 471-8513 Japan
| | - Takashi Yokochi
- Health Support Center WELPO, Toyota Motor Corporation, 1-1, Ipponmatsu, Iwakura-cho, Toyota, Aichi 444-2225 Japan
| |
Collapse
|
29
|
Ahanchian N, Nester CJ, Howard D, Ren L, Parker D. Estimating the material properties of heel pad sub-layers using inverse Finite Element Analysis. Med Eng Phys 2017; 40:11-19. [DOI: 10.1016/j.medengphy.2016.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 10/26/2016] [Accepted: 11/14/2016] [Indexed: 10/20/2022]
|
30
|
Finite element modelling of the foot for clinical application: A systematic review. Med Eng Phys 2017; 39:1-11. [DOI: 10.1016/j.medengphy.2016.10.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 10/13/2016] [Accepted: 10/23/2016] [Indexed: 11/20/2022]
|
31
|
Kardeh M, Vogl TJ, Huebner F, Nelson K, Stief F, Silber G. Dynamic material characterization of the human heel pad based on in vivo experimental tests and numerical analysis. Med Eng Phys 2016; 38:940-5. [PMID: 27387903 DOI: 10.1016/j.medengphy.2016.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 04/14/2016] [Accepted: 06/07/2016] [Indexed: 10/21/2022]
Abstract
A numerical-experimental, proof-of-concept approach is described to characterize the mechanical material behavior of the human heel pad under impact conditions similar to a heel strike while running. A 3D finite-element model of the right foot of a healthy female subject was generated using magnetic resonance imaging. Based on quasi-static experimental testing of the subject's heel pad, force-displacement data was obtained. Using this experimental data as well as a numerical optimization algorithm, an inverse finite-element analysis and the 3D model, heel pad hyperelastic (long-term) material parameters were determined. Applying the same methodology, based on the dynamic experimental data from the impact test and obtained long-term parameters, linear viscoelastic parameters were established with a Prony series. Model validation was performed employing quasi-static and dynamic force-displacement data. Coefficients of determination when comparing model to experimental data during quasi-static and dynamic (initial velocity: 1480mm/s) procedure were R(2) = 0.999 and R(2) = 0.990, respectively. Knowledge of these heel pad material parameters enables realistic numerical analysis to evaluate internal stress and strain in the heel pad during different quasi-static or dynamic load conditions.
Collapse
Affiliation(s)
- M Kardeh
- Institute for Materials Science, Frankfurt University of Applied Sciences, Frankfurt am Main, Germany; Department of Diagnostic and Interventional Radiology, Hospital of the Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - T J Vogl
- Department of Diagnostic and Interventional Radiology, Hospital of the Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - F Huebner
- Department of Diagnostic and Interventional Radiology, Hospital of the Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - K Nelson
- Department of Vascular and Endovascular Surgery, Hospital of the Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - F Stief
- Orthopedic University Hospital Friedrichsheim GmbH, Frankfurt am Main, Germany
| | - G Silber
- Institute for Materials Science, Frankfurt University of Applied Sciences, Frankfurt am Main, Germany.
| |
Collapse
|
32
|
Suwa M, Imoto T, Kida A, Yokochi T. Early reduction in toe flexor strength is associated with physical activity in elderly men. J Phys Ther Sci 2016; 28:1472-7. [PMID: 27313353 PMCID: PMC4905892 DOI: 10.1589/jpts.28.1472] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/01/2016] [Indexed: 12/25/2022] Open
Abstract
[Purpose] To compare the toe flexor, hand grip and knee extensor strengths of young and
elderly men, and to examine the association between toe flexor strength and physical
activity or inactivity levels. [Subjects and Methods] Young (n=155, 18–23 years) and
elderly (n=60, 65–88 years) men participated in this study. Toe flexor, hand grip, and
knee extensor strength were measured. Physical activity (time spent standing/walking per
day) and inactivity (time spent sitting per day) were assessed using a self-administered
questionnaire. [Results] Toe flexor, hand grip, and knee extensor strength of the elderly
men were significantly lower than those of the young men. Standing/walking and sitting
times of the elderly men were lower than those of the young men. Toe flexor strength
correlated with hand grip and knee extensor strength in both groups. In elderly men, toe
flexor strength correlated with standing/walking time. In comparison to the young men’s
mean values, toe flexor strength was significantly lower than knee extensor and hand grip
strength in the elderly group. [Conclusion] The results suggest that age-related reduction
in toe flexor strength is greater than those of hand grip and knee extensor strengths. An
early loss of toe flexor strength is likely associated with reduced physical activity in
elderly men.
Collapse
Affiliation(s)
- Masataka Suwa
- Health Support Center WELPO, Toyota Motor Corporation, Japan; Faculty of Life Design, Tohoku Institute of Technology, Japan
| | - Takayuki Imoto
- Health Support Center WELPO, Toyota Motor Corporation, Japan
| | - Akira Kida
- Health Support Center WELPO, Toyota Motor Corporation, Japan
| | - Takashi Yokochi
- Health Support Center WELPO, Toyota Motor Corporation, Japan
| |
Collapse
|
33
|
GUIOTTO ANNAMARIA, SCARTON ALESSANDRA, SAWACHA ZIMI, GUARNERI GABRIELLA, AVOGARO ANGELO, COBELLI CLAUDIO. GAIT ANALYSIS DRIVEN 2D FINITE ELEMENT MODEL OF THE NEUROPATHIC HINDFOOT. J MECH MED BIOL 2016. [DOI: 10.1142/s0219519416500123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The diabetic foot is one of the most serious complications of diabetes mellitus and it can lead to foot ulcerations and amputations. Finite element analysis quantifies the loads developed in the different anatomical structures and describes how these affect foot tissue during foot–floor interaction. This approach for the diabetic subjects’ foot could provide valuable information in the process of plantar orthosis fabrication and fit. The purpose of this study was to develop two finite element models of the hindfoot, of healthy and diabetic neuropathic subjects. These models accounts for in vivo kinematics, kinetics, plantar pressure (PP) data and magnetic resonance images. These were acquired during gait analysis on 10 diabetic neuropathics and 10 healthy subjects. Validity of the models has been assessed through comparison between the peak PPs of simulated and experimental data: root mean square error (RMSE) in percentage of the experimental peak value was evaluated. Two different finite elements analysis were performed: subject-specific simulations in terms of both geometry and gait analysis, and by adopting the complete gait analysis dataset as boundary conditions. Model predicted plantar pressures were in good agreement with those experimentally measured. Best agreement was obtained in the subject-specific case (RMSE of 13%).
Collapse
Affiliation(s)
- ANNAMARIA GUIOTTO
- Department of Information Engineering, University of Padova, Via Gradenigo 6b, 35131 Padova, Italy
| | - ALESSANDRA SCARTON
- Department of Information Engineering, University of Padova, Via Gradenigo 6b, 35131 Padova, Italy
| | - ZIMI SAWACHA
- Department of Information Engineering, University of Padova, Via Gradenigo 6b, 35131 Padova, Italy
| | - GABRIELLA GUARNERI
- Department of Clinical Medicine and Metabolic Disease, University Polyclinic of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - ANGELO AVOGARO
- Department of Clinical Medicine and Metabolic Disease, University Polyclinic of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - CLAUDIO COBELLI
- Department of Information Engineering, University of Padova, Via Gradenigo 6b, 35131 Padova, Italy
| |
Collapse
|
34
|
Al-Munajjed AA, Bischoff JE, Dharia MA, Telfer S, Woodburn J, Carbes S. Metatarsal Loading During Gait—A Musculoskeletal Analysis. J Biomech Eng 2016; 138:4032413. [DOI: 10.1115/1.4032413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Indexed: 11/08/2022]
Abstract
Detailed knowledge of the loading conditions within the human body is essential for the development and optimization of treatments for disorders and injuries of the musculoskeletal system. While loads in the major joints of the lower limb have been the subject of extensive study, relatively little is known about the forces applied to the individual bones of the foot. The objective of this study was to use a detailed musculoskeletal model to compute the loads applied to the metatarsal bones during gait across several healthy subjects. Motion-captured gait trials and computed tomography (CT) foot scans from four healthy subjects were used as the inputs to inverse dynamic simulations that allowed the computation of loads at the metatarsal joints. Low loads in the metatarsophalangeal (MTP) joint were predicted before terminal stance, however, increased to an average peak of 1.9 times body weight (BW) before toe-off in the first metatarsal. At the first tarsometatarsal (TMT) joint, loads of up to 1.0 times BW were seen during the early part of stance, reflecting tension in the ligaments and muscles. These loads subsequently increased to an average peak of 3.0 times BW. Loads in the first ray were higher compared to rays 2–5. The joints were primarily loaded in the longitudinal direction of the bone.
Collapse
Affiliation(s)
- Amir A. Al-Munajjed
- Musculoskeletal Research, Anybody Technology, Niels Jernes Vej 10, Aalborg 9220, Denmark e-mail:
| | | | | | - Scott Telfer
- Institute of Applied Health Research, Glasgow Caledonian University, Glasgow G4 0BA, UK
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA 98195
| | - James Woodburn
- Institute of Applied Health Research, Glasgow Caledonian University, Glasgow G4 0BA, UK
| | | |
Collapse
|
35
|
Wang Y, Wong DWC, Zhang M. Computational Models of the Foot and Ankle for Pathomechanics and Clinical Applications: A Review. Ann Biomed Eng 2015; 44:213-21. [DOI: 10.1007/s10439-015-1359-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/09/2015] [Indexed: 01/01/2023]
|
36
|
Chen YN, Chang CW, Li CT, Chang CH, Lin CF. Finite element analysis of plantar fascia during walking: a quasi-static simulation. Foot Ankle Int 2015; 36:90-7. [PMID: 25189539 DOI: 10.1177/1071100714549189] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND The plantar fascia is a primary arch supporting structure of the foot and is often stressed with high tension during ambulation. When the loading on the plantar fascia exceeds its capacity, the inflammatory reaction known as plantar fasciitis may occur. Mechanical overload has been identified as the primary causative factor of plantar fasciitis. However, a knowledge gap exists between how the internal mechanical responses of the plantar fascia react to simple daily activities. Therefore, this study investigated the biomechanical responses of the plantar fascia during loaded stance phase by use of the finite element (FE) modeling. METHODS A 3-dimensional (3-D) FE foot model comprising bones, cartilage, ligaments, and a complex-shaped plantar fascia was constructed. During the stance phase, the kinematics of the foot movement was reproduced and Achilles tendon force was applied to the insertion site on the calcaneus. All the calculations were made on a single healthy subject. RESULTS The results indicated that the plantar fascia underwent peak tension at preswing (83.3% of the stance phase) at approximately 493 N (0.7 body weight). Stress concentrated near the medial calcaneal tubercle. The peak von Mises stress of the fascia increased 2.3 times between the midstance and preswing. The fascia tension increased 66% because of the windlass mechanism. CONCLUSION Because of the membrane element used in the ligament tissue, this FE model was able to simulate the mechanical structure of the foot. After prescribing kinematics of the distal tibia, the proposed model indicated the internal fascia was stressed in response to the loaded stance phase. CLINICAL RELEVANCE Based on the findings of this study, adjustment of gait pattern to reduce heel rise and Achilles tendon force may lower the fascia loading and may further reduce pain in patients with plantar fasciitis.
Collapse
Affiliation(s)
- Yen-Nien Chen
- Institute of Biomedical Engineering, National Cheng Kung University, Tainan City, Taiwan Metal Industries Research & Development Centre, Kaohsiung City, Taiwan
| | - Chih-Wei Chang
- Institute of Biomedical Engineering, National Cheng Kung University, Tainan City, Taiwan Department of Orthopedics, National Cheng Kung University Hospital, Tainan City, Taiwan
| | - Chun-Ting Li
- Institute of Biomedical Engineering, National Cheng Kung University, Tainan City, Taiwan
| | - Chih-Han Chang
- Institute of Biomedical Engineering, National Cheng Kung University, Tainan City, Taiwan
| | - Cheng-Feng Lin
- Department of Physical Therapy, National Cheng Kung University, Tainan City, Taiwan
| |
Collapse
|
37
|
Abstract
Although anatomic and functional relationship has been established between the gastrocnemius muscle, via the Achilles tendon, and the plantar fascia, the exact role of gastrocnemius tightness in foot and plantar fascia problems is not completely understood. This article summarizes past and current literature linking these 2 structures and gives a mechanical explanation based on functional models of the relationship between gastrocnemius tightness and plantar fascia. The effect of gastrocnemius tightness on the sagittal behavior of the foot is also discussed.
Collapse
|
38
|
Griffin NL, Miller CE, Schmitt D, D'Août K. Understanding the evolution of the windlass mechanism of the human foot from comparative anatomy: Insights, obstacles, and future directions. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2014; 156:1-10. [DOI: 10.1002/ajpa.22636] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 09/25/2014] [Accepted: 09/28/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Nicole L. Griffin
- Department of Anatomy and Cell Biology; Temple University School of Medicine; Philadelphia PA 19140
| | | | - Daniel Schmitt
- Department of Evolutionary Anthropology; Duke University; NC
| | - Kristiaan D'Août
- Department of Musculoskeletal Biology; Institute of Ageing and Chronic Disease, University of Liverpool; Liverpool UK
- Department of Biology; University of Antwerp, Antwerp; Belgium
| |
Collapse
|
39
|
LIN SHIHCHERNG, CHEN CARLPAICHU, TANG SIMONFUKTAN, CHEN CHENGWEI, WANG JIUNJIE, HSU CHIHCHIN, HSIEH JUIHSIANG, CHEN WENGPIN. STRESS DISTRIBUTION WITHIN THE PLANTAR APONEUROSIS DURING WALKING — A DYNAMIC FINITE ELEMENT ANALYSIS. J MECH MED BIOL 2014. [DOI: 10.1142/s0219519414500535] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Excessive and repeated loading of the plantar aponeurosis (PA) is believed to be the most likely risk factor for developing plantar fasciitis. This study provided a novel approach to investigate the biomechanical responses of the PA during the entire stance phase of gait. One healthy subject was recruited for all the experimental measurements to validate the approach in this study. A three-dimensional (3D) finite element (FE) foot model representing this individual, with emphasis on the PA as a transversely isotropic tissue, was constructed. Kinematic data of foot motions were collected during a walking trial to serve as input conditions for the model. A peak tensile force of 922 N on the PA was found during the terminal-stance phase rather than during the mid-stance phase. The maximal peak von Mises stresses in the PA from the medial to lateral regions of the foot measured 15.61, 14.98 and 11.4 MPa at 74%, 77% and 82% of the stance phase, respectively. These peak stresses all occurred near the proximal calcaneal bony insertion site of the PA and correspond closely with the location where plantar fasciitis develops. Future work should include more subjects and clinical trials before applying these findings to the treatment of plantar fasciitis.
Collapse
Affiliation(s)
- SHIH-CHERNG LIN
- Department of Biomedical Engineering, Chung-Yuan Christian University, Taoyuan, Taiwan
- Department of Physical Medicine & Rehabilitation, Chang-Gung Memorial Hospital at Linkou and College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - CARL PAI-CHU CHEN
- Department of Physical Medicine & Rehabilitation, Chang-Gung Memorial Hospital at Linkou and College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - SIMON FUK-TAN TANG
- Department of Physical Medicine & Rehabilitation, Chang-Gung Memorial Hospital at Linkou and College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - CHENG-WEI CHEN
- Department of Mechanical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - JIUN-JIE WANG
- Department of Medical Imaging and Radiological Sciences, Chang-Gung University, Taoyuan, Taiwan
| | - CHIH-CHIN HSU
- Department of Physical Medicine & Rehabilitation, Chang-Gung Memorial Hospital at Keelung and College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - JUI-HSIANG HSIEH
- Department of Biomedical Engineering, Chung-Yuan Christian University, Taoyuan, Taiwan
| | - WENG-PIN CHEN
- Department of Mechanical Engineering, National Taipei University of Technology, Taipei, Taiwan
| |
Collapse
|
40
|
Hashimoto T, Sakuraba K. Assessment of Effective Ankle Joint Positioning in Strength Training for Intrinsic Foot Flexor Muscles: A Comparison of Intrinsic Foot Flexor Muscle Activity in a Position Intermediate to Plantar and Dorsiflexion with that in Maximum Plantar Flexion Using Needle Electromyography. J Phys Ther Sci 2014; 26:451-4. [PMID: 24707106 PMCID: PMC3976025 DOI: 10.1589/jpts.26.451] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 10/13/2013] [Indexed: 12/30/2022] Open
Abstract
[Purpose] The effectiveness of intrinsic foot flexor strength training performed in the plantar flexion position was examined using needle electromyography. [Subjects] The subjects of this study were 18 healthy men. [Methods] We used needle electromyography to measure the muscle activities of the flexor hallucis brevis (FHB), and the flexor digitorum brevis (FDB) in maximum plantar and an intermediate position. [Results] Significant increases in muscle activities were observed for both FHB and FDB, and the rates of increase from the intermediate position to the plantar flexion position were 43% for FHB and 46% for FDB. [Conclusion] This study demonstrated that it is possible to evaluate intrinsic foot flexors, in addition to the numerous reports on treatment methods focusing on extrinsic foot flexors. Furthermore, the results suggest that toe flexion exercises performed during plantar flexion of the ankle joint are an effective method for intrinsic foot flexor strength training.
Collapse
Affiliation(s)
- Takayuki Hashimoto
- Department of Sports Medicine, Graduate School of Medicine,
Juntendo University, Japan
- Department of Rehabilitation, Tsuchiura Kyodo General
Hospital, Japan
| | - Keishoku Sakuraba
- Department of Sports Medicine, Graduate School of Medicine,
Juntendo University, Japan
| |
Collapse
|
41
|
Spratley EM, Matheis EA, Hayes CW, Adelaar RS, Wayne JS. Validation of a population of patient-specific adult acquired flatfoot deformity models. J Orthop Res 2013; 31:1861-8. [PMID: 24038128 DOI: 10.1002/jor.22471] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/30/2013] [Indexed: 02/04/2023]
Abstract
Adult acquired flatfoot deformity (AAFD) is a degenerative disease resulting in malalignment of the mid- and hindfoot secondary to posterior tibial tendon dysfunction and increasing implication of ligament pathologies. Despite the complex 3D nature of AAFD, 2D radiographs are still employed to diagnose and stage the disease. Computer modeling techniques allow for accurate 3D recreations of musculoskeletal systems for the investigation of biomechanical factors contributing to disease. Following Institutional Review Board approval, the lower limbs of six diagnosed AAFD sufferers were imaged with MRI, photographs, and X-ray. Next, a radiologist graded the MRI attenuation of eight soft-tissues implicated in AAFD. Six patient-specific rigid-body models were then created and loaded according to patient weight, graded soft-tissues, and extrinsic muscles. Model function was validated using clinically relevant kinematic measures in three planes. Agreement varied depending on the measure, with average absolute deviations of < 7° for angles and <4 mm for distances. Additionally, the clinically favored AP talonavicular coverage angle, ML talo-1st metatarsal angle, and ML 1st cuneiform height showed strong correlations of R(2) = 0.63, 0.75, and 0.85, respectively. Thus, computer modeling offers a promising methodology for the non-invasive investigation of in vivo kinematic behavior in pathologic feet and, once validated, may further be used to investigate biomechanical parameters that are difficult to measure clinically.
Collapse
Affiliation(s)
- E Meade Spratley
- Orthopaedic Research Laboratory, Departments of Biomedical Engineering and Orthopaedic Surgery, Virginia Commonwealth University, P.O. Box 843067, Richmond, Virginia, 23284-3067
| | | | | | | | | |
Collapse
|
42
|
A dynamic finite element analysis of human foot complex in the sagittal plane during level walking. PLoS One 2013; 8:e79424. [PMID: 24244500 PMCID: PMC3823660 DOI: 10.1371/journal.pone.0079424] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 09/23/2013] [Indexed: 12/04/2022] Open
Abstract
The objective of this study is to develop a computational framework for investigating the dynamic behavior and the internal loading conditions of the human foot complex during locomotion. A subject-specific dynamic finite element model in the sagittal plane was constructed based on anatomical structures segmented from medical CT scan images. Three-dimensional gait measurements were conducted to support and validate the model. Ankle joint forces and moment derived from gait measurements were used to drive the model. Explicit finite element simulations were conducted, covering the entire stance phase from heel-strike impact to toe-off. The predicted ground reaction forces, center of pressure, foot bone motions and plantar surface pressure showed reasonably good agreement with the gait measurement data over most of the stance phase. The prediction discrepancies can be explained by the assumptions and limitations of the model. Our analysis showed that a dynamic FE simulation can improve the prediction accuracy in the peak plantar pressures at some parts of the foot complex by 10%–33% compared to a quasi-static FE simulation. However, to simplify the costly explicit FE simulation, the proposed model is confined only to the sagittal plane and has a simplified representation of foot structure. The dynamic finite element foot model proposed in this study would provide a useful tool for future extension to a fully muscle-driven dynamic three-dimensional model with detailed representation of all major anatomical structures, in order to investigate the structural dynamics of the human foot musculoskeletal system during normal or even pathological functioning.
Collapse
|
43
|
Soysa A, Hiller C, Refshauge K, Burns J. Importance and challenges of measuring intrinsic foot muscle strength. J Foot Ankle Res 2012; 5:29. [PMID: 23181771 PMCID: PMC3544647 DOI: 10.1186/1757-1146-5-29] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 10/24/2012] [Indexed: 11/10/2022] Open
Abstract
UNLABELLED BACKGROUND Intrinsic foot muscle weakness has been implicated in a range of foot deformities and disorders. However, to establish a relationship between intrinsic muscle weakness and foot pathology, an objective measure of intrinsic muscle strength is needed. The aim of this review was to provide an overview of the anatomy and role of intrinsic foot muscles, implications of intrinsic weakness and evaluate the different methods used to measure intrinsic foot muscle strength. METHOD Literature was sourced from database searches of MEDLINE, PubMed, SCOPUS, Cochrane Library, PEDro and CINAHL up to June 2012. RESULTS There is no widely accepted method of measuring intrinsic foot muscle strength. Methods to estimate toe flexor muscle strength include the paper grip test, plantar pressure, toe dynamometry, and the intrinsic positive test. Hand-held dynamometry has excellent interrater and intrarater reliability and limits toe curling, which is an action hypothesised to activate extrinsic toe flexor muscles. However, it is unclear whether any method can actually isolate intrinsic muscle strength. Also most methods measure only toe flexor strength and other actions such as toe extension and abduction have not been adequately assessed. Indirect methods to investigate intrinsic muscle structure and performance include CT, ultrasonography, MRI, EMG, and muscle biopsy. Indirect methods often discriminate between intrinsic and extrinsic muscles, but lack the ability to measure muscle force. CONCLUSIONS There are many challenges to accurately measure intrinsic muscle strength in isolation. Most studies have measured toe flexor strength as a surrogate measure of intrinsic muscle strength. Hand-held dynamometry appears to be a promising method of estimating intrinsic muscle strength. However, the contribution of extrinsic muscles cannot be excluded from toe flexor strength measurement. Future research should clarify the relative contribution of intrinsic and extrinsic muscles during intrinsic foot muscle strength testing.
Collapse
Affiliation(s)
- Achini Soysa
- Arthritis & Musculoskeletal Research Group, Faculty of Health Science, University of Sydney, Sydney, Australia
| | - Claire Hiller
- Arthritis & Musculoskeletal Research Group, Faculty of Health Science, University of Sydney, Sydney, Australia
| | - Kathryn Refshauge
- Arthritis & Musculoskeletal Research Group, Faculty of Health Science, University of Sydney, Sydney, Australia
| | - Joshua Burns
- Arthritis & Musculoskeletal Research Group, Faculty of Health Science, University of Sydney, Sydney, Australia
- Institute for Neuroscience and Muscle Research/Paediatric Gait Analysis Service of NSW, Sydney Children’s Hospitals Network (Randwick and Westmead), Sydney, Australia
| |
Collapse
|
44
|
Isvilanonda V, Dengler E, Iaquinto JM, Sangeorzan BJ, Ledoux WR. Finite element analysis of the foot: model validation and comparison between two common treatments of the clawed hallux deformity. Clin Biomech (Bristol, Avon) 2012; 27:837-44. [PMID: 22694884 DOI: 10.1016/j.clinbiomech.2012.05.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 05/12/2012] [Accepted: 05/14/2012] [Indexed: 02/07/2023]
Abstract
BACKGROUND Clawed hallux is defined by first metatarsophalangeal joint extension and first interphalangeal joint flexion; it can increase plantar pressures and ulceration risk. We investigated two corrective surgical techniques, the modified Jones and flexor hallucis longus tendon transfer. METHODS A finite element foot model was modified to generate muscle overpulls, including extensor hallucis longus, flexor hallucis longus and peroneus longus. Both corrective procedures were simulated, predicting joint angle and plantar pressure changes. FINDINGS The clawed hallux deformity was generated by overpulling: 1) extensor hallucis longus, 2) peroneus longus + extensor hallucis longus, 3) extensor hallucis longus + flexor hallucis longus and 4) all three together. The modified Jones reduced metatarsophalangeal joint angles, but acceptable hallux pressure was found only when there was no flexor hallucis longus overpull. The flexor hallucis longus tendon transfer reduced deformity at the metatarsophalangeal and interphalangeal joints but may extended the hallux due to the unopposed extensor hallucis longus. Additionally, metatarsal head pressure increased with overpulling of the extensor hallucis longus + flexor hallucis longus, and all three muscles together. INTERPRETATION The modified Jones was effective in correcting clawed hallux deformity involving extensor hallucis longus overpull without flexor hallucis longus overpull. The flexor hallucis longus tendon transfer was effective in correcting clawed hallux deformity resulting from the combined overpull of both extensor and flexor hallucis longus, but not with isolated extensor hallucis longus overpull. An additional procedure to reduce the metatarsal head pressure may be required concomitant to the flexor hallucis longus tendon transfer. However this procedure avoids interphalangeal joint fusion.
Collapse
Affiliation(s)
- Vara Isvilanonda
- RR&D Center of Excellence for Limb Loss Prevention and Prosthetic Engineering, Department of Veterans Affairs, Seattle, WA, USA
| | | | | | | | | |
Collapse
|
45
|
Kim S, Cho J, Choi J, Ryu S, Jeong W. Coupled foot-shoe-ground interaction model to assess landing impact transfer characteristics to ground condition. ACTA ACUST UNITED AC 2012. [DOI: 10.12989/imm.2012.5.1.075] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Finite element modeling of a 3D coupled foot-boot model. Med Eng Phys 2011; 33:1228-33. [PMID: 21676642 DOI: 10.1016/j.medengphy.2011.05.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 04/24/2011] [Accepted: 05/23/2011] [Indexed: 11/20/2022]
Abstract
Increasingly, musculoskeletal models of the human body are used as powerful tools to study biological structures. The lower limb, and in particular the foot, is of interest because it is the primary physical interaction between the body and the environment during locomotion. The goal of this paper is to adopt the finite element (FE) modeling and analysis approaches to create a state-of-the-art 3D coupled foot-boot model for future studies on biomechanical investigation of stress injury mechanism, foot wear design and parachute landing fall simulation. In the modeling process, the foot-ankle model with lower leg was developed based on Computed Tomography (CT) images using ScanIP, Surfacer and ANSYS. Then, the boot was represented by assembling the FE models of upper, insole, midsole and outsole built based on the FE model of the foot-ankle, and finally the coupled foot-boot model was generated by putting together the models of the lower limb and boot. In this study, the FE model of foot and ankle was validated during balance standing. There was a good agreement in the overall patterns of predicted and measured plantar pressure distribution published in literature. The coupled foot-boot model will be fully validated in the subsequent works under both static and dynamic loading conditions for further studies on injuries investigation in military and sports, foot wear design and characteristics of parachute landing impact in military.
Collapse
|
47
|
Effects of internal stress concentrations in plantar soft-tissue—A preliminary three-dimensional finite element analysis. Med Eng Phys 2010; 32:324-31. [DOI: 10.1016/j.medengphy.2010.01.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 12/26/2009] [Accepted: 01/06/2010] [Indexed: 01/28/2023]
|
48
|
Tao K, Ji WT, Wang DM, Wang CT, Wang X. Relative contributions of plantar fascia and ligaments on the arch static stability: a finite element study. ACTA ACUST UNITED AC 2010; 55:265-71. [DOI: 10.1515/bmt.2010.041] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
49
|
Erdemir A, Sirimamilla PA, Halloran JP, van den Bogert AJ. An elaborate data set characterizing the mechanical response of the foot. J Biomech Eng 2009; 131:094502. [PMID: 19725699 DOI: 10.1115/1.3148474] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mechanical properties of the foot are responsible for its normal function and play a role in various clinical problems. Specifically, we are interested in quantification of foot mechanical properties to assist the development of computational models for movement analysis and detailed simulations of tissue deformation. Current available data are specific to a foot region and the loading scenarios are limited to a single direction. A data set that incorporates regional response, to quantify individual function of foot components, as well as the overall response, to illustrate their combined operation, does not exist. Furthermore, the combined three-dimensional loading scenarios while measuring the complete three-dimensional deformation response are lacking. When combined with an anatomical image data set, development of anatomically realistic and mechanically validated models becomes possible. Therefore, the goal of this study was to record and disseminate the mechanical response of a foot specimen, supported by imaging data. Robotic testing was conducted at the rear foot, forefoot, metatarsal heads, and the foot as a whole. Complex foot deformations were induced by single mode loading, e.g., compression, and combined loading, e.g., compression and shear. Small and large indenters were used for heel and metatarsal head loading, an elevated platform was utilized to isolate the rear foot and forefoot, and a full platform compressed the whole foot. Three-dimensional tool movements and reaction loads were recorded simultaneously. Computed tomography scans of the same specimen were collected for anatomical reconstruction a priori. The three-dimensional mechanical response of the specimen was nonlinear and viscoelastic. A low stiffness region was observed starting with contact between the tool and foot regions, increasing with loading. Loading and unloading responses portrayed hysteresis. Loading range ensured capturing the toe and linear regions of the load deformation curves for the dominant loading direction, with the rates approximating those of walking. A large data set was successfully obtained to characterize the overall and the regional mechanical responses of an intact foot specimen under single and combined loads. Medical imaging complemented the mechanical testing data to establish the potential relationship between the anatomical architecture and mechanical responses and to further develop foot models that are mechanically realistic and anatomically consistent. This combined data set has been documented and disseminated in the public domain to promote future development in foot biomechanics.
Collapse
Affiliation(s)
- Ahmet Erdemir
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH 44195, USA.
| | | | | | | |
Collapse
|
50
|
Gu YD, Ren XJ, Li JS, Lake MJ, Zhang QY, Zeng YJ. Computer simulation of stress distribution in the metatarsals at different inversion landing angles using the finite element method. INTERNATIONAL ORTHOPAEDICS 2009; 34:669-76. [PMID: 19685241 DOI: 10.1007/s00264-009-0856-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 07/01/2009] [Accepted: 07/28/2009] [Indexed: 11/25/2022]
Abstract
Metatarsal fracture is one of the most common foot injuries, particularly in athletes and soldiers, and is often associated with landing in inversion. An improved understanding of deformation of the metatarsals under inversion landing conditions is essential in the diagnosis and prevention of metatarsal injuries. In this work, a detailed three-dimensional (3D) finite element foot model was developed to investigate the effect of inversion positions on stress distribution and concentration within the metatarsals. The predicted plantar pressure distribution showed good agreement with data from controlled biomechanical tests. The deformation and stresses of the metatarsals during landing at different inversion angles (normal landing, 10 degree inversion and 20 degree inversion angles) were comparatively studied. The results showed that in the lateral metatarsals stress increased while in the medial metatarsals stress decreased with the angle of inversion. The peak stress point was found to be near the proximal part of the fifth metatarsal, which corresponds with reported clinical observations of metatarsal injuries.
Collapse
Affiliation(s)
- Y D Gu
- School of Engineering, Liverpool John Moores University, Liverpool L3 3AF, UK
| | | | | | | | | | | |
Collapse
|