1
|
Wang X, Shu X, He P, Cai Y, Geng Y, Hu X, Sun Y, Xiao H, Zheng W, Song Y, Xue Y, Jiang R. Ultra-high b-value DWI accurately identifies isocitrate dehydrogenase genotypes and tumor subtypes of adult-type diffuse gliomas. Eur Radiol 2024; 34:6751-6762. [PMID: 38528135 DOI: 10.1007/s00330-024-10708-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/08/2024] [Accepted: 02/23/2024] [Indexed: 03/27/2024]
Abstract
OBJECTIVES To distinguish isocitrate dehydrogenase (IDH) genotypes and tumor subtypes of adult-type diffuse gliomas based on the fifth edition of the World Health Organization classification of central nervous system tumors (WHO CNS5) in 2021 using standard, high, and ultra-high b-value diffusion-weighted imaging (DWI). MATERIALS AND METHODS This prospective study enrolled 70 patients with adult-type diffuse gliomas who underwent multiple b-value DWI. Apparent diffusion coefficient (ADC) values including ADCb500/b1000, ADCb500/b2000, ADCb500/b3000, ADCb500/b4000, ADCb500/b6000, ADCb500/b8000, and ADCb500/b10000 in tumor parenchyma (TP) and contralateral normal-appearing white matter (NAWM) were calculated. The ADC ratios of TP/NAWM were assessed for correlations with IDH genotypes, tumor subtypes, and Ki-67 status; diagnostic performances were compared. RESULTS All ADCs were significantly higher in IDH mutant gliomas than in IDH wild-type gliomas (p < 0.01 for all); ADCb500/b8000 had the highest area under the curve (AUC) of 0.866. All ADCs were significantly lower in glioblastoma than in astrocytoma (p < 0.01 for all). ADCs other than ADCb500/b1000 were significantly lower in glioblastoma than in oligodendroglioma (p < 0.05 for all). ADCb500/b8000 and ADCb500/b10000 were significantly higher in oligodendroglioma than in astrocytoma (p = 0.034 and 0.023). The highest AUCs were 0.818 for ADCb500/b6000 when distinguishing glioblastoma from astrocytoma, 0.979 for ADCb500/b8000 and ADCb500/b10000 when distinguishing glioblastoma from oligodendroglioma, and 0.773 for ADCb500/b10000 when distinguishing astrocytoma from oligodendroglioma. Additionally, all ADCs were negatively correlated with Ki-67 status (p < 0.05 for all). CONCLUSION Ultra-high b-value DWI can reliably separate IDH genotypes and tumor subtypes of adult-type diffuse gliomas using WHO CNS5 criteria. CLINICAL RELEVANCE STATEMENT Ultra-high b-value diffusion-weighted imaging can accurately distinguish isocitrate dehydrogenase genotypes and tumor subtypes of adult-type diffuse gliomas, which may facilitate personalized treatment and prognostic assessment for patients with glioma. KEY POINTS • Ultra-high b-value diffusion-weighted imaging can accurately distinguish subtle differences in water diffusion among biological tissues. • Ultra-high b-value diffusion-weighted imaging can reliably separate isocitrate dehydrogenase genotypes and tumor subtypes of adult-type diffuse gliomas. • Compared with standard b-value diffusion-weighted imaging, high and ultra-high b-value diffusion-weighted imaging demonstrate better diagnostic performances.
Collapse
Affiliation(s)
- Xueqin Wang
- Department of Radiology, Fujian Medical University Union Hospital, NO.29 Xinquan Road, Fuzhou, 350001, Fujian, People's Republic of China
- School of Medical Imaging, Fujian Medical University, Fuzhou, 350004, China
| | - Xinru Shu
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350004, China
| | - Pingping He
- School of Medical Imaging, Fujian Medical University, Fuzhou, 350004, China
| | - Yiting Cai
- School of Medical Imaging, Fujian Medical University, Fuzhou, 350004, China
| | - Yingqian Geng
- Department of Radiology, Fujian Medical University Union Hospital, NO.29 Xinquan Road, Fuzhou, 350001, Fujian, People's Republic of China
| | - Xiaomei Hu
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Yifan Sun
- Department of Radiology, Fujian Medical University Union Hospital, NO.29 Xinquan Road, Fuzhou, 350001, Fujian, People's Republic of China
| | - Huinan Xiao
- Department of Radiology, Fujian Medical University Union Hospital, NO.29 Xinquan Road, Fuzhou, 350001, Fujian, People's Republic of China
| | - Wanyi Zheng
- Department of Radiology, Fujian Medical University Union Hospital, NO.29 Xinquan Road, Fuzhou, 350001, Fujian, People's Republic of China
| | - Yang Song
- MR Scientific Marketing, Siemens Healthcare, Shanghai, China
| | - Yunjing Xue
- Department of Radiology, Fujian Medical University Union Hospital, NO.29 Xinquan Road, Fuzhou, 350001, Fujian, People's Republic of China
| | - Rifeng Jiang
- Department of Radiology, Fujian Medical University Union Hospital, NO.29 Xinquan Road, Fuzhou, 350001, Fujian, People's Republic of China.
- School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, 350004, China.
| |
Collapse
|
2
|
Hu Y, Zhang K. Noninvasive assessment of Ki-67 labeling index in glioma patients based on multi-parameters derived from advanced MR imaging. Front Oncol 2024; 14:1362990. [PMID: 38826787 PMCID: PMC11140042 DOI: 10.3389/fonc.2024.1362990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/02/2024] [Indexed: 06/04/2024] Open
Abstract
Purpose To investigate the predictive value of multi-parameters derived from advanced MR imaging for Ki-67 labeling index (LI) in glioma patients. Materials and Methods One hundred and nine patients with histologically confirmed gliomas were evaluated retrospectively. These patients underwent advanced MR imaging, including dynamic susceptibility-weighted contrast enhanced MR imaging (DSC), MR spectroscopy imaging (MRS), diffusion-weighted imaging (DWI) and diffusion-tensor imaging (DTI), before treatment. Twenty-one parameters were extracted, including the maximum, minimum and mean values of relative cerebral blood flow (rCBF), relative cerebral blood volume (rCBV), relative mean transit time (rMTT), relative apparent diffusion coefficient (rADC), relative fractional anisotropy (rFA) and relative mean diffusivity (rMD) respectively, and ration of choline (Cho)/creatine (Cr), Cho/N-acetylaspartate (NAA) and NAA/Cr. Stepwise multivariate regression was performed to build multivariate models to predict Ki-67 LI. Pearson correlation analysis was used to investigate the correlation between imaging parameters and the grade of glioma. One-way analysis of variance (ANOVA) was used to explore the differences of the imaging parameters among the gliomas of grade II, III, and IV. Results The multivariate regression showed that the model of five parameters, including rCBVmax (RC=0.282), rCBFmax (RC=0.151), rADCmin (RC= -0.14), rFAmax (RC=0.325) and Cho/Cr ratio (RC=0.157) predicted the Ki-67 LI with a root mean square (RMS) error of 0. 0679 (R2 = 0.8025).The regression check of this model showed that there were no multicollinearity problem (variance inflation factor: rCBVmax, 3.22; rCBFmax, 3.14; rADCmin, 1.96; rFAmax, 2.51; Cho/Cr ratio, 1.64), and the functional form of this model was appropriate (F test: p=0.682). The results of Pearson correlation analysis showed that the rCBVmax, rCBFmax, rFAmax, the ratio of Cho/Cr and Cho/NAA were positively correlated with Ki-67 LI and the grade of glioma, while the rADCmin and rMDmin were negatively correlated with Ki-67 LI and the grade of glioma. Conclusion Combining multiple parameters derived from DSC, DTI, DWI and MRS can precisely predict the Ki-67 LI in glioma patients.
Collapse
Affiliation(s)
- Ying Hu
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Zhang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Li J, Sun J, Wang N, Zhang Y. Study on the Relationship Between MRI Functional Imaging and Multiple Immunohistochemical Features of Glioma: A Noninvasive and More Precise Glioma Management. Mol Imaging 2024; 23:15353508241261583. [PMID: 38952400 PMCID: PMC11208885 DOI: 10.1177/15353508241261583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 05/09/2024] [Accepted: 05/23/2024] [Indexed: 07/03/2024] Open
Abstract
Objective To investigate the performance of diffusion-tensor imaging (DTI) and hydrogen proton magnetic resonance spectroscopy (1H-MRS) parameters in predicting the immunohistochemistry (IHC) biomarkers of glioma. Methods Patients with glioma confirmed by pathology from March 2015 to September 2019 were analyzed, the preoperative DTI and 1H-MRS images were collected, apparent diffusion coefficient (ADC) and fractional anisotropy (FA), in the lesion area were measured, the relative values relative ADC (rADC) and relative FA (rFA) were obtained by the ratio of them in the lesion area to the contralateral normal area. The peak of each metabolite in the lesion area of 1H-MRS image: N-acetylaspartate (NAA), choline (Cho), and creatine (Cr), and metabolite ratio: NAA/Cho, NAA/(Cho + Cr) were selected and calculated. The preoperative IHC data were collected including CD34, Ki-67, p53, S-100, syn, vimentin, NeuN, Nestin, and glial fibrillary acidic protein. Results One predicting parameter of DTI was screened, the rADC of the Ki-67 positive group was lower than that of the negative group. Two parameters of 1H-MRS were found to have significant reference values for glioma grades, the NAA and Cr decreased as the grade of glioma increased, moreover, Ki-67 Li was negatively correlated with NAA and Cr. Conclusion NAA and Cr have potential application value in predicting glioma grades and tumor proliferation activity. Only rADC has predictive value for Ki-67 expression among DTI parameters.
Collapse
Affiliation(s)
- Jing Li
- Department of Radiology, Tangshan Women and Children's Hospital, Tangshan, Hebei, China
| | - Jingtao Sun
- Department of Radiology, Tangshan Women and Children's Hospital, Tangshan, Hebei, China
| | - Ning Wang
- Department of Radiology and Nuclear Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yan Zhang
- Department of Radiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
4
|
Hasanzadeh A, Moghaddam HS, Shakiba M, Jalali AH, Firouznia K. The Role of Multimodal Imaging in Differentiating Vasogenic from Infiltrative Edema: A Systematic Review. Indian J Radiol Imaging 2023; 33:514-521. [PMID: 37811185 PMCID: PMC10556327 DOI: 10.1055/s-0043-1772466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023] Open
Abstract
Background High-grade gliomas (HGGs) are the most prevalent primary malignancy of the central nervous system. The tumor results in vasogenic and infiltrative edema . Exact anatomical differentiation of these edemas is so important for surgical planning. Multimodal imaging could be used to differentiate the edema type. Purpose The aim of this study was to investigate the role of multimodal imaging in the differentiation of vasogenic edema from infiltrative edema in patients with HGG (grade III and grade IV). Data Sources A search on PubMed, EMBASE, Scopus, and ISI Web of Science Core Collection up to June 2022 using terms related to (a) multimodal imaging AND (b) HGG AND (c) edema. (PROSPERO registration number: CRD42022336131) Study Selection Two reviewers screened the articles and independently extracted the data. We included original articles assessing the role of multimodal imaging in differentiating vasogenic from infiltrative edema in patients with HGG. Six high-quality articles remained for the narrative synthesis. Data Synthesis Dynamic susceptibility contrast imaging showed that relative cerebral blood volume and relative cerebral blood flow were higher in the infiltrative edema component than in the vasogenic edema component. Diffusion tensor imaging revealed a dispute on fractional anisotropy. The apparent diffusion coefficient was comparable between the two edematous components. Magnetic resonance spectroscopy exhibited an increment in choline/creatinine ratio and choline/N-acetyl aspartate ratio in the infiltrative edema component. Limitations Strict study selection, low sample size of relevant published studies, and heterogeneity in endpoint variables were the major drawbacks. Conclusions Multimodal imaging, including dynamic susceptibility contrast and magnetic resonance spectroscopy, might help differentiate between vasogenic and infiltrative edema.
Collapse
Affiliation(s)
- Alireza Hasanzadeh
- Medical School, Tehran University of Medical Sciences, Tehran, Iran
- Advanced Diagnostic and Interventional Radiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Sanjari Moghaddam
- Medical School, Tehran University of Medical Sciences, Tehran, Iran
- Advanced Diagnostic and Interventional Radiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Madjid Shakiba
- Advanced Diagnostic and Interventional Radiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Jalali
- Advanced Diagnostic and Interventional Radiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kavous Firouznia
- Advanced Diagnostic and Interventional Radiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Takahashi Y, Oishi N, Yamao Y, Kunieda T, Kikuchi T, Fukuyama H, Miyamoto S, Arakawa Y. Voxel-based clustered imaging by multiparameter diffusion tensor images for predicting the grade and proliferative activity of meningioma. Brain Behav 2023; 13:e3201. [PMID: 37644780 PMCID: PMC10570481 DOI: 10.1002/brb3.3201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 08/31/2023] Open
Abstract
INTRODUCTION Meningiomas are the most common primary central nervous system tumors. Predicting the grade and proliferative activity of meningiomas would influence therapeutic strategies. We aimed to apply the multiple parameters from preoperative diffusion tensor images for predicting meningioma grade and proliferative activity. METHODS Nineteen patients with low-grade meningiomas and eight with high-grade meningiomas were included. For the prediction of proliferative activity, the patients were divided into two groups: Ki-67 monoclonal antibody labeling index (MIB-1 LI) < 5% (lower MIB-1 LI group; n = 18) and MIB-1 LI ≥ 5% (higher MIB-1 LI group; n = 9). Six features, diffusion-weighted imaging, fractional anisotropy, mean, axial, and radial diffusivities, and raw T2 signal with no diffusion weighting, were extracted as multiple parameters from diffusion tensor imaging. The two-level clustering approach for a self-organizing map followed by the K-means algorithm was applied to cluster a large number of input vectors with the six features. We also validated whether the diffusion tensor-based clustered image (DTcI) was helpful for predicting preoperative meningioma grade or proliferative activity. RESULTS The sensitivity, specificity, accuracy, and area under the curve of receiver operating characteristic curves from the 16-class DTcIs for differentiating high- and low-grade meningiomas were 0.870, 0.901, 0.891, and 0.959, and those from the 10-class DTcIs for differentiating higher and lower MIB-1 LIs were 0.508, 0.770, 0.683, and 0.694, respectively. The log-ratio values of class numbers 13, 14, 15, and 16 were significantly higher in high-grade meningiomas than in low-grade meningiomas (p < .001). With regard to MIB-1 LIs, the log-ratio values of class numbers 8, 9, and 10 were higher in meningiomas with higher MIB-1 groups (p < .05). CONCLUSION The multiple diffusion tensor imaging-based parameters from the voxel-based DTcIs can help differentiate between low- and high-grade meningiomas and between lower and higher proliferative activities.
Collapse
Affiliation(s)
- Yuki Takahashi
- Department of NeurosurgeryKyoto University Graduate School of MedicineKyotoJapan
- Human Brain Research CenterKyoto University Graduate School of MedicineKyotoJapan
| | - Naoya Oishi
- Department of PsychiatryKyoto University Graduate School of MedicineKyotoJapan
| | - Yukihiro Yamao
- Department of NeurosurgeryKyoto University Graduate School of MedicineKyotoJapan
- Human Brain Research CenterKyoto University Graduate School of MedicineKyotoJapan
| | - Takeharu Kunieda
- Department of NeurosurgeryEhime University Graduate School of MedicineToonJapan
| | - Takayuki Kikuchi
- Department of NeurosurgeryKyoto University Graduate School of MedicineKyotoJapan
| | | | - Susumu Miyamoto
- Department of NeurosurgeryKyoto University Graduate School of MedicineKyotoJapan
- Stroke Support CenterKyoto University HospitalKyotoJapan
- Momoya Disease Support CenterKyoto University HospitalKyotoJapan
| | - Yoshiki Arakawa
- Department of NeurosurgeryKyoto University Graduate School of MedicineKyotoJapan
| |
Collapse
|
6
|
Jiang L, Zhou L, Ai Z, Xiao C, Liu W, Geng W, Chen H, Xiong Z, Yin X, Chen YC. Machine Learning Based on Diffusion Kurtosis Imaging Histogram Parameters for Glioma Grading. J Clin Med 2022; 11:jcm11092310. [PMID: 35566437 PMCID: PMC9105194 DOI: 10.3390/jcm11092310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 02/05/2023] Open
Abstract
Glioma grading plays an important role in surgical resection. We investigated the ability of different feature reduction methods in support vector machine (SVM)-based diffusion kurtosis imaging (DKI) histogram parameters to distinguish glioma grades. A total of 161 glioma patients who underwent magnetic resonance imaging (MRI) from January 2017 to January 2020 were included retrospectively. The patients were divided into low-grade (n = 61) and high-grade (n = 100) groups. Parametric DKI maps were derived, and 45 features from the DKI maps were extracted semi-automatically for analysis. Three feature selection methods [principal component analysis (PCA), recursive feature elimination (RFE) and least absolute shrinkage and selection operator (LASSO)] were used to establish the glioma grading model with an SVM classifier. To evaluate the performance of SVM models, the receiver operating characteristic (ROC) curves of SVM models for distinguishing glioma grades were compared with those of conventional statistical methods. The conventional ROC analysis showed that mean diffusivity (MD) variance, MD skewness and mean kurtosis (MK) C50 could effectively distinguish glioma grades, particularly MD variance. The highest classification distinguishing AUC was found using LASSO at 0.904 ± 0.069. In comparison, classification AUC by PCA was 0.866 ± 0.061, and 0.899 ± 0.079 by RFE. The SVM-PCA model with the lowest AUC among the SVM models was significantly better than the conventional ROC analysis (z = 1.947, p = 0.013). These findings demonstrate the superiority of DKI histogram parameters by LASSO analysis and SVM for distinguishing glioma grades.
Collapse
Affiliation(s)
- Liang Jiang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210029, China; (L.J.); (L.Z.); (Z.A.); (W.G.); (H.C.)
| | - Leilei Zhou
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210029, China; (L.J.); (L.Z.); (Z.A.); (W.G.); (H.C.)
| | - Zhongping Ai
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210029, China; (L.J.); (L.Z.); (Z.A.); (W.G.); (H.C.)
| | - Chaoyong Xiao
- Department of Radiology, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing 210029, China; (C.X.); (W.L.)
| | - Wen Liu
- Department of Radiology, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing 210029, China; (C.X.); (W.L.)
| | - Wen Geng
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210029, China; (L.J.); (L.Z.); (Z.A.); (W.G.); (H.C.)
| | - Huiyou Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210029, China; (L.J.); (L.Z.); (Z.A.); (W.G.); (H.C.)
| | - Zhenyu Xiong
- Department of Radiation Oncology, Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901, USA;
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210029, China; (L.J.); (L.Z.); (Z.A.); (W.G.); (H.C.)
- Correspondence: (X.Y.); (Y.-C.C.); Tel.: +86-2552271452 (Y.-C.C.)
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210029, China; (L.J.); (L.Z.); (Z.A.); (W.G.); (H.C.)
- Correspondence: (X.Y.); (Y.-C.C.); Tel.: +86-2552271452 (Y.-C.C.)
| |
Collapse
|
7
|
Hemodynamic Imaging in Cerebral Diffuse Glioma-Part A: Concept, Differential Diagnosis and Tumor Grading. Cancers (Basel) 2022; 14:cancers14061432. [PMID: 35326580 PMCID: PMC8946242 DOI: 10.3390/cancers14061432] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022] Open
Abstract
Diffuse gliomas are the most common primary malignant intracranial neoplasms. Aside from the challenges pertaining to their treatment-glioblastomas, in particular, have a dismal prognosis and are currently incurable-their pre-operative assessment using standard neuroimaging has several drawbacks, including broad differentials diagnosis, imprecise characterization of tumor subtype and definition of its infiltration in the surrounding brain parenchyma for accurate resection planning. As the pathophysiological alterations of tumor tissue are tightly linked to an aberrant vascularization, advanced hemodynamic imaging, in addition to other innovative approaches, has attracted considerable interest as a means to improve diffuse glioma characterization. In the present part A of our two-review series, the fundamental concepts, techniques and parameters of hemodynamic imaging are discussed in conjunction with their potential role in the differential diagnosis and grading of diffuse gliomas. In particular, recent evidence on dynamic susceptibility contrast, dynamic contrast-enhanced and arterial spin labeling magnetic resonance imaging are reviewed together with perfusion-computed tomography. While these techniques have provided encouraging results in terms of their sensitivity and specificity, the limitations deriving from a lack of standardized acquisition and processing have prevented their widespread clinical adoption, with current efforts aimed at overcoming the existing barriers.
Collapse
|
8
|
Stumpo V, Guida L, Bellomo J, Van Niftrik CHB, Sebök M, Berhouma M, Bink A, Weller M, Kulcsar Z, Regli L, Fierstra J. Hemodynamic Imaging in Cerebral Diffuse Glioma-Part B: Molecular Correlates, Treatment Effect Monitoring, Prognosis, and Future Directions. Cancers (Basel) 2022; 14:1342. [PMID: 35267650 PMCID: PMC8909110 DOI: 10.3390/cancers14051342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/05/2023] Open
Abstract
Gliomas, and glioblastoma in particular, exhibit an extensive intra- and inter-tumoral molecular heterogeneity which represents complex biological features correlating to the efficacy of treatment response and survival. From a neuroimaging point of view, these specific molecular and histopathological features may be used to yield imaging biomarkers as surrogates for distinct tumor genotypes and phenotypes. The development of comprehensive glioma imaging markers has potential for improved glioma characterization that would assist in the clinical work-up of preoperative treatment planning and treatment effect monitoring. In particular, the differentiation of tumor recurrence or true progression from pseudoprogression, pseudoresponse, and radiation-induced necrosis can still not reliably be made through standard neuroimaging only. Given the abundant vascular and hemodynamic alterations present in diffuse glioma, advanced hemodynamic imaging approaches constitute an attractive area of clinical imaging development. In this context, the inclusion of objective measurable glioma imaging features may have the potential to enhance the individualized care of diffuse glioma patients, better informing of standard-of-care treatment efficacy and of novel therapies, such as the immunotherapies that are currently increasingly investigated. In Part B of this two-review series, we assess the available evidence pertaining to hemodynamic imaging for molecular feature prediction, in particular focusing on isocitrate dehydrogenase (IDH) mutation status, MGMT promoter methylation, 1p19q codeletion, and EGFR alterations. The results for the differentiation of tumor progression/recurrence from treatment effects have also been the focus of active research and are presented together with the prognostic correlations identified by advanced hemodynamic imaging studies. Finally, the state-of-the-art concepts and advancements of hemodynamic imaging modalities are reviewed together with the advantages derived from the implementation of radiomics and machine learning analyses pipelines.
Collapse
Affiliation(s)
- Vittorio Stumpo
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; (L.G.); (J.B.); (C.H.B.V.N.); (M.S.); (L.R.); (J.F.)
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
| | - Lelio Guida
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; (L.G.); (J.B.); (C.H.B.V.N.); (M.S.); (L.R.); (J.F.)
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
| | - Jacopo Bellomo
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; (L.G.); (J.B.); (C.H.B.V.N.); (M.S.); (L.R.); (J.F.)
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
| | - Christiaan Hendrik Bas Van Niftrik
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; (L.G.); (J.B.); (C.H.B.V.N.); (M.S.); (L.R.); (J.F.)
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
| | - Martina Sebök
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; (L.G.); (J.B.); (C.H.B.V.N.); (M.S.); (L.R.); (J.F.)
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
| | - Moncef Berhouma
- Department of Neurosurgical Oncology and Vascular Neurosurgery, Pierre Wertheimer Neurological and Neurosurgical Hospital, Hospices Civils de Lyon, 69500 Lyon, France;
| | - Andrea Bink
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
- Department of Neuroradiology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Michael Weller
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
- Department of Neurology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Zsolt Kulcsar
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
- Department of Neuroradiology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Luca Regli
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; (L.G.); (J.B.); (C.H.B.V.N.); (M.S.); (L.R.); (J.F.)
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
| | - Jorn Fierstra
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; (L.G.); (J.B.); (C.H.B.V.N.); (M.S.); (L.R.); (J.F.)
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
| |
Collapse
|
9
|
Suárez-García JG, Hernández-López JM, Moreno-Barbosa E, de Celis-Alonso B. A simple model for glioma grading based on texture analysis applied to conventional brain MRI. PLoS One 2020; 15:e0228972. [PMID: 32413034 PMCID: PMC7228074 DOI: 10.1371/journal.pone.0228972] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/29/2020] [Indexed: 01/26/2023] Open
Abstract
Accuracy of glioma grading is fundamental for the diagnosis, treatment planning and prognosis of patients. The purpose of this work was to develop a low-cost and easy-to-implement classification model which distinguishes low-grade gliomas (LGGs) from high-grade gliomas (HGGs), through texture analysis applied to conventional brain MRI. Different combinations of MRI contrasts (T1Gd and T2) and one segmented glioma region (necrotic and non-enhancing tumor core, NCR/NET) were studied. Texture features obtained from the gray level size zone matrix (GLSZM) were calculated. An under-sampling method was proposed to divide the data into different training subsets and subsequently extract complementary information for the creation of distinct classification models. The sensitivity, specificity and accuracy of the models were calculated, and the best model explicitly reported. The best model included only three texture features and reached a sensitivity, specificity and accuracy of 94.12%, 88.24% and 91.18%, respectively. According to the features of the model, when the NCR/NET region was studied, HGGs had a more heterogeneous texture than LGGs in the T1Gd images, and LGGs had a more heterogeneous texture than HGGs in the T2 images. These novel results partially contrast with results from the literature. The best model proved to be useful for the classification of gliomas. Complementary results showed that the heterogeneity of gliomas depended on the MRI contrast studied. The chosen model stands out as a simple, low-cost, easy-to-implement, reproducible and highly accurate glioma classifier. Importantly, it should be accessible to populations with reduced economic and scientific resources.
Collapse
Affiliation(s)
- José Gerardo Suárez-García
- Faculty of Physics and Mathematics, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, México
| | | | - Eduardo Moreno-Barbosa
- Faculty of Physics and Mathematics, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, México
| | - Benito de Celis-Alonso
- Faculty of Physics and Mathematics, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, México
| |
Collapse
|
10
|
Tsiouris S, Alexiou GA, Argyropoulou MI, Zikou AK, Astrakas LG, Fotopoulos AD. Re: Brain SPECT and perfusion MRI: do they provide complementary information about the tumour lesion and its grading? Clin Radiol 2020; 75:474-476. [PMID: 32245538 DOI: 10.1016/j.crad.2019.12.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 12/20/2019] [Indexed: 11/24/2022]
Affiliation(s)
- S Tsiouris
- University Hospital of Ioannina, Ioannina, Greece.
| | - G A Alexiou
- University Hospital of Ioannina, Ioannina, Greece
| | | | - A K Zikou
- University Hospital of Ioannina, Ioannina, Greece
| | - L G Astrakas
- University Hospital of Ioannina, Ioannina, Greece
| | | |
Collapse
|
11
|
Kong Z, Li J, Liu Z, Liu Z, Zhao D, Cheng X, Li L, Lin Y, Wang Y, Tian J, Ma W. Radiomics signature based on FDG-PET predicts proliferative activity in primary glioma. Clin Radiol 2019; 74:815.e15-815.e23. [DOI: 10.1016/j.crad.2019.06.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/26/2019] [Indexed: 01/04/2023]
|
12
|
Sprugnoli G, Monti L, Lippa L, Neri F, Mencarelli L, Ruffini G, Salvador R, Oliveri G, Batani B, Momi D, Cerase A, Pascual-Leone A, Rossi A, Rossi S, Santarnecchi E. Reduction of intratumoral brain perfusion by noninvasive transcranial electrical stimulation. SCIENCE ADVANCES 2019; 5:eaau9309. [PMID: 31453319 PMCID: PMC6693907 DOI: 10.1126/sciadv.aau9309] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 07/10/2019] [Indexed: 05/04/2023]
Abstract
Malignant brain neoplasms have a poor prognosis despite aggressive treatments. Animal models and evidence from human bodily tumors reveal that sustained reduction in tumor perfusion via electrical stimulation promotes tumor necrosis, therefore possibly representing a therapeutic option for patients with brain tumors. Here, we demonstrate that transcranial electrical stimulation (tES) allows to safely and noninvasively reduce intratumoral perfusion in humans. Selected patients with glioblastoma or metastasis underwent tES, while perfusion was assessed using magnetic resonance imaging. Multichannel tES was applied according to personalized biophysical modeling, to maximize the induced electrical field over the solid tumor mass. All patients completed the study and tolerated the procedure without adverse effects, with tES selectively reducing the perfusion of the solid tumor. Results potentially open the door to noninvasive therapeutic interventions in brain tumors based on stand-alone tES or its combination with other available therapies.
Collapse
Affiliation(s)
- G. Sprugnoli
- Brain Investigation and Neuromodulation Laboratory, Department of Medicine, Surgery and Neuroscience, Unit of Neurology and Clinical Neurophysiology, Siena Medical School, Siena, Italy
| | - L. Monti
- Unit of Neuroimaging and Neurointervention, “Santa Maria alle Scotte” Medical Center, Siena, Italy
| | - L. Lippa
- Unit of Neurosurgery, “Santa Maria alle Scotte” Medical Center, Siena, Italy
| | - F. Neri
- Brain Investigation and Neuromodulation Laboratory, Department of Medicine, Surgery and Neuroscience, Unit of Neurology and Clinical Neurophysiology, Siena Medical School, Siena, Italy
| | - L. Mencarelli
- Brain Investigation and Neuromodulation Laboratory, Department of Medicine, Surgery and Neuroscience, Unit of Neurology and Clinical Neurophysiology, Siena Medical School, Siena, Italy
| | | | | | - G. Oliveri
- Unit of Neurosurgery, “Santa Maria alle Scotte” Medical Center, Siena, Italy
| | - B. Batani
- Unit of Neurosurgery, “Santa Maria alle Scotte” Medical Center, Siena, Italy
| | - D. Momi
- Brain Investigation and Neuromodulation Laboratory, Department of Medicine, Surgery and Neuroscience, Unit of Neurology and Clinical Neurophysiology, Siena Medical School, Siena, Italy
| | - A. Cerase
- Unit of Neuroimaging and Neurointervention, “Santa Maria alle Scotte” Medical Center, Siena, Italy
| | - A. Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Medical Center, Harvard Medical School, Boston, MA, USA
- Institut Guttmann, Universitat Autonoma Barcelona, Barcelona, Spain
| | - A. Rossi
- Brain Investigation and Neuromodulation Laboratory, Department of Medicine, Surgery and Neuroscience, Unit of Neurology and Clinical Neurophysiology, Siena Medical School, Siena, Italy
- Department of Medicine, Surgery and Neuroscience, Human Physiology Section, Siena Medical School, Siena, Italy
| | - S. Rossi
- Brain Investigation and Neuromodulation Laboratory, Department of Medicine, Surgery and Neuroscience, Unit of Neurology and Clinical Neurophysiology, Siena Medical School, Siena, Italy
- Department of Medicine, Surgery and Neuroscience, Human Physiology Section, Siena Medical School, Siena, Italy
| | - E. Santarnecchi
- Brain Investigation and Neuromodulation Laboratory, Department of Medicine, Surgery and Neuroscience, Unit of Neurology and Clinical Neurophysiology, Siena Medical School, Siena, Italy
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
|
14
|
Daboudi M, Papadaki E, Vakis A, Chlouverakis G, Makrakis D, Karageorgou D, Simos P, Koukouraki S. Brain SPECT and perfusion MRI: do they provide complementary information about the tumour lesion and its grading? Clin Radiol 2019; 74:652.e1-652.e9. [PMID: 31164195 DOI: 10.1016/j.crad.2019.03.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/22/2019] [Indexed: 10/26/2022]
Abstract
AIM To evaluate the relative and combined utility of 99mTc-tetrofosmin (99mTc-TF) brain single-photon-emission computed tomography (SPECT) and dynamic susceptibility contrast (DSC) perfusion magnetic resonance imaging (MRI) in grading brain gliomas. MATERIALS AND METHODS Thirty-six patients with clinically suspected brain tumours were assessed by 99mTc-TF SPECT and DSC-MRI. Brain tumour malignancy was confirmed in all patients at histopathology. On both techniques brain lesions were evaluated via visual and semi-quantitative analysis methods (deriving tetrofosmin index [T-index] and relative cerebral blood volume [rCBV] ratios, respectively). RESULTS 99mTc-TF SPECT showed abnormally elevated tracer uptake in 31/36 patients whereas MRI detected the brain tumour in all patients. Optimal cut-off values of each index for discriminating between low- and high-grade gliomas were obtained through receiver operating characteristic (ROC) analyses. A T-index cut-off of 6.35 ensured 82% sensitivity and 71% specificity for discriminating between high- and low-grade gliomas, whereas a relative rCBV ratio cut-off of 1.80 achieved 91% sensitivity and 100% specificity. Requiring a positive result on either technique to characterise a high-grade glioma was associated with similar specificity and slightly increased sensitivity. CONCLUSION Both imaging techniques, 99mTF SPECT and DSC MRI, may provide complementary indices of tumour grade and have an independent diagnostic value for high-risk tumours.
Collapse
Affiliation(s)
- M Daboudi
- Department of Nuclear Medicine, School of Medicine, University of Crete, Heraklion, Crete, Greece.
| | - E Papadaki
- Department of Radiology, School of Medicine, University of Crete, Heraklion, Crete, Greece; Institute of Computer Science, Foundation of Research and Technology, Heraklion, Crete, Greece
| | - A Vakis
- Department of Neurosurgery, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - G Chlouverakis
- Biostatistics Lab., Department of Social and Family Medicine, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - D Makrakis
- Department of Radiology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - D Karageorgou
- Department of Radiology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - P Simos
- Institute of Computer Science, Foundation of Research and Technology, Heraklion, Crete, Greece; Department of Psychiatry, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - S Koukouraki
- Department of Nuclear Medicine, School of Medicine, University of Crete, Heraklion, Crete, Greece
| |
Collapse
|
15
|
Kickingereder P, Bisdas S. Glial Tumors and Primary CNS Lymphoma. Clin Neuroradiol 2019. [DOI: 10.1007/978-3-319-61423-6_85-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Glial Tumors and Primary CNS Lymphoma. Clin Neuroradiol 2019. [DOI: 10.1007/978-3-319-68536-6_85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Comparative analysis of the diffusion kurtosis imaging and diffusion tensor imaging in grading gliomas, predicting tumour cell proliferation and IDH-1 gene mutation status. J Neurooncol 2018; 141:195-203. [PMID: 30414095 DOI: 10.1007/s11060-018-03025-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/03/2018] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Few studies have applied diffusion kurtosis imaging (DKI) and diffusion tensor imaging (DTI) for the comprehensive assessment of gliomas [tumour grade, isocitrate dehydrogenase-1 (IDH-1) mutation status and tumour proliferation rate (Ki-67)]. This study describes the efficacy of DKI and DTI to comprehensively evaluate gliomas, compares their results. METHODS Fifty-two patients (18 females; median age, 47.5 years) with pathologically proved gliomas were prospectively included. All cases underwent DKI examination. DKI (mean kurtosis: MK, axial kurtosis: Ka, radial kurtosis: Kr) and DTI (mean diffusivity: MD, fractional anisotropy: FA) maps of each metric was derived. Three ROIs were manually drawn. RESULTS MK, Ka, Kr and FA were significantly higher in HGGs than in LGGs, whereas MD was significantly lower in HGGs than in LGGs (P < 0.01). ROC analysis demonstrated that MK (specificity: 100% sensitivity: 79%) and Ka (specificity: 96% sensitivity: 82%) had the same and highest (AUC: 0.93) diagnostic value. Moreover, MK, Ka, and Kr were significantly higher in grade III than II gliomas (P ≦ 0.01). Further, DKI and DTI can significantly identify IDH-1 mutation status (P ≦ 0.03). Ka (sensitivity: 74%, specificity: 75%, AUC: 0.72) showed the highest diagnostic value. In addition, DKI metrics and MD showed significant correlations with Ki-67 (P ≦ 0.01) and Ka had the highest correlation coefficient (rs = 0.72). CONCLUSIONS Compared with DTI, DKI has great advantages for the comprehensive assessment of gliomas. Ka might serve as a promising imaging index in predicting glioma grading, tumour cell proliferation rate and IDH-1 gene mutation status.
Collapse
|
18
|
Zhao J, Li JB, Wang JY, Wang YL, Liu DW, Li XB, Song YK, Tian YS, Yan X, Li ZH, He SF, Huang XL, Jiang L, Yang ZY, Chu JP. Quantitative analysis of neurite orientation dispersion and density imaging in grading gliomas and detecting IDH-1 gene mutation status. NEUROIMAGE-CLINICAL 2018; 19:174-181. [PMID: 30023167 PMCID: PMC6050458 DOI: 10.1016/j.nicl.2018.04.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 03/26/2018] [Accepted: 04/09/2018] [Indexed: 12/17/2022]
Abstract
Background and purpose Neurite orientation dispersion and density imaging (NODDI) is a new diffusion MRI technique that has rarely been applied for glioma grading. The purpose of this study was to quantitatively evaluate the diagnostic efficiency of NODDI in tumour parenchyma (TP) and peritumoural area (PT) for grading gliomas and detecting isocitrate dehydrogenase-1 (IDH-1) mutation status. Methods Forty-two patients (male: 23, female: 19, mean age: 44.5 y) were recruited and underwent whole brain NODDI examination. Intracellular volume fraction (icvf) and orientation dispersion index (ODI) maps were derived. Three ROIs were manually placed on TP and PT regions for each case. The corresponding average values of icvf and ODI were calculated, and their diagnostic efficiency was assessed. Results Tumours with high icvfTP (≥0.306) and low icvfPT (≤0.331) were more likely to be high-grade gliomas (HGGs), while lesions with low icvfTP (<0.306) and high icvfPT (>0.331) were prone to be low-grade gliomas (LGGs) (P < 0.001). A multivariate logistic regression model including patient age and icvf values in TP and PT regions most accurately predicted glioma grade (AUC = 0.92, P < 0.001), with a sensitivity and specificity of 92% and 89%, respectively. However, no significant differences were found in NODDI metrics for differentiating IDH-1 mutation status. Conclusions The quantitative NODDI metrics in the TP and PT regions are highly valuable for glioma grading. A multivariate logistic regression model using the patient age and the icvf values in TP and PT regions showed very high predictive power. However, the utility of NODDI metrics for detecting IDH-1 mutation status has not been fully explored, as a larger sample size may be necessary to uncover benefits. Neurite orientation dispersion and density imaging (NODDI) is a new diffusion MRI technique Quantitative NOODI metrics in TP and PT area could help grading gliomas Age, icvf in TP and PT area were significantly associated with glioma grading The utility of NODDI in detecting IDH-1 mutation status has not been fully explored
Collapse
Affiliation(s)
- Jing Zhao
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58, The Second Zhongshan Road, Guangzhou, Guangdong 510080, China
| | - Ji-Bin Li
- Department of Clinical Research, Sun Yat-sen University Cancer Center, 651, Dong Feng Dong Lu Road, Guangzhou, Guangdong 510060, China
| | - Jing-Yan Wang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58, The Second Zhongshan Road, Guangzhou, Guangdong 510080, China
| | - Yu-Liang Wang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58, The Second Zhongshan Road, Guangzhou, Guangdong 510080, China
| | - Da-Wei Liu
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, 58, The Second Zhongshan Road, Guangzhou, Guangdong 510080, China
| | - Xin-Bei Li
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58, The Second Zhongshan Road, Guangzhou, Guangdong 510080, China
| | - Yu-Kun Song
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58, The Second Zhongshan Road, Guangzhou, Guangdong 510080, China
| | - Yi-Su Tian
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58, The Second Zhongshan Road, Guangzhou, Guangdong 510080, China
| | - Xu Yan
- MR Collaboration NE Asia, Siemens Healthcare 278, Zhou Zhu Road, Nanhui, Shanghai 201318, China
| | - Zhu-Hao Li
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58, The Second Zhongshan Road, Guangzhou, Guangdong 510080, China
| | - Shao-Fu He
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58, The Second Zhongshan Road, Guangzhou, Guangdong 510080, China
| | - Xiao-Long Huang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 33, Ying Feng Lu Road, Hai Zhu district, Guangzhou, Guangdong 510235, China
| | - Li Jiang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58, The Second Zhongshan Road, Guangzhou, Guangdong 510080, China
| | - Zhi-Yun Yang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58, The Second Zhongshan Road, Guangzhou, Guangdong 510080, China
| | - Jian-Ping Chu
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58, The Second Zhongshan Road, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
19
|
A combined diffusion tensor imaging and Ki-67 labeling index study for evaluating the extent of tumor infiltration using the F98 rat glioma model. J Neurooncol 2018; 137:259-268. [PMID: 29294232 DOI: 10.1007/s11060-017-2734-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 12/26/2017] [Indexed: 10/18/2022]
Abstract
Diffusion tensor imaging (DTI) has been proven to be a sophisticated and useful tool for the delineation of tumors. In the present study, we investigated the predictive role of DTI compared to other magnetic resonance imaging (MRI) techniques in combination with Ki-67 labeling index in defining tumor cell infiltration in the peritumoral regions of F98 glioma-bearing rats. A total of 29 tumor-bearing Fischer rats underwent T2-weighted imaging, contrast-enhanced T1-weighted imaging, and DTI of their brain using a 7.0-T MRI scanner. The fractional anisotropy (FA) ratios were correlated to the Ki-67 labeling index using the Spearman correlation analysis. A receiver operating characteristic curve (ROC) analysis was established to evaluate parameters with sensitivity and specificity in order to identify the threshold values for predicting tumor infiltration. Significant correlations were observed between the FA ratios and Ki-67 labeling index (r = - 0.865, p < 0.001). The ROC analysis demonstrated that the apparent diffusion coefficient (ADC) and FA ratios could predict 50% of the proliferating cells in the regions of interest (ROI), with a sensitivity of 88.1 and 81.3%, and a specificity of 86.2 and 90.2%, respectively (p < 0.001). Meanwhile, the two ratios could also predict 10% of the proliferating cells in the ROI, with a sensitivity of 82.5 and 94.9%, and a specificity of 100 and 88.9%, respectively (p < 0.001). The present study demonstrated that the FA ratios are closely correlated with the Ki-67 labeling index. Furthermore, both ADC and FA ratios, derived from DTI, were useful for quantitatively predicting the Ki-67 labeling of glioma cells.
Collapse
|
20
|
Qi XX, Shi DF, Ren SX, Zhang SY, Li L, Li QC, Guan LM. Histogram analysis of diffusion kurtosis imaging derived maps may distinguish between low and high grade gliomas before surgery. Eur Radiol 2017; 28:1748-1755. [PMID: 29143940 DOI: 10.1007/s00330-017-5108-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/16/2017] [Accepted: 09/29/2017] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To investigate the value of histogram analysis of diffusion kurtosis imaging (DKI) maps in the evaluation of glioma grading. METHODS A total of 39 glioma patients who underwent preoperative magnetic resonance imaging (MRI) were classified into low-grade (13 cases) and high-grade (26 cases) glioma groups. Parametric DKI maps were derived, and histogram metrics between low- and high-grade gliomas were analysed. The optimum diagnostic thresholds of the parameters, area under the receiver operating characteristic curve (AUC), sensitivity, and specificity were achieved using a receiver operating characteristic (ROC). RESULT Significant differences were observed not only in 12 metrics of histogram DKI parameters (P<0.05), but also in mean diffusivity (MD) and mean kurtosis (MK) values, including age as a covariate (F=19.127, P<0.001 and F=20.894, P<0.001, respectively), between low- and high-grade gliomas. Mean MK was the best independent predictor of differentiating glioma grades (B=18.934, 22.237 adjusted for age, P<0.05). The partial correlation coefficient between fractional anisotropy (FA) and kurtosis fractional anisotropy (KFA) was 0.675 (P<0.001). The AUC of the mean MK, sensitivity, and specificity were 0.925, 88.5% and 84.6%, respectively. CONCLUSIONS DKI parameters can effectively distinguish between low- and high-grade gliomas. Mean MK is the best independent predictor of differentiating glioma grades. KEY POINTS • DKI is a new and important method. • DKI can provide additional information on microstructural architecture. • Histogram analysis of DKI may be more effective in glioma grading.
Collapse
Affiliation(s)
- Xi-Xun Qi
- Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Da-Fa Shi
- Department of Radiology, First Affiliated Hospital of Yangtze University, Jingzhou, 434000, China
| | - Si-Xie Ren
- Department of Radiology, Chengdu Second People's Hospital, Chengdu, 610000, China
| | - Su-Ya Zhang
- Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Long Li
- Department of Neurosurgery, First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Qing-Chang Li
- Department of Pathology, First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Li-Ming Guan
- Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
21
|
Valentini MC, Mellai M, Annovazzi L, Melcarne A, Denysenko T, Cassoni P, Casalone C, Maurella C, Grifoni S, Fania P, Cistaro A, Schiffer D. Comparison among conventional and advanced MRI, 18F-FDG PET/CT, phenotype and genotype in glioblastoma. Oncotarget 2017; 8:91636-91653. [PMID: 29207673 PMCID: PMC5710953 DOI: 10.18632/oncotarget.21482] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 07/30/2017] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma (GB) is a highly heterogeneous tumor. In order to identify in vivo the most malignant tumor areas, the extent of tumor infiltration and the sites giving origin to GB stem cells (GSCs), we combined positron emission tomography/computed tomography (PET/CT) and conventional and advanced magnetic resonance imaging (MRI) with histology, immunohistochemistry and molecular genetics. Prior to dura opening and tumor resection, forty-eight biopsy specimens [23 of contrast-enhancing (CE) and 25 of non-contrast enhancing (NE) regions] from 12 GB patients were obtained by a frameless image-guided stereotactic biopsy technique. The highest values of 2-[18F]-fluoro-2-deoxy-D-glucose maximum standardized uptake value (18F-FDG SUVmax), relative cerebral blood volume (rCBV), Choline/Creatine (Cho/Cr), Choline/N-acetylaspartate (Cho/NAA) and Lipids/Lactate (LL) ratio have been observed in the CE region. They corresponded to the most malignant tumor phenotype, to the greatest molecular spectrum and stem cell potential. On the contrary, apparent diffusion coefficient (ADC) and fractional anisotropy (FA) in the CE region were very variable. 18F-FDG SUVmax, Cho/Cr and Cho/NAA ratio resulted the most suitable parameters to detect tumor infiltration. In edematous areas, reactive astrocytes and microglia/macrophages were influencing variables. Combined MRI and 18F-FDG PET/CT allowed to recognize the specific biological significance of the different identified areas of GB.
Collapse
Affiliation(s)
| | - Marta Mellai
- Research Center/Policlinico di Monza Foundation, 13100 Vercelli, Italy
| | - Laura Annovazzi
- Research Center/Policlinico di Monza Foundation, 13100 Vercelli, Italy
| | - Antonio Melcarne
- Department of Neurosurgery, A.O.U. Città della Salute e della Scienza, 10126 Turin, Italy
| | - Tetyana Denysenko
- Research Center/Policlinico di Monza Foundation, 13100 Vercelli, Italy
| | - Paola Cassoni
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Cristina Casalone
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy
| | - Cristiana Maurella
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy
| | - Silvia Grifoni
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy
| | - Piercarlo Fania
- Positron Emission Tomography Center IRMET S.p.A, Euromedic Inc., 10136 Turin, Italy
| | - Angelina Cistaro
- Positron Emission Tomography Center IRMET S.p.A, Euromedic Inc., 10136 Turin, Italy
- Institute of Cognitive Sciences and Technologies, National Research Council, 00185 Rome, Italy
| | - Davide Schiffer
- Research Center/Policlinico di Monza Foundation, 13100 Vercelli, Italy
| |
Collapse
|
22
|
Radiomic features predict Ki-67 expression level and survival in lower grade gliomas. J Neurooncol 2017; 135:317-324. [PMID: 28900812 DOI: 10.1007/s11060-017-2576-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/17/2017] [Indexed: 10/25/2022]
Abstract
To investigate the radiomic features associated with Ki-67 expression in lower grade gliomas and assess the prognostic values of these features. Patients with lower grade gliomas (n = 117) were randomly assigned into the training (n = 78) and validation (n = 39) sets. A total of 431 radiological features were extracted from each patient. Differential radiological features between the low and high Ki-67 expression groups were screened by significance analysis of microarrays. Then, generalized linear analysis was performed to select features that could predict the Ki-67 expression level. Predictive efficiencies were further evaluated in the validation set. Cox regression analysis was performed to investigate the prognostic values of Ki-67 expression level and Ki-67-related radiological features. A group of nine radiological features were screened for prediction of Ki-67 expression status; these achieved accuracies of 83.3% and 88.6% (areas under the curves, 0.91 and 0.93) in the training and validation sets, respectively. Of these features, only spherical disproportion (SD) was found to be a prognostic factor. Patients in the high SD group exhibited worse outcomes in the whole cohort (overall survival, p < 0.0001; progression-free survival, p < 0.0001). Ki-67 expression level and SD were independent prognostic factors in the multivariate Cox regression analysis. This study identified a radiomic signature for prediction of Ki-67 expression level as well as a prognostic radiological feature in patients with lower grade gliomas.
Collapse
|
23
|
Perfusion imaging of brain gliomas using arterial spin labeling: correlation with histopathological vascular density in MRI-guided biopsies. Neuroradiology 2016; 59:51-59. [DOI: 10.1007/s00234-016-1756-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/17/2016] [Indexed: 11/25/2022]
|
24
|
Diffusion kurtosis imaging can efficiently assess the glioma grade and cellular proliferation. Oncotarget 2016; 6:42380-93. [PMID: 26544514 PMCID: PMC4747234 DOI: 10.18632/oncotarget.5675] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 10/22/2015] [Indexed: 01/02/2023] Open
Abstract
Conventional diffusion imaging techniques are not sufficiently accurate for evaluating glioma grade and cellular proliferation, which are critical for guiding glioma treatment. Diffusion kurtosis imaging (DKI), an advanced non-Gaussian diffusion imaging technique, has shown potential in grading glioma; however, its applications in this tumor have not been fully elucidated. In this study, DKI and diffusion weighted imaging (DWI) were performed on 74 consecutive patients with histopathologically confirmed glioma. The kurtosis and conventional diffusion metric values of the tumor were semi-automatically obtained. The relationships of these metrics with the glioma grade and Ki-67 expression were evaluated. The diagnostic efficiency of these metrics in grading was further compared. It was demonstrated that compared with the conventional diffusion metrics, the kurtosis metrics were more promising imaging markers in distinguishing high-grade from low-grade gliomas and distinguishing among grade II, III and IV gliomas; the kurtosis metrics also showed great potential in the prediction of Ki-67 expression. To our best knowledge, we are the first to reveal the ability of DKI to assess the cellular proliferation of gliomas, and to employ the semi-automatic method for the accurate measurement of gliomas. These results could have a significant impact on the diagnosis and subsequent therapy of glioma.
Collapse
|
25
|
Zikou A, Alexiou GA, Goussia A, Kosta P, Xydis V, Voulgaris S, Kyritsis AP, Argyropoulou MI. The role of diffusion tensor imaging and dynamic susceptibility perfusion MRI in the evaluation of meningioma grade and subtype. Clin Neurol Neurosurg 2016; 146:109-15. [DOI: 10.1016/j.clineuro.2016.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/25/2016] [Accepted: 05/03/2016] [Indexed: 10/21/2022]
|
26
|
Tonoyan AS, Pronin IN, Pitshelauri DI, Shishkina LV, Fadeeva LM, Pogosbekyan EL, Zakharova NE, Shults EI, Khachanova NV, Kornienko VN, Potapov AA. [A correlation between diffusion kurtosis imaging and the proliferative activity of brain glioma]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2016; 79:5-14. [PMID: 26977789 DOI: 10.17116/neiro20157965-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
UNLABELLED The aim of the study was to assess the capabilities of diffusion kurtosis imaging (DKI) in diagnosis of the glioma proliferative activity and to evaluate a relationship between the glioma proliferative activity index and diffusion parameters of the contralateral normal appearing white matter (CNAWM). MATERIAL AND METHODS The study included 47 patients with newly diagnosed brain gliomas (23 low grade, 13 grade III, and 11 grade IV gliomas). We determined a relationship between absolute and normalized parameters of the diffusion tensor (mean (MD), axial (AD), and radial (RD) diffusivities; fractional (FA) and relative (RA) anisotropies) and diffusion kurtosis (mean (MK), axial (AK), and radial (RK) kurtosis; kurtosis anisotropy (KA)) and the proliferative activity index in the most malignant glioma parts (p<0.05). We also established a relationship between the tensor and kurtosis parameters of CNAWM and the glioma proliferative activity index (p<0.05). RESULTS The correlation between all the absolute and normalized diffusion parameters and the glioma proliferative activity index, except absolute and normalized FA and RA values, was found to be statistically significant (p<0.05). Kurtosis (MK, AK, and RK) and anisotropy (KA, FA, RA) values increased, and diffusivity (MD, AD, RD) values decreased as the glioma proliferative activity index increased. A strong correlation between the proliferative activity index and absolute RK (r=0,71; p=0.000001) and normalized values of MK (r=0.8; p=0.000001), AK (r=0.71; p=0.000001), RK (r=0.81; p=0.000001), and RD (r=-0.71; p=0.000001) was found. A weak, but statistically significant correlation between the glioma proliferative activity index and diffusion values RK (r=-0.36; p=0.014), KA (r=-0.39; p=0.007), RD (r=0.35; p=0.017), FA (r=-0.42; p=0.003), and RA (r=-0.41; p=0.004) of CNAWM was found. CONCLUSION DKI has good capabilities to detect immunohistochemical changes in gliomas. DKI demonstrated a high sensitivity in detection of microstructural changes in the contralateral normal appearing white matter in patients with brain gliomas.
Collapse
Affiliation(s)
- A S Tonoyan
- Burdenko Neurosurgical Institute, Moscow, Russia
| | - I N Pronin
- Burdenko Neurosurgical Institute, Moscow, Russia
| | | | | | - L M Fadeeva
- Burdenko Neurosurgical Institute, Moscow, Russia
| | | | | | - E I Shults
- Burdenko Neurosurgical Institute, Moscow, Russia
| | | | | | - A A Potapov
- Burdenko Neurosurgical Institute, Moscow, Russia
| |
Collapse
|
27
|
Correlation of diffusion tensor and dynamic susceptibility contrast MRI with DNA ploidy and cell cycle analysis of gliomas. Clin Neurol Neurosurg 2015; 139:119-24. [DOI: 10.1016/j.clineuro.2015.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 08/25/2015] [Accepted: 09/22/2015] [Indexed: 01/06/2023]
|
28
|
Jain KK, Sahoo P, Tyagi R, Mehta A, Patir R, Vaishya S, Prakash N, Vasudev N, Gupta RK. Prospective glioma grading using single-dose dynamic contrast-enhanced perfusion MRI. Clin Radiol 2015; 70:1128-35. [PMID: 26152879 DOI: 10.1016/j.crad.2015.06.076] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/31/2015] [Accepted: 06/01/2015] [Indexed: 11/17/2022]
Abstract
AIM To evaluate the sensitivity and specificity of single-dose dynamic contrast-enhanced (DCE) perfusion magnetic resonance imaging (MRI) in prospective evaluation of glioma grading and to correlate the relative cerebral blood volume (rCBV) values with mitotic and ki-67 indexes obtained at histopathology. MATERIALS AND METHODS A total of 53 histologically proven patients with glioma were included in this study. DCE-MRI perfusion with a single dose of contrast medium was included in brain tumour protocol and prospective grading of glioma into low and high grade was done based on a previously reported rCBV cut-off value of 3. Tumours with rCBV ≥ 3 were considered to be high grade and rCBV < 3 were considered to be low grade. The sensitivity and specificity of the cut-off value were estimated. Ki-67 and mitotic indexes were also obtained on histopathological analysis along with histological grading. RESULTS Based on pre-defined rCBV cut-off values, prospective grading of low- and high-grade glioma was achieved with a sensitivity and specificity of 97.22% and 100%, respectively. Significant correlation was found between the mitotic/ki-67 indexes and rCBV values when data for high- and low-grade tumours was combined. CONCLUSION DCE-MRI performed with a single dose of contrast medium is as effective as a protocol with a double-dose of contrast medium for glioma grading using 3 T MRI and could be added to the routine evaluation protocol of brain tumours.
Collapse
Affiliation(s)
- K K Jain
- Department of Radiology and Imaging, Fortis Memorial Research Institute, Gurgaon, India
| | - P Sahoo
- Philips Healthcare, Philips India Ltd, Gurgaon, India
| | - R Tyagi
- Department of Radiology and Imaging, Fortis Memorial Research Institute, Gurgaon, India
| | - A Mehta
- Department of Radiology and Imaging, Fortis Memorial Research Institute, Gurgaon, India
| | - R Patir
- Neurosurgery, Fortis Memorial Research Institute, Gurgaon, India
| | - S Vaishya
- Neurosurgery, Fortis Memorial Research Institute, Gurgaon, India
| | - N Prakash
- Pathology, Fortis Memorial Research Institute, Gurgaon, India
| | - N Vasudev
- Pathology, Fortis Memorial Research Institute, Gurgaon, India
| | - R K Gupta
- Department of Radiology and Imaging, Fortis Memorial Research Institute, Gurgaon, India.
| |
Collapse
|
29
|
Qiao XJ, Ellingson BM, Kim HJ, Wang DJJ, Salamon N, Linetsky M, Sepahdari AR, Jiang B, Tian JJ, Esswein SR, Cloughesy TF, Lai A, Nghiemphu L, Pope WB. Arterial spin-labeling perfusion MRI stratifies progression-free survival and correlates with epidermal growth factor receptor status in glioblastoma. AJNR Am J Neuroradiol 2014; 36:672-7. [PMID: 25542879 DOI: 10.3174/ajnr.a4196] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/27/2014] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Glioblastoma is a common primary brain tumor with a poor but variable prognosis. Our aim was to investigate the feasibility of MR perfusion imaging by using arterial spin-labeling for determining the prognosis of patients with glioblastoma. MATERIALS AND METHODS Pseudocontinuous arterial spin-labeling with 3D background-suppressed gradient and spin-echo was acquired before surgery on 53 patients subsequently diagnosed with glioblastoma. The calculated CBF color maps were visually evaluated by 3 independent readers blinded to patient history. Pathologic and survival data were correlated with CBF map findings. Arterial spin-labeling values in tumor tissue were also quantified by using manual fixed-size ROIs. RESULTS Two perfusion patterns were characterized by visual evaluation of CBF maps on the basis of either the presence (pattern 1) or absence (pattern 2) of substantial hyperperfused tumor tissue. Evaluation of the perfusion patterns was highly concordant among the 3 readers (κ = 0.898, P < .001). Pattern 1 (versus pattern 2) was associated with significantly shorter progression-free survival by Kaplan-Meier analysis (median progression-free survival of 182 days versus 485 days, P < .01) and trended with shorter overall survival (P = .079). There was a significant association between pattern 1 and epidermal growth factor receptor variant III expression (P < .01). CONCLUSIONS Qualitative evaluation of arterial spin-labeling CBF maps can be used to stratify survival and predict epidermal growth factor receptor variant III expression in patients with glioblastoma.
Collapse
Affiliation(s)
- X J Qiao
- From the Departments of Radiological Sciences (X.J.Q., B.M.E., H.J.K., N.S., M.L., A.R.S., J.J.T., S.R.E., W.B.P.)
| | - B M Ellingson
- From the Departments of Radiological Sciences (X.J.Q., B.M.E., H.J.K., N.S., M.L., A.R.S., J.J.T., S.R.E., W.B.P.)
| | - H J Kim
- From the Departments of Radiological Sciences (X.J.Q., B.M.E., H.J.K., N.S., M.L., A.R.S., J.J.T., S.R.E., W.B.P.)
| | - D J J Wang
- Neurology (D.J.J.W., T.F.C., A.L., L.N.), David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California
| | - N Salamon
- From the Departments of Radiological Sciences (X.J.Q., B.M.E., H.J.K., N.S., M.L., A.R.S., J.J.T., S.R.E., W.B.P.)
| | - M Linetsky
- From the Departments of Radiological Sciences (X.J.Q., B.M.E., H.J.K., N.S., M.L., A.R.S., J.J.T., S.R.E., W.B.P.)
| | - A R Sepahdari
- From the Departments of Radiological Sciences (X.J.Q., B.M.E., H.J.K., N.S., M.L., A.R.S., J.J.T., S.R.E., W.B.P.)
| | - B Jiang
- Department of Radiology (B.J.), Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - J J Tian
- From the Departments of Radiological Sciences (X.J.Q., B.M.E., H.J.K., N.S., M.L., A.R.S., J.J.T., S.R.E., W.B.P.)
| | - S R Esswein
- From the Departments of Radiological Sciences (X.J.Q., B.M.E., H.J.K., N.S., M.L., A.R.S., J.J.T., S.R.E., W.B.P.)
| | - T F Cloughesy
- Neurology (D.J.J.W., T.F.C., A.L., L.N.), David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California
| | - A Lai
- Neurology (D.J.J.W., T.F.C., A.L., L.N.), David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California
| | - L Nghiemphu
- Neurology (D.J.J.W., T.F.C., A.L., L.N.), David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California
| | - W B Pope
- From the Departments of Radiological Sciences (X.J.Q., B.M.E., H.J.K., N.S., M.L., A.R.S., J.J.T., S.R.E., W.B.P.)
| |
Collapse
|
30
|
Sioka C, Fotopoulos A, Kyritsis AP. Paraneoplastic immune-mediated neurological effects of systemic cancers. Expert Rev Clin Immunol 2014; 10:621-30. [PMID: 24665890 DOI: 10.1586/1744666x.2014.901151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer patients may develop paraneoplastic neurological conditions associated with autoantibodies directed against neural or neuromuscular tissues. These syndromes are frequently manifested in advance of the cancer presentation by several months or years necessitating a detailed and expensive investigation to search for the presence of a malignancy. In such cases additional assistance may be obtained by the early employment of whole body 18F flurodeoxyglucose positron emission tomography as a cancer screening imaging procedure for early cancer diagnosis and potential therapy. Effective therapy of the primary cancer consists the best current therapy for a given paraneoplastic syndrome. However, other forms of immune modulation, such as plasma exchange, intravenous gamma globulin, other immune therapies and symptomatic treatment for certain PNS may have additional benefit.
Collapse
Affiliation(s)
- Chrissa Sioka
- Neurosurgical Research Institute, University of Ioannina, Ioannina, Greece
| | | | | |
Collapse
|