1
|
Reisinger L, Demarchi G, Weisz N. Eavesdropping on Tinnitus Using MEG: Lessons Learned and Future Perspectives. J Assoc Res Otolaryngol 2023; 24:531-547. [PMID: 38015287 PMCID: PMC10752863 DOI: 10.1007/s10162-023-00916-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023] Open
Abstract
Tinnitus has been widely investigated in order to draw conclusions about the underlying causes and altered neural activity in various brain regions. Existing studies have based their work on different tinnitus frameworks, ranging from a more local perspective on the auditory cortex to the inclusion of broader networks and various approaches towards tinnitus perception and distress. Magnetoencephalography (MEG) provides a powerful tool for efficiently investigating tinnitus and aberrant neural activity both spatially and temporally. However, results are inconclusive, and studies are rarely mapped to theoretical frameworks. The purpose of this review was to firstly introduce MEG to interested researchers and secondly provide a synopsis of the current state. We divided recent tinnitus research in MEG into study designs using resting state measurements and studies implementing tone stimulation paradigms. The studies were categorized based on their theoretical foundation, and we outlined shortcomings as well as inconsistencies within the different approaches. Finally, we provided future perspectives on how to benefit more efficiently from the enormous potential of MEG. We suggested novel approaches from a theoretical, conceptual, and methodological point of view to allow future research to obtain a more comprehensive understanding of tinnitus and its underlying processes.
Collapse
Affiliation(s)
- Lisa Reisinger
- Centre for Cognitive Neuroscience and Department of Psychology, Paris-Lodron-University Salzburg, Salzburg, Austria.
| | - Gianpaolo Demarchi
- Centre for Cognitive Neuroscience and Department of Psychology, Paris-Lodron-University Salzburg, Salzburg, Austria
| | - Nathan Weisz
- Centre for Cognitive Neuroscience and Department of Psychology, Paris-Lodron-University Salzburg, Salzburg, Austria
- Neuroscience Institute, Christian Doppler University Hospital, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
2
|
Arviv O, Harpaz Y, Tsizin E, Benoliel T, Ekstein D, Medvedovsky M. Source localization using virtual magnetoencephalography helmets: A simulation study toward a prior-based tailored scheme. Front Neurosci 2022; 16:947228. [PMID: 36148152 PMCID: PMC9485615 DOI: 10.3389/fnins.2022.947228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/15/2022] [Indexed: 12/02/2022] Open
Abstract
Magnetoencephalography (MEG) source estimation of brain electromagnetic fields is an ill-posed problem. A virtual MEG helmet (VMH), can be constructed by recording in different head positions and then transforming the multiple head-MEG coordinates into one head frame (i.e., as though the MEG helmet was moving while the head remained static). The constructed VMH has sensors placed in various distances and angles, thus improving the spatial sampling of neuromagnetic fields. VMH has been previously shown to increase total information in comparison to a standard MEG helmet. The aim of this study was to examine whether VMH can improve source estimation accuracy. To this end, controlled simulations were carried out, in which the source characteristics are predefined. A series of VMHs were constructed by applying two or three translations and rotations to a standard 248 channel MEG array. In each simulation, the magnetic field generated by 1 to 5 dipoles was forward projected, alongside noise components. The results of this study showed that at low noise levels (e.g., averaged data of similar signals), VMHs can significantly improve the accuracy of source estimations, compared to the standard MEG array. Moreover, when utilizing a priori information, tailoring the constructed VMHs to specific sets of postulated neuronal sources can further improve the accuracy. This is shown to be a robust and stable method, even for proximate locations. Overall, VMH may add significant precision to MEG source estimation, for research and clinical benefits, such as in challenging epilepsy cases, aiding in surgical design.
Collapse
Affiliation(s)
- Oshrit Arviv
- Department of Neurology, Agnes Ginges Center of Human Neurogenetics, Hadassah Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- *Correspondence: Oshrit Arviv,
| | - Yuval Harpaz
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Evgeny Tsizin
- Department of Neurology, Agnes Ginges Center of Human Neurogenetics, Hadassah Medical Center, Jerusalem, Israel
- The Zandman-Slaner Graduate School of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Tal Benoliel
- Department of Neurology, Agnes Ginges Center of Human Neurogenetics, Hadassah Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dana Ekstein
- Department of Neurology, Agnes Ginges Center of Human Neurogenetics, Hadassah Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Dana Ekstein,
| | - Mordekhay Medvedovsky
- Department of Neurology, Agnes Ginges Center of Human Neurogenetics, Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
3
|
Millán AP, van Straaten ECW, Stam CJ, Nissen IA, Idema S, Baayen JC, Van Mieghem P, Hillebrand A. Epidemic models characterize seizure propagation and the effects of epilepsy surgery in individualized brain networks based on MEG and invasive EEG recordings. Sci Rep 2022; 12:4086. [PMID: 35260657 PMCID: PMC8904850 DOI: 10.1038/s41598-022-07730-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 02/24/2022] [Indexed: 11/08/2022] Open
Abstract
Epilepsy surgery is the treatment of choice for drug-resistant epilepsy patients. However, seizure-freedom is currently achieved in only 2/3 of the patients after surgery. In this study we have developed an individualized computational model based on MEG brain networks to explore seizure propagation and the efficacy of different virtual resections. Eventually, the goal is to obtain individualized models to optimize resection strategy and outcome. We have modelled seizure propagation as an epidemic process using the susceptible-infected (SI) model on individual brain networks derived from presurgical MEG. We included 10 patients who had received epilepsy surgery and for whom the surgery outcome at least one year after surgery was known. The model parameters were tuned in in order to reproduce the patient-specific seizure propagation patterns as recorded with invasive EEG. We defined a personalized search algorithm that combined structural and dynamical information to find resections that maximally decreased seizure propagation for a given resection size. The optimal resection for each patient was defined as the smallest resection leading to at least a 90% reduction in seizure propagation. The individualized model reproduced the basic aspects of seizure propagation for 9 out of 10 patients when using the resection area as the origin of epidemic spreading, and for 10 out of 10 patients with an alternative definition of the seed region. We found that, for 7 patients, the optimal resection was smaller than the resection area, and for 4 patients we also found that a resection smaller than the resection area could lead to a 100% decrease in propagation. Moreover, for two cases these alternative resections included nodes outside the resection area. Epidemic spreading models fitted with patient specific data can capture the fundamental aspects of clinically observed seizure propagation, and can be used to test virtual resections in silico. Combined with optimization algorithms, smaller or alternative resection strategies, that are individually targeted for each patient, can be determined with the ultimate goal to improve surgery outcome. MEG-based networks can provide a good approximation of structural connectivity for computational models of seizure propagation, and facilitate their clinical use.
Collapse
Affiliation(s)
- Ana P Millán
- Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.
| | - Elisabeth C W van Straaten
- Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Cornelis J Stam
- Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Ida A Nissen
- Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Sander Idema
- Department of Neurosurgery, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Johannes C Baayen
- Department of Neurosurgery, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Piet Van Mieghem
- Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands
| | - Arjan Hillebrand
- Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Laohathai C, Ebersole JS, Mosher JC, Bagić AI, Sumida A, Von Allmen G, Funke ME. Practical Fundamentals of Clinical MEG Interpretation in Epilepsy. Front Neurol 2021; 12:722986. [PMID: 34721261 PMCID: PMC8551575 DOI: 10.3389/fneur.2021.722986] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/06/2021] [Indexed: 11/29/2022] Open
Abstract
Magnetoencephalography (MEG) is a neurophysiologic test that offers a functional localization of epileptic sources in patients considered for epilepsy surgery. The understanding of clinical MEG concepts, and the interpretation of these clinical studies, are very involving processes that demand both clinical and procedural expertise. One of the major obstacles in acquiring necessary proficiency is the scarcity of fundamental clinical literature. To fill this knowledge gap, this review aims to explain the basic practical concepts of clinical MEG relevant to epilepsy with an emphasis on single equivalent dipole (sECD), which is one the most clinically validated and ubiquitously used source localization method, and illustrate and explain the regional topology and source dynamics relevant for clinical interpretation of MEG-EEG.
Collapse
Affiliation(s)
- Christopher Laohathai
- Division of Child Neurology, Department of Pediatrics, McGovern Medical School at UTHealth, Houston, TX, United States
- Department of Neurology, Saint Louis University, Saint Louis, MO, United States
| | - John S. Ebersole
- Northeast Regional Epilepsy Group, Atlantic Health Neuroscience Institute, Summit, NJ, United States
| | - John C. Mosher
- Department of Neurology, McGovern Medical School at UTHealth, Houston, TX, United States
| | - Anto I. Bagić
- University of Pittsburgh Comprehensive Epilepsy Center (UPCEC), Department of Neurology, University of Pittsburgh Medical Center, Pittsburg, PA, United States
| | - Ai Sumida
- Department of Neurology, McGovern Medical School at UTHealth, Houston, TX, United States
| | - Gretchen Von Allmen
- Division of Child Neurology, Department of Pediatrics, McGovern Medical School at UTHealth, Houston, TX, United States
| | - Michael E. Funke
- Division of Child Neurology, Department of Pediatrics, McGovern Medical School at UTHealth, Houston, TX, United States
| |
Collapse
|
5
|
Abstract
Noise sources in magnetoencephalography (MEG) include: (1) interference from outside the shielded room, (2) other people and devices inside the shielded room, (3) physiologic or nonphysiologic sources inside the patient, (4) activity from inside the head that is unrelated to the signal of interest, (5) intrinsic sensor and recording electronics noise, and (6) artifacts from other apparatus used during recording such as evoked response stimulators. There are other factors which corrupt MEG recording and interpretation and should also be considered "artifacts": (7) inadequate positioning of the patient, (8) changes in the head position during the recording, (9) incorrect co-registration, (10) spurious signals introduced during postprocessing, and (11) errors in fitting. The major means whereby magnetic interference can be reduced or eliminated are by recording inside a magnetically shielded room, using gradiometers that measure differential magnetic fields, real-time active compensation using reference sensors, and postprocessing with advanced spatio-temporal filters. Many of the artifacts that plague MEG are also seen in EEG, so an experienced electroencephalographer will have the advantage of being able to transfer his knowledge about artifacts to MEG. However, many of the procedures and software used during acquisition and analysis may themselves contribute artifact or distortion that must be recognized or prevented. In summary, MEG artifacts are not worse than EEG artifacts, but many are different, and-as with EEG-must be attended to.
Collapse
|
6
|
Melikyan AG, Vorobiev AN, Shishkina LV, Kozlova AB, Vlasov PA, Ayvazyan SO, Shults EI, Korsakova MB, Koptelova AM, Buklina SB, Demin MO, Agrba SB, Shevchenko AM. [Surgical treatment of epilepsy in children with focal cortical dysplasia]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2020; 84:5-20. [PMID: 33095529 DOI: 10.17116/neiro2020840515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Surgery is the first-line treatment option in children with FCD and refractory epilepsy, but the rate of success and patient numbers who became free of seizures vary widely from series to series. STUDY AIMS To elicit variables affecting the outcome and predicting achievement of the long-term seizure-free status. MATERIAL AND METHODS One hundred sixty-nine children with cortical dysplasia and DR-epilepsy underwent surgery Preoperative evaluation included prolonged video-EEG and MRI (in all patients) and neuropsychological testing when possible. Fourteen patients underwent invasive EEG, fMRI and MEG were used also in some cases. Including 27 repeat procedures the list of overall 196 surgeries performed consists of: cortectomy (lesionectomy with or without adjacent epileptogenic cortices) – in 116 cases; lobectomy – in 46; and various disconnective procedures – in 34 patients. Almost routinely employed intraoperative ECOG (134 surgeries) was combined with stimulation and/or SSEP in 47 cases to map eloquent cortex (with CST-tracking in some). A new permanent and not anticipated neurological deficit developed post-surgery in 5 cases (2,5%). Patients were follow-upped using video-EEG and MRI and FU which lasts more than 2 years (median – 3 years) is known in 56 cases. Thirty-two children were free of seizures at the last check (57,2% rate of Engel IA). A list of variables regarding patients’ demography, seizure type, lesion pathology and localization, and those related to surgery and its extent were evaluated to figure out anyone associated with favorable outcome. RESULTS Both Type II FCDs and their anatomically complete excision are positive predictors for favorable outcome and achievement of SF-status (p<0,05). Residual epileptic activity on immediate post-resection ECOG do not affect the outcome. CONCLUSION Patients with Type II FCD, particularly with Type IIb malformations are the best candidates for curative surgery, including cases with lesions in brain eloquent areas. Kids with Type I FCD have much less chances to become free of seizures when attempting focal cortectomy. However, some of them with early onset catastrophic epilepsies may benefit from larger surgeries using lobectomy or various disconnections.
Collapse
Affiliation(s)
| | | | | | - A B Kozlova
- Burdenko Neurosurgical Center, Moscow, Russia
| | - P A Vlasov
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | - E I Shults
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | - A M Koptelova
- Center for Neurocognitive research (MEG-center), MSUPE, Moscow, Russia
| | - S B Buklina
- Burdenko Neurosurgical Center, Moscow, Russia
| | - M O Demin
- Burdenko Neurosurgical Center, Moscow, Russia
| | - S B Agrba
- Burdenko Neurosurgical Center, Moscow, Russia
| | | |
Collapse
|
7
|
Alkawadri R, Burgess RC, Kakisaka Y, Mosher JC, Alexopoulos AV. Assessment of the Utility of Ictal Magnetoencephalography in the Localization of the Epileptic Seizure Onset Zone. JAMA Neurol 2019; 75:1264-1272. [PMID: 29889930 DOI: 10.1001/jamaneurol.2018.1430] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance Literature on ictal magnetoencephalography (MEG) in clinical practice and the relationship to other modalities is limited because of the brevity of routine studies. Objective To investigate the utility and reliability of ictal MEG in the localization of the epileptogenic zone. Design, Setting, and Participants A retrospective medical record review and prospective analysis of a novel ictal rhythm analysis method was conducted at a tertiary epilepsy center with a wide base of referrals for epilepsy surgery evaluation and included consecutive cases of patients who experienced epileptic seizures during routine MEG studies from March 2008 to February 2012. A total of 377 studies screened. Data were analyzed from November 2011 to October 2015. Main Outcomes and Measures Presurgical workup and interictal and ictal MEG data were reviewed. The localizing value of using extended-source localization of a narrow band identified visually at onset was analyzed. Results Of the 44 included patients, the mean (SD) age at the time of recording was 19.3 (14.9) years, and 25 (57%) were male. The mean duration of recording was 51.2 minutes. Seizures were provoked by known triggers in 3 patients and were spontaneous otherwise. Twenty-five patients (57%) had 1 seizure, 6 (14%) had 2, and 13 (30%) had 3 or more. Magnetoencephalography single equivalent current dipole analysis was possible in 29 patients (66%), of whom 8 (28%) had no clear interictal discharges. Sublobar concordance between ictal and interictal dipoles was seen in 18 of 21 patients (86%). Three patients (7%) showed clear ictal MEG patterns without electroencephalography changes. Ictal MEG dipoles correlated with the lobe of onset in 7 of 8 patients (88%) who underwent intracranial electroencephalography evaluations. Reasons for failure to identify ictal dipoles included diffuse or poor dipolar ictal patterns, no MEG changes, and movement artifact. Resection of areas containing a minimum-norm estimate of a narrow band at onset, not single equivalent current dipole, was associated with sustained seizure freedom. Conclusions and Significance Ictal MEG data can provide reliable localization, including in cases that are difficult to localize by other modalities. These findings support the use of extended-source localization for seizures recorded during MEG.
Collapse
Affiliation(s)
- Rafeed Alkawadri
- The Epilepsy Center at Cleveland Clinic Foundation, Cleveland, Ohio.,Yale Comprehensive Epilepsy Center, School of Medicine, Yale University, New Haven, Connecticut.,Yale Human Brain Mapping Program, School of Medicine, Yale University, New Haven, Connecticut
| | | | - Yosuke Kakisaka
- The Epilepsy Center at Cleveland Clinic Foundation, Cleveland, Ohio.,The Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | - John C Mosher
- The Epilepsy Center at Cleveland Clinic Foundation, Cleveland, Ohio
| | | |
Collapse
|
8
|
Stropahl M, Bauer AKR, Debener S, Bleichner MG. Source-Modeling Auditory Processes of EEG Data Using EEGLAB and Brainstorm. Front Neurosci 2018; 12:309. [PMID: 29867321 PMCID: PMC5952032 DOI: 10.3389/fnins.2018.00309] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/20/2018] [Indexed: 11/25/2022] Open
Abstract
Electroencephalography (EEG) source localization approaches are often used to disentangle the spatial patterns mixed up in scalp EEG recordings. However, approaches differ substantially between experiments, may be strongly parameter-dependent, and results are not necessarily meaningful. In this paper we provide a pipeline for EEG source estimation, from raw EEG data pre-processing using EEGLAB functions up to source-level analysis as implemented in Brainstorm. The pipeline is tested using a data set of 10 individuals performing an auditory attention task. The analysis approach estimates sources of 64-channel EEG data without the prerequisite of individual anatomies or individually digitized sensor positions. First, we show advanced EEG pre-processing using EEGLAB, which includes artifact attenuation using independent component analysis (ICA). ICA is a linear decomposition technique that aims to reveal the underlying statistical sources of mixed signals and is further a powerful tool to attenuate stereotypical artifacts (e.g., eye movements or heartbeat). Data submitted to ICA are pre-processed to facilitate good-quality decompositions. Aiming toward an objective approach on component identification, the semi-automatic CORRMAP algorithm is applied for the identification of components representing prominent and stereotypic artifacts. Second, we present a step-wise approach to estimate active sources of auditory cortex event-related processing, on a single subject level. The presented approach assumes that no individual anatomy is available and therefore the default anatomy ICBM152, as implemented in Brainstorm, is used for all individuals. Individual noise modeling in this dataset is based on the pre-stimulus baseline period. For EEG source modeling we use the OpenMEEG algorithm as the underlying forward model based on the symmetric Boundary Element Method (BEM). We then apply the method of dynamical statistical parametric mapping (dSPM) to obtain physiologically plausible EEG source estimates. Finally, we show how to perform group level analysis in the time domain on anatomically defined regions of interest (auditory scout). The proposed pipeline needs to be tailored to the specific datasets and paradigms. However, the straightforward combination of EEGLAB and Brainstorm analysis tools may be of interest to others performing EEG source localization.
Collapse
Affiliation(s)
- Maren Stropahl
- Neuropsychology Lab, Department of Psychology, European Medical School, University of Oldenburg, Oldenburg, Germany
| | - Anna-Katharina R Bauer
- Neuropsychology Lab, Department of Psychology, European Medical School, University of Oldenburg, Oldenburg, Germany
| | - Stefan Debener
- Neuropsychology Lab, Department of Psychology, European Medical School, University of Oldenburg, Oldenburg, Germany.,Cluster of Excellence Hearing4all, University of Oldenburg, Oldenburg, Germany
| | - Martin G Bleichner
- Neuropsychology Lab, Department of Psychology, European Medical School, University of Oldenburg, Oldenburg, Germany.,Cluster of Excellence Hearing4all, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
9
|
Yu M, Engels MMA, Hillebrand A, van Straaten ECW, Gouw AA, Teunissen C, van der Flier WM, Scheltens P, Stam CJ. Selective impairment of hippocampus and posterior hub areas in Alzheimer’s disease: an MEG-based multiplex network study. Brain 2017; 140:1466-1485. [PMID: 28334883 DOI: 10.1093/brain/awx050] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 01/14/2017] [Indexed: 12/11/2022] Open
Affiliation(s)
- Meichen Yu
- Department of Clinical Neurophysiology and MEG Center, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Marjolein M A Engels
- Alzheimer Center and Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Arjan Hillebrand
- Department of Clinical Neurophysiology and MEG Center, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Elisabeth C W van Straaten
- Department of Clinical Neurophysiology and MEG Center, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Nutricia Advanced Medical Nutrition, Nutricia Research, Utrecht, The Netherlands
| | - Alida A Gouw
- Department of Clinical Neurophysiology and MEG Center, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Alzheimer Center and Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Charlotte Teunissen
- Neurochemistry lab and Biobank, Department of Clinical Chemistry, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center and Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Department of Epidemiology and Biostatistics, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Philip Scheltens
- Alzheimer Center and Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Cornelis J Stam
- Department of Clinical Neurophysiology and MEG Center, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Magnetoencephalography for brain electrophysiology and imaging. Nat Neurosci 2017; 20:327-339. [DOI: 10.1038/nn.4504] [Citation(s) in RCA: 418] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/17/2017] [Indexed: 12/18/2022]
|
11
|
Tamilia E, Madsen JR, Grant PE, Pearl PL, Papadelis C. Current and Emerging Potential of Magnetoencephalography in the Detection and Localization of High-Frequency Oscillations in Epilepsy. Front Neurol 2017; 8:14. [PMID: 28194133 PMCID: PMC5276819 DOI: 10.3389/fneur.2017.00014] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/11/2017] [Indexed: 01/19/2023] Open
Abstract
Up to one-third of patients with epilepsy are medically intractable and need resective surgery. To be successful, epilepsy surgery requires a comprehensive preoperative evaluation to define the epileptogenic zone (EZ), the brain area that should be resected to achieve seizure freedom. Due to lack of tools and methods that measure the EZ directly, this area is defined indirectly based on concordant data from a multitude of presurgical non-invasive tests and intracranial recordings. However, the results of these tests are often insufficiently concordant or inconclusive. Thus, the presurgical evaluation of surgical candidates is frequently challenging or unsuccessful. To improve the efficacy of the surgical treatment, there is an overriding need for reliable biomarkers that can delineate the EZ. High-frequency oscillations (HFOs) have emerged over the last decade as new potential biomarkers for the delineation of the EZ. Multiple studies have shown that HFOs are spatially associated with the EZ. Despite the encouraging findings, there are still significant challenges for the translation of HFOs as epileptogenic biomarkers to the clinical practice. One of the major barriers is the difficulty to detect and localize them with non-invasive techniques, such as magnetoencephalography (MEG) or scalp electroencephalography (EEG). Although most literature has studied HFOs using invasive recordings, recent studies have reported the detection and localization of HFOs using MEG or scalp EEG. MEG seems to be particularly advantageous compared to scalp EEG due to its inherent advantages of being less affected by skull conductivity and less susceptible to contamination from muscular activity. The detection and localization of HFOs with MEG would largely expand the clinical utility of these new promising biomarkers to an earlier stage in the diagnostic process and to a wider range of patients with epilepsy. Here, we conduct a thorough critical review of the recent MEG literature that investigates HFOs in patients with epilepsy, summarizing the different methodological approaches and the main findings. Our goal is to highlight the emerging potential of MEG in the non-invasive detection and localization of HFOs for the presurgical evaluation of patients with medically refractory epilepsy (MRE).
Collapse
Affiliation(s)
- Eleonora Tamilia
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Joseph R. Madsen
- Division of Epilepsy Surgery, Department of Neurosurgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Patricia Ellen Grant
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Phillip L. Pearl
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Christos Papadelis
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Nissen IA, Stam CJ, Reijneveld JC, van Straaten IECW, Hendriks EJ, Baayen JC, De Witt Hamer PC, Idema S, Hillebrand A. Identifying the epileptogenic zone in interictal resting-state MEG source-space networks. Epilepsia 2016; 58:137-148. [PMID: 27888520 DOI: 10.1111/epi.13622] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2016] [Indexed: 01/07/2023]
Abstract
OBJECTIVE In one third of patients, seizures remain after epilepsy surgery, meaning that improved preoperative evaluation methods are needed to identify the epileptogenic zone. A potential framework for such a method is network theory, as it can be applied to noninvasive recordings, even in the absence of epileptiform activity. Our aim was to identify the epileptogenic zone on the basis of hub status of local brain areas in interictal magnetoencephalography (MEG) networks. METHODS Preoperative eyes-closed resting-state MEG recordings were retrospectively analyzed in 22 patients with refractory epilepsy, of whom 14 were seizure-free 1 year after surgery. Beamformer-based time series were reconstructed for 90 cortical and subcortical automated anatomic labeling (AAL) regions of interest (ROIs). Broadband functional connectivity was estimated using the phase lag index in artifact-free epochs without interictal epileptiform abnormalities. A minimum spanning tree was generated to represent the network, and the hub status of each ROI was calculated using betweenness centrality, which indicates the centrality of a node in a network. The correspondence of resection cavity to hub values was evaluated on four levels: resection cavity, lobar, hemisphere, and temporal versus extratemporal areas. RESULTS Hubs were localized within the resection cavity in 8 of 14 seizure-free patients and in zero of 8 patients who were not seizure-free (57% sensitivity, 100% specificity, 73% accuracy). Hubs were localized in the lobe of resection in 9 of 14 seizure-free patients and in zero of 8 patients who were not seizure-free (64% sensitivity, 100% specificity, 77% accuracy). For the other two levels, the true negatives are unknown; hence, only sensitivity could be determined: hubs coincided with both the resection hemisphere and the resection location (temporal versus extratemporal) in 11 of 14 seizure-free patients (79% sensitivity). SIGNIFICANCE Identifying hubs noninvasively before surgery is a valuable approach with the potential of indicating the epileptogenic zone in patients without interictal abnormalities.
Collapse
Affiliation(s)
- Ida A Nissen
- Department of Clinical Neurophysiology and MEG Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Cornelis J Stam
- Department of Clinical Neurophysiology and MEG Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Jaap C Reijneveld
- Brain Tumor Center Amsterdam & Department of Neurology, VU University Medical Center, Amsterdam, The Netherlands
| | - Ilse E C W van Straaten
- Department of Clinical Neurophysiology and MEG Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Eef J Hendriks
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Johannes C Baayen
- Neurosurgical Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Philip C De Witt Hamer
- Neurosurgical Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Sander Idema
- Neurosurgical Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Arjan Hillebrand
- Department of Clinical Neurophysiology and MEG Center, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Duez L, Beniczky S, Tankisi H, Hansen PO, Sidenius P, Sabers A, Fuglsang-Frederiksen A. Added diagnostic value of magnetoencephalography (MEG) in patients suspected for epilepsy, where previous, extensive EEG workup was unrevealing. Clin Neurophysiol 2016; 127:3301-5. [PMID: 27573996 DOI: 10.1016/j.clinph.2016.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/04/2016] [Accepted: 08/07/2016] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To elucidate the possible additional diagnostic yield of MEG in the workup of patients with suspected epilepsy, where repeated EEGs, including sleep-recordings failed to identify abnormalities. METHODS Fifty-two consecutive patients with clinical suspicion of epilepsy and at least three normal EEGs, including sleep-EEG, were prospectively analyzed. The reference standard was inferred from the diagnosis obtained from the medical charts, after at least one-year follow-up. MEG (306-channel, whole-head) and simultaneous EEG (MEG-EEG) was recorded for one hour. The added sensitivity of MEG was calculated from the cases where abnormalities were seen in MEG but not EEG. RESULTS Twenty-two patients had the diagnosis epilepsy according to the reference standard. MEG-EEG detected abnormalities, and supported the diagnosis in nine of the 22 patients with the diagnosis epilepsy at one-year follow-up. Sensitivity of MEG-EEG was 41%. The added sensitivity of MEG was 18%. MEG-EEG was normal in 28 of the 30 patients categorized as 'not epilepsy' at one year follow-up, yielding a specificity of 93%. CONCLUSIONS MEG provides additional diagnostic information in patients suspected for epilepsy, where repeated EEG recordings fail to demonstrate abnormality. SIGNIFICANCE MEG should be included in the diagnostic workup of patients where the conventional, widely available methods are unrevealing.
Collapse
Affiliation(s)
- Lene Duez
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark.
| | - Sándor Beniczky
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Neurophysiology, Danish Epilepsy Centre, Dianalund, Denmark
| | - Hatice Tankisi
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Orm Hansen
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
| | - Per Sidenius
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Anne Sabers
- Department of Neurology, Copenhagen University Hospital, Rigshospitalet-Blegdamsvej, Copenhagen, Denmark
| | | |
Collapse
|
14
|
Migliorelli C, Alonso JF, Romero S, Mañanas MA, Nowak R, Russi A. Automatic BSS-based filtering of metallic interference in MEG recordings: definition and validation using simulated signals. J Neural Eng 2015; 12:046001. [DOI: 10.1088/1741-2560/12/4/046001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
Gavaret M, Maillard L, Jung J. High-resolution EEG (HR-EEG) and magnetoencephalography (MEG). Neurophysiol Clin 2015; 45:105-11. [DOI: 10.1016/j.neucli.2014.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 11/09/2014] [Indexed: 10/24/2022] Open
|
16
|
Adjamian P. The application of electro- and magneto-encephalography in tinnitus research - methods and interpretations. Front Neurol 2014; 5:228. [PMID: 25431567 PMCID: PMC4230045 DOI: 10.3389/fneur.2014.00228] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 10/22/2014] [Indexed: 12/11/2022] Open
Abstract
In recent years, there has been a significant increase in the use of electroencephalography (EEG) and magnetoencephalography (MEG) to investigate changes in oscillatory brain activity associated with tinnitus with many conflicting results. Current view of the underlying mechanism of tinnitus is that it results from changes in brain activity in various structures of the brain as a consequence of sensory deprivation. This in turn gives rise to increased spontaneous activity and/or synchrony in the auditory centers but also involves modulation from non-auditory processes from structures of the limbic and paralimbic system. Some of the neural changes associated with tinnitus may be assessed non-invasively in human beings with MEG and EEG (M/EEG) in ways, which are superior to animal studies and other non-invasive imaging techniques. However, both MEG and EEG have their limitations and research results can be misinterpreted without appropriate consideration of these limitations. In this article, I intend to provide a brief review of these techniques, describe what the recorded signals reflect in terms of the underlying neural activity, and their strengths and limitations. I also discuss some pertinent methodological issues involved in tinnitus-related studies and conclude with suggestions to minimize possible discrepancies between results. The overall message is that while MEG and EEG are extremely useful techniques, the interpretation of results from tinnitus studies requires much caution given the individual variability in oscillatory activity and the limits of these techniques.
Collapse
|
17
|
[French guidelines on electroencephalogram]. Neurophysiol Clin 2014; 44:515-612. [PMID: 25435392 DOI: 10.1016/j.neucli.2014.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 10/07/2014] [Indexed: 12/11/2022] Open
Abstract
Electroencephalography allows the functional analysis of electrical brain cortical activity and is the gold standard for analyzing electrophysiological processes involved in epilepsy but also in several other dysfunctions of the central nervous system. Morphological imaging yields complementary data, yet it cannot replace the essential functional analysis tool that is EEG. Furthermore, EEG has the great advantage of being non-invasive, easy to perform and allows control tests when follow-up is necessary, even at the patient's bedside. Faced with the advances in knowledge, techniques and indications, the Société de Neurophysiologie Clinique de Langue Française (SNCLF) and the Ligue Française Contre l'Épilepsie (LFCE) found it necessary to provide an update on EEG recommendations. This article will review the methodology applied to this work, refine the various topics detailed in the following chapters. It will go over the summary of recommendations for each of these chapters and underline proposals for writing an EEG report. Some questions could not be answered by the review of the literature; in those cases, an expert advice was given by the working and reading groups in addition to the guidelines.
Collapse
|
18
|
Wavelet-Based Localization of Oscillatory Sources From Magnetoencephalography Data. IEEE Trans Biomed Eng 2014; 61:2350-64. [DOI: 10.1109/tbme.2012.2189883] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Larson E, Lee AKC. Potential Use of MEG to Understand Abnormalities in Auditory Function in Clinical Populations. Front Hum Neurosci 2014; 8:151. [PMID: 24659963 PMCID: PMC3952190 DOI: 10.3389/fnhum.2014.00151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 02/27/2014] [Indexed: 11/13/2022] Open
Abstract
Magnetoencephalography (MEG) provides a direct, non-invasive view of neural activity with millisecond temporal precision. Recent developments in MEG analysis allow for improved source localization and mapping of connectivity between brain regions, expanding the possibilities for using MEG as a diagnostic tool. In this paper, we first describe inverse imaging methods (e.g., minimum-norm estimation) and functional connectivity measures, and how they can provide insights into cortical processing. We then offer a perspective on how these techniques could be used to understand and evaluate auditory pathologies that often manifest during development. Here we focus specifically on how MEG inverse imaging, by providing anatomically based interpretation of neural activity, may allow us to test which aspects of cortical processing play a role in (central) auditory processing disorder [(C)APD]. Appropriately combining auditory paradigms with MEG analysis could eventually prove useful for a hypothesis-driven understanding and diagnosis of (C)APD or other disorders, as well as the evaluation of the effectiveness of intervention strategies.
Collapse
Affiliation(s)
- Eric Larson
- Institute for Learning and Brain Sciences, University of Washington , Seattle, WA , USA
| | - Adrian K C Lee
- Institute for Learning and Brain Sciences, University of Washington , Seattle, WA , USA ; Department of Speech and Hearing Sciences, University of Washington , Seattle, WA , USA
| |
Collapse
|
20
|
On the nature of interictal epileptiform discharges. Clin Neurophysiol 2013; 124:2073-4. [DOI: 10.1016/j.clinph.2013.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 06/14/2013] [Indexed: 11/22/2022]
|
21
|
Gavaret M, Badier JM, Bartolomei F, Bénar CG, Chauvel P. MEG and EEG Sensitivity in a Case of Medial Occipital Epilepsy. Brain Topogr 2013; 27:192-6. [DOI: 10.1007/s10548-013-0317-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 08/31/2013] [Indexed: 11/24/2022]
|
22
|
Alkawadri R, Burgess R, Isitan C, Wang IZ, Kakisaka Y, Alexopoulos AV. Yield of repeat routine MEG recordings in clinical practice. Epilepsy Behav 2013; 27:416-9. [PMID: 23541858 DOI: 10.1016/j.yebeh.2013.02.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 02/18/2013] [Accepted: 02/26/2013] [Indexed: 11/28/2022]
Abstract
From 377 consecutive MEG studies for patients with intractable epilepsy performed at the Cleveland Clinic between 2008 and 2011, 19 patients were referred for a repeat MEG. Source localization was done using a single equivalent current dipole (ECD) model on identified interictal spike activity. Clinical, neuroimaging, and concurrent EEG and MEG findings were reviewed. The most common reasons for repeating MEG were as follows: negative initial study in 6 patients, paucity of recorded interictal discharges in 4, failed surgeries in 3, uncertain findings in the first study in 2, and research-related reasons in 4. Repeat MEG provided new localizing findings in 11/19 patients (58%), of whom 6 had negative or rare interictal findings in the first study. Lobar concordance of dipoles was present in 6 (85%) of the 7 patients with positive findings in both MEG studies. This study demonstrates that a repeat MEG may provide new localization data when a previous recording shows limited or no interictal abnormalities.
Collapse
Affiliation(s)
- Rafeed Alkawadri
- Cleveland Clinic Epilepsy Center, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Migliorelli C, Romero S, Alonso JF, Nowak R, Russi A, Mananas MA. Reduction of metallic interference in MEG signals using AMUSE. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2013:5970-5973. [PMID: 24111099 DOI: 10.1109/embc.2013.6610912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Magnetoencephalography is a technique that can noninvasively measure the brain signal. There are many advantages of using this technique rather than similar procedures such as the EEG for the evaluation of medical diseases. However, one of its main problems is its high sensitivity to sources causing metallic distortion of the signal, and the removal of this type of artifacts remains unsolved. In this study a technique for reducing metallic interference was presented. This algorithm was based on AMUSE, a second order blind source separation method, and a procedure for choosing the artifactual independent components was also presented. The results showed that the elimination of these artifacts would be possible by means of the application of this AMUSE-based interference reduction procedure.
Collapse
|
24
|
Wu XT, Rampp S, Hopfengärtner R, Buchfelder M, Zhou D, Stefan H. Complementary use of video-electroencephalography and magnetoencephalography in frontal lobe epilepsy. Seizure 2012; 21:426-30. [DOI: 10.1016/j.seizure.2012.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 04/19/2012] [Accepted: 04/20/2012] [Indexed: 11/28/2022] Open
|
25
|
Miskovic V, Keil A. Acquired fears reflected in cortical sensory processing: a review of electrophysiological studies of human classical conditioning. Psychophysiology 2012; 49:1230-41. [PMID: 22891639 DOI: 10.1111/j.1469-8986.2012.01398.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 05/02/2012] [Indexed: 11/30/2022]
Abstract
The capacity to associate neutral stimuli with affective value is an important survival strategy that can be accomplished by cell assemblies obeying Hebbian learning principles. In the neuroscience laboratory, classical fear conditioning has been extensively used as a model to study learning-related changes in neural structure and function. Here, we review the effects of classical fear conditioning on electromagnetic brain activity in humans, focusing on how sensory systems adapt to changing fear-related contingencies. By considering spatiotemporal patterns of mass neuronal activity, we illustrate a range of cortical changes related to a retuning of neuronal sensitivity to amplify signals consistent with fear-associated stimuli at the cost of other sensory information. Putative mechanisms that may underlie fear-associated plasticity at the level of the sensory cortices are briefly considered, and several avenues for future work are outlined.
Collapse
Affiliation(s)
- Vladimir Miskovic
- Center for the Study of Emotion & Attention, University of Florida, Gainesville, Florida 32611, USA.
| | | |
Collapse
|
26
|
Stefan H, Wu X, Buchfelder M, Rampp S, Kasper B, Hopfengärtner R, Schmitt F, Dörfler A, Blümcke I, Zhou D, Weigel D. MEG in frontal lobe epilepsies: Localization and postoperative outcome. Epilepsia 2011; 52:2233-8. [DOI: 10.1111/j.1528-1167.2011.03265.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Ray A, Bowyer SM. Clinical applications of magnetoencephalography in epilepsy. Ann Indian Acad Neurol 2011; 13:14-22. [PMID: 20436741 PMCID: PMC2859582 DOI: 10.4103/0972-2327.61271] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 09/30/2009] [Accepted: 11/14/2009] [Indexed: 11/20/2022] Open
Abstract
Magnetoencehalography (MEG) is being used with increased frequency in the pre-surgical evaluation of patients with epilepsy. One of the major advantages of this technique over the EEG is the lack of distortion of MEG signals by the skull and intervening soft tissue. In addition, the MEG preferentially records activity from tangential sources thus recording activity predominantly from sulci, which is not contaminated by activity from apical gyral (radial) sources. While the MEG is probably more sensitive than the EEG in detecting interictal spikes, especially in the some locations such as the superficial frontal cortex and the lateral temporal neocortex, both techniques are usually complementary to each other. The diagnostic accuracy of MEG source localization is usually better as compared to scalp EEG localization. Functional localization of eloquent cortex is another major application of the MEG. The combination of high spatial and temporal resolution of this technique makes it an extremely helpful tool for accurate localization of visual, somatosensory and auditory cortices as well as complex cognitive functions like language. Potential future applications include lateralization of memory function.
Collapse
Affiliation(s)
- Amit Ray
- Comprehensive Epilepsy Program, Henry Ford Hospital, Detroit MI
| | | |
Collapse
|
28
|
Jiruska P, Powell AD, Chang WC, Jefferys JG. Electrographic high-frequency activity and epilepsy. Epilepsy Res 2010; 89:60-5. [DOI: 10.1016/j.eplepsyres.2009.11.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 10/30/2009] [Accepted: 11/15/2009] [Indexed: 10/20/2022]
|
29
|
Funke M, Constantino T, Van Orman C, Rodin E. Magnetoencephalography and magnetic source imaging in epilepsy. Clin EEG Neurosci 2009; 40:271-80. [PMID: 19780348 DOI: 10.1177/155005940904000409] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Magnetoencephalograpy (MEG) and Electroencephalography (EEG) provide physicians with complementary data and should not be regarded as mutually exclusive evaluative methods of cerebral activity. Relevant to this edition, MEG applications related to the surgical treatment of epilepsy will be discussed exclusively. Combined MEG/EEG data collection and analysis should be a routine diagnostic practice for patients who are still suffering seizures due to the failure of drug therapy. Clinicians in the field of epilepsy agree that a greater number of patients would benefit from surgery than are currently referred for pre-surgical evaluation. Regardless of age or presumed epilepsy syndrome, all patients deserve the possibility of living seizure-free through surgery. Technological advances in superconducting elements as well as the digital revolution were necessary for the development of MEG into a clinically valuable diagnostic tool. Compared to the examination of electrical activity of the brain, investigation into its magnetic concomitant is a more recent development. In MEG, cerebral magnetic activity is recorded using magnetometer or gradiometer whole-head systems. MEG spikes usually have a shorter duration and a steeper ascending slope than EEG spikes, and variable phase relationships to EEG. When co-registered spikes are compared, it is apparent that EEG and MEG spikes differ. There is agreement among investigators that more interictal epileptiform spikes are seen in MEG than EEG. When MEG is co-registered with invasive intracranial EEG data, the detection rate of interictal epileptiform discharges depends on the number of electrocorticographic channels that record a spike. When patients have a non-localizing video-EEG recording, MEG pinpoints the resected area in 58-72% of the cases.
Collapse
Affiliation(s)
- M Funke
- Department of Neurology, Primary Childrens Medical Center, Salt Lake City, Utah, USA.
| | | | | | | |
Collapse
|
30
|
García-Morales I, Maestú F, Pérez-Jiménez MA, Elices E, Ortiz T, Alvarez-Linera J, Gil-Nagel A. A clinical and magnetoencephalography study of MRI-negative startle epilepsy. Epilepsy Behav 2009; 16:166-71. [PMID: 19635686 DOI: 10.1016/j.yebeh.2009.06.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2009] [Revised: 06/08/2009] [Accepted: 06/13/2009] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The goal of this study was to investigate clinical findings, ictal semiology, and results of video/electroencephalography (video/EEG), and magnetoencephalography (MEG) in patients with startle epilepsy and normal brain MRI. METHODS Four patients (mean age 12.5 years) with startle epilepsy were investigated with MRI, video/EEG, and MEG. RESULTS Epilepsy diagnosis was established in childhood, and all had spontaneous and reflex seizures. Reflex seizures were triggered by sudden, unexpected sounds and tactile stimuli. The neurological examinations and MRIs were normal. MEG recordings showed focal epileptiform activity. An ictal MEG was obtained in one patient. Source modeling yielded dipole sources in right central frontal region. CONCLUSION The present study demonstrates that the origin of epileptiform activity in startle epilepsy can be localized in brain areas associated with supplementary motor seizures, even in patients with normal brain MRI. MEG adds complementary information to the localization of epileptiform activity and can be useful in planning invasive studies in cases evaluated for epilepsy surgery.
Collapse
Affiliation(s)
- Irene García-Morales
- Epilepsy Unit, Department of Neurology, Hospital Clínico San Carlos, Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
31
|
Schachter SC, Guttag J, Schiff SJ, Schomer DL. Advances in the application of technology to epilepsy: the CIMIT/NIO Epilepsy Innovation Summit. Epilepsy Behav 2009; 16:3-46. [PMID: 19780225 PMCID: PMC8118381 DOI: 10.1016/j.yebeh.2009.06.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In 2008, a group of clinicians, scientists, engineers, and industry representatives met to discuss advances in the application of engineering technologies to the diagnosis and treatment of patients with epilepsy. The presentations also provided a guide for further technological development, specifically in the evaluation of patients for epilepsy surgery, seizure onset detection and seizure prediction, intracranial treatment systems, and extracranial treatment systems. This article summarizes the discussions and demonstrates that cross-disciplinary interactions can catalyze collaborations between physicians and engineers to address and solve many of the pressing unmet needs in epilepsy.
Collapse
Affiliation(s)
- Steven C Schachter
- Center for Integration of Medicine and Innovative Technology, Boston, MA, USA.
| | | | | | | |
Collapse
|
32
|
Agirre-Arrizubieta Z, Huiskamp GJM, Ferrier CH, van Huffelen AC, Leijten FSS. Interictal magnetoencephalography and the irritative zone in the electrocorticogram. Brain 2009; 132:3060-71. [DOI: 10.1093/brain/awp137] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
33
|
Stufflebeam SM, Tanaka N, Ahlfors SP. Clinical applications of magnetoencephalography. Hum Brain Mapp 2009; 30:1813-23. [PMID: 19378272 PMCID: PMC6870693 DOI: 10.1002/hbm.20792] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 02/27/2009] [Accepted: 02/27/2009] [Indexed: 11/08/2022] Open
Abstract
Magnetoencephalography (MEG), in which magnetic fields generated by brain activity are recorded outside of the head, is now in routine clinical practice throughout the world. MEG has become a recognized and vital part of the presurgical evaluation of patients with epilepsy and patients with brain tumors. We review investigations that show an improvement in the postsurgical outcomes of patients with epilepsy by localizing epileptic discharges. We also describe the most common clinical MEG applications that affect the management of patients, and discuss some applications that are close to having a clinical impact on patients.
Collapse
Affiliation(s)
- Steven M Stufflebeam
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, MA 02129, USA.
| | | | | |
Collapse
|
34
|
Weiland BJ, Boutros NN, Moran JM, Tepley N, Bowyer SM. Evidence for a frontal cortex role in both auditory and somatosensory habituation: a MEG study. Neuroimage 2008; 42:827-35. [PMID: 18602839 DOI: 10.1016/j.neuroimage.2008.05.042] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 05/16/2008] [Accepted: 05/19/2008] [Indexed: 11/18/2022] Open
Abstract
Auditory and somatosensory responses to paired stimuli were investigated for commonality of frontal activation that may be associated with gating using magnetoencephalography (MEG). A paired stimulus paradigm for each sensory evoked study tested right and left hemispheres independently in ten normal controls. MR-FOCUSS, a current density technique, imaged simultaneously active cortical sources. Each subject showed source localization, in the primary auditory or somatosensory cortex, for the respective stimuli following both the first (S1) and second (S2) impulses. Gating ratios for the auditory M50 response, equivalent to the P50 in EEG, were 0.54+/-0.24 and 0.63+/-0.52 for the right and left hemispheres. Somatosensory gating ratios were evaluated for early and late latencies as the pulse duration elicits extended response. Early gating ratios for right and left hemispheres were 0.69+/-0.21 and 0.69+/-0.41 while late ratios were 0.81+/-0.41 and 0.80+/-0.48. Regions of activation in the frontal cortex, beyond the primary auditory or somatosensory cortex, were mapped within 25 ms of peak S1 latencies in 9/10 subjects during auditory stimulus and in 10/10 subjects for somatosensory stimulus. Similar frontal activations were mapped within 25 ms of peak S2 latencies for 75% of auditory responses and for 100% of somatosensory responses. Comparison between modalities showed similar frontal region activations for 17/20 S1 responses and for 13/20 S2 responses. MEG offers a technique for evaluating cross modality gating. The results suggest similar frontal sources are simultaneously active during auditory and somatosensory habituation.
Collapse
Affiliation(s)
- Barbara J Weiland
- Department of Neurology, Henry Ford Health System, Neuromagnetism Laboratory, 2799 West Grand Blvd., CFP 75, Detroit, MI 48202, USA.
| | | | | | | | | |
Collapse
|
35
|
Enatsu R, Mikuni N, Usui K, Matsubayashi J, Taki J, Begum T, Matsumoto R, Ikeda A, Nagamine T, Fukuyama H, Hashimoto N. Usefulness of MEG magnetometer for spike detection in patients with mesial temporal epileptic focus. Neuroimage 2008; 41:1206-19. [DOI: 10.1016/j.neuroimage.2008.03.038] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 03/09/2008] [Accepted: 03/26/2008] [Indexed: 11/16/2022] Open
|
36
|
Gavaret M, Badier JM, Chauvel P. EEG haute résolution (EEG-HR) et magnétoencéphalographie (MEG). Neurochirurgie 2008; 54:185-90. [DOI: 10.1016/j.neuchi.2008.02.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Accepted: 02/13/2008] [Indexed: 11/29/2022]
|
37
|
Perkins FF, Breier J, McManis MH, Castillo E, Wheless J, McGregor AL, Chacon M, Clarke DF. Benign rolandic epilepsy -- perhaps not so benign: use of magnetic source imaging as a predictor of outcome. J Child Neurol 2008; 23:389-93. [PMID: 18401032 DOI: 10.1177/0883073807309239] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The purpose of this study was to evaluate children with benign rolandic epilepsy, a childhood epilepsy characterized by centrotemporal/rolandic spike-wave discharges with infrequent partial seizures that may secondarily generalize. Recently, some investigators have questioned whether benign rolandic epilepsy is indeed "benign" or whether long-term cognitive outcome may be adversely affected. We initiated an ongoing study to identify children with benign rolandic epilepsy. The children were evaluated in the Texas Comprehensive Epilepsy Program using outpatient or continuous video-electroencephalographic monitoring, brain magnetic resonance imaging, magnetoencephalography, and neuropsychological testing. Neuropsychological testing revealed fine motor dysfunction, visuomotor integration deficits, dyscalculia, and/or expressive language deficits in all of the 9 patients evaluated, reaffirming that benign rolandic epilepsy is not necessarily a benign disorder. Our study shows a high concordance of motor and cognitive deficits in benign rolandic epilepsy, as others have previously suggested. Furthermore, magnetic source imaging shows a higher resolution of dipole localization compared with conventional electroencephalography, which may ultimately improve prediction of deficits. This reaffirms that magnetoencephalography is a valuable diagnostic tool in the evaluation of children with benign rolandic epilepsy.
Collapse
Affiliation(s)
- F Frederick Perkins
- Department of Pediatrics, Division of Child Neurology, University of Tennessee Health Science Center at Memphis/Le Bonheur Comprehensive Epilepsy Program, Memphis, TN 38105, USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Ossenblok P, de Munck JC, Colon A, Drolsbach W, Boon P. Magnetoencephalography Is More Successful for Screening and Localizing Frontal Lobe Epilepsy than Electroencephalography. Epilepsia 2007; 48:2139-49. [PMID: 17662061 DOI: 10.1111/j.1528-1167.2007.01223.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE The diagnosis of frontal lobe epilepsy may be compounded by poor electroclinical localization, due to distributed or rapidly propagating epileptiform activity. This study aimed at developing optimal procedures for localizing interictal epileptiform discharges (IEDs) of patients with localization related epilepsy in the frontal lobe. To this end the localization results obtained for magnetoencephalography (MEG) and electroencephalography (EEG) were compared systematically using automated analysis procedures. METHODS Simultaneous recording of interictal EEG and MEG was successful for 18 out of the 24 patients studied. Visual inspection of these recordings revealed IEDs with varying morphology and topography. Cluster analysis was used to classify these discharges on the basis of their spatial distribution followed by equivalent dipole analysis of the cluster averages. The locations of the equivalent dipoles were compared with the location of the epileptogenic lesions of the patient or, if these were not visible at MRI with the location of the interictal onset zones identified by subdural electroencephalography. RESULTS Generally IEDs were more abundantly in MEG than in the EEG recordings. Furthermore, the duration of the MEG spikes, measured from the onset till the spike maximum, was in most patients shorter than the EEG spikes. In most patients, distinct spike subpopulations were found with clearly different topographical field maps. Cluster analysis of MEG spikes followed by dipole localization was successful (n = 14) for twice as many patients as for EEG source analysis (n = 7), indicating that the localizability of interictal MEG is much better than of interictal EEG. CONCLUSIONS The automated procedures developed in this study provide a fast screening method for identifying the distinct categories of spikes and the brain areas responsible for these spikes. The results show that MEG spike yield and localization is superior compared with EEG. This finding is of importance for the diagnosis and preoperative evaluation of patients with frontal lobe epilepsy.
Collapse
|
40
|
Shahin AJ, Roberts LE, Miller LM, McDonald KL, Alain C. Sensitivity of EEG and MEG to the N1 and P2 auditory evoked responses modulated by spectral complexity of sounds. Brain Topogr 2007; 20:55-61. [PMID: 17899352 PMCID: PMC4373076 DOI: 10.1007/s10548-007-0031-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2007] [Indexed: 11/29/2022]
Abstract
Acoustic complexity of a stimulus has been shown to modulate the electromagnetic N1 (latency approximately 110 ms) and P2 (latency 190 ms) auditory evoked responses. We compared the relative sensitivity of electroencephalography (EEG) and magnetoencephalography (MEG) to these neural correlates of sensation. Simultaneous EEG and MEG were recorded while participants listened to three variants of a piano tone. The piano stimuli differed in their number of harmonics: the fundamental frequency (f ( 0 )), only, or f ( 0 ) and the first two or eight harmonics. The root mean square (RMS) of the amplitude of P2 but not N1 increased with spectral complexity of the piano tones in EEG and MEG. The RMS increase for P2 was more prominent in EEG than MEG, suggesting important radial sources contributing to the P2 only in EEG. Source analysis revealing contributions from radial and tangential sources was conducted to test this hypothesis. Source waveforms revealed a significant increase in the P2 radial source amplitude in EEG with increased spectral complexity of piano tones. The P2 of the tangential source waveforms also increased in amplitude with increased spectral complexity in EEG and MEG. The P2 auditory evoked response is thus represented by both tangential (gyri) and radial (sulci) activities. The radial contribution is expressed preferentially in EEG, highlighting the importance of combining EEG with MEG where complex source configurations are suspected.
Collapse
Affiliation(s)
- Antoine J Shahin
- UC Davis Center for Mind and Brain, University of California-Davis, 267 Cousteau Place, Davis, CA 95618, USA.
| | | | | | | | | |
Collapse
|
41
|
Plummer C, Litewka L, Farish S, Harvey AS, Cook MJ. Clinical utility of current-generation dipole modelling of scalp EEG. Clin Neurophysiol 2007; 118:2344-61. [PMID: 17889598 DOI: 10.1016/j.clinph.2007.08.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 08/14/2007] [Accepted: 08/18/2007] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To investigate the clinical utility of current-generation dipole modelling of scalp EEG in focal epilepsies seen commonly in clinical practice. METHODS Scalp EEG recordings from 10 patients with focal epilepsy, five with Benign Focal Epilepsy of Childhood (BFEC) and five with Mesial Temporal Lobe Epilepsy (MTLE), were used for interictal spike dipole modelling using Scan 4.3 and CURRY 5.0. Optimum modelling parameters for EEG source localisation (ESL) were sought by the step-wise application of various volume conductor (forward) and dipole (inverse) models. Best-fit ESL solutions (highest explained forward-fit to measured data variance) were used to characterise best-fit forward and inverse models, regularisation effect, additional electrode effect, single-to-single spike and single-to-averaged spike variability, and intra- and inter-operator concordance. Inter-parameter relationships were examined. Computation times and interface problems were recorded. RESULTS For both BFEC and MTLE, the best-fit forward model was the finite element method interpolated (FEMi) model, while the best-fit single dipole models were the rotating non-regularised and the moving regularised models. When combined, these forward-inverse models appeared to offer clinically meaningful ESL results when referenced to an averaged cortex overlay, best-fit dipoles localising to the central fissure region in BFEC and to the basolateral temporal region in MTLE. Single-to-single spike and single-to-averaged spike measures of concordance for dipole location and orientation were stronger for BFEC versus MTLE. The use of an additional pair of inferior temporal electrodes in MTLE directed best-fit dipoles towards the basomesial temporal region. Inverse correlations were noted between unexplained variance (RD) and dipole strength (Amp), RD and signal to noise ratio (SNR), and SNR and confidence ellipsoid (CE) volume. Intra- and inter-operator levels of agreement were relatively robust for dipole location and orientation. Technical problems were infrequent and modelling operations were performed within 5min. CONCLUSIONS The optimal forward-inverse single dipole modelling set-up for BFEC and MTLE interictal spike analysis is the FEMi model using the combination of rotating non-regularised and moving regularised dipoles. Dipole modelling of single spikes characterises best-fit dipole location and orientation more reliably in BFEC than in MTLE for which spike averaging is recommended. SIGNIFICANCE The clinical utility of dipole modelling in two common forms of focal epilepsy strengthens the case for its place in the routine clinical work-up of patients with localisation-related epilepsy syndromes.
Collapse
Affiliation(s)
- C Plummer
- Centre for Clinical Neurosciences and Neurological Research, St. Vincent's Hospital, 5th Floor Daly Wing, 35 Victoria Parade, Fitzroy, Victoria 3065, Australia.
| | | | | | | | | |
Collapse
|
42
|
Paulini A, Fischer M, Rampp S, Scheler G, Hopfengärtner R, Kaltenhäuser M, Dörfler A, Buchfelder M, Stefan H. Lobar localization information in epilepsy patients: MEG—A useful tool in routine presurgical diagnosis. Epilepsy Res 2007; 76:124-30. [PMID: 17719204 DOI: 10.1016/j.eplepsyres.2007.07.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 05/25/2007] [Accepted: 07/14/2007] [Indexed: 11/26/2022]
Abstract
Epilepsy surgery is an established therapy for pharmacoresistant focal epilepsy. This study investigated the contribution of routinely used magnetoencepahlography (MEG) in addition to long term video-EEG-monitoring in presurgical evaluation. The distribution of localization results to anatomical lobes was compared with special focus to MEG spike localization results in cases without or with ambiguous EEG findings. A total of 105 consecutive patients with intractable focal epilepsy and epilepsy surgery after investigation by video-EEG-monitoring and MEG were included. The percentages of monolobar results were analysed and compared, especially with respect to the resection lobe. Postoperative outcome was used for further validation. No spikes were recorded on MEG in 30% (32 of 105). In cases with a diagnostic finding by the respective method, MEG localized in 82% (60 of 73 patients) within one anatomical lobe. Ictal EEG localized within one lobe in 72% (66 of 92 patients), interictal EEG in 60% (59 of 98 patients). In 25 of 105 patients (24%) no clear localization within one lobe was found either in interictal or in ictal EEG. In 11 of these cases MEG localized within the resection lobe. Six patients of these became seizure free, the other five had at least 50% reduction of their seizure rate 1 year after surgery. In summary MEG is a useful tool in the routine workup for epilepsy surgery contributing information to focus hypothesis in addition to video-EEG.
Collapse
Affiliation(s)
- Andrea Paulini
- Epilepsy Center (ZEE), Department of Neurology, University of Erlangen-Nürnberg, Erlangen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Scheler G, Fischer MJM, Genow A, Hummel C, Rampp S, Paulini A, Hopfengärtner R, Kaltenhäuser M, Stefan H. Spatial relationship of source localizations in patients with focal epilepsy: Comparison of MEG and EEG with a three spherical shells and a boundary element volume conductor model. Hum Brain Mapp 2007; 28:315-22. [PMID: 16933294 PMCID: PMC6871383 DOI: 10.1002/hbm.20277] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Epilepsy surgery is an option for patients with pharmacoresistant focal epilepsies, but it requires a precise focus localization procedure. Magnetoencephalography (MEG) and electroencephalography (EEG) can be used for analysis of interictal activity. The aim of this prospective study was to compare clusters of source localization results with MEG and EEG using a three spherical shells (3SS) and a boundary element method (BEM) volume conductor model. The study was closed when 100 patients met the inclusion criteria. Simultaneous MEG and EEG were recorded during presurgical evaluation. Epileptiform signals were analyzed using an equivalent current dipole model. Centroids of source localizations from MEG, EEG, 3SS, and BEM in their respective combinations were compared. In a 3SS model, MEG source localizations were 5.6 mm inferior to those obtained by EEG, while in a BEM model MEG source localizations were 6.3 mm anterior and 4.8 mm superior. The mean scattering of source localizations between both volume conductor models was 19.5 mm for EEG and 9.6 mm for MEG. For MEG no systematic difference between BEM and 3SS source localizations was found. For EEG, source localizations with BEM were 5.9 mm posterior and 11.7 mm inferior to those determined using 3SS. No differences were found between the 46 temporal and the 54 extratemporal lobe epilepsy patients. The observed systematic differences of source localizations of epileptic spikes due to the applied source signal modality and volume conductor model should be considered in presurgical evaluation when only one source signal and volume conductor model is available.
Collapse
Affiliation(s)
- Gabriela Scheler
- Epilepsy and Neurocenter, Department of Neurology, University of Erlangen-Nürnberg, Erlangen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ramantani G, Boor R, Paetau R, Ille N, Feneberg R, Rupp A, Boppel T, Scherg M, Rating D, Bast T. MEG versus EEG: influence of background activity on interictal spike detection. J Clin Neurophysiol 2007; 23:498-508. [PMID: 17143138 DOI: 10.1097/01.wnp.0000240873.69759.cc] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The comparative sensitivity of EEG and magnetoencephalography (MEG) in the visual detection of focal epileptiform activity in simultaneous interictal sleep recordings were investigated. The authors examined 14 patients aged 3.5 to 17 years with localization-related epilepsy. Simultaneous 122-channel whole-head MEG and 33-channel EEG were recorded for 20 to 40 minutes during spontaneous sleep. The EEG and MEG data were separated and four blinded independent reviewers marked the presence and timing of epileptic discharges (ED) in the 28 data segments. EEG and MEG data were matched and spikes identified by at least three reviewers were classified in three categories according to the following criteria: type 1 MEG > EEG, type 2 EEG > MEG (type 1/2: difference of three or more raters), and type 3 EEG = MEG (three or more raters each). The presence of simultaneous sleep changes was visually determined for every single EEG-segment. Spikes with high spatiotemporal correlation were averaged and subjected to single dipole analysis of peak activity in EEG. Out of 4704 marked patterns, 1387 spikes fulfilled the above criteria. In fact, more spikes were unique to MEG (689) than to EEG (136) and to the combination of both modalities (562). ED were detected predominantly by MEG in eight patients and by EEG in two patients. The presence of vertex waves and spindles lead to a significantly higher number of spikes identified only in MEG. Averaging of type 1 spikes produced clear spike activity in EEG in 9 of 12 cases. On the contrary, only 2 of 10 type 2 spikes were visible in MEG after averaging. Dipoles of spikes visible in MEG showed a more tangential orientation compared with more radial dipoles of type 2 spikes. Spike characteristics, e.g., dipole orientation, are a key factor for a sole EEG representation. Exclusive MEG detection is more likely influenced by overlapping background activity in EEG. Because MEG is indifferent to radial activity, i.e., sleep changes, a higher ratio of spikes unique to MEG compared with EEG is detected in the case of overlapping sleep changes.
Collapse
Affiliation(s)
- Georgia Ramantani
- Departments of Pediatric Neurology, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
RamachandranNair R, Otsubo H, Shroff MM, Ochi A, Weiss SK, Rutka JT, Snead OC. MEG Predicts Outcome Following Surgery for Intractable Epilepsy in Children with Normal or Nonfocal MRI Findings. Epilepsia 2007; 48:149-57. [PMID: 17241222 DOI: 10.1111/j.1528-1167.2006.00901.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE To identify the predictors of postsurgical seizure freedom in children with refractory epilepsy and normal or nonfocal MRI findings. METHODS We analyzed 22 children with normal or subtle and nonfocal MRI findings, who underwent surgery for intractable epilepsy following extraoperative intracranial EEG. We compared clinical profiles, neurophysiological data (scalp EEG, magnetoencephalography (MEG) and intracranial EEG), completeness of surgical resection and pathology to postoperative seizure outcomes. RESULTS Seventeen children (77%) had a good postsurgical outcome (defined as Engel class IIIA or better), which included eight (36%) seizure-free children. All children with postsurgical seizure freedom had an MEG cluster in the final resection area. Postsurgical seizure freedom was obtained in none of the children who had bilateral MEG dipole clusters (3) or only scattered dipoles (1). All five children in whom ictal onset zones were confined to < or = 5 adjacent intracranial electrodes achieved seizure freedom compared to three of 17 children with ictal onset zones that extended over >5 electrodes (p = 0.002). None of six children with more than one type of seizure became seizure-free, compared to eight of 16 children with a single seizure type (p = 0.04). Complete resection of the preoperatively localized epileptogenic zone resulted in seizure remission in 63% (5/8) and incomplete resections, in 21% (3/14) (p = 0.06). Age of onset, duration of epilepsy, number of lobes involved in resection, and pathology failed to correlate with seizure freedom. CONCLUSIONS Surgery for intractable epilepsy in children with normal MRI findings provided good postsurgical outcomes in the majority of our patients. As well, restricted ictal onset zone predicted postoperative seizure freedom. Postoperative seizure freedom was less likely to occur in children with bilateral MEG dipole clusters or only scattered dipoles, multiple seizure types and incomplete resection of the proposed epileptogenic zone. Seizure freedom was most likely to occur when there was concordance between EEG and MEG localization and least likely to occur when these results were divergent.
Collapse
Affiliation(s)
- Rajesh RamachandranNair
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
46
|
Salayev KA, Nakasato N, Ishitobi M, Shamoto H, Kanno A, Iinuma K. Spike orientation may predict epileptogenic side across cerebral sulci containing the estimated equivalent dipole. Clin Neurophysiol 2006; 117:1836-43. [PMID: 16798082 DOI: 10.1016/j.clinph.2006.05.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 04/12/2006] [Accepted: 05/05/2006] [Indexed: 10/24/2022]
Abstract
OBJECTIVE To evaluate whether the orientation of interictal spikes, localized in major sulci by magnetoencephalography (MEG), predicts the epileptogenic side of the sulcal wall. METHODS Sixteen epilepsy patients were analyzed in whom equivalent current dipoles (ECDs) of MEG spikes were localized on the central (four patients), interhemispheric (4), or sylvian fissure (8); and the epileptogenic side across the sulci had been confirmed by seizure semiology, structural lesions, or intracranial electroencephalography (EEG). ECD was classified as epileptogenic side or normal side oriented and correlated to the scalp EEG map. RESULTS All central (n=50) and interhemispheric (n=83) spike ECDs were oriented toward the epileptogenic side at peak latency. In scalp EEG, 91% of the spikes showed radial pattern of broad negativity above the sulcus whereas 9% showed tangential pattern with positive maximum above the epileptogenic side. Sylvian spikes were only found in patients with temporal lobe epilepsy (TLE). In sylvian spikes (n=220), 73% of ECDs were oriented toward the epileptogenic side, whereas 27% were oriented toward the normal side. CONCLUSIONS In central and interhemispheric spikes, epileptogenic side cortex may be gross surface negative through the sulcal wall to the adjacent gyrus. Inconsistent orientation of the sylvian spikes suggests a complex pattern of spike propagation in TLE. SIGNIFICANCE ECD orientation of central and interhemispheric spikes in MEG may predict the epileptogenic side.
Collapse
Affiliation(s)
- Kamran Ali Salayev
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
Medical images are created by detecting radiation probes transmitted through or emitted or scattered by the body. The radiation, modulated through interactions with tissues, yields patterns that provide anatomic and/or physiologic information. X-rays, gamma rays, radiofrequency signals, and ultrasound waves are the standard probes, but others like visible and infrared light, microwaves, terahertz rays, and intrinsic and applied electric and magnetic fields are being explored. Some of the younger technologies, such as molecular imaging, may enhance existing imaging modalities; however, they also, in combination with nanotechnology, biotechnology, bioinformatics, and new forms of computational hardware and software, may well lead to novel approaches to clinical imaging. This review provides a brief overview of the current state of image-based diagnostic medicine and offers comments on the directions in which some of its subfields may be heading.
Collapse
Affiliation(s)
- Anthony B Wolbarst
- Department of Radiation Medicine, Georgetown University Medical School, Washington, DC, USA
| | | |
Collapse
|
48
|
Lapalme E, Lina JM, Mattout J. Data-driven parceling and entropic inference in MEG. Neuroimage 2006; 30:160-71. [PMID: 16426867 DOI: 10.1016/j.neuroimage.2005.08.067] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Revised: 07/12/2005] [Accepted: 08/23/2005] [Indexed: 11/22/2022] Open
Abstract
In Amblard et al. [Amblard, C., Lapalme, E., Lina, J.M. 2004. Biomagnetic source detection by maximum entropy and graphical models. IEEE Trans. Biomed. Eng. 55 (3) 427--442], the authors introduced the maximum entropy on the mean (MEM) as a methodological framework for solving the magnetoencephalography (MEG) inverse problem. The main component of the MEM is a reference probability density that enables one to include all kind of prior information on the source intensity distribution to be estimated. This reference law also encompasses the definition of a model. We consider a distributed source model together with a clustering hypothesis that assumes functionally coherent dipoles. The reference probability distribution is defined as a prior parceling of the cortical surface. In this paper, we present a data-driven approach for parceling out the cortex into regions that are functionally coherent. Based on the recently developed multivariate source pre-localization (MSP) principle [Mattout, J., Pelegrini-Issac, M., Garnero, L., Benali, H. 2005. Multivariate source pre-localization (MSP): Use of functionally informed basis functions for better conditioning the MEG inverse problem. NeuroImage 26 (2) 356--373], the data-driven clustering (DDC) of the dipoles provides an efficient parceling of the sources as well as an estimate of parameters of the initial reference probability distribution. On MEG simulated data, the DDC is shown to further improve the MEM inverse approach, as evaluated considering two different iterative algorithms and using classical error metrics as well as ROC (receiver operating characteristic) curve analysis. The MEM solution is also compared to a LORETA-like inverse approach. The data-driven clustering allows to take most advantage of the MEM formalism. Its main trumps lie in the flexible probabilistic way of introducing priors and in the notion of spatial coherent regions of activation. The latter reduces the dimensionality of the problem. In so doing, it narrows down the gap between the two types of inverse methods, the popular dipolar approaches and the distributed ones.
Collapse
Affiliation(s)
- Ervig Lapalme
- Centre de Recherches Mathématiques Univ. de Montréal, Canada
| | | | | |
Collapse
|
49
|
Gotman J, Kobayashi E, Bagshaw AP, Bénar CG, Dubeau F. Combining EEG and fMRI: A multimodal tool for epilepsy research. J Magn Reson Imaging 2006; 23:906-20. [PMID: 16649203 DOI: 10.1002/jmri.20577] [Citation(s) in RCA: 207] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Patients with epilepsy often present in their electroencephalogram (EEG) short electrical potentials (spikes or spike-wave bursts) that are not accompanied by clinical manifestations but are of important diagnostic significance. They result from a population of abnormally hyperactive and hypersynchronous neurons. It is not easy to determine the location of the cerebral generators and the other brain regions that may be involved as a result of this abnormal activity. The possibility to combine EEG recording with functional MRI (fMRI) scanning opens the opportunity to uncover the regions of the brain showing changes in the fMRI signal in response to epileptic spikes seen in the EEG. These regions are presumably involved in the abnormal neuronal activity at the origin of epileptic discharges. This paper reviews the methodology involved in performing such studies, particularly the challenge of recording a good quality EEG inside the MR scanner while scanning is taking place, and the methods required for the statistical analysis of the combined EEG and fMRI time series. We review the results obtained in patients with different types of epileptic disorders and discuss the difficult theoretical problems raised by the interpretation of an increase (activation) and decrease (deactivation) in blood oxygen level dependent (BOLD) signal, both frequently seen in response to spikes.
Collapse
Affiliation(s)
- Jean Gotman
- Montreal Neurological Institute and Hospital, McGill University, Montréal, Québec, Canada.
| | | | | | | | | |
Collapse
|
50
|
Nikulin VV, Nikulina AV, Yamashita H, Rossi EM, Kähkönen S. Effects of alcohol on spontaneous neuronal oscillations: a combined magnetoencephalography and electroencephalography study. Prog Neuropsychopharmacol Biol Psychiatry 2005; 29:687-93. [PMID: 15905011 DOI: 10.1016/j.pnpbp.2005.04.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/06/2005] [Indexed: 11/17/2022]
Abstract
Electroencephalography (EEG) and magnetoencephalography (MEG) can detect different aspects of alcohol effects on auditory processing measured with event-related potentials and magnetic fields. The present study aimed to detect alcohol-induced changes in spontaneous neuronal oscillations with combined EEG and MEG techniques. The effects of alcohol on spontaneous neuronal rhythms were studied in 12 healthy subjects after 0.8 g/kg alcohol or juice in a double-blind, placebo-controlled, cross-over design using simultaneous high-resolution MEG and EEG in eyes-open and eyes-closed conditions. The data were analyzed with a power spectral density analysis. MEG recording showed that alcohol significantly increased the relative power of alpha rhythm (8-10 Hz) and reduced the relative power of beta activity (17-25 Hz) in both left and right hemispheres, but only in the eyes-closed condition. These effects did not depend on gender. No analogous statistically significant changes were observed in EEG rhythms. However, the power of alpha and beta rhythms was positively correlated in MEG and EEG recordings, indicating that MEG and EEG reflect similar processes. A distinct sensitivity of MEG and EEG to the sources of cortical oscillations, a better signal-to-noise ratio of MEG, as well as strong spatial blurring of potentials in EEG are most likely the reasons for the observed differences in the effects of alcohol on spontaneous oscillations as detected with two methods.
Collapse
Affiliation(s)
- Vadim V Nikulin
- BioMag Laboratory, Engineering Center, Helsinki University Central Hospital, P.O. Box 340, FIN-00029 HUS, Finland
| | | | | | | | | |
Collapse
|