1
|
Scattone Silva R, Song K, Hullfish TJ, Sprague A, Silbernagel KG, Baxter JR. Patellar Tendon Load Progression during Rehabilitation Exercises: Implications for the Treatment of Patellar Tendon Injuries. Med Sci Sports Exerc 2024; 56:545-552. [PMID: 37847102 PMCID: PMC10925836 DOI: 10.1249/mss.0000000000003323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
PURPOSE This study aimed to evaluate patellar tendon loading profiles (loading index, based on loading peak, loading impulse, and loading rate) of rehabilitation exercises to develop clinical guidelines to incrementally increase the rate and magnitude of patellar tendon loading during rehabilitation. METHODS Twenty healthy adults (10 females/10 males, 25.9 ± 5.7 yr) performed 35 rehabilitation exercises, including different variations of squats, lunge, jumps, hops, landings, running, and sports specific tasks. Kinematic and kinetic data were collected, and a patellar tendon loading index was determined for each exercise using a weighted sum of loading peak, loading rate, and cumulative loading impulse. Then the exercises were ranked, according to the loading index, into tier 1 (loading index ≤0.33), tier 2 (0.33 < loading index <0.66), and tier 3 (loading index ≥0.66). RESULTS The single-leg decline squat showed the highest loading index (0.747). Other tier 3 exercises included single-leg forward hop (0.666), single-leg countermovement jump (0.711), and running cut (0.725). The Spanish squat was categorized as a tier 2 exercise (0.563), as was running (0.612), double-leg countermovement jump (0.610), single-leg drop vertical jump (0.599), single-leg full squat (0.580), double-leg drop vertical jump (0.563), lunge (0.471), double-leg full squat (0.428), single-leg 60° squat (0.411), and Bulgarian squat (0.406). Tier 1 exercises included 20 cm step up (0.187), 20 cm step down (0.288), 30 cm step up (0.321), and double-leg 60° squat (0.224). CONCLUSIONS Three patellar tendon loading tiers were established based on a combination of loading peak, loading impulse, and loading rate. Clinicians may use these loading tiers as a guide to progressively increase patellar tendon loading during the rehabilitation of patients with patellar tendon disorders and after anterior cruciate ligament reconstruction using the bone-patellar tendon-bone graft.
Collapse
Affiliation(s)
- Rodrigo Scattone Silva
- Postgraduate Program in Rehabilitation Sciences, Postgraduate Program in Physical Therapy, Federal University of Rio Grande do Norte, Santa Cruz, BRAZIL
- Department of Physical Therapy, University of Delaware, Newark, DE
| | - Ke Song
- Department of Orthopaedic Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Todd J. Hullfish
- Department of Orthopaedic Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Andrew Sprague
- Department of Physical Therapy, University of Pittsburgh, Pittsburgh, PA
| | | | - Josh R. Baxter
- Department of Orthopaedic Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA
| |
Collapse
|
2
|
Hagen M, Chebly J, Dhaen B, Fassian N, Salvalaggio M, Catelli DS, Verschueren S, Vanrenterghem J. Peak patellar tendon force progressions during heavy load single-leg squats on level ground and decline board. Clin Biomech (Bristol, Avon) 2024; 112:106179. [PMID: 38219457 DOI: 10.1016/j.clinbiomech.2024.106179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
BACKGROUND Progressive tendon loading programs for patellar tendinopathy typically include single-leg squats with heavy weights either on level ground or on a decline board. Changes in patellar tendon force due to variations of the heavy load single-leg squat have not yet been objectively quantified. The objective of this study was to investigate the influence of the mass of an external weight and the use of a decline board on the peak patellar tendon force during a heavy load single-leg squat. METHODS Twelve healthy participants performed single-leg back squats on a decline board and level ground at 70%, 80% and 90% of their one repetition maximum. Three-dimensional kinematics and ground reaction forces were measured and the peak patellar tendon force was calculated using musculoskeletal modelling. A two-way repeated measures ANOVA determined the main effects for the mass of the external weights and the use of a decline board as well as their interaction effect. FINDINGS Peak patellar tendon forces were significantly higher on the decline board compared to level ground (p < 0.05). Neither on the decline board, nor on level ground did the peak patellar tendon force increase significantly when increasing the external weights (p > 0.05). INTERPRETATION Progression in peak patellar tendon forces during a heavy load single-leg squat can only be obtained with a decline board. Increasing the mass of the external weight from 70% to 90% of the one repetition maximum does not result in a progressively higher peak patellar tendon force.
Collapse
Affiliation(s)
- Michiel Hagen
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium.
| | - Joanna Chebly
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Bram Dhaen
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Noah Fassian
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | | | - Danilo S Catelli
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium; Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | | | | |
Collapse
|
3
|
Gökler DJ, Karácsony AF, Faragó D, Szebényi G, Kiss RM, Pap K. The effect of sterilization and storage on the viscoelastic properties of human tendon allografts - Continued: Storage for 0 to 4 months. J Biomech 2024; 162:111904. [PMID: 38134466 DOI: 10.1016/j.jbiomech.2023.111904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 12/09/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023]
Abstract
The role of donor-derived tendons, also known as allografts, in anterior cruciate ligament replacement surgeries is steadily increasing. Before surgery, temporary storage and, in most cases, sterilization are essential. It is, thus, crucial to determine how these procedures alter the grafts' biomechanical properties. The purpose of this research was to analyze the effect of different sterilization methods (native, frozen, frozen + 21 kGy gamma irradiation, frozen + 21 kGy electron beam irradiation) and storage durations (0 to 4 months) on the deformation and creep of two tendon types (tibialis anterior, peroneus longus). 80 tibialis anterior and 83 peroneus longus tendons from 51 human cadavers were included. The samples were removed, placed in a radio-cryoprotectant solution, then slowly cooled, sterilized and stored at -80 °C. All groups were subject to 60 s static creep test with 250 N load. Deformation during the loading phase, creep during static loading, and the ratio of these two were evaluated. Deformation at the end of the loading phase and creep consistently exhibited significantly smaller values in the tibialis anterior compared to the peroneus longus type, as well as in electron beam-sterilized grafts as opposed to gamma beam-sterilized ones. Prolonged storage periods (within 0 to 4 months) resulted in a notable increase in these values, particularly in deformation. Based on the experimental data, the tibialis anterior tendon type and sterilization by gamma beam irradiation are better choices for anterior cruciate ligament reconstruction than the peroneus longus and sterilization by electron beam. Increased storage time affects negatively the evaluated mechanical properties.
Collapse
Affiliation(s)
- Daniella Judit Gökler
- Budapest University of Technology and Economics, Faculty of Mechanical Engineering, Department of Mechatronics, Optics, and Mechanical Engineering Informatics, Hungary
| | - Atilla Ferenc Karácsony
- Semmelweis University Budapest, Department of Traumatology, Hungary; Buda Hospital of the Hospitaller Order of Saint John of God, Department of Orthopedics, Hungary
| | - Dénes Faragó
- Budapest University of Technology and Economics, Faculty of Mechanical Engineering, Department of Mechatronics, Optics, and Mechanical Engineering Informatics, Hungary
| | - Gábor Szebényi
- MTA-BME Lendület Lightweight Polymer Composites Research Group, Hungary; Budapest University of Technology and Economics, Faculty of Mechanical Engineering, Department of Polymer Engineering, Hungary.
| | - Rita Mária Kiss
- Budapest University of Technology and Economics, Faculty of Mechanical Engineering, Department of Mechatronics, Optics, and Mechanical Engineering Informatics, Hungary
| | - Károly Pap
- Semmelweis University Budapest, Department of Traumatology, Hungary; Uzsoki Hospital, Department of Orthopedics and Traumatology, Hungary
| |
Collapse
|
4
|
Jakubowski KL, Ludvig D, Perreault EJ, Lee SSM. Non-linear properties of the Achilles tendon determine ankle impedance over a broad range of activations in humans. J Exp Biol 2023; 226:jeb244863. [PMID: 37350252 PMCID: PMC10399991 DOI: 10.1242/jeb.244863] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Regulating ankle mechanics is essential for controlled interactions with the environment and rejecting unexpected disturbances. Ankle mechanics can be quantified by impedance, the dynamic relationship between an imposed displacement and the torque generated in response. Ankle impedance in the sagittal plane depends strongly on the triceps surae and Achilles tendon, but their relative contributions remain unknown. It is commonly assumed that ankle impedance is controlled by changing muscle activation and, thereby, muscle impedance, but this ignores that tendon impedance also changes with activation-induced loading. Thus, we sought to determine the relative contributions from the triceps surae and Achilles tendon during conditions relevant to postural control. We used a novel technique that combines B-mode ultrasound imaging with joint-level perturbations to quantify ankle, muscle and tendon impedance simultaneously across activation levels from 0% to 30% of maximum voluntary contraction. We found that muscle and tendon stiffness, the static component of impedance, increased with voluntary plantarflexion contractions, but that muscle stiffness exceeded tendon stiffness at very low loads (21±7 N). Above these loads, corresponding to 1.3% of maximal strength for an average participant in our study, ankle stiffness was determined predominately by Achilles tendon stiffness. At approximately 20% MVC for an average participant, ankle stiffness was 4 times more sensitive to changes in tendon stiffness than to changes in muscle stiffness. We provide the first empirical evidence demonstrating that the nervous system, through changes in muscle activations, leverages the non-linear properties of the Achilles tendon to increase ankle stiffness during postural conditions.
Collapse
Affiliation(s)
- Kristen L. Jakubowski
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL 60611, USA
- Shirley Ryan AbilityLab, Chicago, IL 60611, USA
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA 30322, USA
| | - Daniel Ludvig
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Shirley Ryan AbilityLab, Chicago, IL 60611, USA
| | - Eric J. Perreault
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Shirley Ryan AbilityLab, Chicago, IL 60611, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL 60611, USA
| | - Sabrina S. M. Lee
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL 60611, USA
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| |
Collapse
|
5
|
Vatovec R, Kozinc Ž, Voglar M. The Effects of Isometric Fatigue on Trunk Muscle Stiffness: Implications for Shear-Wave Elastography Measurements. SENSORS (BASEL, SWITZERLAND) 2022; 22:9476. [PMID: 36502176 PMCID: PMC9735660 DOI: 10.3390/s22239476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/24/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Muscle stiffness has been implicated as a possible factor in low back pain risk. There are few studies on the effects of isometric fatigue on the shear modulus of trunk muscles. This study aimed to investigate the effects of trunk isometric fatigue on the passive and active (during low and high-level contractions) shear moduli of the erector spinae (ES) and superficial and deep multifidus (MF) muscles. We assessed passive and active shear modulus using shear-wave elastography in healthy young participants (n = 22; 11 males, 11 females), before and after an isometric trunk extension fatigue protocol. Maximal voluntary force decreased from 771.2 ± 249.8 N before fatigue to 707.3 ± 204.1 N after fatigue (-8.64%; p = 0.003). Passive shear modulus was significantly decreased after fatigue in the MF muscle (p = 0.006-0.022; Cohen's d = 0.40-46), but not the ES muscle (p = 0.867). Active shear modulus during low-level contraction was not affected by fatigue (p = 0.697-0.701), while it was decreased during high-level contraction for both muscles (p = 0.011; d = 0.29-0.34). Sex-specific analysis indicated the decrease in ES shear modulus was significant in males (p = 0.015; d = 0.31), but not in females (p = 0.140). Conversely, the shear modulus in superficial MF had a statistically significant decrease in females (p = 0.002; d = 0.74) but not in males (p = 0.368). These results have important implications for further investigations of the mechanistic interaction between physical workloads, sex, muscle stiffness (and other variables affecting trunk stability and neuromuscular control), and the development/persistence of low back pain.
Collapse
Affiliation(s)
- Rok Vatovec
- Department of Physiotherapy, Faculty of Health Sciences, University of Primorska Polje 42, SI-6310 Izola, Slovenia
| | - Žiga Kozinc
- Department of Kinesiology, Faculty of Health Sciences, University of Primorska Polje 42, SI-6310 Izola, Slovenia
- Andrej Marušič Institute, University of Primorska, Muzejski trg 2, SI-6000 Koper, Slovenia
| | - Matej Voglar
- Department of Physiotherapy, Faculty of Health Sciences, University of Primorska Polje 42, SI-6310 Izola, Slovenia
| |
Collapse
|
6
|
Merza EY, Pearson SJ, Lichtwark GA, Malliaras P. The acute effects of higher versus lower load duration and intensity on morphological and mechanical properties of the healthy Achilles tendon: a randomized crossover trial. J Exp Biol 2022; 225:275126. [PMID: 35470387 PMCID: PMC9167578 DOI: 10.1242/jeb.243741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/19/2022] [Indexed: 11/20/2022]
Abstract
The Achilles tendon (AT) exhibits volume changes related to fluid flow under acute load which may be linked to changes in stiffness. Fluid flow provides a mechanical signal for cellular activity and may be one mechanism that facilitates tendon adaptation. This study aimed to investigate whether isometric intervention involving a high level of load duration and intensity could maximize the immediate reduction in AT volume and stiffness compared with interventions involving a lower level of load duration and intensity. Sixteen healthy participants (12 males, 4 females; age 24.4±9.4 years, body mass 70.9±16.1 kg, height 1.7±0.1 m) performed three isometric interventions of varying levels of load duration (2 s and 8 s) and intensity (35% and 75% maximal voluntary isometric contraction) over a 3 week period. Freehand 3D ultrasound was used to measure free AT volume (at rest) and length (at 35%, 55% and 75% of maximum plantarflexion force) pre- and post-interventions. The slope of the force–elongation curve over these force levels represented individual stiffness (N mm−1). Large reductions in free AT volume and stiffness resulted in response to long-duration high-intensity loading whilst less reduction was produced with a lower load intensity. In contrast, no change in free AT volume and a small increase in AT stiffness occurred with lower load duration. These findings suggest that the applied load on the AT must be heavy and sustained for a long duration to maximize immediate volume reduction, which might be an acute response that enables optimal long-term tendon adaptation via mechanotransduction pathways. Summary: High levels of load duration and intensity have the greatest acute effect on the free Achilles tendon volume and stiffness.
Collapse
Affiliation(s)
- Eman Y Merza
- Department of physiotherapy, Faculty of Medicine, Nursing and Health Science, Monash University, Frankston Vic 3199, Melbourne, Australia
| | - Stephen J Pearson
- Centre for Health, Sport and Rehabilitation Sciences Research, University of Salford, Greater Manchester, M5 4WT, UK
| | - Glen A Lichtwark
- Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, The University of Queensland, St. Lucia, QLD 4072, Brisbane, Australia
| | - Peter Malliaras
- Department of physiotherapy, Faculty of Medicine, Nursing and Health Science, Monash University, Frankston Vic 3199, Melbourne, Australia
| |
Collapse
|
7
|
Gökler DJ, Faragó D, Szebényi G, Kiss RM, Pap K. The effect of sterilization and storage on the viscoelastic properties of human tendon allografts. J Biomech 2021; 127:110697. [PMID: 34419827 DOI: 10.1016/j.jbiomech.2021.110697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 11/17/2022]
Abstract
Allografts have become increasingly preferred for anterior cruciate ligament replacement purposes. The risk of infections necessitates thorough sterilization procedures, and the allografts usually need to be stored prior to surgery. Classical mechanical tests have been performed with various types of tendons, however, tibialis anterior and peroneus longus tend to suffer the least biomechanical changes after irradiation. Only few results are available of the strain and creep behaviour of tendons, even though this information is necessary to provide suitable allografts. The aim of the present study is to analyze the effect of different tendon types (T-tibialis anterior, P-peroneus longus), sterilization methods (G-gamma irradiation of 21 kGy, E-electron beam irradiation of 21 kGy) and storage times (5 and 6 months) on the creep behavior, which is characterized by the strain at the end of the loading phase and creep deformation after static loading. Static creep tests were performed with 250 N load during 60 s. Deformation at the end of the loading phase of both tendons was significantly smaller after 5 months long storage than that after 6 months long storage. TE5 showed significantly less creep than group TE6, and TE6 significantly greater than PE6. The creep of TE5 was significantly lower than that of TG5. Based on the data, the peroneus longus sterilized by electron beam and stored deep frozen for 5 months is a better choice for anterior cruciate ligament reconstruction than tibialis anterior sterilized by gamma irradiation stored for 6 months.
Collapse
Affiliation(s)
- Daniella Judit Gökler
- Budapest University of Technology and Economics, Faculty of Mechanical Engineering, Department of Mechatronics, Optics, and Mechanical Engineering Informatics, Hungary
| | - Dénes Faragó
- Budapest University of Technology and Economics, Faculty of Mechanical Engineering, Department of Mechatronics, Optics, and Mechanical Engineering Informatics, Hungary; Budapest University of Technology and Economics, Faculty of Mechanical Engineering, Biomechanical Research Centre, Hungary
| | - Gábor Szebényi
- Budapest University of Technology and Economics, Faculty of Mechanical Engineering, Biomechanical Research Centre, Hungary; Budapest University of Technology and Economics, Faculty of Mechanical Engineering, Department of Polymer Engineering, Hungary
| | - Rita Mária Kiss
- Budapest University of Technology and Economics, Faculty of Mechanical Engineering, Department of Mechatronics, Optics, and Mechanical Engineering Informatics, Hungary; Budapest University of Technology and Economics, Faculty of Mechanical Engineering, Biomechanical Research Centre, Hungary.
| | - Károly Pap
- Semmelweis University Budapest, Department of Traumatology, Hungary; Uzsoki Hospital, Department of Orthopedics and Traumatology, Hungary
| |
Collapse
|
8
|
Squier K, Scott A, Hunt MA, Brunham LR, Wilson DR, Screen H, Waugh CM. The effects of cholesterol accumulation on Achilles tendon biomechanics: A cross-sectional study. PLoS One 2021; 16:e0257269. [PMID: 34529718 PMCID: PMC8445482 DOI: 10.1371/journal.pone.0257269] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/31/2021] [Indexed: 11/18/2022] Open
Abstract
Familial hypercholesterolemia, a common genetic metabolic disorder characterized by high cholesterol levels, is involved in the development of atherosclerosis and other preventable diseases. Familial hypercholesterolemia can also cause tendinous abnormalities, such as thickening and xanthoma (tendon lipid accumulation) in the Achilles, which may impede tendon biomechanics. The objective of this study was to investigate the effect of cholesterol accumulation on the biomechanical performance of Achilles tendons, in vivo. 16 participants (10 men, 6 women; 37±6 years) with familial hypercholesterolemia, diagnosed with tendon xanthoma, and 16 controls (10 men, 6 women; 36±7 years) underwent Achilles biomechanical assessment. Achilles biomechanical data was obtained during preferred pace, shod, walking by analysis of lower limb kinematics and kinetics utilizing 3D motion capture and an instrumented treadmill. Gastrocnemius medialis muscle-tendon junction displacement was imaged using ultrasonography. Achilles stiffness, hysteresis, strain and force were calculated from displacement-force data acquired during loading cycles, and tested for statistical differences using one-way ANOVA. Statistical parametric mapping was used to examine group differences in temporal data. Participants with familial hypercholesterolemia displayed lower Achilles stiffness compared to the control group (familial hypercholesterolemia group: 87±20 N/mm; controls: 111±18 N/mm; p = 0.001), which appeared to be linked to Achilles loading rate rather than an increased strain (FH: 5.27±1.2%; controls: 4.95±0.9%; p = 0.413). We found different Achilles loading patterns in the familial hypercholesterolemia group, which were traced to differences in the centre of pressure progression that affected ankle moment. This finding may indicate that individuals with familial hypercholesterolemia use different Achilles loading strategies. Participants with familial hypercholesterolemia also demonstrated significantly greater Achilles hysteresis than the control group (familial hypercholesterolemia: 57.5±7.3%; controls: 43.8±10%; p<0.001), suggesting that walking may require a greater metabolic cost. Our results indicate that cholesterol accumulation could contribute to reduced Achilles function, while potentially increasing the chance of injury.
Collapse
Affiliation(s)
- Kipling Squier
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Alexander Scott
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Michael A. Hunt
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Liam R. Brunham
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| | - David R. Wilson
- Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
- Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hazel Screen
- School of Engineering & Materials Science, Queen Mary University of London, London, United Kingdom
| | - Charlie M. Waugh
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
9
|
Merza E, Pearson S, Lichtwark G, Garofolini A, Malliaras P. Reliability of Human Achilles Tendon Stiffness Measures Using Freehand 3-D Ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:973-981. [PMID: 33487471 DOI: 10.1016/j.ultrasmedbio.2021.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/09/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Achilles tendon (AT) stiffness is an important property of both human locomotor performance and injury mechanics. Freehand 3-D ultrasound (3-DUS) is a promising method for measuring stiffness of the Achilles tendon, particularly the free AT (2-6 cm proximal to calcaneus), which is commonly injured. The aim of this study was to investigate the test-retest reliability of freehand 3-DUS in measuring free AT stiffness in humans. The free Achilles tendon length of healthy participants (n = 10) was scanned on the same day on two consecutive occasions (1 h apart) during rest and isometric plantar flexion contractions at 20%, 40% and 60% of maximum force. The slope of the force-elongation curve over these force levels represented individual stiffness (N/mm). Relative reliability was assessed using the intra-class correlation coefficient (ICC), and absolute reliability was estimated with the standard error of measurement (SEM) and smallest detectable change. Systematic bias in stiffness measures was explored by comparing test and retest distributions and Bland-Altman plots. The test-retest reliability of free AT stiffness measured using freehand 3-DUS was excellent [ICC = 0.994, 95% confidence interval [CI]: 0.978-0.999)]. The mean stiffness values at test (361.83 N/mm [170.77]) and retest (364.98 N/mm [168.57]) did not significantly differ (p = 0.72), and the smallest detectable change was 52.14 N/mm. The Bland-Altman plot indicated the absence of systematic bias (95% CI: -22.18 to 15.88). Freehand 3-DUS provides reliable and precise measures of tendon stiffness and can be used to detect small changes in free AT stiffness in response to load or tendon pathology.
Collapse
Affiliation(s)
- Eman Merza
- Department of Physiotherapy, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| | - Stephen Pearson
- Centre for Health, Sport and Rehabilitation Sciences Research, University of Salford, Greater Manchester, United Kingdom
| | - Glen Lichtwark
- Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, University of Queensland, St. Lucia, Brisbane, Australia
| | | | - Peter Malliaras
- Department of Physiotherapy, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia.
| |
Collapse
|
10
|
Merza E, Pearson S, Lichtwark G, Ollason M, Malliaras P. Immediate and long-term effects of mechanical loading on Achilles tendon volume: A systematic review and meta-analysis. J Biomech 2021; 118:110289. [PMID: 33556887 DOI: 10.1016/j.jbiomech.2021.110289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 01/14/2021] [Accepted: 01/23/2021] [Indexed: 01/07/2023]
Abstract
The Achilles tendon (AT) may experience changes in dimensions related to fluid flow under load. The extent to which fluid flow involves redistribution within or flow out of the tendon is not known and could be determined by investigating volume changes. This study aimed to synthesize data on immediate and long-term effects of loading on tendon volume among people with a healthy AT and midportion Achilles tendinopathy (MAT). A secondary aim was to synthesise data from the included studies investigating parallel change in cross-sectional area and length. Systematic electronic search was performed in MEDLINE, EMBASE, CINAHL, AMED, and Scopus from inception until May 2020. Standardized mean differences (SMDs) were calculated for intervention-induced changes from baseline for all outcomes. Methodological quality was assessed using modified version of Newcastle Ottawa Scale (NOS). Twelve studies were included in meta-analysis. For healthy AT, there were negligible to small changes in volume following cross-country running (-0.33 [95% CI = -1.11 to 0.45] (P = 0.41)) and isometric exercise (0.01 [95% CI = -0.54 to 0.55] (P = 0.98)) and a large increase at the short-term with 12-week isometric protocol (0.88 [95% CI = -0.10 to1.86] (P = 0.08)). For MAT, there was an immediate large reduction in volume with isometric exercise (-1.24 [95% CI = -1.93 to -0.55] (P = 0.0004)), small increase with eccentric exercise (0.41 [95% CI = -0.18 to 1.01](P = 0.18)) and small reduction at the short-term with long-term interventions (-0.46 [95% CI = -0.87 to -0.05] (P = 0.03)). This meta-analysis suggests that healthy AT remain isovolumetric with acute interventions while MAT exhibit immediate and short-term volume reductions in response to different interventions.
Collapse
Affiliation(s)
- Eman Merza
- Department of Physiotherapy, Faculty of Medicine, Nursing and Health Science, Monash University, Frankston, Vic 3199, Melbourne, Australia.
| | - Stephen Pearson
- Centre for Health, Sport and Rehabilitation Sciences Research, University of Salford, Greater Manchester M5 4WT, United Kingdom.
| | - Glen Lichtwark
- Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, The University of Queensland, St. Lucia, QLD 4072, Brisbane, Australia.
| | - Meg Ollason
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, Vic 3800, Melbourne, Australia.
| | - Peter Malliaras
- Department of Physiotherapy, Faculty of Medicine, Nursing and Health Science, Monash University, Frankston, Vic 3199, Melbourne, Australia.
| |
Collapse
|
11
|
Sichting F, Kram NC. Phantom material testing indicates that the mechanical properties, geometrical dimensions, and tensional state of tendons affect oscillation-based measurements. Physiol Meas 2020; 41:095010. [PMID: 33021964 DOI: 10.1088/1361-6579/abb4b3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE There is an increasing interest in the application of oscillation-based measurement techniques to evaluate the mechanical stiffness of healthy and diseased tendons. These techniques measure the stiffness of a tendon indirectly by registering the oscillation response of a tendon to an external mechanical impulse. Although these measurement techniques seem to be comparatively easy and time-saving, their applicability is implicitly limited by their indirect measurement principle. APPROACH In this study, we aim to find evidence that the oscillation response of a tendon to an external mechanical impulse is not only affected by the stiffness of a tendon but also by the tendons' cross-sectional area (CSA), length, and tension. Therefore, we reviewed the current literature on oscillation-based techniques that measure in vivo tendon properties. Further, a phantom material was used to mimic the nature of tendons and to test the impact of four factors on oscillation-based measurements. MAIN RESULTS Our results indicate that the mechanical properties, geometrical dimensions (length and CSA), and tensional state affect oscillation-based measures. Surprisingly, most studies on tendon behavior often exclusively associate their oscillation-based measurements with the mechanical stiffness of a tendon. SIGNIFICANCE While this narrow perspective bears the risk of misinterpretation or false implications, a broader understanding of oscillation-based measurements has the potential to shed new light on the interaction of muscles and tendons in vivo.
Collapse
Affiliation(s)
- Freddy Sichting
- Department of Human Locomotion, Chemnitz University of Technology, Chemnitz, Germany
| | - Nicolai C Kram
- Department of Human Locomotion, Chemnitz University of Technology, Chemnitz, Germany
| |
Collapse
|
12
|
Li G, Pourdeyhimi B, Yarin AL. Mutual Sliding Motion of Wrapped Filaments for Biomedical and Engineering Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4357-4369. [PMID: 32240589 DOI: 10.1021/acs.langmuir.0c00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Here we aim at understanding and modeling of macroscopic interactions and sliding motion of curved filaments during muscles' isometric action in which tension is developed without overall contraction. A generic dynamic model of a curved elastic filament undergoing sliding, twisting, and unraveling around a cylindrical filament affected by the interfilament friction force is developed in full detail. In particular, the dynamic equations describing the general sliding motion of a curved filament wrapped around a cylindrical filament and pulled by a constant force applied to a free end are derived and solved numerically; the other end of the curved filament is considered to be fixed at the cylindrical one. The model predicts propagation of an elastic wave over the wrapped filament determined by the filament stiffness and the interfilament friction. The wrapped filament deformation and its ultimate arrest are predicted, and the final configurations of such filaments are revealed. Accordingly, the wrapped filament strain is predicted as a function of time for different values of the friction coefficient. The potential applications and possible biomechanical links of the proposed generic model are also discussed.
Collapse
Affiliation(s)
- Gen Li
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 W. Taylor St., Chicago, Illinois 60607-7022, United States
| | - Behnam Pourdeyhimi
- The Nonwovens Institute, North Carolina State University, Box 8301, Raleigh, North Carolina 27695-8301, United States
| | - Alexander L Yarin
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 W. Taylor St., Chicago, Illinois 60607-7022, United States
| |
Collapse
|
13
|
Piponnier E, Ratel S, Chalchat E, Jagot K, Bontemps B, Julian V, Bocock O, Duclos M, Martin V. Plantar flexor muscle-tendon unit length and stiffness do not influence neuromuscular fatigue in boys and men. Eur J Appl Physiol 2020; 120:653-664. [DOI: 10.1007/s00421-020-04305-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/13/2020] [Indexed: 10/25/2022]
|
14
|
Ahmadzadeh SH, Chen X, Hagemann H, Tang MX, Bull AM. Developing and using fast shear wave elastography to quantify physiologically-relevant tendon forces. Med Eng Phys 2019; 69:116-122. [DOI: 10.1016/j.medengphy.2019.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 04/07/2019] [Accepted: 04/14/2019] [Indexed: 01/08/2023]
|
15
|
Kouno M, Ishigaki T, Ikebukuro T, Yata H, Kubo K. Effects of the strain rate on mechanical properties of tendon structures in knee extensors and plantar flexors in vivo. Sports Biomech 2019; 20:887-900. [PMID: 31232180 DOI: 10.1080/14763141.2019.1615541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The purpose of present study was to investigate site differences in the effects of strain rate on tendon properties between knee extensors and plantar flexors. Elongation of tendon structures (L) in vastus lateralis and medial gastrocnemius muscles was measured by ultrasonography while participants performed ramp and ballistic contractions to their voluntary maximum, followed by ramp and sudden relaxation. The relationship between muscle force (Fm) and L was fit to linear regression, the slope of which was defined as stiffness of tendon structures. Hysteresis of tendon structures was calculated as ratio of area within Fm-L loop to area beneath loading portion of curve. In knee extensors and plantar flexors, L values at all force levels were significantly lower during ballistic than ramp contractions. However, no significant differences were observed in stiffness of tendon structures between two contractions at both measured sites. Hysteresis of tendon structures was significantly higher during ballistic than ramp contractions for knee extensors and plantar flexors. In conclusion, elongation of tendon structures was lower and hysteresis was greater during ballistic than ramp contractions. Furthermore, site differences in the effects of strain rate on tendon properties were not found between knee extensors and plantar flexors.
Collapse
Affiliation(s)
- Masahiro Kouno
- Department of Life Science, University of Tokyo, Tokyo, Japan
| | | | | | - Hideaki Yata
- Department of Human and Environmental Well-being, Wako University, Tokyo, Japan
| | - Keitaro Kubo
- Department of Life Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
16
|
Mannarino P, da Matta TT, de Oliveira LF. An 8-week resistance training protocol is effective in adapting quadriceps but not patellar tendon shear modulus measured by Shear Wave Elastography. PLoS One 2019; 14:e0205782. [PMID: 30990803 PMCID: PMC6467440 DOI: 10.1371/journal.pone.0205782] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 03/15/2019] [Indexed: 01/13/2023] Open
Abstract
Habitual loading and resistance training (RT) can lead to changes in muscle and tendon morphology as well as in its mechanical properties which can be measured by Shear Wave Elastography (SWE) technique. The objective of this study was to analyze the Vastus Lateralis (VL) and patellar tendon (PT) mechanical properties adaptations to an 8-week RT protocol using SWE. We submitted 15 untrained health young men to an 8-week RT directed for knee extensor mechanism. VL and PT shear modulus (μ) were assessed pre and post intervention with SWE. PT thickness (PTT), VL muscle thickness (VL MT) and knee extension torque (KT) were also measure pre and post intervention to ensure the RT efficiency. Significant increases were observed in VL MT and KT (pre = 2.40 ± 0.40 cm and post = 2.63 ± 0.35 cm, p = 0.0111, and pre = 294.66 ± 73.98 Nm and post = 338.93 ± 76.39 Nm, p = 0.005, respectively). The 8-week RT was also effective in promoting VL μ adaptations (pre = 4.87 ± 1.38 kPa and post = 9.08.12 ± 1.86 kPa, p = 0.0105), but not in significantly affecting PT μ (pre = 78.85 ± 7.37 kPa and post = 66.41 ± 7.25 kPa, p = 0.1287) nor PTT (baseline = 0.364 ± 0.053 cm and post = 0.368 ± 0.046 cm, p = 0.71). The present study showed that an 8-week resistance training protocol was effective in adapting VL μ but not PT μ. Further investigation should be conducted with special attention to longer interventions, to possible PT differential individual responsiveness and to the muscle-tendon resting state tension environment.
Collapse
Affiliation(s)
- Pietro Mannarino
- Department of Orthopaedic Surgery, Clementino Fraga Filho University Hospital, Rio de Janeiro, RJ, Brazil
- Biomedical Engineering Program, UFRJ, Rio de Janeiro, RJ, Brazil
| | | | | |
Collapse
|
17
|
Ko JH, Kang YM, Yang JH, Kim JS, Lee WJ, Kim SH, Yang IH, Moon SH. Regulation of MMP and TIMP expression in synovial fibroblasts from knee osteoarthritis with flexion contracture using adenovirus-mediated relaxin gene therapy. Knee 2019; 26:317-329. [PMID: 30770167 DOI: 10.1016/j.knee.2019.01.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 12/07/2018] [Accepted: 01/17/2019] [Indexed: 02/02/2023]
Abstract
PURPOSE The aim of this study was to investigate the effects of relaxin (RLN) expression on fibrosis inhibition in synovial fibroblasts. MATERIALS AND METHODS Tissue cells from patients with knee osteoarthritis and >30° flexion contractures were utilised. Synovial fibroblasts were activated by TGF-β1 (two nanograms per millilitre) and then exposed to Ad-RLN as a therapeutic gene, adenovirus-lacZ construct as a marker gene, and SB505124 as an inhibitor for TGF-β1 signal for 48 h. The mRNA expression levels of collagens and MMPs were analysed by reverse transcription-polymerase chain reaction. Also, fibronectin, phosphorylation of Smad2 and ERK1/2, alpha smooth muscle actin, TIMP-1, TIMP-2, MMP-1 and MMP-13 levels were estimated using western blotting, and the total collagen synthesis was assayed. RESULTS Ad-RLN-transduced synovial fibroblasts demonstrated 17%, 13%, and 48% reduction in collagen I, III and IV mRNA expression levels, respectively, and a 40% decrease in MMP-3, MMP-8, 20% decrease in MMP-9, MMP-13 mRNA expression, compared to non-Ad-RLN-transduced cells. In protein expression, Ad-RLN-transduced synovial fibroblasts demonstrated 46% increase in MMP-1, 5% decrease in MMP-2, 51% increase in MMP-9, and 22% increase in MMP-13, compared to non-Ad-RLN-transduced cells. Ad-RLN-transduced synovial fibroblasts showed a 25% decrease in TIMP-1 and 65% decrease in TIMP-2 protein expression at 48h, compared to non-Ad-RLN-transduced cells. Ad-RLN-transduced synovial fibroblasts demonstrated a 45% inhibition of fibronectin in protein expression level and 38% decrease in total collagen synthesis at 48h, compared to non-Ad-RLN-transduced cells. CONCLUSION Relaxin expression exerted anti-fibrogenic effects on synovial fibroblasts from patients with knee osteoarthritis and flexion contractures. Therefore, relaxin could be an alternative therapeutic agent during the initial stage of osteoarthritis with flexion contracture by exerting its anti-fibrogenic effects.
Collapse
Affiliation(s)
- Jae Han Ko
- Department of Orthopaedic Surgery, Yonsei Barun Orthopaedic Surgery Clinic, Seoul, Republic of Korea; Department of Orthopaedic Surgery, Yonsei University, College of Medicine, Seoul, Republic of Korea
| | - Young Mi Kang
- Department of Orthopaedic Surgery, Yonsei University, College of Medicine, Seoul, Republic of Korea
| | - Jae Ho Yang
- Department of Orthopaedic Surgery, Yonsei University, College of Medicine, Seoul, Republic of Korea
| | - Ji Sup Kim
- Department of Orthopaedic Surgery, Yonsei University, College of Medicine, Seoul, Republic of Korea; Department of Orthopaedic Surgery, Catholic Kwandong University College of Medicine, Incheon, Republic of Korea
| | - Won Jai Lee
- Department of Plastic Surgery, Yonsei University, College of Medicine, Seoul, Republic of Korea
| | - Sang Ho Kim
- Department of Orthopaedic Surgery, Yonsei University, College of Medicine, Seoul, Republic of Korea
| | - Ick Hwan Yang
- Department of Orthopaedic Surgery, Yonsei University, College of Medicine, Seoul, Republic of Korea
| | - Seong Hwan Moon
- Department of Orthopaedic Surgery, Yonsei University, College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
18
|
Lepley AS, Joseph MF, Daigle NR, Digiacomo JE, Galer J, Rock E, Rosier SB, Sureja PB. Sex Differences in Mechanical Properties of the Achilles Tendon: Longitudinal Response to Repetitive Loading Exercise. J Strength Cond Res 2019; 32:3070-3079. [PMID: 29373429 DOI: 10.1519/jsc.0000000000002386] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Lepley, AS, Joseph, MF, Daigle, NR, Digiacomo, JE, Galer, J, Rock, E, Rosier, SB, and Sureja, PB. Sex differences in mechanical properties of the Achilles tendon: Longitudinal response to repetitive loading exercise. J Strength Cond Res 32(11): 3070-3079, 2018-Sex differences have been observed in the mechanical properties of the Achilles tendon, which may help to explain the increased risk of injury in men. However, the response and recovery of tendon mechanics to repetitive loading exercise, as well as sex-dependent responses, are not well understood. The purpose of our study was to compare Achilles tendon mechanical properties between men and women before, immediately after, and 60 minutes after a repetitive loading exercise. Seventeen female (age: 24.0 ± 3.9 years; height: 167.4 ± 6.9 cm; and mass: 64.9 ± 8.5 kg) and 18 male (age: 23.9 ± 2.4 years; height: 179.2 ± 5.09 cm; and mass: 78.4 ± 8.7 kg) recreationally active individuals volunteered. Using isokinetic dynamometry and diagnostic ultrasound, baseline levels of Achilles tendon force, elongation, stiffness, stress, strain, and Young's modulus were assessed before 100 successive calf-raise exercises using a Smith machine at 20% of participant body mass. Outcomes were reassessed immediately and 60 minutes after exercise. Women exhibited less Achilles tendon force, stiffness, stress, and modulus compared with men, regardless of time point. Both sexes responded to repetitive loading exercise similarly, with immediate decreases in mechanical properties of the Achilles tendon from baseline to immediately after exercise. Tendon properties were observed to be equal to baseline values at 60-minute postexercise. Baseline differences in tendon properties may help to explain the disparity in injury risk because both sexes responded to and recovered from exercise similarly. Future research should aim to include additional time points (both leading up to and after 60 minutes), and assess tendon responses to more sport-specific activities, while also including patients diagnosed with Achilles tendon injuries.
Collapse
Affiliation(s)
- Adam S Lepley
- Human Performance Laboratory, Department of Kinesiology, Doctor of Physical Therapy Program, University of Connecticut, Storrs, Connecticut
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Morgan GE, Martin R, Williams L, Pearce O, Morris K. Objective assessment of stiffness in Achilles tendinopathy: a novel approach using the MyotonPRO. BMJ Open Sport Exerc Med 2018; 4:e000446. [PMID: 30588326 PMCID: PMC6280907 DOI: 10.1136/bmjsem-2018-000446] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2018] [Indexed: 11/03/2022] Open
Abstract
Objectives The aim of this study was to establish quantitative values for asymptomatic and symptomatic Achilles tendons. Design Cohort study with a single (cross-sectional) time point of patients diagnosed with unilateral Achilles tendinopathy and an asymptomatic group with comparative homogeneity. Methods A sample of 50 participants: 25 diagnosed with symptomatic unilateral Achilles tendinopathy (AT group) and 25 with asymptomatic Achilles tendons (control group 2). The asymptomatic side of the AT group was used as a control (control group 1). Measurements at 2 cm intervals on the tendon from its insertion at the calcaneum up to the musculotendinous junction were taken non-weight bearing (NWB) and weight bearing (WB) using the MyotonPRO. Results There was a significant (p<0.005) decrease in natural oscillation frequency (F) at points 2, 3 and 4 of the AT group (NWB condition) and points 2 and 3 for the WB condition. There was a significant (p<0.005) increase in logarithmic decrement (D) at points 2 and 3 signifying a decrease in elasticity. Dynamic stiffness (S) was significantly (p<0.005) reduced in the AT group at points 2 and 3 WB and point 3 WB. There was no significant difference in creep (C) observed between the symptomatic and asymptomatic tendons. There was a significant (p<0.005) increase in mechanical stress relaxation time (R) at point 2 NWB.There was a correlation between body weight and gender on tendon mechanics, with the symptomatic tendons. No significant differences were observed between the control group 1 and control group 2. Conclusions The MyotonPRO measured decreased stiffness over a section of the tendon corresponding clinically with Achilles tendinopathy. This may have potential in identifying risk of injury and informing rehabilitation, however further extensive research is required to generate baseline data for specific population groups monitoring variables over time. Age, gender and body mass index appear to have some bearing on the mechanical properties of the tendon but mainly in the tendinopathy group.
Collapse
Affiliation(s)
| | | | - Lisa Williams
- Orthopaedics, Cwm Taf University Health Board, Abercynon, UK
| | - Owen Pearce
- Podiatry, Cwm Taf University Health Board, Abercynon, UK
| | - Keith Morris
- Biomedical Sciences, Cardiff Metropolitan University, Cardiff, UK
| |
Collapse
|
20
|
Kubo K. Effects of static stretching on mechanical properties and collagen fiber orientation of the Achilles tendon in vivo. Clin Biomech (Bristol, Avon) 2018; 60:115-120. [PMID: 30342379 DOI: 10.1016/j.clinbiomech.2018.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/21/2018] [Accepted: 10/11/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND The study was designed to examine changes in tendon properties measured during ramp and ballistic contractions after static stretching and to elucidate the relationship between stretching-induced changes in tendon properties (particularly hysteresis) and collagen fiber orientation. METHODS Thirteen males performed static stretching, in which the ankle was passively flexed to 36° dorsiflexion and remained stationary for 10 min. Before and after stretching, the stiffness and hysteresis of tendon structures in the medial gastrocnemius muscle were measured using ultrasonography during ramp and ballistic contractions. Tendon collagen fiber orientation was also estimated from the coefficient of variation (CV) of echogenicity on transverse ultrasonic images of the Achilles tendon. FINDINGS The hysteresis of tendon structures significantly decreased by 15.5% (p = 0.005) during ramp contractions and by 15.3% (p = 0.003) during ballistic contractions after stretching, whereas stiffness did not. The mean echogenicity of the Achilles tendon significantly increased by 6.0% (p = 0.002) after stretching, whereas the CV of echogenicity did not (p = 0.148). Furthermore, the relative change in mean echogenicity, which reflected interstitial fluid movement within tendons, tended to be correlated to that in hysteresis measured during ballistic contractions (r = 0.439, p = 0.133). INTERPRETATION These results suggest that the hysteresis, but not stiffness, of tendon structures measured during ramp and ballistic contractions significantly decreased after stretching. Furthermore, a decline in the hysteresis of tendon structures after static stretching was associated with interstitial fluid movement within tendons, but not to changes in collagen fiber orientation.
Collapse
Affiliation(s)
- Keitaro Kubo
- Department of Life Science (Sports Sciences), The University of Tokyo, Meguro, Tokyo, Japan.
| |
Collapse
|
21
|
Sims DT, Onambélé-Pearson GL, Burden A, Payton C, Morse CI. Morphological and Mechanical Properties of the Human Patella Tendon in Adult Males With Achondroplasia. Front Physiol 2018; 9:867. [PMID: 30079026 PMCID: PMC6063341 DOI: 10.3389/fphys.2018.00867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/18/2018] [Indexed: 11/13/2022] Open
Abstract
Achondroplasia is a genetic mutation of fibroblast growth factor receptor resulting in impaired growth plate development in long bones due to lower collagen turnover. Despite the characteristic shorter stature and lower strength in Achondroplasic groups, little is known of the tendon mechanical properties under loading. The aim of this study was therefore to conduct a between measure design of patella tendon (PT) mechanical properties (stress, strain, stiffness and Young's Modulus) in 10 men with Achondroplasia (22 ± 3 years) and 17 male controls (22 ± 2 years). PT mechanical properties were measured during isometric maximal voluntary contraction (iMVC) of the knee extensors using ultrasonography. The Achondroplasic group produced 54% less stress at iMVC than controls (29.4 ± 8.0 v 64.5 ± 14.0 MPa, P < 0.001, d = 3.12). Maximal excursion of the Achondroplasic PT was 22% less than controls at iMVC (7.4 ± 2.1 v 5.5 ± 1.7 mm, P < 0.001, d = 0.99), but there was no difference in strain between groups (13 ± 4 v 13 ± 3%, P > 0.05). Achondroplasic PT were 47% less stiff (748 ± 93 v 1418 ± 101 N·mm−1, P < 0.001, d = 6.89) and had a 51% lower Young's modulus (0.39 ± 0.09 v 0.77 ± 0.14 GPa, P < 0.001, d = 3.46) than controls at iMVC. Achondroplasic PT are indeed more compliant than controls which may contribute to lower relative force production. The causes of higher Achondroplasic PT compliance are unclear but are likely due to the collagen related genetic mutation which causes Achondroplasia.
Collapse
Affiliation(s)
- David T Sims
- Health, Exercise and Active Living Research, Manchester Metropolitan University, Manchester, United Kingdom
| | - Gladys L Onambélé-Pearson
- Health, Exercise and Active Living Research, Manchester Metropolitan University, Manchester, United Kingdom
| | - Adrian Burden
- Health, Exercise and Active Living Research, Manchester Metropolitan University, Manchester, United Kingdom
| | - Carl Payton
- Health, Exercise and Active Living Research, Manchester Metropolitan University, Manchester, United Kingdom
| | - Christopher I Morse
- Health, Exercise and Active Living Research, Manchester Metropolitan University, Manchester, United Kingdom
| |
Collapse
|
22
|
Slane LC, Bogaerts S, Thelen DG, Scheys L. Nonuniform Deformation of the Patellar Tendon During Passive Knee Flexion. J Appl Biomech 2018; 34:14-22. [PMID: 28787221 DOI: 10.1123/jab.2017-0067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The purpose of this study was to evaluate localized patterns of patellar tendon deformation during passive knee flexion. Ultrasound radiofrequency data were collected from the patellar tendons of 20 healthy young adults during knee flexion over a range of motion of 50°-90° of flexion. A speckle tracking approach was used to compute proximal and distal tendon displacements and elongations. Nonuniform tissue displacements were visible in the proximal tendon (P < .001), with the deep tendon undergoing more distal displacement than the superficial tendon. In the distal tendon, more uniform tendon motion was observed. Spatial variations in percent elongation were also observed, but these varied along the length of the tendon (P < .002), with the proximal tendon remaining fairly isometric while the distal tendon underwent slight elongation. These results suggest that even during passive flexion the tendon undergoes complex patterns of deformation. Proximal tendon nonuniformity may arise from its complex anatomy where the deep tendon inserts onto the patella and the superficial tendon extends to the quadriceps tendon. Such heterogeneity is not captured in whole tendon average assessments, emphasizing the relevance of considering localized tendon mechanics, which may be key to understanding tendon behavior and precursors to injury and disease.
Collapse
|
23
|
McCrum C, Oberländer KD, Epro G, Krauss P, James DC, Reeves ND, Karamanidis K. Loading rate and contraction duration effects on in vivo
human Achilles tendon mechanical properties. Clin Physiol Funct Imaging 2017; 38:517-523. [DOI: 10.1111/cpf.12472] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/25/2017] [Indexed: 01/12/2023]
Affiliation(s)
- Christopher McCrum
- Department of Human Movement Science; NUTRIM School of Nutrition and Translational Research in Metabolism; Maastricht University Medical Centre+; Maastricht The Netherlands
- Institute of Movement and Sport Gerontology; German Sport University Cologne; Cologne Germany
| | - Kai D. Oberländer
- Media School; Fresenius University of Applied Science; Cologne Germany
| | - Gaspar Epro
- Sport and Exercise Science Research Centre; School of Applied Sciences; London South Bank University; London UK
| | - Peter Krauss
- Sport and Exercise Science Research Centre; School of Applied Sciences; London South Bank University; London UK
| | - Darren C. James
- Sport and Exercise Science Research Centre; School of Applied Sciences; London South Bank University; London UK
| | - Neil D. Reeves
- Faculty of Science and Engineering; School of Healthcare Science; Manchester Metropolitan University; Manchester UK
| | - Kiros Karamanidis
- Sport and Exercise Science Research Centre; School of Applied Sciences; London South Bank University; London UK
| |
Collapse
|
24
|
Massey GJ, Balshaw TG, Maden-Wilkinson TM, Tillin NA, Folland JP. The influence of patellar tendon and muscle-tendon unit stiffness on quadriceps explosive strength in man. Exp Physiol 2017; 102:448-461. [DOI: 10.1113/ep086190] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/10/2017] [Indexed: 01/14/2023]
Affiliation(s)
- Garry J. Massey
- Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis; Loughborough University; Leicestershire UK
- School of Sport; Exercise; and Health Sciences; Loughborough University; Leicestershire UK
| | - Thomas G. Balshaw
- Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis; Loughborough University; Leicestershire UK
- School of Sport; Exercise; and Health Sciences; Loughborough University; Leicestershire UK
| | | | - Neale A. Tillin
- Department of Life Sciences; University of Roehampton; London UK
| | - Jonathan P. Folland
- Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis; Loughborough University; Leicestershire UK
- School of Sport; Exercise; and Health Sciences; Loughborough University; Leicestershire UK
| |
Collapse
|
25
|
Mechanical and material properties of the plantarflexor muscles and Achilles tendon in children with spastic cerebral palsy and typically developing children. J Biomech 2016; 49:3004-3008. [DOI: 10.1016/j.jbiomech.2016.07.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 07/20/2016] [Accepted: 07/20/2016] [Indexed: 11/18/2022]
|
26
|
Abstract
Synopsis Tendinopathy is a very common disorder in both recreational and elite athletes. Many individuals have recurrent symptoms that lead to chronic conditions and termination of sports activity. Exercise has become a popular and somewhat efficacious treatment regime, and isolated eccentric exercise has been particularly promoted. In this clinical commentary, we review the relevant evidence for different exercise regimes in tendinopathy rehabilitation, with particular focus on the applied loads that are experienced by the tendon and how the exercise regime may affect these applied loads. There is no convincing clinical evidence to demonstrate that isolated eccentric loading exercise improves clinical outcomes more than other loading therapies. However, the great variation and sometimes insufficient reporting of the details of treatment protocols may hamper the interpretation of what may be the optimal exercise regime with respect to parameters such as load magnitude, speed of movement, and recovery period between exercise sessions. Future studies should control for these loading parameters, evaluate various exercise dosages, and think beyond isolated eccentric exercises to arrive at firm recommendations regarding rehabilitation of individuals with tendinopathies. J Orthop Sports Phys Ther 2015;45(11):853-863. Epub 14 Oct 2015. doi:10.2519/jospt.2015.5910.
Collapse
|
27
|
Massey G, Evangelidis P, Folland J. Influence of contractile force on the architecture and morphology of the quadriceps femoris. Exp Physiol 2015; 100:1342-51. [PMID: 26374174 DOI: 10.1113/ep085360] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/11/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Garry Massey
- School of Sport, Exercise and Health Sciences, Loughborough University; Loughborough; Leicestershire UK
| | - Pavlos Evangelidis
- School of Sport, Exercise and Health Sciences, Loughborough University; Loughborough; Leicestershire UK
| | - Jonathan Folland
- School of Sport, Exercise and Health Sciences, Loughborough University; Loughborough; Leicestershire UK
| |
Collapse
|
28
|
Achilles tendon moment arms: The importance of measuring at constant tendon load when using the tendon excursion method. J Biomech 2015; 48:1206-9. [DOI: 10.1016/j.jbiomech.2015.02.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 01/29/2015] [Accepted: 02/02/2015] [Indexed: 11/18/2022]
|
29
|
Pearson SJ, Hussain SR. Region-specific tendon properties and patellar tendinopathy: a wider understanding. Sports Med 2015; 44:1101-12. [PMID: 24838651 DOI: 10.1007/s40279-014-0201-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Patellar tendinopathy is a common painful musculoskeletal disorder with a very high prevalence in the athletic population that can severely limit or even end an athletic career. To date, the underlying pathophysiology leading to the condition remains poorly understood, although reports suggesting that patellar tendinopathy most frequently concerns the proximal posterior region of the tendon has prompted some researchers to examine region-specific tendon properties for a better understanding of the etiology and potential risk factors associated with the condition. However, to date, research concerning the in vivo region-specific tendon properties in relation to patellar tendinopathy is very scarce, perhaps due to the lack of validated techniques that can determine such properties in vivo. In recent years, a technique has been developed involving an automated tendon-tracking program that appears to be very useful in the determination of region-specific tendon properties in vivo. In terms of regional variations in tendon properties, previous research has demonstrated differences in structural, mechanical, and biochemical properties between the discrete regions of the patellar tendon, but the extent to which these regional variations contribute to patellar tendinopathy remains elusive. In addition, with respect to treatment strategies for patellar tendinopathy, previous research has utilized a wide range of interventions, but the use of eccentric exercise (EE) and/or heavy-slow resistance (HSR) training appear to be most promising. However, the optimal program design variables of EE and HSR training that induce the most favorable effects are yet to be determined. This review article provides a detailed discussion of all of the above to allow a better understanding of the etiology and potential risk factors associated with the condition as well as the most effective treatment strategies. First, a comprehensive literature review is provided with respect to region-specific structural, mechanical, and biochemical properties, in association with patellar tendinopathy. Second, the automated tendon-tracking methodology is outlined to assist future researchers in the determination of region-specific tendon properties. Finally, potential treatment strategies are discussed, particularly with regards to the use of EE and HSR training for the management of patellar tendinopathy.
Collapse
Affiliation(s)
- Stephen John Pearson
- Centre for Health, Sport and Rehabilitation Sciences Research, University of Salford, Manchester, M6 6PU, UK,
| | | |
Collapse
|
30
|
Joseph MF, Lillie KR, Bergeron DJ, Cota KC, Yoon JS, Kraemer WJ, Denegar CR. Achilles tendon biomechanics in response to acute intense exercise. J Strength Cond Res 2015; 28:1181-6. [PMID: 24552794 DOI: 10.1519/jsc.0000000000000361] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Achilles tendinopathy is a common disorder and is more prevalent in men. Although differences in tendon mechanics between men and women have been reported, understanding of tendon mechanics in young active people is limited. Moreover, there is limited understanding of changes in tendon mechanics in response to acute exercise. Our purpose was to compare Achilles tendon mechanics in active young adult men and women at rest and after light and strenuous activity in the form of repeated jumping with an added load. Participants consisted of 17 men and 14 women (18-30 years) who were classified as being at least moderately physically active as defined by the International Physical Activity Questionnaire. Tendon force/elongation measures were obtained during an isometric plantarflexion contraction on an isokinetic dynamometer with simultaneous ultrasound imaging of the Achilles tendon approximate to the soleus myotendinous junction. Data were collected at rest, after a 10-minute treadmill walk, and after a fatigue protocol of 100 toe jumps performed in a Smith machine, with a load equaling 20% of body mass. We found greater tendon elongation, decreased stiffness, and lower Young's modulus only in women after the jumping exercise. Force and stress were not different between groups but decreased subsequent to the jumping exercise bout. In general, women had greater elongation and strain, less stiffness, and a lower Young's modulus during plantarflexor contraction. These data demonstrate differences in tendon mechanics between men and women and suggest a potential protective mechanism explaining the lower incidence of Achilles tendinopathy in women.
Collapse
Affiliation(s)
- Michael F Joseph
- 1Department of Kinesiology; 2Physical Therapy Program; and 3Human Performance Laboratory, University of Connecticut, Storrs, Connecticut
| | | | | | | | | | | | | |
Collapse
|
31
|
Seynnes OR, Bojsen-Møller J, Albracht K, Arndt A, Cronin NJ, Finni T, Magnusson SP. Ultrasound-based testing of tendon mechanical properties: a critical evaluation. J Appl Physiol (1985) 2015; 118:133-41. [DOI: 10.1152/japplphysiol.00849.2014] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In the past 20 years, the use of ultrasound-based methods has become a standard approach to measure tendon mechanical properties in vivo. Yet the multitude of methodological approaches adopted by various research groups probably contribute to the large variability of reported values. The technique of obtaining and relating tendon deformation to tensile force in vivo has been applied differently, depending on practical constraints or scientific points of view. Divergence can be seen in 1) methodological considerations, such as the choice of anatomical features to scan and to track, force measurements, or signal synchronization; and 2) in physiological considerations related to the viscoelastic behavior or length measurements of tendons. Hence, the purpose of the present review is to assess and discuss the physiological and technical aspects connected to in vivo testing of tendon mechanical properties. In doing so, our aim is to provide the reader with a qualitative analysis of ultrasound-based techniques. Finally, a list of recommendations is proposed for a number of selected issues.
Collapse
Affiliation(s)
| | | | - K. Albracht
- Institute of Biomechanics and Orthopaedics, German Sport University, Cologne, Germany
| | - A Arndt
- GIH, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - N. J. Cronin
- Neuromuscular Research Centre, Department of Biology of Physical Activity, University of Jyväskylä, Jyväskylä, Finland; and
| | - T. Finni
- Neuromuscular Research Centre, Department of Biology of Physical Activity, University of Jyväskylä, Jyväskylä, Finland; and
| | - S. P. Magnusson
- Institute of Sports Medicine, Copenhagen & Musculoskeletal Rehabilitation Research Unit, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
32
|
Hannah R, Folland JP. Muscle-tendon unit stiffness does not independently affect voluntary explosive force production or muscle intrinsic contractile properties. Appl Physiol Nutr Metab 2015; 40:87-95. [DOI: 10.1139/apnm-2014-0343] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study examined the relationship of muscle-tendon unit (MTU) stiffness and explosive force production during voluntary and evoked contractions of the knee extensors. Thirty-four untrained participants performed a series of explosive voluntary and electrically evoked (octets (8 pulses, 300 Hz) via femoral nerve stimulation) isometric contractions. Maximum voluntary force (MVF) was assessed during maximum voluntary contractions. Explosive force production was assessed as the time taken, from force onset (0 N), to achieve specific levels of absolute (25–300 N) and relative force (5%–75% MVF) during the explosive contractions. Ultrasonic images of the vastus lateralis were recorded during 10-s ramp contractions to assess MTU stiffness, which was expressed in absolute (N·mm−1) and relative (to MVF and resting tendon-aponeurosis length) terms. Bivariate correlations suggested that absolute MTU stiffness was associated with voluntary explosive force (time to achieve 150–300 N: r = –0.35 to –0.54, P < 0.05). However, no relationships between stiffness and voluntary explosive force were observed when the influence of MVF was removed, either via partial correlations of absolute values (P ≥ 0.49) or considering relative values (P ≥ 0.14). Similarly, absolute MTU stiffness was related to explosive force during evoked octet contractions (r = –0.41 to –0.64, P < 0.05), but these correlations were no longer present when accounting for the influence of MVF (P ≥ 0.15). Therefore, once maximum strength was considered, MTU stiffness had no independent relationship with voluntary explosive force production or the evoked capacity for explosive force.
Collapse
Affiliation(s)
- Ricci Hannah
- Sport, Health and Performance Enhancement (SHAPE) Research Group, School of Science and Technology, Nottingham Trent University, Nottingham, UK
- School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, UK
| | - Jonathan P. Folland
- School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, UK
| |
Collapse
|
33
|
Lenhart RL, Thelen DG, Wille CM, Chumanov ES, Heiderscheit BC. Increasing running step rate reduces patellofemoral joint forces. Med Sci Sports Exerc 2014; 46:557-64. [PMID: 23917470 DOI: 10.1249/mss.0b013e3182a78c3a] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Increasing step rate has been shown to elicit changes in joint kinematics and kinetics during running, and it has been suggested as a possible rehabilitation strategy for runners with patellofemoral pain. The purpose of this study was to determine how altering step rate affects internal muscle forces and patellofemoral joint loads, and then to determine what kinematic and kinetic factors best predict changes in joint loading. METHODS We recorded whole body kinematics of 30 healthy adults running on an instrumented treadmill at three step rate conditions (90%, 100%, and 110% of preferred step rate). We then used a 3-D lower extremity musculoskeletal model to estimate muscle, patellar tendon, and patellofemoral joint forces throughout the running gait cycles. In addition, linear regression analysis allowed us to ascertain the relative influence of limb posture and external loads on patellofemoral joint force. RESULTS Increasing step rate to 110% of the preferred reduced peak patellofemoral joint force by 14%. Peak muscle forces were also altered as a result of the increased step rate with hip, knee, and ankle extensor forces, and hip abductor forces all reduced in midstance. Compared with the 90% step rate condition, there was a concomitant increase in peak rectus femoris and hamstring loads during early and late swing, respectively, at higher step rates. Peak stance phase knee flexion decreased with increasing step rate and was found to be the most important predictor of the reduction in patellofemoral joint loading. CONCLUSION Increasing step rate is an effective strategy to reduce patellofemoral joint forces and could be effective in modulating biomechanical factors that can contribute to patellofemoral pain.
Collapse
Affiliation(s)
- Rachel L Lenhart
- 1Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI; 2Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI; and 3Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI
| | | | | | | | | |
Collapse
|
34
|
Variants within the MMP3 gene and patellar tendon properties in vivo in an asymptomatic population. Eur J Appl Physiol 2014; 114:2625-34. [PMID: 25168209 DOI: 10.1007/s00421-014-2986-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 08/20/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND/AIM Gene variants encoding for proteins involved in homeostatic processes within tendons may influence its material and mechanical properties in humans. The purpose of this study was to examine the association between three polymorphisms of the MMP3 gene, (rs679620, rs591058 and rs650108) and patellar tendon dimensional and mechanical properties in vivo. METHODS One hundred and sixty, healthy, recreationally-active, Caucasian men and women, aged 18-39 were recruited. MMP3 genotype determined using real-time PCR was used to select 84 participants showing greatest genetic differences to complete phenotype measurements. Patellar tendon dimensions (volume) and functional (elastic modulus) properties were assessed in vivo using geometric modelling, isokinetic dynamometry, electromyography and ultrasonography. RESULTS No significant associations were evident between the completely linked MMP3 rs591058 and rs679620 gene variants, and closely linked rs650108 gene variant, and either patellar tendon volume (rs679620, P = 0.845; rs650108, P = 0.984) or elastic modulus (rs679620, P = 0.226; rs650108, P = 0.088). Similarly, there were no associations with the Z-score that combined those dimension and functional properties into a composite value (rs679620, P = 0.654; rs650108, P = 0.390). Similarly, no association was evident when comparing individuals with/without the rarer alleles (P > 0.01 in all cases). CONCLUSIONS Patellar tendon properties do not seem to be influenced by the MMP3 gene variants measured. Although these MMP3 gene variants have previously been associated with the risk of tendon pathology, that association is unlikely to be mediated via underlying tendon dimensional and functional properties.
Collapse
|
35
|
Waugh CM, Korff T, Fath F, Blazevich AJ. Effects of resistance training on tendon mechanical properties and rapid force production in prepubertal children. J Appl Physiol (1985) 2014; 117:257-66. [PMID: 24903920 DOI: 10.1152/japplphysiol.00325.2014] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Children develop lower levels of muscle force, and at slower rates, than adults. Although strength training in children is expected to reduce this differential, a synchronous adaptation in the tendon must be achieved to ensure forces continue to be transmitted to the skeleton with efficiency while minimizing the risk of strain-related tendon injury. We hypothesized that resistance training (RT) would alter tendon mechanical properties in children concomitantly with changes in force production characteristics. Twenty prepubertal children (age 8.9 ± 0.3 yr) were equally divided into control (nontraining) and experimental (training) groups. The training group completed a 10-wk RT intervention consisting of 2-3 sets of 8-15 plantar flexion contractions performed twice weekly on a recumbent calf-raise machine. Achilles tendon properties (cross-sectional area, elongation, stress, strain, stiffness, and Young's modulus), electromechanical delay (EMD; time between the onset of muscle activity and force), rate of force development (RFD; slope of the force-time curve), and rate of electromyographic (EMG) increase (REI; slope of the EMG time curve) were measured before and after RT. Tendon stiffness and Young's modulus increased significantly after RT in the experimental group only (∼29% and ∼25%, respectively); all other tendon properties were not significantly altered, although there were mean decreases in both peak tendon strain and strain at a given force level (14% and 24%, respectively; not significant) which may have implications for tendon injury risk and muscle fiber mechanics. A decrease of ∼13% in EMD was found after RT for the experimental group, which paralleled the increase in tendon stiffness (r = -0.59); however, RFD and REI were unchanged. The present data show that the Achilles tendon adapts to RT in prepubertal children and is paralleled by a change in EMD, although the magnitude of this change did not appear to be sufficient to influence RFD. These findings are of importance within the context of the efficiency and execution of movement.
Collapse
Affiliation(s)
- C M Waugh
- Centre for Sports Medicine and Human Performance, Brunel University, London, United Kingdom; and
| | - T Korff
- Centre for Sports Medicine and Human Performance, Brunel University, London, United Kingdom; and
| | - F Fath
- Centre for Sports Medicine and Human Performance, Brunel University, London, United Kingdom; and
| | - A J Blazevich
- Centre for Sports Medicine and Human Performance, Brunel University, London, United Kingdom; and Centre for Exercise and Sports Science Research, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
36
|
Lavagnino M, Bedi A, Walsh CP, Sibilsky Enselman ER, Sheibani-Rad S, Arnoczky SP. Tendon Contraction After Cyclic Elongation Is an Age-Dependent Phenomenon: In Vitro and In Vivo Comparisons. Am J Sports Med 2014; 42:1471-7. [PMID: 24668873 DOI: 10.1177/0363546514526691] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Tendons are viscoelastic tissues that deform (elongate) in response to cyclic loading. However, the ability of a tendon to recover this elongation is unknown. HYPOTHESIS Tendon length significantly increases after in vivo or in vitro cyclic loading, and the ability to return to its original length through a cell-mediated contraction mechanism is an age-dependent phenomenon. STUDY DESIGN Controlled laboratory study. METHODS In vitro, rat tail tendon fascicles (RTTfs) from Sprague-Dawley rats of 3 age groups (1, 3, and 12 months) underwent 2% cyclic strain at 0.17 Hz for 2 hours, and the percentages of elongation were determined. After loading, the RTTfs were suspended for 3 days under tissue culture conditions and photographed daily to determine the amount of length contraction. In vivo, healthy male participants (n = 29; age, 19-49 years) had lateral, single-legged weightbearing radiographs taken of the knee at 60° of flexion immediately before, immediately after, and 24 hours after completing eccentric quadriceps loading exercises on the dominant leg to fatigue. Measurements of patellar tendon length were taken from the radiographs, and the percentages of tendon elongation and subsequent contraction were calculated. RESULTS In vitro, cyclic loading increased the length of all RTTfs, with specimens from younger (1 and 3 months) rats demonstrating significantly greater elongation than those from older (12 months) rats (P = .009). The RTTfs contracted to their original length significantly faster (P < .001) and in an age-dependent fashion, with younger animals contracting faster. In vivo, repetitive eccentric loading exercises significantly increased patellar tendon length (P < .001). Patellar tendon length decreased 24 hours after exercises (P < .001) but did not recover completely (P < .001). There was a weak but significant (R (2) = 0.203, P = .014) linear correlation between the amount of tendon contraction and age, with younger participants (<30 years) demonstrating significantly more contraction (P = .014) at 24 hours than older participants (>30 years). CONCLUSION Cyclic tendon loading results in a significant increase in tendon elongation under both in vitro and in vivo conditions. Tendons in both conditions demonstrated an incomplete return to their original length after 24 hours, and the extent of this return was age dependent. CLINICAL RELEVANCE The age- and time-dependent contraction of tendons, elongated after repetitive loading, could result in transient alterations in the mechanobiological environment of tendon cells. This, in turn, could induce the onset of catabolic changes associated with the pathogenesis of tendinopathy. These results suggest the importance of allowing time for contraction between bouts of repetitive exercise and may explain why age is a predisposing factor in tendinopathy.
Collapse
Affiliation(s)
- Michael Lavagnino
- Laboratory for Comparative Orthopaedic Research, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Asheesh Bedi
- MedSport, University of Michigan Health System, Ann Arbor, Michigan, USA
| | | | | | - Shahin Sheibani-Rad
- Laboratory for Comparative Orthopaedic Research, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Steven P Arnoczky
- Laboratory for Comparative Orthopaedic Research, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
37
|
Jeong S, Lee DY, Choi DS, Lee HD. Acute effect of heel-drop exercise with varying ranges of motion on the gastrocnemius aponeurosis-tendon's mechanical properties. J Electromyogr Kinesiol 2014; 24:375-9. [PMID: 24717405 DOI: 10.1016/j.jelekin.2014.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 02/11/2014] [Accepted: 03/10/2014] [Indexed: 11/28/2022] Open
Abstract
The objectives of this study was to investigate the acute effects of various magnitudes of tendon strain on the mechanical properties of the human medial gastrocnemius (MG) in vivo during controlled heel-drop exercises. Seven male and seven female volunteers performed two different exercises executed one month apart: one was a heel-drop exercise on a block (HDB), and the other was a heel-drop exercise on level floor (HDL). In each regimen, the subjects completed a session of 150 heel-drop exercises (15 repetitions×10 sets; with a 30 s rest following each set). Before and immediately after the heel-drop exercise, the ankle plantar flexor torque and elongation of the MG were measured using a combined measurement system of dynamometry and ultrasonography and then the MG tendon strain and stiffness were evaluated in each subject. The tendon stiffness measured prior to the exercises was not significantly different between the two groups 23.7±10.6N/mm and 24.1±10.0N/mm for the HDB and HDL, respectively (p>.05). During the heel-drop exercise, it was found that the tendon strain during the heel-drop exercise on a block (8.4±3.7%) was significantly higher than the strain measured on the level floor (5.4±3.8%) (p<.05). In addition, the tendon stiffness following the heel-drop exercise on a block (32.3±12.2N/mm) was significantly greater than the tendon stiffness measured following the heel-drop exercise on the level floor (25.4±11.4N/mm) (p<.05). The results of this study suggest that tendon stiffness immediately following a heel-drop exercise depends on the magnitude of tendon strain.
Collapse
Affiliation(s)
- Siwoo Jeong
- Department of Physical Education, College of Sciences in Education, Yonsei University, Seoul, Republic of Korea
| | - Dae-Yeon Lee
- Department of Silver Industrial Engineering, College of Future Human Resource Development, Kangnam University, Yongin, Republic of Korea
| | - Dong-Sung Choi
- Department of Physical Education, College of Sciences in Education, Yonsei University, Seoul, Republic of Korea
| | - Hae-Dong Lee
- Department of Physical Education, College of Sciences in Education, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
38
|
Kösters A, Wiesinger HP, Bojsen-Møller J, Müller E, Seynnes OR. Influence of loading rate on patellar tendon mechanical properties in vivo. Clin Biomech (Bristol, Avon) 2014; 29:323-9. [PMID: 24405566 DOI: 10.1016/j.clinbiomech.2013.12.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/10/2013] [Accepted: 12/11/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND Rate-dependent properties of tendons have consistently been observed in vitro but in vivo studies comparing the effects of loading duration on this feature remain conflicting. The main purpose of the present study was to evaluate whether tendon loading rate per se would affect in vivo tendon mechanical properties. METHODS Twenty-two physically active male subjects were recruited. Patellar tendon deformation was recorded with ultrasonography under voluntary isometric contractions at rates of 50, 80 and 110Nm/s, controlled via visual feedback. FINDINGS Subjects were able to accurately generate all three loading rates (Accuracy=2% to 15%), with a greater steadiness at 50 (CV=12.4%) and 110Nm/s (CV=13.1%) than at 80Nm/s (CV=22.9%). Loading rate did not appreciably affect strain or stress. However, stiffness (ɳp(2)=0.555) and Youngs's Modulus (ɳp(2)=0.670) were significantly higher at 80Nm/s (21.4% and 21.6%, respectively) and at 110Nm/s (32.5% and 32.0%, respectively) than at 50Nm/s. Similarly, stiffness and Young's modulus were 9.9% and 8.8% higher, respectively, at 110Nm/s than at 80Nm/s. INTERPRETATION These results indicate that in vivo measurements of patellar tendon mechanics are influenced by loading rate. Moreover, they bear important methodological implications for in vivo assessment of mechanical properties of this tendon and possibly other human tendons.
Collapse
Affiliation(s)
- A Kösters
- Department of Sport Science and Kinesiology Salzburg, Austria.
| | - H P Wiesinger
- Department of Sport Science and Kinesiology Salzburg, Austria
| | | | - E Müller
- Department of Sport Science and Kinesiology Salzburg, Austria
| | - O R Seynnes
- Norwegian School of Sport Sciences Oslo, Norway
| |
Collapse
|
39
|
Malliaras P, Barton CJ, Reeves ND, Langberg H. Achilles and patellar tendinopathy loading programmes : a systematic review comparing clinical outcomes and identifying potential mechanisms for effectiveness. Sports Med 2013; 43:267-86. [PMID: 23494258 DOI: 10.1007/s40279-013-0019-z] [Citation(s) in RCA: 238] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
INTRODUCTION Achilles and patellar tendinopathy are overuse injuries that are common among athletes. Isolated eccentric muscle training has become the dominant conservative management strategy for Achilles and patellar tendinopathy but, in some cases, up to 45 % of patients may not respond. Eccentric-concentric progressing to eccentric (Silbernagel combined) and eccentric-concentric isotonic (heavy-slow resistance; HSR) loading have also been investigated. In order for clinicians to make informed decisions, they need to be aware of the loading options and comparative evidence. The mechanisms of loading also need to be elucidated in order to focus treatment to patient deficits and refine loading programmes in future studies. OBJECTIVES The objectives of this review are to evaluate the evidence in studies that compare two or more loading programmes in Achilles and patellar tendinopathy, and to review the non-clinical outcomes (potential mechanisms), such as improved imaging outcomes, associated with clinical outcomes. METHODS Comprehensive searching (MEDLINE, EMBASE, CINAHL, Current Contents and SPORTDiscus(™)) identified 403 studies. Two authors independently reviewed studies for inclusion and quality. The final yield included 32 studies; ten compared loading programmes and 28 investigated at least one potential mechanism (six studies compared loading programmes and investigated potential mechanisms). RESULTS This review has identified limited (Achilles) and conflicting (patellar) evidence that clinical outcomes are superior with eccentric loading compared with other loading programmes, questioning the currently entrenched clinical approach to these injuries. There is equivalent evidence for Silbernagel combined (Achilles) and greater evidence for HSR loading (patellar). The only potential mechanism that was consistently associated with improved clinical outcomes in both Achilles and patellar tendon rehabilitation was improved neuromuscular performance (e.g. torque, work, endurance), and Silbernagel-combined (Achilles) HSR loading (patellar) had an equivalent or higher level of evidence than isolated eccentric loading. In the Achilles tendon, a majority of studies did not find an association between improved imaging (e.g. reduced anteroposterior diameter, proportion of tendons with Doppler signal) and clinical outcomes, including all high-quality studies. In contrast, HSR loading in the patellar tendon was associated with reduced Doppler area and anteroposterior diameter, as well as greater evidence of collagen turnover, and this was not seen following eccentric loading. HSR seems more likely to lead to tendon adaptation and warrants further investigation. Improved jump performance was associated with Achilles but not patellar tendon clinical outcomes. The mechanisms associated with clinical benefit may vary between loading interventions and tendons. CONCLUSION There is little clinical or mechanistic evidence for isolating the eccentric component, although it should be made clear that there is a paucity of good quality evidence and several potential mechanisms have not been investigated, such as neural adaptation and central nervous system changes (e.g. cortical reorganization). Clinicians should consider eccentric-concentric loading alongside or instead of eccentric loading in Achilles and patellar tendinopathy. Good-quality studies comparing loading programmes and evaluating clinical and mechanistic outcomes are needed in both Achilles and patellar tendinopathy rehabilitation.
Collapse
Affiliation(s)
- Peter Malliaras
- Centre for Sports and Exercise Medicine, Mile End Hospital, Queen Mary, University of London, London, UK.
| | | | | | | |
Collapse
|
40
|
Peltonen J, Cronin NJ, Stenroth L, Finni T, Avela J. Viscoelastic properties of the Achilles tendon in vivo. SPRINGERPLUS 2013; 2:212. [PMID: 23710431 PMCID: PMC3661039 DOI: 10.1186/2193-1801-2-212] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 04/25/2013] [Indexed: 11/10/2022]
Abstract
It has been postulated that human tendons are viscoelastic and their mechanical properties time-dependent. Although Achilles tendon (AT) mechanics are widely reported, there is no consensus about AT viscoelastic properties such as loading rate dependency or hysteresis, in vivo. AT force-elongation characteristics were determined from 14 subjects in an ankle dynamometer at different loading rates using motion capture assisted ultrasonography. AT stiffness and elongation were determined between 10 - 80% of maximum voluntary contraction (MVC) force at fast and slow loading rates. As subjects were unable to consistently match the target unloading rate in the slow condition, AT hysteresis was only calculated for the fast rate. There was a significant difference between the fast and the slow loading rates: 120 ± 6 vs. 21 ± 1% of MVC s(-1) (mean ± standard error), respectively. However, neither stiffness (193 ± 18 N mm(-1) vs. 207 ± 22 N mm(-1)) nor elongation at any force level (13.0 ± 1.2 mm vs. 14.3 ± 0.9 mm at 80% of MVC) were significantly different between the fast and slow loading rates. Tendon hysteresis at the fast rate was 5 ± 2%. As stiffness was not sensitive to loading rate and hysteresis was small, it was concluded that elastic properties prevail over viscous properties in the human AT. The current results support the idea that AT stiffness is independent of loading rate.
Collapse
Affiliation(s)
- Jussi Peltonen
- Department of Biology of Physical Activity, Neuromuscular Research Center, University of Jyväskylä, Jyväskylä, Finland
| | | | | | | | | |
Collapse
|
41
|
Lower limb mechanical properties: determining factors and implications for performance. Sports Med 2013; 42:929-40. [PMID: 23009192 DOI: 10.1007/bf03262304] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Limb stiffness or musculotendinous stiffness (MTS) has previously been examined in relation to performance and characterized using a number of different methods. However, the fact that MTS shows only low to moderate correlations to performances may indicate a lack of understanding of this parameter. In addition to this, variation is seen between studies examining the same factors. To date, our understanding of MTS and its components are not complete and thus it is unclear which characteristic value represents the ideal index of stiffness as it relates to performance. Moreover, it is uncertain how MTS stiffness as a functional measure relates to performance, and also if there is an optimal amount of MTS stiffness for specific functions or tasks. The knowledge of the interplay of MTU stiffness as it relates to performance and injury risk is also poorly understood in that there is likely a disparity between levels of stiffness required to optimize performance and those required to minimize injury risk. The aim of this article is to review the literature as it describes the components of MTS and to discuss these in terms of their relationship to functional performance; consider adaptations of the MTU with training along with associated performance changes; highlight and discuss how stiffness may affect loading of the soft and bony tissues in terms of the MTU components and gender, with respect to risk of injury; discuss the apparent differences in the literature regarding associations of the various forms of stiffness index to function; suggest recommendations for training in light of adaptation of the muscle and tendon and injury risk in context of gender; and, finally, to highlight potential limitations of current methodologies and suggest further work to gain insight into the mechanisms of stiffness. It is hoped that by suggesting future work, a more detailed and comprehensive understanding of MTS will be gained, thus enabling appropriate interventions to optimally modify this parameter for specific requirements.
Collapse
|
42
|
Wearing SC, Hooper SL, Grigg NL, Nolan G, Smeathers JE. Overweight and obesity alters the cumulative transverse strain in the Achilles tendon immediately following exercise. J Bodyw Mov Ther 2012; 17:316-21. [PMID: 23768275 DOI: 10.1016/j.jbmt.2012.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/26/2012] [Accepted: 11/07/2012] [Indexed: 11/20/2022]
Abstract
This research evaluated the effect of obesity on the acute cumulative transverse strain of the Achilles tendon in response to exercise. Twenty healthy adult males were categorized into 'low normal-weight' (BMI <23 kg m(-2)) and 'overweight' (BMI >27.5 kg m(-2)) groups based on intermediate cut-off points recommended by the World Health Organization. Longitudinal sonograms of the right Achilles tendon were acquired immediately prior and following weight-bearing ankle exercises. Achilles tendon thickness was measured 20-mm proximal to the calcaneal insertion and transverse tendon strain was calculated as the natural log of the ratio of post- to pre-exercise tendon thickness. The Achilles tendon was thicker in the overweight group both prior to (t18 = -2.91, P = 0.009) and following (t18 = -4.87, P < 0.001) exercise. The acute transverse strain response of the Achilles tendon in the overweight group (-10.7 ± 2.5%), however, was almost half that of the 'low normal-weight' (-19.5 ± 7.4%) group (t18 = -3.56, P = 0.004). These findings suggest that obesity is associated with structural changes in tendon that impairs intra-tendinous fluid movement in response to load and provides new insights into the link between tendon pathology and overweight and obesity.
Collapse
Affiliation(s)
- Scott C Wearing
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland 4229, Australia.
| | | | | | | | | |
Collapse
|
43
|
Theis N, Mohagheghi AA, Korff T. Method and strain rate dependence of Achilles tendon stiffness. J Electromyogr Kinesiol 2012; 22:947-53. [DOI: 10.1016/j.jelekin.2012.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 05/16/2012] [Accepted: 06/14/2012] [Indexed: 11/24/2022] Open
|
44
|
Stenroth L, Peltonen J, Cronin NJ, Sipilä S, Finni T. Age-related differences in Achilles tendon properties and triceps surae muscle architecture in vivo. J Appl Physiol (1985) 2012; 113:1537-44. [PMID: 23042907 DOI: 10.1152/japplphysiol.00782.2012] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study examined the concurrent age-related differences in muscle and tendon structure and properties. Achilles tendon morphology and mechanical properties and triceps surae muscle architecture were measured from 100 subjects [33 young (24 ± 2 yr) and 67 old (75 ± 3 yr)]. Motion analysis-assisted ultrasonography was used to determine tendon stiffness, Young's modulus, and hysteresis during isometric ramp contractions. Ultrasonography was used to measure muscle architectural features and size and tendon cross-sectional area. Older participants had 17% lower (P < 0.01) Achilles tendon stiffness and 32% lower (P < 0.001) Young's modulus than young participants. Tendon cross-sectional area was also 16% larger (P < 0.001) in older participants. Triceps surae muscle size was smaller (P < 0.05) and gastrocnemius medialis muscle fascicle length shorter (P < 0.05) in old compared with young. Maximal plantarflexion force was associated with tendon stiffness and Young's modulus (r = 0.580, P < 0.001 and r = 0.561, P < 0.001, respectively). Comparison between old and young subjects with similar strengths did not reveal a difference in tendon stiffness. The results suggest that regardless of age, Achilles tendon mechanical properties adapt to match the level of muscle performance. Old people may compensate for lower tendon material properties by increasing tendon cross-sectional area. Lower tendon stiffness in older subjects might be beneficial for movement economy in low-intensity locomotion and thus optimized for their daily activities.
Collapse
Affiliation(s)
- Lauri Stenroth
- Gerontology Research Center and Department of Health Sciences, University of Jyväskylä.
| | | | | | | | | |
Collapse
|
45
|
Tardioli A, Malliaras P, Maffulli N. Immediate and short-term effects of exercise on tendon structure: biochemical, biomechanical and imaging responses. Br Med Bull 2012; 103:169-202. [PMID: 22279080 DOI: 10.1093/bmb/ldr052] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Introduction Tendons are metabolically active structures, and their biochemical, biomechanical and structural properties adapt to chronic exercise. However, abnormal adaptations may lead to the development of tendinopathy and pain. Acute and subacute adaptations might contribute to tendon pathology. Sources of data A systematic search of peer-reviewed articles was performed using a wide range of electronic databases. A total of 61 publications were selected. Areas of agreement Exercise induces acute responses in collagen turnover, blood flow, glucose, lactate and other inflammatory products (e.g. prostaglandins and interleukins). Mechanical properties are influenced by activity duration and intensity. Acute bouts of exercise affect tendon structure, with some of the changes resembling those reported in pathological tendons. Areas of controversy Given the variation in study designs, measured parameters and outcomes, it remains debatable how acute exercise influences overall tendon properties. There is discrepancy regarding which investigation modality and settings provide optimal assessment of each parameter. Growing points There is a need for greater homogeneity between study designs, including subject consortium and age, exercise protocols and time frames for parameter assessing. Areas timely for developing research Innovative methods, measuring each parameter simultaneously, would allow a greater understanding of how and when changes occur. This methodology is key to revealing pathological processes and pathways that alter tendon properties according to various activities. Optimal tendon properties differ between activities: more compliant tendons are beneficial for slow stretch shortening cycle (SSC) activities such as countermovement jumps, whereas stiffer tendons are considered beneficial for fast SSC movements such as sprinting.
Collapse
Affiliation(s)
- Alex Tardioli
- Centre for Sports and Exercise Medicine, Barts and the London School of Medicine and Dentistry,Mile End Hospital, London, UK
| | | | | |
Collapse
|
46
|
Gerus P, Rao G, Berton E. Subject-specific tendon-aponeurosis definition in Hill-type model predicts higher muscle forces in dynamic tasks. PLoS One 2012; 7:e44406. [PMID: 22952973 PMCID: PMC3430662 DOI: 10.1371/journal.pone.0044406] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 08/02/2012] [Indexed: 11/19/2022] Open
Abstract
Neuromusculoskeletal models are a common method to estimate muscle forces. Developing accurate neuromusculoskeletal models is a challenging task due to the complexity of the system and large inter-subject variability. The estimation of muscles force is based on the mechanical properties of tendon-aponeurosis complex. Most neuromusculoskeletal models use a generic definition of the tendon-aponeurosis complex based on in vitro test, perhaps limiting their validity. Ultrasonography allows subject-specific estimates of the tendon-aponeurosis complex’s mechanical properties. The aim of this study was to investigate the influence of subject-specific mechanical properties of the tendon-aponeurosis complex on a neuromusculoskeletal model of the ankle joint. Seven subjects performed isometric contractions from which the tendon-aponeurosis force-strain relationship was estimated. Hopping and running tasks were performed and muscle forces were estimated using subject-specific tendon-aponeurosis and generic tendon properties. Two ultrasound probes positioned over the muscle-tendon junction and the mid-belly were combined with motion capture to estimate the in vivo tendon and aponeurosis strain of the medial head of gastrocnemius muscle. The tendon-aponeurosis force-strain relationship was scaled for the other ankle muscles based on tendon and aponeurosis length of each muscle measured by ultrasonography. The EMG-driven model was calibrated twice - using the generic tendon definition and a subject-specific tendon-aponeurosis force-strain definition. The use of subject-specific tendon-aponeurosis definition leads to a higher muscle force estimate for the soleus muscle and the plantar-flexor group, and to a better model prediction of the ankle joint moment compared to the model estimate which used a generic definition. Furthermore, the subject-specific tendon-aponeurosis definition leads to a decoupling behaviour between the muscle fibre and muscle-tendon unit in agreement with previous experiments using ultrasonography. These results indicate the use of subject-specific tendon-aponeurosis definitions in a neuromusculoskeletal model produce better agreement with measured external loads and more physiological model behaviour.
Collapse
Affiliation(s)
- Pauline Gerus
- Centre for Musculoskeletal Research, Griffith Health Institute, Griffith University, Gold Coast, Australia.
| | | | | |
Collapse
|
47
|
Lee SS, Piazza SJ. Correlation between plantarflexor moment arm and preferred gait velocity in slower elderly men. J Biomech 2012; 45:1601-6. [DOI: 10.1016/j.jbiomech.2012.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 04/03/2012] [Accepted: 04/04/2012] [Indexed: 10/28/2022]
|
48
|
Waugh CM, Blazevich AJ, Fath F, Korff T. Age-related changes in mechanical properties of the Achilles tendon. J Anat 2011; 220:144-55. [PMID: 22150089 DOI: 10.1111/j.1469-7580.2011.01461.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The stiffness of a tendon, which influences muscular force transfer to the skeleton and increases during childhood, is dependent on its material properties and dimensions, both of which are influenced by chronic loading. The aims of this study were to: (i) determine the independent contributions of body mass, force production capabilities and tendon dimensions to tendon stiffness during childhood; and (ii) descriptively document age-related changes in tendon mechanical properties and dimensions. Achilles tendon mechanical and material properties were determined in 52 children (5-12 years) and 19 adults. Tendon stiffness and Young's modulus (YM) were calculated as the slopes of the force-elongation and stress-strain curves, respectively. Relationships between stiffness vs. age, mass and force, and between YM vs. age, mass and stress were determined by means of polynomial fits and multiple regression analyses. Mass was found to be the best predictor of stiffness, whilst stress was best related to YM (< 75 and 51% explained variance, respectively). Combined, mass and force accounted for up to 78% of stiffness variation. Up to 61% of YM variability could be explained using a combination of mass, stress and age. These results demonstrate that age-related increases in tendon stiffness are largely attributable to increased tendon loading from weight-bearing tasks and increased plantarflexor force production, as well as tendon growth. Moreover, our results suggest that chronic increases in tendon loading during childhood result in microstructural changes which increase the tendon's YM. Regarding the second aim, peak stress increased from childhood to adulthood due to greater increases in strength than tendon cross-sectional area. Peak strain remained constant as a result of parallel increases in tendon length and peak elongation. The differences in Achilles tendon properties found between adults and children are likely to influence force production, and ultimately movement characteristics, which should be explicitly examined in future research.
Collapse
Affiliation(s)
- C M Waugh
- Centre for Sports Medicine and Human Performance, Brunel University, UK
| | | | | | | |
Collapse
|
49
|
Pearson SJ, Onambélé GL. Computation methods affect the reported values of in vivo human tendon stiffness. J Mech Behav Biomed Mater 2011; 5:291-7. [PMID: 22100104 DOI: 10.1016/j.jmbbm.2011.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Revised: 07/27/2011] [Accepted: 08/15/2011] [Indexed: 11/16/2022]
Abstract
PURPOSE Scientific validity is questionable when findings from studies cannot be used to make sense of physiological and/or biomechanical data. In particular, is the case of in vivo determination of tendon stiffness (K). Here, approaches range from taking the gradient (a) throughout the data range of resting to Maximal Voluntary Contraction (MVC), (b) tangents at individual data points, (c) linear regressions at discrete force levels ((b) and (c) being 'reference standard' as they utilise a number of distinct regions of the Force-Elongation Relationship (FER)). STUDY DESIGN A mathematical model approach is used to develop simple curvilinear FERs as seen when determining tendon mechanical properties, to allow variable calculations of K. OBJECTIVES To compare variability in K estimates using the various approaches currently seen in the literature. METHODS Three FER models were developed, representing low, medium and high K. Values of K were determined and compared using the approaches reported in the literature to estimate the magnitude of the difference between values attained of K. RESULTS Through mathematical modelling, we demonstrate that the impact on the recorded value of K is substantial: relative to the reference standard methods, computation methods published range from underestimating K by 26% to overestimating it by 51%. CONCLUSION This modelling helps by providing a 'scaling factor' through which the between studies variability associated with computational methods differences is minimised. This is especially important where researchers or clinicians require values which are consistent in the context of establishing the 'true' tendon mechanical properties to inform models or materials based on the biological properties of the human tendon.
Collapse
Affiliation(s)
- Stephen J Pearson
- Centre for Health, Sport and Rehabilitation Sciences Research, University of Salford, Manchester, M6 6PU, United Kingdom.
| | | |
Collapse
|
50
|
Gerus P, Rao G, Berton E. A method to characterize in vivo tendon force–strain relationship by combining ultrasonography, motion capture and loading rates. J Biomech 2011; 44:2333-6. [DOI: 10.1016/j.jbiomech.2011.05.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 05/16/2011] [Accepted: 05/17/2011] [Indexed: 11/16/2022]
|