1
|
Fuse Y, Takeuchi K, Hashimoto N, Nagata Y, Takagi Y, Nagatani T, Takeuchi I, Saito R. Deep learning based identification of pituitary adenoma on surgical endoscopic images: a pilot study. Neurosurg Rev 2023; 46:291. [PMID: 37910280 DOI: 10.1007/s10143-023-02196-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/21/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
Accurate tumor identification during surgical excision is necessary for neurosurgeons to determine the extent of resection without damaging the surrounding tissues. No conventional technologies have achieved reliable performance for pituitary adenomas. This study proposes a deep learning approach using intraoperative endoscopic images to discriminate pituitary adenomas from non-tumorous tissue inside the sella turcica. Static images were extracted from 50 intraoperative videos of patients with pituitary adenomas. All patients underwent endoscopic transsphenoidal surgery with a 4 K ultrahigh-definition endoscope. The tumor and non-tumorous tissue within the sella turcica were delineated on static images. Using intraoperative images, we developed and validated deep learning models to identify tumorous tissue. Model performance was evaluated using a fivefold per-patient methodology. As a proof-of-concept, the model's predictions were pathologically cross-referenced with a medical professional's diagnosis using the intraoperative images of a prospectively enrolled patient. In total, 605 static images were obtained. Among the cropped 117,223 patches, 58,088 were labeled as tumors, while the remaining 59,135 were labeled as non-tumorous tissues. The evaluation of the image dataset revealed that the wide-ResNet model had the highest accuracy of 0.768, with an F1 score of 0.766. A preliminary evaluation on one patient indicated alignment between the ground truth set by neurosurgeons, the model's predictions, and histopathological findings. Our deep learning algorithm has a positive tumor discrimination performance in intraoperative 4-K endoscopic images in patients with pituitary adenomas.
Collapse
Affiliation(s)
- Yutaro Fuse
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
- Academia-Industry Collaboration Platform for Cultivating Medical AI Leaders (AI-MAILs), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuhito Takeuchi
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | | | - Yuichi Nagata
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yusuke Takagi
- Department of Computer Science, Nagoya Institute of Technology, Nagoya, Japan
| | - Tetsuya Nagatani
- Department of Neurosurgery, Japanese Red Cross Aichi Medical Center Nagoya Daini Hospital, Nagoya, Japan
| | - Ichiro Takeuchi
- RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
- Department of Mechanical Systems Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Ryuta Saito
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
2
|
Sputum analysis by flow cytometry; an effective platform to analyze the lung environment. PLoS One 2022; 17:e0272069. [PMID: 35976857 PMCID: PMC9385012 DOI: 10.1371/journal.pone.0272069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/12/2022] [Indexed: 11/19/2022] Open
Abstract
Low dose computed tomography (LDCT) is the standard of care for lung cancer screening in the United States (US). LDCT has a sensitivity of 93.8% but its specificity of 73.4% leads to potentially harmful follow-up procedures in patients without lung cancer. Thus, there is a need for additional assays with high accuracy that can be used as an adjunct to LDCT to diagnose lung cancer. Sputum is a biological fluid that can be obtained non-invasively and can be dissociated to release its cellular contents, providing a snapshot of the lung environment. We obtained sputum from current and former smokers with a 30+ pack-year smoking history and who were either confirmed to have lung cancer or at high risk of developing the disease. Dissociated sputum cells were counted, viability determined, and labeled with a panel of markers to separate leukocytes from non-leukocytes. After excluding debris and dead cells, including squamous epithelial cells, we identified reproducible population signatures and confirmed the samples’ lung origin. In addition to leukocyte and epithelial-specific fluorescent antibodies, we used the highly fluorescent meso-tetra(4-carboxyphenyl) porphyrin (TCPP), known to preferentially stain cancer (associated) cells. We looked for differences in cell characteristics, population size and fluorescence intensity that could be useful in distinguishing cancer samples from high-risk samples. We present our data demonstrating the feasibility of a flow cytometry platform to analyze sputum in a high-throughput and standardized matter for the diagnosis of lung cancer.
Collapse
|
3
|
Correlation of Intraoperative 5-ALA-Induced Fluorescence Intensity and Preoperative 11C-Methionine PET Uptake in Glioma Surgery. Cancers (Basel) 2022; 14:cancers14061449. [PMID: 35326600 PMCID: PMC8946621 DOI: 10.3390/cancers14061449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary In malignant brain tumor surgery, precise identification of the tumor is essential. 5-Aminolevulinic acid (5-ALA) labels tumor cells with red fluorescence to facilitate tumor resection. On the other hand, the nuclear medicine imaging technique, positron emission tomography with 11C-methionine (MET-PET), can delineate tumors precisely but is not widely available. This study aimed to determine the correlation between intraoperative 5-ALA-induced fluorescence and preoperative MET-PET signals of gliomas. We quantitatively measured the fluorescence intensity from tumor samples and calculated the MET-PET uptake by the tumor. Our study showed that strong tumor fluorescence correlated with high MET-PET uptake and cellular proliferation. Our findings might be valuable to rapidly provide information on tumor biology at the time of surgery in circumstances where MET-PET is inaccessible. Abstract Background: 5-Aminolevulinic acid (5-ALA) is widely employed to assist fluorescence-guided surgery for malignant brain tumors. Positron emission tomography with 11C-methionine (MET-PET) represents the activity of brain tumors with precise boundaries but is not readily available. We hypothesized that quantitative 5-ALA-induced fluorescence intensity might correlate with MET-PET uptake in gliomas. Methods: Adult patients with supratentorial astrocytic gliomas who underwent preoperative MET-PET and surgical tumor resection using 5-ALA were enrolled in this prospective study. The regional tumor uptake of MET-PET was expressed as the ratio of standardized uptake volume max to that of the normal contralateral frontal lobe. A spectrometric fluorescence detection system measured tumor specimens’ ex vivo fluorescence intensity at 635 nm. Ki-67 index and IDH mutation status were assessed by histopathological analysis. Use of an antiepileptic drug (AED) and contrast enhancement pattern on MRI were also investigated. Results: Thirty-two patients, mostly with Glioblastoma IDH wild type (46.9%) and anaplastic astrocytoma IDH mutant (21.9%), were analyzed. When the fluorescence intensity was ranked into four groups, the strongest fluorescence group exhibited the highest mean MET-PET uptake and Ki-67 index values. When rearranged into fluorescence Visible or Non-visible groups, the Visible group had significantly higher MET-PET uptake and Ki-67 index compared to the Non-visible group. Contrast enhancement on MRI and IDH wild type tumors were more frequent among the Visible group. AED use did not correlate with 5-ALA-induced fluorescence intensity. Conclusions: In astrocytic glioma surgery, visible 5-ALA-induced fluorescence correlated with high MET-PET uptake, along with a high Ki-67 index.
Collapse
|
4
|
Khlebtsov B, Burov A, Pylaev T, Savkina A, Prikhozhdenko E, Bratashov D, Khlebtsov N. Improving SERS bioimaging of subcutaneous phantom in vivo with optical clearing. JOURNAL OF BIOPHOTONICS 2022; 15:e202100281. [PMID: 34856066 DOI: 10.1002/jbio.202100281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/29/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Surface-enhanced Raman scattering (SERS) has proven to be a promising technique for different types of imaging including preoperative and intraoperative in vivo tumor visualization. However, the strong scattering of the turbid tissue limits its use in subcutaneous areas. In this article, we used an optical clearing technique to improve the SERS signal from a subcutaneous tumor phantom. The phantom is a 2 mm sphere of calcium alginate with incorporated petal-like gap-enhanced Raman tags. The use of optical clearing increases the SERS signal target-to-background ratio for 5 times and allow to decrease the total imaging time for at least 10 times. In addition, SERS imaging assisted with optical clearing made it possible to more precisely determine the shape and boundaries of the implanted phantom. The combination of optical clearing and SERS is a promising strategy for the clinical imaging of subcutaneous objects that are usually shielded by dermal tissue.
Collapse
Affiliation(s)
- Boris Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms RAS, Saratov, Russia
| | - Andrey Burov
- Institute of Biochemistry and Physiology of Plants and Microorganisms RAS, Saratov, Russia
| | - Timofey Pylaev
- Institute of Biochemistry and Physiology of Plants and Microorganisms RAS, Saratov, Russia
- Saratov State Medical University, Saratov, Russia
| | | | | | | | - Nikolai Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms RAS, Saratov, Russia
- Saratov State University, Saratov, Russia
| |
Collapse
|
5
|
Brahimaj BC, Kochanski RB, Pearce JJ, Guryildirim M, Gerard CS, Kocak M, Sani S, Byrne RW. Structural and Functional Imaging in Glioma Management. Neurosurgery 2021; 88:211-221. [PMID: 33313852 DOI: 10.1093/neuros/nyaa360] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/26/2020] [Indexed: 01/08/2023] Open
Abstract
The goal of glioma surgery is maximal safe resection in order to provide optimal tumor control and survival benefit to the patient. There are multiple imaging modalities beyond traditional contrast-enhanced magnetic resonance imaging (MRI) that have been incorporated into the preoperative workup of patients presenting with gliomas. The aim of these imaging modalities is to identify cortical and subcortical areas of eloquence, and their relationship to the lesion. In this article, multiple modalities are described with an emphasis on the underlying technology, clinical utilization, advantages, and disadvantages of each. functional MRI and its role in identifying hemispheric dominance and areas of language and motor are discussed. The nuances of magnetoencephalography and transcranial magnetic stimulation in localization of eloquent cortex are examined, as well as the role of diffusion tensor imaging in defining normal white matter tracts in glioma surgery. Lastly, we highlight the role of stimulated Raman spectroscopy in intraoperative histopathological diagnosis of tissue to guide tumor resection. Tumors may shift the normal arrangement of functional anatomy in the brain; thus, utilization of multiple modalities may be helpful in operative planning and patient counseling for successful surgery.
Collapse
Affiliation(s)
- Bledi C Brahimaj
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois
| | - Ryan B Kochanski
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois
| | - John J Pearce
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois
| | - Melike Guryildirim
- Department of Radiology and Radiological Science, Johns Hopkins Hospital, Baltimore, Maryland
| | - Carter S Gerard
- Swedish Neuroscience Institute, Swedish Medical Center, Seattle, Washington
| | - Mehmet Kocak
- Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, Chicago, Illinois
| | - Sepehr Sani
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois
| | - Richard W Byrne
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
6
|
Belykh E, Ngo B, Farhadi DS, Zhao X, Mooney MA, White WL, Daniels JK, Little AS, Eschbacher JM, Preul MC. Confocal Laser Endomicroscopy Assessment of Pituitary Tumor Microstructure: A Feasibility Study. J Clin Med 2020; 9:jcm9103146. [PMID: 33003336 PMCID: PMC7600847 DOI: 10.3390/jcm9103146] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/12/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
This is the first study to assess confocal laser endomicroscopy (CLE) use within the transsphenoidal approach and show the feasibility of obtaining digital diagnostic biopsies of pituitary tumor tissue after intravenous fluorescein injection. We confirmed that the CLE probe reaches the tuberculum sellae through the transnasal transsphenoidal corridor in cadaveric heads. Next, we confirmed that CLE provides images with identifiable histological features of pituitary adenoma. Biopsies from nine patients who underwent pituitary adenoma surgery were imaged ex vivo at various times after fluorescein injection and were assessed by a blinded board-certified neuropathologist. With frozen sections used as the standard, pituitary adenoma was diagnosed as “definitively” for 13 and as “favoring” in 3 of 16 specimens. CLE digital biopsies were diagnostic for pituitary adenoma in 10 of 16 specimens. The reasons for nondiagnostic CLE images were biopsy acquisition <1 min or >10 min after fluorescein injection (n = 5) and blood artifacts (n = 1). In conclusion, fluorescein provided sufficient contrast for CLE at a dose of 2 mg/kg, optimally 1–10 min after injection. These results provide a basis for further in vivo studies using CLE in transsphenoidal surgery.
Collapse
Affiliation(s)
- Evgenii Belykh
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (E.B.); (B.N.); (D.S.F.); (X.Z.); (M.A.M.); (W.L.W.); (A.S.L.)
| | - Brandon Ngo
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (E.B.); (B.N.); (D.S.F.); (X.Z.); (M.A.M.); (W.L.W.); (A.S.L.)
| | - Dara S. Farhadi
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (E.B.); (B.N.); (D.S.F.); (X.Z.); (M.A.M.); (W.L.W.); (A.S.L.)
| | - Xiaochun Zhao
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (E.B.); (B.N.); (D.S.F.); (X.Z.); (M.A.M.); (W.L.W.); (A.S.L.)
| | - Michael A. Mooney
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (E.B.); (B.N.); (D.S.F.); (X.Z.); (M.A.M.); (W.L.W.); (A.S.L.)
| | - William L. White
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (E.B.); (B.N.); (D.S.F.); (X.Z.); (M.A.M.); (W.L.W.); (A.S.L.)
| | - Jessica K. Daniels
- Department of Neuropathology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (J.K.D.); (J.M.E.)
| | - Andrew S. Little
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (E.B.); (B.N.); (D.S.F.); (X.Z.); (M.A.M.); (W.L.W.); (A.S.L.)
| | - Jennifer M. Eschbacher
- Department of Neuropathology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (J.K.D.); (J.M.E.)
| | - Mark C. Preul
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (E.B.); (B.N.); (D.S.F.); (X.Z.); (M.A.M.); (W.L.W.); (A.S.L.)
- Correspondence: ; Tel.: +1-602-406-3593
| |
Collapse
|
7
|
Nakahara Y, Ito H, Masuoka J, Abe T. Boron Neutron Capture Therapy and Photodynamic Therapy for High-Grade Meningiomas. Cancers (Basel) 2020; 12:E1334. [PMID: 32456178 PMCID: PMC7281755 DOI: 10.3390/cancers12051334] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/23/2020] [Accepted: 05/21/2020] [Indexed: 11/26/2022] Open
Abstract
Meningiomas are the most common type of intracranial brain tumors in adults. The majority of meningiomas are benign with a low risk of recurrence after resection. However, meningiomas defined as grades II or III, according to the 2016 World Health Organization (WHO) classification, termed high-grade meningiomas, frequently recur, even after gross total resection with or without adjuvant radiotherapy. Boron neutron capture therapy (BNCT) and photodynamic therapy (PDT) are novel treatment modalities for malignant brain tumors, represented by glioblastomas. Although BNCT is based on a nuclear reaction and PDT uses a photochemical reaction, both of these therapies result in cellular damage to only the tumor cells. The aim of this literature review is to investigate the possibility and efficacy of BNCT and PDT as novel treatment modalities for high-grade meningiomas. The present review was conducted by searching PubMed and Scopus databases. The search was conducted in December 2019. Early clinical studies of BNCT have demonstrated activity for high-grade meningiomas, and a phase II clinical trial is in progress in Japan. As for PDT, studies have investigated the effect of PDT in malignant meningioma cell lines to establish PDT as a treatment for malignant meningiomas. Further laboratory research combined with proper controlled trials investigating the effects of these therapies is warranted.
Collapse
Affiliation(s)
- Yukiko Nakahara
- Department of Neurosurgery, Faculty of Medicine, Saga University, Saga 840-8501, Japan; (H.I.); (J.M.); (T.A.)
| | | | | | | |
Collapse
|
8
|
Jensen MM, Barber ZB, Khurana N, Isaacson KJ, Steinhauff D, Green B, Cappello J, Pulsipher A, Ghandehari H, Alt JA. A dual-functional Embolization-Visualization System for Fluorescence image-guided Tumor Resection. Theranostics 2020; 10:4530-4543. [PMID: 32292513 PMCID: PMC7150499 DOI: 10.7150/thno.39700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023] Open
Abstract
Rationale: Intraoperative bleeding impairs physicians' ability to visualize the surgical field, leading to increased risk of surgical complications and reduced outcomes. Bleeding is particularly challenging during endoscopic-assisted surgical resection of hypervascular tumors in the head and neck. A tool that controls bleeding while marking tumor margins has the potential to improve gross tumor resection, reduce surgical morbidity, decrease blood loss, shorten procedure time, prevent damage to surrounding tissues, and limit postoperative pain. Herein, we develop and characterize a new system that combines pre-surgical embolization with improved visualization for endoscopic fluorescence image-guided tumor resection. Methods: Silk-elastinlike protein (SELP) polymers were employed as liquid embolic vehicles for delivery of a clinically used near-infrared dye, indocyanine green (ICG). The biophysical properties of SELP, including gelation kinetics, modulus of elasticity, and viscosity, in response to ICG incorporation using rheology, were characterized. ICG release from embolic SELP was modeled in tissue phantoms and via fluorescence imaging. The embolic capability of the SELP-ICG system was then tested in a microfluidic model of tumor vasculature. Lastly, the cytotoxicity of the SELP-ICG system in L-929 fibroblasts and human umbilical vein endothelial cells (HUVEC) was assessed. Results: ICG incorporation into SELP accelerated gelation and increased its modulus of elasticity. The SELP embolic system released 83 ± 8% of the total ICG within 24 hours, matching clinical practice for pre-surgical embolization procedures. Adding ICG to SELP did not reduce injectability, but did improve the gelation kinetics. After simulated embolization, ICG released from SELP in tissue phantoms diffused a sufficient distance to deliver dye throughout a tumor. ICG-loaded SELP was injectable through a clinical 2.3 Fr microcatheter and demonstrated deep penetration into 50-µm microfluidic-simulated blood vessels with durable occlusion. Incorporation of ICG into SELP improved biocompatibility with HUVECs, but had no effect on L-929 cell viability. Principle Conclusions: We report the development and characterization of a new, dual-functional embolization-visualization system for improving fluorescence-imaged endoscopic surgical resection of hypervascular tumors.
Collapse
Affiliation(s)
- M. Martin Jensen
- Department of Bioengineering, University of Utah, Salt Lake City, UT, 84112 USA
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112 USA
| | - Zachary B. Barber
- Department of Bioengineering, University of Utah, Salt Lake City, UT, 84112 USA
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112 USA
| | - Nitish Khurana
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112 USA
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112 USA
| | - Kyle J. Isaacson
- Department of Bioengineering, University of Utah, Salt Lake City, UT, 84112 USA
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112 USA
| | - Douglas Steinhauff
- Department of Bioengineering, University of Utah, Salt Lake City, UT, 84112 USA
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112 USA
| | - Bryant Green
- Department of Bioengineering, University of Utah, Salt Lake City, UT, 84112 USA
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112 USA
| | - Joseph Cappello
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112 USA
| | - Abigail Pulsipher
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112 USA
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Utah School of Medicine, Salt Lake City, UT 84113
| | - Hamidreza Ghandehari
- Department of Bioengineering, University of Utah, Salt Lake City, UT, 84112 USA
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112 USA
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112 USA
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Utah School of Medicine, Salt Lake City, UT 84113
| | - Jeremiah A. Alt
- Department of Bioengineering, University of Utah, Salt Lake City, UT, 84112 USA
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112 USA
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112 USA
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Utah School of Medicine, Salt Lake City, UT 84113
| |
Collapse
|
9
|
Katsevman GA, Turner RC, Urhie O, Voelker JL, Bhatia S. Utility of sodium fluorescein for achieving resection targets in glioblastoma: increased gross- or near-total resections and prolonged survival. J Neurosurg 2020; 132:914-920. [PMID: 30738388 DOI: 10.3171/2018.10.jns181174] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 10/04/2018] [Indexed: 02/01/2023]
Abstract
OBJECTIVE It is commonly reported that achieving gross-total resection of contrast-enhancing areas in patients with glioblastoma (GBM) improves overall survival. Efforts to achieve an improved resection have included the use of both imaging and pharmacological adjuvants. The authors sought to investigate the role of sodium fluorescein in improving the rates of gross-total resection of GBM and to assess whether patients undergoing resection with fluorescein have improved survival compared to patients undergoing resection without fluorescein. METHODS A retrospective chart review was performed on 57 consecutive patients undergoing 64 surgeries with sodium fluorescein to treat newly diagnosed or recurrent GBMs from May 2014 to June 2017 at a teaching institution. Outcomes were compared to those in patients with GBMs who underwent resection without fluorescein. RESULTS Complete or near-total (≥ 98%) resection was achieved in 73% (47/64) of fluorescein cases. Of 42 cases thought not to be amenable to complete resection, 10 procedures (24%) resulted in gross-total resection and 15 (36%) resulted in near-total resection following the use of sodium fluorescein. No patients developed any local or systemic side effects after fluorescein injection. Patients undergoing resection with sodium fluorescein, compared to the non-fluorescein-treated group, had increased rates of gross- or near-total resection (73% vs 53%, respectively; p < 0.05) as well as improved median survival (78 weeks vs 60 weeks, respectively; p < 0.360). CONCLUSIONS This study is the largest case series to date demonstrating the beneficial effect of utilizing sodium fluorescein as an adjunct in GBM resection. Sodium fluorescein facilitated resection in cases in which it was employed, including dominant-side resections particularly near speech and motor regions. The cohort of patients in which sodium fluorescein was utilized had statistically significantly increased rates of gross- or near-total resection. Additionally, the fluorescein group demonstrated prolonged median survival, although this was not statistically significant. This work demonstrates the promise of an affordable and easy-to-implement strategy for improving rates of total resection of contrast-enhancing areas in patients with GBM.
Collapse
Affiliation(s)
| | | | - Ogaga Urhie
- 2West Virginia University School of Medicine, Morgantown, West Virginia
| | | | | |
Collapse
|
10
|
Pekov SI, Eliferov VA, Sorokin AA, Shurkhay VA, Zhvansky ES, Vorobyev AS, Potapov AA, Nikolaev EN, Popov IA. Inline cartridge extraction for rapid brain tumor tissue identification by molecular profiling. Sci Rep 2019; 9:18960. [PMID: 31831871 PMCID: PMC6908710 DOI: 10.1038/s41598-019-55597-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 11/05/2019] [Indexed: 12/16/2022] Open
Abstract
The development of perspective diagnostic techniques in medicine requires efficient high-throughput biological sample analysis methods. Here, we present an inline cartridge extraction that facilitates the screening rate of mass spectrometry shotgun lipidomic analysis of tissue samples. We illustrate the method by its application to tumor tissue identification in neurosurgery. In perspective, this high-performance method provides new possibilities for the investigation of cancer pathogenesis and metabolic disorders.
Collapse
Affiliation(s)
- Stanislav I Pekov
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russian Federation
| | - Vasily A Eliferov
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russian Federation
| | - Anatoly A Sorokin
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russian Federation
| | - Vsevolod A Shurkhay
- Federal State Autonomous Institution «N.N. Burdenko National Scientific and Practical Center for Neurosurgery» of the Ministry of Healthcare of the Russian Federation, Moscow, Russian Federation
| | - Evgeny S Zhvansky
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russian Federation
| | - Alexander S Vorobyev
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russian Federation
| | - Alexander A Potapov
- Federal State Autonomous Institution «N.N. Burdenko National Scientific and Practical Center for Neurosurgery» of the Ministry of Healthcare of the Russian Federation, Moscow, Russian Federation
| | - Eugene N Nikolaev
- Skolkovo Institute of Science and Technology, Skolkovo, Russian Federation.
| | - Igor A Popov
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russian Federation.
| |
Collapse
|
11
|
Zhang DY, Singhal S, Lee JYK. Optical Principles of Fluorescence-Guided Brain Tumor Surgery: A Practical Primer for the Neurosurgeon. Neurosurgery 2019; 85:312-324. [PMID: 30085129 DOI: 10.1093/neuros/nyy315] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 06/18/2018] [Indexed: 01/21/2023] Open
Abstract
Fluorescence-guided surgery is a rapidly growing field that has produced some of the most important innovations in surgical oncology in the past decade. These intraoperative imaging technologies provide information distinguishing tumor tissue from normal tissue in real time as the surgery proceeds and without disruption of the workflow. Many of these fluorescent tracers target unique molecular or cellular features of tumors, which offers the opportunity for identifying pathology with high precision to help surgeons achieve their primary objective of a maximal safe resection. As novel fluorophores and fluorescent probes emerge from preclinical development, a practical understanding of the principles of fluorescence remains critical for evaluating the clinical utility of these agents and identifying opportunities for further innovation. In this review, we provide an "in-text glossary" of the fundamental principles of fluorescence with examples of direct applications to fluorescence-guided brain surgery. We offer a detailed discussion of the various advantages and limitations of the most commonly used intraoperative imaging agents, including 5-aminolevulinic acid, indocyanine green, and fluorescein, with a particular focus on the photophysical properties of these specific agents as they provide a framework through which to understand the new agents that are entering clinical trials. To this end, we conclude with a survey of the fluorescent properties of novel agents that are currently undergoing or will soon enter clinical trials for the intraoperative imaging of brain tumors.
Collapse
Affiliation(s)
- Daniel Y Zhang
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sunil Singhal
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - John Y K Lee
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
12
|
Belykh E, Cavallo C, Gandhi S, Zhao X, Veljanoski D, Izady Yazdanabadi M, Martirosyan NL, Byvaltsev VA, Eschbacher J, Preul MC, Nakaji P. Utilization of intraoperative confocal laser endomicroscopy in brain tumor surgery. J Neurosurg Sci 2018; 62:704-717. [PMID: 30160080 DOI: 10.23736/s0390-5616.18.04553-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Precise identification of tumor margins is of the utmost importance in neuro-oncology. Confocal microscopy is capable of rapid imaging of fresh tissues at cellular resolution and has been miniaturized into handheld probe-based systems suitable for use in the operating room. We aimed to perform a literature review to provide an update on the current status of confocal laser endomicroscopy (CLE) technology for brain tumor surgery. Aside from benchtop confocal microscopes used in ex vivo fashion, there are four CLE systems that have been investigated for potential application in the workflow of brain tumor surgery. Preclinical studies on animal tumor models and clinical studies on human brain tumors have assessed in vivo and ex vivo imaging approaches, suggesting that confocal microscopy holds promise for rapid identification of the characteristic (diagnostic) histological features of tumor and normal brain tissues. However, there are few studies assessing diagnostic accuracy sufficient to provide a definitive determination of the clinical and economical value of CLE in brain tumor surgery. Intraoperative real-time, high-resolution tissue imaging has significant clinical potential in the field of neuro-oncology. CLE is an emerging imaging technology that shows promise for improving brain tumor surgery workflow in in vivo and ex vivo studies. Future clinical studies are necessary to demonstrate clinical and economic benefit of CLE.
Collapse
Affiliation(s)
- Evgenii Belykh
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA.,Department of Neurosurgery, Irkutsk State Medical University, Irkutsk, Russia
| | - Claudio Cavallo
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Sirin Gandhi
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Xiaochun Zhao
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Damjan Veljanoski
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | | | - Nikolay L Martirosyan
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Vadim A Byvaltsev
- Department of Neurosurgery, Irkutsk State Medical University, Irkutsk, Russia
| | - Jennifer Eschbacher
- Department of Neuropathology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Mark C Preul
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Peter Nakaji
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA -
| |
Collapse
|
13
|
Mooney MA, Georges J, Yazdanabadi MI, Goehring KY, White WL, Little AS, Preul MC, Coons SW, Nakaji P, Eschbacher JM. Immediate ex-vivo diagnosis of pituitary adenomas using confocal reflectance microscopy: a proof-of-principle study. J Neurosurg 2017; 128:1072-1075. [PMID: 28548594 DOI: 10.3171/2016.11.jns161651] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The objective of this study was to evaluate the feasibility of using confocal reflectance microscopy (CRM) ex vivo to differentiate adenoma from normal pituitary gland in surgical biopsy specimens. CRM allows for rapid, label-free evaluation of biopsy specimens with cellular resolution while avoiding some limitations of frozen section analysis. METHODS Biopsy specimens from 11 patients with suspected pituitary adenomas were transported directly to the pathology department. Samples were immediately positioned and visualized with CRM using a confocal microscope located in the same area of the pathology department where frozen sections are prepared. An H & E-stained slide was subsequently prepared from imaged tissue. A neuropathologist compared the histopathological characteristics of the H & E-stained slide and the matched CRM images. A second neuropathologist reviewed images in a blinded fashion and assigned diagnoses of adenoma or normal gland. RESULTS For all specimens, CRM contrasted cellularity, tissue architecture, nuclear pleomorphism, vascularity, and stroma. Pituitary adenomas demonstrated sheets and large lobules of cells, similar to the matched H & E-stained slides. CRM images of normal tissue showed scattered small lobules of pituitary epithelial cells, consistent with matched H & E-stained images of normal gland. Blinded review by a neuropathologist confirmed the diagnosis in 15 (94%) of 16 images of adenoma versus normal gland. CONCLUSIONS CRM is a simple, reliable approach for rapidly evaluating pituitary adenoma specimens ex vivo. This technique can be used to accurately differentiate between pituitary adenoma and normal gland while preserving biopsy tissue for future permanent analysis, immunohistochemical studies, and molecular studies.
Collapse
Affiliation(s)
| | | | | | - Katherine Y Goehring
- 2Neuropathology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | | | | | | | - Stephen W Coons
- 2Neuropathology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | | | - Jennifer M Eschbacher
- 2Neuropathology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| |
Collapse
|
14
|
Onoe S. [Development of Molecular Probes for Spatio-temporal Analysis of in Vivo Tumor with Photoacoustic Imaging]. YAKUGAKU ZASSHI 2017; 136:491-8. [PMID: 26935092 DOI: 10.1248/yakushi.15-00249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Photoacoustic imaging (PA imaging or PAI) has been focused on as a new technique to provide images of high spatial resolution, at depths of up to 5 cm, and the development of novel PAI probes for tumor imaging is of marked interest. Although nanomaterials such as gold nanorods have been reported as PAI probes, dyes are required to aid their ease of preparation, cost-effectiveness, and safety. However, because PAI has relatively low intrinsic sensitivity compared to optical imaging, and requires high-energy laser pulse exposure, an appropriate probe design, high tumor accumulation, and photostability are required for PAI probes. We developed some dyes and evaluated their usefulness as PAI probes. We first developed a high tumor-accumulation dye probe, IC7-1-Bu, which utilizes serum albumin as a tumor-targeting carrier to deliver an adequate PA signal at the tumor. Although IC7-1-Bu showed strong tumor targeting ability and a sufficient PA signal at the tumor in in vivo studies, IC7-1-Bu lacks photostability against multiple laser irradiations of PAI. In order to improve dye photostablity, we focused on the effect of singlet oxygen ((1)O2) generated by excited PAI probes on probe degeneration, and developed a triplet-state quencher conjugated dye probe, IC-5-T. IC-5-T reduced (1)O2 generation and improved photostability against multiple irradiations compared to IC7-1-Bu. IC-5-T also showed a sufficient PA signal at the tumor, and 1.5-fold higher photostabillity compared to IC7-1-Bu in sequential in vivo PAI studies. These results suggest that IC-5-T is a potential PAI probe for tumor imaging.
Collapse
Affiliation(s)
- Satoru Onoe
- Department of Phatho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University
| |
Collapse
|
15
|
Belykh E, Martirosyan NL, Yagmurlu K, Miller EJ, Eschbacher JM, Izadyyazdanabadi M, Bardonova LA, Byvaltsev VA, Nakaji P, Preul MC. Intraoperative Fluorescence Imaging for Personalized Brain Tumor Resection: Current State and Future Directions. Front Surg 2016; 3:55. [PMID: 27800481 PMCID: PMC5066076 DOI: 10.3389/fsurg.2016.00055] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/12/2016] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Fluorescence-guided surgery is one of the rapidly emerging methods of surgical "theranostics." In this review, we summarize current fluorescence techniques used in neurosurgical practice for brain tumor patients as well as future applications of recent laboratory and translational studies. METHODS Review of the literature. RESULTS A wide spectrum of fluorophores that have been tested for brain surgery is reviewed. Beginning with a fluorescein sodium application in 1948 by Moore, fluorescence-guided brain tumor surgery is either routinely applied in some centers or is under active study in clinical trials. Besides the trinity of commonly used drugs (fluorescein sodium, 5-aminolevulinic acid, and indocyanine green), less studied fluorescent stains, such as tetracyclines, cancer-selective alkylphosphocholine analogs, cresyl violet, acridine orange, and acriflavine, can be used for rapid tumor detection and pathological tissue examination. Other emerging agents, such as activity-based probes and targeted molecular probes that can provide biomolecular specificity for surgical visualization and treatment, are reviewed. Furthermore, we review available engineering and optical solutions for fluorescent surgical visualization. Instruments for fluorescent-guided surgery are divided into wide-field imaging systems and hand-held probes. Recent advancements in quantitative fluorescence-guided surgery are discussed. CONCLUSION We are standing on the threshold of the era of marker-assisted tumor management. Innovations in the fields of surgical optics, computer image analysis, and molecular bioengineering are advancing fluorescence-guided tumor resection paradigms, leading to cell-level approaches to visualization and resection of brain tumors.
Collapse
Affiliation(s)
- Evgenii Belykh
- Department of Neurosurgery, St. Joseph’s Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Laboratory of Neurosurgery, Irkutsk Scientific Center of Surgery and Traumatology, Irkutsk, Russia
- Irkutsk State Medical University, Irkutsk, Russia
| | - Nikolay L. Martirosyan
- Department of Neurosurgery, St. Joseph’s Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Kaan Yagmurlu
- Department of Neurosurgery, St. Joseph’s Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Eric J. Miller
- University of Arizona College of Medicine – Phoenix, Phoenix, AZ, USA
| | - Jennifer M. Eschbacher
- Department of Neurosurgery, St. Joseph’s Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Mohammadhassan Izadyyazdanabadi
- Department of Neurosurgery, St. Joseph’s Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Liudmila A. Bardonova
- Department of Neurosurgery, St. Joseph’s Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
- Laboratory of Neurosurgery, Irkutsk Scientific Center of Surgery and Traumatology, Irkutsk, Russia
- Irkutsk State Medical University, Irkutsk, Russia
| | - Vadim A. Byvaltsev
- Laboratory of Neurosurgery, Irkutsk Scientific Center of Surgery and Traumatology, Irkutsk, Russia
- Irkutsk State Medical University, Irkutsk, Russia
| | - Peter Nakaji
- Department of Neurosurgery, St. Joseph’s Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Mark C. Preul
- Department of Neurosurgery, St. Joseph’s Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
| |
Collapse
|
16
|
Monge F, Shakir DI, Lejeune F, Morandi X, Navab N, Jannin P. Acquisition models in intraoperative positron surface imaging. Int J Comput Assist Radiol Surg 2016; 12:691-703. [PMID: 27714566 DOI: 10.1007/s11548-016-1487-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 09/07/2016] [Indexed: 10/20/2022]
Abstract
PURPOSE Intraoperative imaging aims at identifying residual tumor during surgery. Positron Surface Imaging (PSI) is one of the solutions to help surgeons in a better detection of resection margins of brain tumor, leading to an improved patient outcome. This system relies on a tracked freehand beta probe, using [Formula: see text]F-based radiotracer. Some acquisition models have been proposed in the literature in order to enhance image quality, but no comparative validation study has been performed for PSI. METHODS In this study, we investigated the performance of different acquisition models by considering validation criteria and normalized metrics. We proposed a reference-based validation framework to perform the comparative study between acquisition models and a basic method. We estimated the performance of several acquisition models in light of four validation criteria: efficiency, computational speed, spatial accuracy and tumor contrast. RESULTS Selected acquisition models outperformed the basic method, albeit with the real-time aspect compromised. One acquisition model yielded the best performance among all according to the validation criteria: efficiency (1-Spe: 0.1, Se: 0.94), spatial accuracy (max Dice: 0.77) and tumor contrast (max T/B: 5.2). We also found out that above a minimum threshold value of the sampling rate, the reconstruction quality does not vary significantly. CONCLUSION Our method allowed the comparison of different acquisition models and highlighted one of them according to our validation criteria. This novel approach can be extended to 3D datasets, for validation of future acquisition models dedicated to intraoperative guidance of brain surgery.
Collapse
Affiliation(s)
- Frédéric Monge
- LTSI INSERM, UMR 1099, Campus de Villejean, Université de Rennes 1, 2, Avenue du Pr. Léon Bernard, 35043, Rennes Cedex, France.
| | | | | | - Xavier Morandi
- LTSI INSERM, UMR 1099, Campus de Villejean, Université de Rennes 1, 2, Avenue du Pr. Léon Bernard, 35043, Rennes Cedex, France.,CHU Rennes, Service de Neurochirurgie, Rennes, 35000, France
| | - Nassir Navab
- CAMP, Technische Universität München, Munich, Germany
| | - Pierre Jannin
- LTSI INSERM, UMR 1099, Campus de Villejean, Université de Rennes 1, 2, Avenue du Pr. Léon Bernard, 35043, Rennes Cedex, France
| |
Collapse
|
17
|
Hill TK, Kelkar SS, Wojtynek NE, Souchek JJ, Payne WM, Stumpf K, Marini FC, Mohs AM. Near Infrared Fluorescent Nanoparticles Derived from Hyaluronic Acid Improve Tumor Contrast for Image-Guided Surgery. Theranostics 2016; 6:2314-2328. [PMID: 27877237 PMCID: PMC5118597 DOI: 10.7150/thno.16514] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/13/2016] [Indexed: 01/28/2023] Open
Abstract
Tumor tissue that remains undetected at the primary surgical site can cause tumor recurrence, repeat surgery, and treatment strategy alterations that impose a significant patient and healthcare burden. Intraoperative near infrared fluorescence (NIRF) imaging is one potential method to identify remaining tumor by visualization of NIR fluorophores that are preferentially localized to the tumor. This requires development of fluorophores that consistently identify tumor tissue in different patients and tumor types. In this study we examined a panel of NIRF contrast agents consisting of polymeric nanoparticle (NP) formulations derived from hyaluronic acid (HA), with either physically entrapped indocyanine green (ICG) or covalently conjugated Cy7.5. Using orthotopic human breast cancer MDA-MB-231 xenografts in nude mice we identified two lead formulations. One, NanoICGPBA, with physicochemically entrapped ICG, showed 2.3-fold greater tumor contrast than ICG alone at 24 h (p < 0.01), and another, NanoCy7.5100-H, with covalently conjugated Cy7.5, showed 74-fold greater tumor contrast than Cy7.5 alone at 24 h (p < 0.0001). These two lead formulations were then tested in immune competent BALB/c mice bearing orthotopic 4T1 breast cancer tumors. NanoICGPBA showed 2.2-fold greater contrast than ICG alone (p < 0.0001), and NanoCy7.5100-H showed 14.8-fold greater contrast than Cy7.5 alone (p < 0.0001). Furthermore, both NanoICGPBA and NanoCy7.5100-H provided strong tumor enhancement using image-guided surgery in mice bearing 4T1 tumors. These studies demonstrate the efficacy of a panel of HA-derived NPs in delineating tumors in vivo, and identifies promising formulations that can be used for future in vivo tumor removal efficacy studies.
Collapse
|
18
|
Martirosyan NL, Eschbacher JM, Kalani MYS, Turner JD, Belykh E, Spetzler RF, Nakaji P, Preul MC. Prospective evaluation of the utility of intraoperative confocal laser endomicroscopy in patients with brain neoplasms using fluorescein sodium: experience with 74 cases. Neurosurg Focus 2016; 40:E11. [DOI: 10.3171/2016.1.focus15559] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE
This study evaluated the utility, specificity, and sensitivity of intraoperative confocal laser endomicroscopy (CLE) to provide diagnostic information during resection of human brain tumors.
METHODS
CLE imaging was used in the resection of intracranial neoplasms in 74 consecutive patients (31 male; mean age 47.5 years; sequential 10-month study period). Intraoperative in vivo and ex vivo CLE was performed after intravenous injection of fluorescein sodium (FNa). Tissue samples from CLE imaging–matched areas were acquired for comparison with routine histological analysis (frozen and permanent sections). CLE images were classified as diagnostic or nondiagnostic. The specificities and sensitivities of CLE and frozen sections for gliomas and meningiomas were calculated using permanent histological sections as the standard.
RESULTS
CLE images were obtained for each patient. The mean duration of intraoperative CLE system use was 15.7 minutes (range 3–73 minutes). A total of 20,734 CLE images were correlated with 267 biopsy specimens (mean number of images/biopsy location, in vivo 84, ex vivo 70). CLE images were diagnostic for 45.98% in vivo and 52.97% ex vivo specimens. After initiation of CLE, an average of 14 in vivo images and 7 ex vivo images were acquired before identification of a first diagnostic image. CLE specificity and sensitivity were, respectively, 94% and 91% for gliomas and 93% and 97% for meningiomas.
CONCLUSIONS
CLE with FNa provided intraoperative histological information during brain tumor removal. Specificities and sensitivities of CLE for gliomas and meningiomas were comparable to those for frozen sections. These data suggest that CLE could allow the interactive identification of tumor areas, substantially improving intraoperative decisions during the resection of brain tumors.
Collapse
Affiliation(s)
| | - Jennifer M. Eschbacher
- 2Neuropathology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | | | | | | | | | | | | |
Collapse
|
19
|
Watson JR, Gainer CF, Martirosyan N, Skoch J, Lemole GM, Anton R, Romanowski M. Augmented microscopy: real-time overlay of bright-field and near-infrared fluorescence images. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:106002. [PMID: 26440760 PMCID: PMC4881285 DOI: 10.1117/1.jbo.20.10.106002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/02/2015] [Indexed: 05/10/2023]
Abstract
Intraoperative applications of near-infrared (NIR) fluorescent contrast agents can be aided by instrumentation capable of merging the view of surgical field with that of NIR fluorescence. We demonstrate augmented microscopy, an intraoperative imaging technique in which bright-field (real) and electronically processed NIR fluorescence (synthetic) images are merged within the optical path of a stereomicroscope. Under luminance of 100,000 lx, representing typical illumination of the surgical field, the augmented microscope detects 189 nM concentration of indocyanine green and produces a composite of the real and synthetic images within the eyepiece of the microscope at 20 fps. Augmentation described here can be implemented as an add-on module to visualize NIR contrast agents, laser beams, or various types of electronic data within the surgical microscopes commonly used in neurosurgical, cerebrovascular, otolaryngological, and ophthalmic procedures.
Collapse
Affiliation(s)
- Jeffrey R. Watson
- University of Arizona, Department of Biomedical Engineering, 1657 E. Helen Street, Tucson, Arizona 85721, United States
| | - Christian F. Gainer
- University of Arizona, Department of Biomedical Engineering, 1657 E. Helen Street, Tucson, Arizona 85721, United States
| | - Nikolay Martirosyan
- University of Arizona, Division of Neurosurgery, Department of Surgery, 1501 N. Campbell Avenue, Tucson, Arizona 85721, United States
| | - Jesse Skoch
- University of Arizona, Division of Neurosurgery, Department of Surgery, 1501 N. Campbell Avenue, Tucson, Arizona 85721, United States
| | - G. Michael Lemole
- University of Arizona, Division of Neurosurgery, Department of Surgery, 1501 N. Campbell Avenue, Tucson, Arizona 85721, United States
| | - Rein Anton
- University of Arizona, Division of Neurosurgery, Department of Surgery, 1501 N. Campbell Avenue, Tucson, Arizona 85721, United States
| | - Marek Romanowski
- University of Arizona, Department of Biomedical Engineering, 1657 E. Helen Street, Tucson, Arizona 85721, United States
- Address all correspondence to: Marek Romanowski, E-mail:
| |
Collapse
|
20
|
Monitoring Cell Death in Regorafenib-Treated Experimental Colon Carcinomas Using Annexin-Based Optical Fluorescence Imaging Validated by Perfusion MRI. PLoS One 2015; 10:e0138452. [PMID: 26393949 PMCID: PMC4578959 DOI: 10.1371/journal.pone.0138452] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/31/2015] [Indexed: 12/13/2022] Open
Abstract
Objective To investigate annexin-based optical fluorescence imaging (OI) for monitoring regorafenib-induced early cell death in experimental colon carcinomas in rats, validated by perfusion MRI and multiparametric immunohistochemistry. Materials and Methods Subcutaneous human colon carcinomas (HT-29) in athymic rats (n = 16) were imaged before and after a one-week therapy with regorafenib (n = 8) or placebo (n = 8) using annexin-based OI and perfusion MRI at 3 Tesla. Optical signal-to-noise ratio (SNR) and MRI tumor perfusion parameters (plasma flow PF, mL/100mL/min; plasma volume PV, %) were assessed. On day 7, tumors underwent immunohistochemical analysis for tumor cell apoptosis (TUNEL), proliferation (Ki-67), and microvascular density (CD31). Results Apoptosis-targeted OI demonstrated a tumor-specific probe accumulation with a significant increase of tumor SNR under therapy (mean Δ +7.78±2.95, control: -0.80±2.48, p = 0.021). MRI detected a significant reduction of tumor perfusion in the therapy group (mean ΔPF -8.17±2.32 mL/100 mL/min, control -0.11±3.36 mL/100 mL/min, p = 0.036). Immunohistochemistry showed significantly more apoptosis (TUNEL; 11392±1486 vs. 2921±334, p = 0.001), significantly less proliferation (Ki-67; 1754±184 vs. 2883±323, p = 0.012), and significantly lower microvascular density (CD31; 107±10 vs. 182±22, p = 0.006) in the therapy group. Conclusions Annexin-based OI allowed for the non-invasive monitoring of regorafenib-induced early cell death in experimental colon carcinomas, validated by perfusion MRI and multiparametric immunohistochemistry.
Collapse
|
21
|
Computational Modeling for Enhancing Soft Tissue Image Guided Surgery: An Application in Neurosurgery. Ann Biomed Eng 2015; 44:128-38. [PMID: 26354118 DOI: 10.1007/s10439-015-1433-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 08/18/2015] [Indexed: 01/14/2023]
Abstract
With the recent advances in computing, the opportunities to translate computational models to more integrated roles in patient treatment are expanding at an exciting rate. One area of considerable development has been directed towards correcting soft tissue deformation within image guided neurosurgery applications. This review captures the efforts that have been undertaken towards enhancing neuronavigation by the integration of soft tissue biomechanical models, imaging and sensing technologies, and algorithmic developments. In addition, the review speaks to the evolving role of modeling frameworks within surgery and concludes with some future directions beyond neurosurgical applications.
Collapse
|
22
|
Motekallemi A, Jeltema HR, Metzemaekers JDM, van Dam GM, Crane LMA, Groen RJM. The current status of 5-ALA fluorescence-guided resection of intracranial meningiomas-a critical review. Neurosurg Rev 2015; 38:619-28. [PMID: 25736455 PMCID: PMC4561998 DOI: 10.1007/s10143-015-0615-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 09/25/2014] [Accepted: 11/16/2014] [Indexed: 12/04/2022]
Abstract
Meningiomas are the second most common primary tumors affecting the central nervous system. Surgical treatment can be curative in case of complete resection. 5-aminolevulinic acid (5-ALA) has been established as an intraoperative tool in malignant glioma surgery. A number of studies have tried to outline the merits of 5-ALA for the resection of intracranial meningiomas. In the present paper, we review the existing literature about the application of 5-ALA as an intraoperative tool for the resection of intracranial meningiomas. PubMed was used as the database for search tasks. We included articles published in English without limitations regarding publication date. Tumor fluorescence can occur in benign meningiomas (WHO grade I) as well as in WHO grade II and WHO grade III meningiomas. Most of the reviewed studies report fluorescence of the main tumor mass with high sensitivity and specificity. However, different parts of the same tumor can present with a different fluorescent pattern (heterogenic fluorescence). Quantitative probe fluorescence can be superior, especially in meningiomas with difficult anatomical accessibility. However, only one study was able to consistently correlate resected tissue with histopathological results and nonspecific fluorescence of healthy brain tissue remains a confounder. The use of 5-ALA as a tool to guide resection of intracranial meningiomas remains experimental, especially in cases with tumor recurrence. The principle of intraoperative fluorescence as a real-time method to achieve complete resection is appealing, but the usefulness of 5-ALA is questionable. 5-ALA in intracranial meningioma surgery should only be used in a protocolled prospective and long-term study.
Collapse
|
23
|
Mooney MA, Zehri AH, Georges JF, Nakaji P. Laser scanning confocal endomicroscopy in the neurosurgical operating room: a review and discussion of future applications. Neurosurg Focus 2014; 36:E9. [PMID: 24484262 DOI: 10.3171/2013.11.focus13484] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Laser scanning confocal endomicroscopy (LSCE) is an emerging technology for examining brain neoplasms in vivo. While great advances have been made in macroscopic fluorescence in recent years, the ability to perform confocal microscopy in vivo expands the potential of fluorescent tumor labeling, can improve intraoperative tissue diagnosis, and provides real-time guidance for tumor resection intraoperatively. In this review, the authors highlight the technical aspects of confocal endomicroscopy and fluorophores relevant to the neurosurgeon, provide a comprehensive summary of LSCE in animal and human neurosurgical studies to date, and discuss the future directions and potential for LSCE in neurosurgery.
Collapse
|
24
|
Butte PV, Mamelak A, Parrish-Novak J, Drazin D, Shweikeh F, Gangalum PR, Chesnokova A, Ljubimova JY, Black K. Near-infrared imaging of brain tumors using the Tumor Paint BLZ-100 to achieve near-complete resection of brain tumors. Neurosurg Focus 2014; 36:E1. [PMID: 24484247 DOI: 10.3171/2013.11.focus13497] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECT The intraoperative clear delineation between brain tumor and normal tissue in real time is required to ensure near-complete resection without damaging the nearby eloquent brain. Tumor Paint BLZ-100, a tumor ligand chlorotoxin (CTX) conjugated to indocyanine green (ICG), has shown potential to be a targeted contrast agent. There are many infrared imaging systems in use, but they are not optimized to the low concentration and amount of ICG. The authors present a novel proof-of-concept near-infrared (NIR) imaging system using a standard charge-coupled device (CCD) camera for visualizing low levels of ICG attached to the tumors. This system is small, inexpensive, and sensitive. The imaging system uses a narrow-band laser at 785 nm and a notch filter in front of the sensor at the band. The camera is a 2-CCD camera, which uses identical CCDs for both visible and NIR light. METHODS The NIR system is tested with serial dilution of BLZ-100 from 1 μM to 50 pM in 5% Intralipid solution while the excitation energy is varied from 5 to 40 mW/cm(2). The analog gain of the CCD was changed from 0, 6, and 12 dB to determine the signal-to-noise ratio. In addition to the Intralipid solution, BLZ-100 was injected 48 hours before euthanizing the mice that were implanted with the human glioma cell line. The brain was removed and imaged using the NIR imaging system. RESULTS The authors' results show that the NIR imaging system using a standard CCD is able to visualize the ICG down to 50 nM of concentration with a high signal-to-noise ratio. The preliminary experiment on human glioma implanted in mouse brains demonstrated that BLZ-100 has a high affinity for glioma compared with normal brain tissue. Additionally, the results show that NIR excitation is able to penetrate deeply and has a potential to visualize metastatic lesions that are separate from the main tumor. CONCLUSIONS The authors have seen that BLZ-100 has a very high affinity toward human gliomas. They also describe a small, cost-effective, and sensitive NIR system for visualizing brain tumors tagged using BLZ-100. The authors hope that the use of BLZ-100 along with NIR imaging will be useful to delineate the brain tumors in real time and assist surgeons in near-complete tumor removal to increase survival and reduce neurological deficits.
Collapse
Affiliation(s)
- Pramod V Butte
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California; and
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Zehri AH, Ramey W, Georges JF, Mooney MA, Martirosyan NL, Preul MC, Nakaji P. Neurosurgical confocal endomicroscopy: A review of contrast agents, confocal systems, and future imaging modalities. Surg Neurol Int 2014; 5:60. [PMID: 24872922 PMCID: PMC4033764 DOI: 10.4103/2152-7806.131638] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 02/13/2014] [Indexed: 01/15/2023] Open
Abstract
Background: The clinical application of fluorescent contrast agents (fluorescein, indocyanine green, and aminolevulinic acid) with intraoperative microscopy has led to advances in intraoperative brain tumor imaging. Their properties, mechanism of action, history of use, and safety are analyzed in this report along with a review of current laser scanning confocal endomicroscopy systems. Additional imaging modalities with potential neurosurgical utility are also analyzed. Methods: A comprehensive literature search was performed utilizing PubMed and key words: In vivo confocal microscopy, confocal endomicroscopy, fluorescence imaging, in vivo diagnostics/neoplasm, in vivo molecular imaging, and optical imaging. Articles were reviewed that discussed clinically available fluorophores in neurosurgery, confocal endomicroscopy instrumentation, confocal microscopy systems, and intraoperative cancer diagnostics. Results: Current clinically available fluorescent contrast agents have specific properties that provide microscopic delineation of tumors when imaged with laser scanning confocal endomicroscopes. Other imaging modalities such as coherent anti-Stokes Raman scattering (CARS) microscopy, confocal reflectance microscopy, fluorescent lifetime imaging (FLIM), two-photon microscopy, and second harmonic generation may also have potential in neurosurgical applications. Conclusion: In addition to guiding tumor resection, intraoperative fluorescence and microscopy have the potential to facilitate tumor identification and complement frozen section analysis during surgery by providing real-time histological assessment. Further research, including clinical trials, is necessary to test the efficacy of fluorescent contrast agents and optical imaging instrumentation in order to establish their role in neurosurgery.
Collapse
Affiliation(s)
- Aqib H Zehri
- Neurosurgery Research Laboratory, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Wyatt Ramey
- Division of Neurological Surgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Joseph F Georges
- Neurosurgery Research Laboratory, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA ; School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Michael A Mooney
- Division of Neurological Surgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Nikolay L Martirosyan
- Division of Neurological Surgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA ; Division of Neurosurgery, Department of Surgery, The University of Arizona, Tucson, AZ, Arizona, USA
| | - Mark C Preul
- Neurosurgery Research Laboratory, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Peter Nakaji
- Division of Neurological Surgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| |
Collapse
|
26
|
De la Garza-Ramos R, Bydon M, Macki M, Huang J, Tamargo RJ, Bydon A. Fluorescent techniques in spine surgery. Neurol Res 2014; 36:928-38. [DOI: 10.1179/1743132814y.0000000340] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|