1
|
Dahal R, Gurung P, Kayastha J, Malla S, Badinski T, Rajbhandari P, Pant B. Intraoperative electrocorticography-guided resection of the epileptogenic zone in an unusual porencephalic cyst: case report and literature review. Ann Med Surg (Lond) 2024; 86:2309-2313. [PMID: 38576954 PMCID: PMC10990310 DOI: 10.1097/ms9.0000000000001871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/16/2024] [Indexed: 04/06/2024] Open
Abstract
Introduction Porencephalic cysts resulting from perinatal artery infarctions typically manifest as large cysts accompanied by pre-existing neurological deficits. A small porencephalic cyst without any neurological deficit is a rare cause of medically refractory epilepsy. Case presentation A 23-year-old female presented with a history of medically refractory epilepsy secondary to a small right parieto-temporal porencephalic cyst. Despite optimal anti-seizure medications, seizures persisted. Surgical intervention was planned, and intraoperative electrocorticography (ioECoG) was used to delineate the epileptogenic zone (EZ), which was found to be two gyri posterior to the cyst. Discussion Very focal ischaemia resulting in a small porencephalic cyst from perinatal artery infarction exhibits a distinct organization of the EZ involving wider area posteriorly indicating involvement of arterial territory distal to the cyst. This contrasts with the typical perilesional EZ observed in other lesional epilepsy causes. Conclusion Our findings emphasize the need to consider aetiology during interpretation of ioECoG to better define the electrophysiological border between the normal and epileptogenic brain, aiding in achieving a better surgical outcome.
Collapse
Affiliation(s)
- Riju Dahal
- Department of Neurosurgery, Annapurna Neurological Institute and Allied Sciences, Maitighar, Kathmandu, Nepal
| | - Pritam Gurung
- Department of Neurosurgery, Annapurna Neurological Institute and Allied Sciences, Maitighar, Kathmandu, Nepal
| | - Jessica Kayastha
- Department of Neurosurgery, Annapurna Neurological Institute and Allied Sciences, Maitighar, Kathmandu, Nepal
| | - Samridha Malla
- Department of Neurosurgery, Annapurna Neurological Institute and Allied Sciences, Maitighar, Kathmandu, Nepal
| | - Tina Badinski
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Pravesh Rajbhandari
- Department of Neurosurgery, Annapurna Neurological Institute and Allied Sciences, Maitighar, Kathmandu, Nepal
| | - Basant Pant
- Department of Neurosurgery, Annapurna Neurological Institute and Allied Sciences, Maitighar, Kathmandu, Nepal
| |
Collapse
|
2
|
Kuang S, Zhang S, Cui Z, Ge M, Yuan L, Wang J, Wei Z, Xu J, Zhai F, Liang S. Clinical characteristics and surgical outcomes of low-grade epilepsy-associated brain tumors. Ther Adv Neurol Disord 2024; 17:17562864241237851. [PMID: 38525487 PMCID: PMC10958794 DOI: 10.1177/17562864241237851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/09/2024] [Indexed: 03/26/2024] Open
Abstract
Background Low-grade epilepsy-associated brain tumors (LEATs) are found to be the second most common lesion-related epilepsy. Malignant potential of LEATs is very low and the overall survival is good, so the focus of treatment is focused more on seizure outcome rather than oncological prognosis. Objectives This study was conducted to evaluate the risk factors of seizure outcomes after resection in patients with LEATs. Design A retrospective study. Methods A retrospective analysis of patients with LEATs who underwent resective surgery in our three epilepsy centers between October 2010 and April 2023 with a minimum follow-up of 1 year. Demography, clinical characters, neurophysiology, and molecular neuropathology were assessed for association with postoperative seizure outcomes at 1-, 2-, and 5-year follow-up. Synthetic minority oversampling technique (SMOTE) algorithm model was performed to handle the imbalance of data distribution. Gaussian Naïve Bayes (GNB) algorithms were created as a basis for classifying outcomes according to observation indicators. Results A total of 111 patients were enrolled in the cohort. The most common pathology was ganglioglioma (n = 37, 33.3%). The percentage of patients with seizure freedom was 91.0% (101/111) at 1-year follow-up, 87.5% (77/88) at 2-year follow-up, and 79.1% (53/67) at 5-year follow-up. Partial resection had a significantly poor seizure outcome compared to total resection and supratotal resection (p < 0.05). The epileptiform discharge on post-resective intraoperative electrocorticography (ECoG) or postoperative scalp electroencephalography (EEG) were negative factors on postoperative seizure freedom at 1-, 2-, or 5-year follow-ups (p < 0.05). The area under the receiver-operating characteristic curve value of the GNB-SMOTE model was 0.95 (95% CI, 0.876-1.000), 0.892 (95% CI, 0.656-0.934), and 0.786 (95% CI, 0.491-0.937) at 1-, 2-, and 5-year follow-up, respectively. Conclusion The partial resection, post-resective intraoperative ECoG, and postoperative scalp EEG were valuable indicators of poor seizure outcomes. The utilization of post-resective intraoperative ECoG is beneficial to improve seizure outcomes. Based on the data diversity and completeness of three medical centers, a multivariate correlation analysis model was established based on GNB algorithm.
Collapse
Affiliation(s)
- Suhui Kuang
- Functional Neurosurgery Department, National Children’s Health Center of China, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Shaohui Zhang
- Neurosurgery Department, Fourth Medical Center, PLA General Hospital, Beijing, China
- Neurosurgery Department, First Medical Center, PLA General Hospital, Beijing, China
| | - Zhiqiang Cui
- Neurosurgery Department, First Medical Center, PLA General Hospital, Beijing, China
| | - Ming Ge
- Neurosurgery Department, National Children’s Health Center of China, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Liu Yuan
- Functional Neurosurgery Department, National Children’s Health Center of China, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Jiaqi Wang
- Functional Neurosurgery Department, National Children’s Health Center of China, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Zhirong Wei
- Functional Neurosurgery Department, National Children’s Health Center of China, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Jinshan Xu
- Functional Neurosurgery Department, National Children’s Health Center of China, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Feng Zhai
- Functional Neurosurgery Department, National Children’s Health Center of China, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Shuli Liang
- Functional Neurosurgery Department, National Children’s Health Center of China, Beijing Children’s Hospital, Capital Medical University, No. 56, Nanlishi Road, Xicheng District, Beijing 100045, ChinaKey Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| |
Collapse
|
3
|
Rajeev SP, Darshan HR, Vilanilam GC, Abraham M, Keshavapisharady K, Venkat EH, Stanley A, Menon RN, Radhakrishnan A, Cherian A, Narasimaiah D, Thomas B, Kesavadas C, Vimala S. Is intraoperative electrocorticography (ECoG) for long-term epilepsy-associated tumors (LEATs) more useful in children?-A Randomized Controlled Trial. Childs Nerv Syst 2024; 40:839-854. [PMID: 38010434 DOI: 10.1007/s00381-023-06216-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/03/2023] [Indexed: 11/29/2023]
Abstract
OBJECTIVES The utility of intraoperative electrocorticography (ECoG)-guided resective surgery for pediatric long-term epilepsy-associated tumors (LEATs) with antiseizure medication (ASM) resistant epilepsy is not supported by robust evidence. As epilepsy networks and their ramifications are different in children from those in adults, the impact of intraoperative ECoG-based tailored resections in predicting prognosis and influencing outcomes may also differ. We evaluated this hypothesis by comparing the outcomes of resections with and without the use of ECoG in children and adults by a randomized study. METHODS From June 2020 to January 2022, 42 patients (17 children and 25 adults) with LEATs and antiseizure medication (ASM)-resistant epilepsy were randomly assigned to one of the 2 groups (ECoG or no ECoG), prior to surgical resection. The 'no ECoG' arm underwent gross total lesion resection (GTR) without ECoG guidance and the ECoG arm underwent GTR with ECoG guidance and further additional tailored resections, as necessary. Factors evaluated were tumor location, size, lateralization, seizure duration, preoperative antiepileptic drug therapy, pre- and postresection ECoG patterns and tumor histology. Postoperative Engel score and adverse event rates were compared in the pediatric and adult groups of both arms. Eloquent cortex lesions and re-explorations were excluded to avoid confounders. RESULTS Forty-two patients were included in the study of which 17 patients were in the pediatric cohort (age < 18 years) and 25 in the adult cohort. The mean age in the pediatric group was 11.11 years (SD 4.72) and in the adult group was 29.56 years (SD 9.29). The mean duration of epilepsy was 9.7 years (SD 4.8) in the pediatric group and 10.96 (SD 8.8) in the adult group. The ECoG arm of LEAT resections had 23 patients (9 children and 14 adults) and the non-ECoG arm had 19 patients (8 children and 11 adults). Three children and 3 adults from the ECoG group further underwent ECoG-guided tailored resections (average 1.33 additional tailored resections/per patient.).The histology of the tailored resection specimen was unremarkable in 3/6 (50%).Overall, the commonest histology in both groups was ganglioglioma and the temporal lobe, the commonest site of the lesion. 88.23% of pediatric cases (n = 15/17) had an excellent outcome (Engel Ia) following resection, compared to 84% of adult cases (n = 21/25) at a mean duration of follow-up of 25.76 months in children and 26.72 months in adults (p = 0.405).There was no significant difference in seizure outcomes between the ECoG and no ECoG groups both in children and adults, respectively (p > 0.05). Additional tailored resection did not offer any seizure outcome benefit when compared to the non-tailored resections. CONCLUSIONS The use of intraoperative electrocorticography in LEATs did not contribute to postoperative seizure outcome benefit in children and adults. No additional advantage or utility was offered by ECoG in children when compared to its use in adults. ECoG-guided additional tailored resections did not offer any additional seizure outcome benefit both in children and adults.
Collapse
Affiliation(s)
- Sreenath Prabha Rajeev
- Department of Neurosurgery, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - H R Darshan
- Department of Neurosurgery, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - George Chandy Vilanilam
- Department of Neurosurgery, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India.
- R Madhavan Nair Centre For Comprehensive Epilepsy Care, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India.
| | - Mathew Abraham
- Department of Neurosurgery, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - Krishnakumar Keshavapisharady
- Department of Neurosurgery, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - Easwer Hariharan Venkat
- Department of Neurosurgery, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - Antony Stanley
- Regional Technical Resource Centre for Health Technology Assessment, Achutha Menon Centre for Health Science Studies, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - Ramshekhar N Menon
- R Madhavan Nair Centre For Comprehensive Epilepsy Care, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - Ashalatha Radhakrishnan
- R Madhavan Nair Centre For Comprehensive Epilepsy Care, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - Ajith Cherian
- R Madhavan Nair Centre For Comprehensive Epilepsy Care, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - Deepti Narasimaiah
- Department of Neuropathology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - Bejoy Thomas
- Department of Neuroimaging and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - Chandrasekhar Kesavadas
- Department of Neuroimaging and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - Smita Vimala
- Department of Neuroanaesthesiology and Critical Care, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| |
Collapse
|
4
|
Avila EK, Tobochnik S, Inati SK, Koekkoek JAF, McKhann GM, Riviello JJ, Rudà R, Schiff D, Tatum WO, Templer JW, Weller M, Wen PY. Brain tumor-related epilepsy management: A Society for Neuro-oncology (SNO) consensus review on current management. Neuro Oncol 2024; 26:7-24. [PMID: 37699031 PMCID: PMC10768995 DOI: 10.1093/neuonc/noad154] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Tumor-related epilepsy (TRE) is a frequent and major consequence of brain tumors. Management of TRE is required throughout the course of disease and a deep understanding of diagnosis and treatment is key to improving quality of life. Gross total resection is favored from both an oncologic and epilepsy perspective. Shared mechanisms of tumor growth and epilepsy exist, and emerging data will provide better targeted therapy options. Initial treatment with antiseizure medications (ASM) in conjunction with surgery and/or chemoradiotherapy is typical. The first choice of ASM is critical to optimize seizure control and tolerability considering the effects of the tumor itself. These agents carry a potential for drug-drug interactions and therefore knowledge of mechanisms of action and interactions is needed. A review of adverse effects is necessary to guide ASM adjustments and decision-making. This review highlights the essential aspects of diagnosis and treatment of TRE with ASMs, surgery, chemotherapy, and radiotherapy while indicating areas of uncertainty. Future studies should consider the use of a standardized method of seizure tracking and incorporating seizure outcomes as a primary endpoint of tumor treatment trials.
Collapse
Affiliation(s)
- Edward K Avila
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Steven Tobochnik
- Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Neurology, VA Boston Healthcare System, Boston, Massachusetts, USA
| | - Sara K Inati
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Johan A F Koekkoek
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Neurology, Haaglanden Medical Center, The Hague, The Netherlands
| | - Guy M McKhann
- Department of Neurosurgery, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - James J Riviello
- Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas, USA
| | - Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience “Rita Levi Montalcini,” University of Turin, Italy
| | - David Schiff
- Department of Neurology, Division of Neuro-Oncology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - William O Tatum
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
| | - Jessica W Templer
- Department of Neurology, Northwestern University, Chicago, Illinois, USA
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Centre, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Center, and Division of Neuro-Oncology, Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Freund BE, Sherman WJ, Sabsevitz DS, Middlebrooks EH, Feyissa AM, Garcia DM, Grewal SS, Chaichana KL, Quinones-Hinojosa A, Tatum WO. Can we improve electrocorticography using a circular grid array in brain tumor surgery? Biomed Phys Eng Express 2023; 9:065027. [PMID: 37871586 DOI: 10.1088/2057-1976/ad05dd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 10/23/2023] [Indexed: 10/25/2023]
Abstract
Intraoperative electrocorticography (iECoG) is used as an adjunct to localize the epileptogenic zone during surgical resection of brain tumors in patients with focal epilepsies. It also enables monitoring of after-discharges and seizures with EEG during functional brain mapping with electrical stimulation. When seizures or after-discharges are present, they complicate accurate interpretation of the mapping strategy to outline the brain's eloquent function and can affect the surgical procedure. Recurrent seizures during surgery requires urgent treatment and, when occurring during awake craniotomy, often leads to premature termination of brain mapping due to post-ictal confusion or sedation from acute rescue therapy. There are mixed results in studies on efficacy with iECoG in patients with epilepsy and brain tumors influencing survival and functional outcomes following surgery. Commercially available electrode arrays have inherent limitations. These could be improved with customization potentially leading to greater precision in safe and maximal resection of brain tumors. Few studies have assessed customized electrode grid designs as an alternative to commercially available products. Higher density electrode grids with intercontact distances less than 1 cm improve spatial delineation of electrophysiologic sources, including epileptiform activity, electrographic seizures, and afterdischarges on iECoG during functional brain mapping. In response to the shortcomings of current iECoG grid technologies, we designed and developed a novel higher-density hollow circular electrode grid array. The 360-degree iECoG monitoring capability allows continuous EEG recording during surgical intervention through the aperture with and without electrical stimulation mapping. Compared with linear strip electrodes that are commonly used for iECoG during surgery, the circular grid demonstrates significant benefits in brain tumor surgery. This includes quicker recovery of post-operative motor deficits (2.4 days versus 9 days, p = 0.05), more extensive tumor resection (92.0% versus 77.6%, p = 0.003), lesser reduction in Karnofsky Performance scale postoperatively (-2 versus -11.6, p = 0.007), and more sensitivity to recording afterdischarges. In this narrative review, we discuss the advantages and disadvantages of commercially available recording devices in the operating room and focus on the usefulness of the higher-density circular grid.
Collapse
Affiliation(s)
- Brin E Freund
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic, Jacksonville, FL, United States of America
| | - Wendy J Sherman
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic, Jacksonville, FL, United States of America
| | - David S Sabsevitz
- Department of Psychiatry, Division of Neuropsychology, Mayo Clinic College of Medicine, Mayo Clinic, Jacksonville, FL, United States of America
| | - Erik H Middlebrooks
- Department of Radiology, Division of Neuroradiology, Mayo Clinic College of Medicine, Mayo Clinic, Jacksonville, FL, United States of America
- Department of Neurosurgery, Mayo Clinic College of Medicine, Mayo Clinic, Jacksonville, FL, United States of America
| | - Anteneh M Feyissa
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic, Jacksonville, FL, United States of America
| | - Diogo Moniz Garcia
- Department of Neurosurgery, Mayo Clinic College of Medicine, Mayo Clinic, Jacksonville, FL, United States of America
| | - Sanjeet S Grewal
- Department of Neurosurgery, Mayo Clinic College of Medicine, Mayo Clinic, Jacksonville, FL, United States of America
| | - Kaisorn L Chaichana
- Department of Neurosurgery, Mayo Clinic College of Medicine, Mayo Clinic, Jacksonville, FL, United States of America
| | - Alfredo Quinones-Hinojosa
- Department of Neurosurgery, Mayo Clinic College of Medicine, Mayo Clinic, Jacksonville, FL, United States of America
| | - William O Tatum
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic, Jacksonville, FL, United States of America
| |
Collapse
|
6
|
Le VT, Nguyen AM, Pham TA, Nguyen PL. Tumor-related epilepsy and post-surgical outcomes: tertiary hospital experience in Vietnam. Sci Rep 2023; 13:10859. [PMID: 37407622 DOI: 10.1038/s41598-023-38049-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023] Open
Abstract
Seizures have a significant impact on the quality of life of those who suffer. This study aimed to evaluate the variables that influence the incidence of seizures during the perioperative period and effective measures to enhance epilepsy outcomes among individuals undergoing surgical resection of brain tumors. The authors carried out a prospective observational analysis of all patients who experienced seizures before their brain tumor surgery at UMC, HCMC between 2020 and 2022. 54 cases presented with seizures were enrolled for the study, generalized seizure was the most prevalent seizure type (61.1%), followed by focal seizure (29.6%). The majority of patients presented with seizures are those who were diagnosed with glioma. Low-grade gliomas and frontotemporal lobe tumors increase the postoperative risk of seizure. Other predictive factors are a prolonged history of seizure, especially resistant epilepsy and major peritumoral edema. In contrast, gross total resection reduces postoperative seizure incidence. There was correlation between Ki67 proliferation index and seizure incidence in both low-grade and high-grade gliomas. ECoG made insubstantial difference in enhancing the epilepsy surgery outcome. Overall, 88.9% of patients were seizure-free at 6 months of follow-up (Engel Class I), 7.4% were almost seizure-free (Class II), and 3.7% had significant improvement (Class III), figures for 12-month follow-up were 87.0%, 9.3%, and 3.7% respectively. A shorter history of seizure and gross-total resection appear to be associated with a favorable prognosis for seizure control.
Collapse
Affiliation(s)
- Viet-Thang Le
- Faculty of Medicine, University of Medicine and Pharmacy, 217 Hong Bang Street, 11th Ward, 5th District, Ho Chi Minh City, 700000, Vietnam
- Department of Neurosurgery, University Medical Center, UMC, 215 Hong Bang Street, 11th Ward, 5th District, Ho Chi Minh City, 700000, Vietnam
| | - Anh Minh Nguyen
- Faculty of Medicine, University of Medicine and Pharmacy, 217 Hong Bang Street, 11th Ward, 5th District, Ho Chi Minh City, 700000, Vietnam
- Department of Neurosurgery, University Medical Center, UMC, 215 Hong Bang Street, 11th Ward, 5th District, Ho Chi Minh City, 700000, Vietnam
| | - Tuan Anh Pham
- Faculty of Medicine, University of Medicine and Pharmacy, 217 Hong Bang Street, 11th Ward, 5th District, Ho Chi Minh City, 700000, Vietnam
- Department of Neurosurgery, Nguyen Tri Phuong Hospital, 468 Nguyen Trai Street, 8th Ward, 5th District, Ho Chi Minh City, 700000, Vietnam
| | - Phuc Long Nguyen
- Department of Neurosurgery, University Medical Center, UMC, 215 Hong Bang Street, 11th Ward, 5th District, Ho Chi Minh City, 700000, Vietnam.
| |
Collapse
|
7
|
Liu Z, Lei Y, Li X, Zhang X, Yang H, Yu J, Gu Y, Ma Y. Analysis on Intraoperative Electrocorticogram Characteristics for Evaluating the Risk of Postoperative Epilepsy . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083022 DOI: 10.1109/embc40787.2023.10341027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Epilepsy is one of the most common complications after craniotomy, which happens suddenly and does great harm. There still lacks of effective prediction method during the operation. The main purpose of this paper is to explore the correlation between the characteristics of intraoperative electrocorticogram (ECoG) and postoperative epilepsy, and select effective features to establish a prediction model. This retrospective study uses intraoperative ECoG recordings of 144 patients with cerebrovascular diseases undergoing cerebral revascularization surgeries. The cases are divided into subtypes of ischemic and hemorrhagic. Nine types of ECoG features are designed on different frequency bands indicating clinical information, power spectrum, complexity, sequence change, and information quantity, while their changes in different surgical stages are also considered. Then statistical analysis is used to obtain features significantly related to postoperative epilepsy (p<0.05). The sparse representation method is used on these features to further screen and reduce the redundancy, and then machine learning methods are used to establish a prediction model for postoperative epilepsy. The accuracy, sensitivity and specificity of the best prediction model can achieve 0.817, 0.800 and 0.833 respectively under 5-fold cross validation.Clinical Relevance-This study explores the correlation between the characteristics of intraoperative ECoG and postoperative epilepsy, investigates the possibility to use the ECoG features and machine learning algorithms to assess the risk of postoperative epilepsy during the surgery. Further results are expected to provide reference for preventive measures to reduce the occurrence of postoperative epilepsy.
Collapse
|
8
|
Goel K, Pek V, Shlobin NA, Chen JS, Wang A, Ibrahim GM, Hadjinicolaou A, Roessler K, Dudley RW, Nguyen DK, El-Tahry R, Fallah A, Weil AG. Clinical utility of intraoperative electrocorticography for epilepsy surgery: A systematic review and meta-analysis. Epilepsia 2023; 64:253-265. [PMID: 36404579 DOI: 10.1111/epi.17472] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022]
Abstract
Despite the widespread use of intraoperative electrocorticography (iECoG) during resective epilepsy surgery, there are conflicting data on its overall efficacy and inability to predict benefit per pathology. Given the heterogeneity of iECoG use in resective epilepsy surgery, it is important to assess the utility of interictal-based iECoG. This individual patient data (IPD) meta-analysis seeks to identify the benefit of iECoG during resective epilepsy surgery in achieving seizure freedom for various pathologies. Embase, Scopus, and PubMed were searched from inception to January 31, 2021 using the following terms: "ecog", "electrocorticography", and "epilepsy". Articles were included if they reported seizure freedom at ≥12-month follow-up in cohorts with and without iECoG for epilepsy surgery. Non-English articles, noncomparative iECoG cohorts, and studies with <10% iECoG use were excluded. This meta-analysis followed the PRISMA 2020 guidelines. The primary outcome was seizure freedom at last follow-up and time to seizure recurrence, if applicable. Forest plots with random effects modeling assessed the relationship between iECoG use and seizure freedom. Cox regression of IPD was performed to identify predictors of longer duration of seizure freedom. Kaplan-Meier curves with log-rank test were created to visualize differences in time to seizure recurrence. Of 7504 articles identified, 18 were included for study-level analysis. iECoG was not associated with higher seizure freedom at the study level (relative risk = 1.09, 95% confidence interval [CI] = 0.96-1.23, p = .19, I2 = 64%), but on IPD (n = 7 studies, 231 patients) iECoG use was independently associated with more favorable seizure outcomes (hazard ratio = 0.47, 95% CI = .23-.95, p = .037). In Kaplan-Meier analysis of specific pathologies, iECoG use was significantly associated with longer seizure freedom only for focal cortical dysplasia (FCD; p < .001) etiology. Number needed to treat for iECoG was 8.8, and for iECoG in FCD it was 4.7. We show iECoG seizure freedom is not achieved uniformly across centers. iECoG is particularly beneficial for FCD etiology in improving seizure freedom.
Collapse
Affiliation(s)
- Keshav Goel
- David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA
| | - Valérie Pek
- Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Nathan A Shlobin
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jia-Shu Chen
- Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Andrew Wang
- David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA
- College of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, Los Angeles, California, USA
| | - George M Ibrahim
- Division of Neurosurgery, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Aristides Hadjinicolaou
- Division of Neurology, Department of Pediatrics, Sainte-Justine University Hospital Centre, Montreal, Quebec, Canada
- Brain and Development Research Axis, Sainte-Justine Research Centre, Montreal, Quebec, Canada
| | - Karl Roessler
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Roy W Dudley
- Division of Pediatric Neurosurgery, Department of Pediatric Surgery, Montreal Children's Hospital, McGill University, Montreal, Quebec, Canada
| | - Dang K Nguyen
- Department of Neurology, University of Montreal Hospital Centre, Montreal, Quebec, Canada
| | - Riëm El-Tahry
- Saint Luc University Hospital, Brussels, Belgium
- Institute of Neuroscience, Neurology pole, Catholic University of Louvain, Brussels, Belgium
| | - Aria Fallah
- David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA
- Department of Neurosurgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA
| | - Alexander G Weil
- Brain and Development Research Axis, Sainte-Justine Research Centre, Montreal, Quebec, Canada
- Division of Neurosurgery, Department of Surgery, Sainte-Justine University Hospital Centre, Montreal, Quebec, Canada
- Division of Neurosurgery, Department of Surgery, University of Montreal Hospital Centre, Montreal, Quebec, Canada
- Department of Neuroscience, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
9
|
Cometa A, Falasconi A, Biasizzo M, Carpaneto J, Horn A, Mazzoni A, Micera S. Clinical neuroscience and neurotechnology: An amazing symbiosis. iScience 2022; 25:105124. [PMID: 36193050 PMCID: PMC9526189 DOI: 10.1016/j.isci.2022.105124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In the last decades, clinical neuroscience found a novel ally in neurotechnologies, devices able to record and stimulate electrical activity in the nervous system. These technologies improved the ability to diagnose and treat neural disorders. Neurotechnologies are concurrently enabling a deeper understanding of healthy and pathological dynamics of the nervous system through stimulation and recordings during brain implants. On the other hand, clinical neurosciences are not only driving neuroengineering toward the most relevant clinical issues, but are also shaping the neurotechnologies thanks to clinical advancements. For instance, understanding the etiology of a disease informs the location of a therapeutic stimulation, but also the way stimulation patterns should be designed to be more effective/naturalistic. Here, we describe cases of fruitful integration such as Deep Brain Stimulation and cortical interfaces to highlight how this symbiosis between clinical neuroscience and neurotechnology is closer to a novel integrated framework than to a simple interdisciplinary interaction.
Collapse
Affiliation(s)
- Andrea Cometa
- The Biorobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Antonio Falasconi
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Marco Biasizzo
- The Biorobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Jacopo Carpaneto
- The Biorobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Andreas Horn
- Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- MGH Neurosurgery & Center for Neurotechnology and Neurorecovery (CNTR) at MGH Neurology Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Department of Neurology, 10117 Berlin, Germany
| | - Alberto Mazzoni
- The Biorobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Silvestro Micera
- The Biorobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
- Translational Neural Engineering Lab, School of Engineering, École Polytechnique Fèdèrale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|