1
|
Kim MY, Kwon H, Yang TH, Kim K. Vibration Alert to the Brain: Evoked and Induced MEG Responses to High-Frequency Vibrotactile Stimuli on the Index Finger of Dominant and Non-dominant Hand. Front Hum Neurosci 2020; 14:576082. [PMID: 33250728 PMCID: PMC7674801 DOI: 10.3389/fnhum.2020.576082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/12/2020] [Indexed: 11/13/2022] Open
Abstract
Background: In recent years, vibrotactile haptic feedback technology has been widely used for user interfaces in the mobile devices. Although functional neuroimaging studies have investigated human brain responses to different types of tactile inputs, the neural mechanisms underlying high-frequency vibrotactile perception are still relatively unknown. Our aim was to investigate neuromagnetic brain responses to high-frequency vibrotactile stimulation, using magnetoencephalography (MEG). Methods: We measured 152-channel whole-head MEG in 30 healthy, right-handed volunteers (aged 20–28 years, 15 females). A total of 300 vibrotactile stimuli were presented at the tip of either the left index finger or the right index finger in two separate sessions. Sinusoidal vibrations at 150 Hz for 200 ms were generated with random inter-stimulus intervals between 1.6 and 2.4 s. Both time-locked analysis and time-frequency analysis were performed to identify peak responses and oscillatory modulations elicited by high-frequency vibrations. The significance of the evoked and induced responses for dominant and non-dominant hand stimulation conditions was statistically tested, respectively. The difference in responses between stimulation conditions was also statistically evaluated. Results: Prominent peak responses were observed at 56 ms (M50) and at 100 ms (M100) for both stimulation conditions. The M50 response revealed clear dipolar field patterns in the contralateral side with significant cortical activations in the contralateral primary sensorimotor area, whereas the M100 response was not as prominent as the M50. Vibrotactile stimulation induced significant suppression of both alpha (8–12 Hz) and beta (20–30 Hz) band activity during the mid-latency period (0.2–0.4 s), primarily in sensorimotor areas contralateral to the stimulation side. In addition, a significant alpha enhancement effect in posterior regions was accompanied with alpha suppressions in sensorimotor regions. The alpha suppression was observed in a broader distribution of cortical areas for the non-dominant hand stimulation. Conclusion: Our data demonstrate that high-frequency tactile vibrations, which is known to primarily activate Pacinian corpuscles, elicit somatosensory M50 and M100 responses in the evoked fields and induce modulations of alpha and beta band oscillations during mid-latency periods. Our study is also consistent with that the primary sensorimotor area is significantly involved in the processing of high-frequency vibrotactile information with contralateral dominance.
Collapse
Affiliation(s)
- Min-Young Kim
- Quantum Technology Institute, Korea Research Institute of Standards and Science, Daejeon, South Korea
| | - Hyukchan Kwon
- Quantum Technology Institute, Korea Research Institute of Standards and Science, Daejeon, South Korea
| | - Tae-Heon Yang
- Department of Electronic Engineering, Korea National University of Transportation, Chungju-si, South Korea
| | - Kiwoong Kim
- Quantum Technology Institute, Korea Research Institute of Standards and Science, Daejeon, South Korea.,Department of Medical Physics, University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
2
|
Wittenberg MA, Baumgarten TJ, Schnitzler A, Lange J. U-shaped Relation between Prestimulus Alpha-band and Poststimulus Gamma-band Power in Temporal Tactile Perception in the Human Somatosensory Cortex. J Cogn Neurosci 2018; 30:552-564. [DOI: 10.1162/jocn_a_01219] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Neuronal oscillations are a ubiquitous phenomenon in the human nervous system. Alpha-band oscillations (8–12 Hz) have been shown to correlate negatively with attention and performance, whereas gamma-band oscillations (40–150 Hz) correlate positively. Here, we studied the relation between prestimulus alpha-band power and poststimulus gamma-band power in a suprathreshold tactile discrimination task. Participants received two electrical stimuli to their left index finger with different SOAs (0 msec, 100 msec, intermediate SOA, intermediate SOA ± 10 msec). The intermediate SOA was individually determined so that stimulation was bistable, and participants perceived one stimulus in half of the trials and two stimuli in the other half. We measured neuronal activity with magnetoencephalography (MEG). In trials with intermediate SOAs, behavioral performance correlated inversely with prestimulus alpha-band power but did not correlate with poststimulus gamma-band power. Poststimulus gamma-band power was high in trials with low and high prestimulus alpha-band power and low for intermediate prestimulus alpha-band power (i.e., U-shaped). We suggest that prestimulus alpha activity modulates poststimulus gamma activity and subsequent perception: (1) low prestimulus alpha-band power leads to high poststimulus gamma-band power, biasing perception such that two stimuli were perceived; (2) intermediate prestimulus alpha-band power leads to low gamma-band power (interpreted as inefficient stimulus processing), consequently, perception was not biased in either direction; and (3) high prestimulus alpha-band power leads to high poststimulus gamma-band power, biasing perception such that only one stimulus was perceived.
Collapse
|
3
|
Götz T, Hanke D, Huonker R, Weiss T, Klingner C, Brodoehl S, Baumbach P, Witte OW. The Influence of Eye Closure on Somatosensory Discrimination: A Trade-off Between Simple Perception and Discrimination. Cereb Cortex 2017; 27:3231-3239. [DOI: 10.1093/cercor/bhx089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Indexed: 11/13/2022] Open
|
4
|
Baumgarten TJ, Schnitzler A, Lange J. Beyond the Peak - Tactile Temporal Discrimination Does Not Correlate with Individual Peak Frequencies in Somatosensory Cortex. Front Psychol 2017; 8:421. [PMID: 28382013 PMCID: PMC5361566 DOI: 10.3389/fpsyg.2017.00421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 03/06/2017] [Indexed: 11/13/2022] Open
Abstract
The human sensory systems constantly receive input from different stimuli. Whether these stimuli are integrated into a coherent percept or segregated and perceived as separate events, is critically determined by the temporal distance of the stimuli. This temporal distance has prompted the concept of temporal integration windows or perceptual cycles. Although this concept has gained considerable support, the neuronal correlates are still discussed. Studies suggested that neuronal oscillations might provide a neuronal basis for such perceptual cycles, i.e., the cycle lengths of alpha oscillations in visual cortex and beta oscillations in somatosensory cortex might determine the length of perceptual cycles. Specifically, recent studies reported that the peak frequency (the frequency with the highest spectral power) of alpha oscillations in visual cortex correlates with subjects' ability to discriminate two visual stimuli. In the present study, we investigated whether peak frequencies in somatosensory cortex might serve as the correlate of perceptual cycles in tactile discrimination. Despite several different approaches, we were unable to find a significant correlation between individual peak frequencies in the alpha- and beta-band and individual discrimination abilities. In addition, analysis of Bayes factor provided evidence that peak frequencies and discrimination thresholds are unrelated. The results suggest that perceptual cycles in the somatosensory domain are not necessarily to be found in the peak frequency, but in other frequencies. We argue that studies based solely on analysis of peak frequencies might thus miss relevant information.
Collapse
Affiliation(s)
- Thomas J Baumgarten
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, University of Düsseldorf Düsseldorf, Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, University of Düsseldorf Düsseldorf, Germany
| | - Joachim Lange
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, University of Düsseldorf Düsseldorf, Germany
| |
Collapse
|
5
|
van de Nieuwenhuijzen ME, Axmacher N, Fell J, Oehrn CR, Jensen O, van Gerven MAJ. Decoding of task-relevant and task-irrelevant intracranial EEG representations. Neuroimage 2016; 137:132-139. [PMID: 27153977 DOI: 10.1016/j.neuroimage.2016.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/31/2016] [Accepted: 05/02/2016] [Indexed: 11/27/2022] Open
Abstract
Natural stimuli consist of multiple properties. However, not all of these properties are equally relevant in a given situation. In this study, we applied multivariate classification algorithms to intracranial electroencephalography data of human epilepsy patients performing an auditory Stroop task. This allowed us to identify neuronal representations of task-relevant and irrelevant pitch and semantic information of spoken words in a subset of patients. When properties were relevant, representations could be detected after about 350ms after stimulus onset. When irrelevant, the association with gamma power differed for these properties. Patients with more reliable representations of irrelevant pitch showed increased gamma band activity (35-64Hz), suggesting that attentional resources allow an increase in gamma power in some but not all patients. This effect was not observed for irrelevant semantics, possibly because the more automatic processing of this property allowed for less variation in free resources. Processing of different properties of the same stimulus seems therefore to be dependent on the characteristics of the property.
Collapse
Affiliation(s)
- M E van de Nieuwenhuijzen
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, 6500 HE, Nijmegen, The Netherlands.
| | - N Axmacher
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, D-44801 Bochum, Germany; German Center for Neurodegenerative Diseases, D-53175 Bonn, Germany
| | - J Fell
- Department of Epileptology, University of Bonn, D-53105 Bonn, Germany
| | - C R Oehrn
- Department of Epileptology, University of Bonn, D-53105 Bonn, Germany
| | - O Jensen
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, 6500 HE, Nijmegen, The Netherlands
| | - M A J van Gerven
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, 6500 HE, Nijmegen, The Netherlands
| |
Collapse
|
6
|
Hanke D, Huonker R, Weiss T, Witte OW, Götz T. Modality-independent reduction mechanisms of primary sensory evoked fields in a one-back task. Neuroimage 2016; 124:918-922. [DOI: 10.1016/j.neuroimage.2015.09.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/22/2015] [Accepted: 09/28/2015] [Indexed: 10/23/2022] Open
|
7
|
Hertrich I, Kirsten M, Tiemann S, Beck S, Wühle A, Ackermann H, Rolke B. Context-dependent impact of presuppositions on early magnetic brain responses during speech perception. BRAIN AND LANGUAGE 2015; 149:1-12. [PMID: 26185045 DOI: 10.1016/j.bandl.2015.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 05/20/2015] [Accepted: 06/13/2015] [Indexed: 06/04/2023]
Abstract
Discourse structure enables us to generate expectations based upon linguistic material that has already been introduced. The present magnetoencephalography (MEG) study addresses auditory perception of test sentences in which discourse coherence was manipulated by using presuppositions (PSP) that either correspond or fail to correspond to items in preceding context sentences with respect to uniqueness and existence. Context violations yielded delayed auditory M50 and enhanced auditory M200 cross-correlation responses to syllable onsets within an analysis window of 1.5s following the PSP trigger words. Furthermore, discourse incoherence yielded suppression of spectral power within an expanded alpha band ranging from 6 to 16Hz. This effect showed a bimodal temporal distribution, being significant in an early time window of 0.0-0.5s following the PSP trigger and a late interval of 2.0-2.5s. These findings indicate anticipatory top-down mechanisms interacting with various aspects of bottom-up processing during speech perception.
Collapse
Affiliation(s)
- Ingo Hertrich
- Center for Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany.
| | - Mareike Kirsten
- Evolutionary Cognition, Department of Psychology, University of Tübingen, Germany
| | - Sonja Tiemann
- Descriptive and Theoretical Linguistics, Department of English, University of Tübingen, Germany
| | - Sigrid Beck
- Descriptive and Theoretical Linguistics, Department of English, University of Tübingen, Germany
| | - Anja Wühle
- Center for Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Hermann Ackermann
- Center for Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Bettina Rolke
- Evolutionary Cognition, Department of Psychology, University of Tübingen, Germany
| |
Collapse
|
8
|
Beta oscillations define discrete perceptual cycles in the somatosensory domain. Proc Natl Acad Sci U S A 2015; 112:12187-92. [PMID: 26324922 DOI: 10.1073/pnas.1501438112] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Whether seeing a movie, listening to a song, or feeling a breeze on the skin, we coherently experience these stimuli as continuous, seamless percepts. However, there are rare perceptual phenomena that argue against continuous perception but, instead, suggest discrete processing of sensory input. Empirical evidence supporting such a discrete mechanism, however, remains scarce and comes entirely from the visual domain. Here, we demonstrate compelling evidence for discrete perceptual sampling in the somatosensory domain. Using magnetoencephalography (MEG) and a tactile temporal discrimination task in humans, we find that oscillatory alpha- and low beta-band (8-20 Hz) cycles in primary somatosensory cortex represent neurophysiological correlates of discrete perceptual cycles. Our results agree with several theoretical concepts of discrete perceptual sampling and empirical evidence of perceptual cycles in the visual domain. Critically, these results show that discrete perceptual cycles are not domain-specific, and thus restricted to the visual domain, but extend to the somatosensory domain.
Collapse
|
9
|
Ozaki I, Hashimoto I. Human Tonotopic Maps and their Rapid Task-Related Changes Studied by Magnetic Source Imaging. Can J Neurol Sci 2014; 34:146-53. [PMID: 17598590 DOI: 10.1017/s0317167100005965] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A brief review of previous studies is presented on tonotopic organization of primary auditory cortex (AI) in humans. Based on the place theory for pitch perception, in which place information from the cochlea is used to derive pitch, a well-organized layout of tonotopic map is likely in human AI. The conventional view of tonotopy in human AI is a layout inwhich the medial-to-lateral portion of Heschl's gyrus represents high-to-low frequency tones. However, we have shown that the equivalent current dipole (BCD) in auditory evoked magnetic fields in the rising phase of N100m response dynamically moves along the long axis of Heschl's gyrus. Based on analyses of the current sources for high-pitched and low-pitched tones in the right and left hemispheres, we propose an alternative tonotopic map in human AI. In the right AI, isofrequency bands for each tone frequency are parallell to the first transverse sulcus; on the other hand, the layout for tonotopy in the left AI seems poorly organized. The validity of single dipole modelling in the calculation of a moving source and the discrepancy as to tonotopic maps in the results between auditory evoked fields or intracerebral recordings and neuroimaging studies also are discussed. The difference in the layout of isofrequency bands between the right and left auditory cortices may reflect distinct functional roles in auditory information processing such as pitch versus phonetic analysis.
Collapse
Affiliation(s)
- Isamu Ozaki
- Faculty of Health Sciences, Aomori University of Health and Welfare, Aomori, Japan
| | | |
Collapse
|
10
|
Remijn GB, Kikuchi M, Shitamichi K, Ueno S, Yoshimura Y, Nagao K, Tsubokawa T, Kojima H, Higashida H, Minabe Y. Somatosensory evoked field in response to visuotactile stimulation in 3- to 4-year-old children. Front Hum Neurosci 2014; 8:170. [PMID: 24715860 PMCID: PMC3970025 DOI: 10.3389/fnhum.2014.00170] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 03/07/2014] [Indexed: 12/12/2022] Open
Abstract
A child-customized magnetoencephalography system was used to investigate somatosensory evoked field (SEF) in 3- to 4-year-old children. Three stimulus conditions were used in which the children received tactile-only stimulation to their left index finger or visuotactile stimulation. In the two visuotactile conditions, the children received tactile stimulation to their finger while they watched a video of tactile stimulation applied either to someone else’s finger (the finger-touch condition) or to someone else’s toe (the toe-touch condition). The latencies and source strengths of equivalent current dipoles (ECDs) over contralateral (right) somatosensory cortex were analyzed. In the preschoolers who provided valid ECDs, the stimulus conditions induced an early-latency ECD occurring between 60 and 68 ms mainly with an anterior direction. We further identified a middle-latency ECD between 97 and 104 ms, which predominantly had a posterior direction. Finally, initial evidence was found for a late-latency ECD at about 139–151 ms again more often with an anterior direction. Differences were found in the source strengths of the middle-latency ECDs among the stimulus conditions. For the paired comparisons that could be formed, ECD source strength was more pronounced in the finger-touch condition than in the tactile-only and the toe-touch conditions. Although more research is necessary to expand the data set, this suggests that visual information modulated preschool SEF. The finding that ECD source strength was higher when seen and felt touch occurred to the same body part, as compared to a different body part, might further indicate that connectivity between visual and tactile information is indexed in preschool somatosensory cortical activity, already in a somatotopic way.
Collapse
Affiliation(s)
- Gerard B Remijn
- International Education Center, Kyushu University , Fukuoka , Japan ; Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University , Kanazawa , Japan
| | - Mitsuru Kikuchi
- Research Center for Child Mental Development, Kanazawa University , Kanazawa , Japan
| | - Kiyomi Shitamichi
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University , Kanazawa , Japan
| | - Sanae Ueno
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University , Kanazawa , Japan
| | - Yuko Yoshimura
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University , Kanazawa , Japan ; Higher Brain Functions and Autism Research, Department of Child Development, United Graduate School of Child Development, Osaka University , Osaka , Japan
| | - Kikuko Nagao
- Research Center for Child Mental Development, Kanazawa University , Kanazawa , Japan ; Higher Brain Functions and Autism Research, Department of Child Development, United Graduate School of Child Development, Osaka University , Osaka , Japan
| | | | - Haruyuki Kojima
- Department of Psychology, Kanazawa University , Kanazawa , Japan
| | - Haruhiro Higashida
- Research Center for Child Mental Development, Kanazawa University , Kanazawa , Japan
| | - Yoshio Minabe
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University , Kanazawa , Japan
| |
Collapse
|
11
|
Bolton DAE, Staines WR. Attention-based modulation of tactile stimuli: a comparison between prefrontal lesion patients and healthy age-matched controls. Neuropsychologia 2014; 57:101-11. [PMID: 24650526 DOI: 10.1016/j.neuropsychologia.2014.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 03/05/2014] [Accepted: 03/10/2014] [Indexed: 11/27/2022]
Abstract
OBJECTIVES To investigate the role of the prefrontal cortex in attention-based modulation of cortical somatosensory processing. METHODS Six prefrontal stroke patients were compared with eleven neurologically intact older adults during a vibrotactile discrimination task. All subjects attended to stimuli on one digit while ignoring distracter stimuli on a separate digit of the same hand. Subjects were required to report infrequent targets on the attended digit only. Throughout testing electroencephalography was used to measure event-related potentials for both task-relevant and irrelevant stimuli. RESULTS Prefrontal patients demonstrated significant changes in cortical somatosensory processing based on attention compared to age-matched controls. This was evident both in early unimodal somatosensory processing (i.e. P100) and in later cortical processing stages (i.e. long-latency positivity). Moreover, there was a tendency towards a tonic loss of inhibition over early somatosensory cortical processing (i.e. P50). CONCLUSIONS The attention-based modulation noted for neurologically intact older adults was absent in prefrontal lesion patients. SIGNIFICANCE The present study highlights the important role of prefrontal regions in sustaining inhibition over early sensory cortical processing stages and in modifying somatosensory transmission based on task-relevance. Notably these deficits extend beyond those previously shown to occur as a function of age.
Collapse
Affiliation(s)
- David A E Bolton
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada; Heart and Stroke Foundation Centre for Stroke Recovery, ON, Canada.
| | - W Richard Staines
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada; Heart and Stroke Foundation Centre for Stroke Recovery, ON, Canada
| |
Collapse
|
12
|
Severens M, Farquhar J, Duysens J, Desain P. A multi-signature brain-computer interface: use of transient and steady-state responses. J Neural Eng 2013; 10:026005. [PMID: 23370146 DOI: 10.1088/1741-2560/10/2/026005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The aim of this paper was to increase the information transfer in brain-computer interfaces (BCI). Therefore, a multi-signature BCI was developed and investigated. Stimuli were designed to simultaneously evoke transient somatosensory event-related potentials (ERPs) and steady-state somatosensory potentials (SSSEPs) and the ERPs and SSSEPs in isolation. APPROACH Twelve subjects participated in two sessions. In the first session, the single and combined stimulation conditions were compared on these somatosensory responses and on the classification performance. In the second session the on-line performance with the combined stimulation was evaluated while subjects received feedback. Furthermore, in both sessions, the performance based on ERP and SSSEP features was compared. MAIN RESULTS No difference was found in the ERPs and SSSEPs between stimulation conditions. The combination of ERP and SSSEP features did not perform better than with ERP features only. In both sessions, the classification performances based on ERP and combined features were higher than the classification based on SSSEP features. SIGNIFICANCE Although the multi-signature BCI did not increase performance, it also did not negatively impact it. Therefore, such stimuli could be used and the best performing feature set could then be chosen individually.
Collapse
|
13
|
Maitre NL, Barnett ZP, Key APF. Novel assessment of cortical response to somatosensory stimuli in children with hemiparetic cerebral palsy. J Child Neurol 2012; 27:1276-83. [PMID: 22378658 PMCID: PMC3744820 DOI: 10.1177/0883073811435682] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The brain's response to somatosensory stimuli is essential to experience-driven learning in children. It was hypothesized that advances in event-related potential technology could quantify the response to touch in somatosensory cortices and characterize the responses of hemiparetic children. In this prospective study of 8 children (5-8 years old) with hemiparetic cerebral palsy, both event-related potential responses to sham or air puff trials and standard functional assessments were used. Event-related potential technology consistently measured signals reflecting activity in the primary and secondary somatosensory cortices as well as complex cognitive processing of touch. Participants showed typical early responses but less efficient perceptual processes. Significant differences between affected and unaffected extremities correlated with sensorimotor testing, stereognosis, and 2-point discrimination (r > 0.800 and P = .001 for all). For the first time, a novel event-related potential paradigm shows that hemiparetic children have slower and less efficient tactile cortical perception in their affected extremities.
Collapse
Affiliation(s)
- Nathalie L Maitre
- Department of Pediatrics, Division of Neonatology, Vanderbilt University, Nashville, TN 37232, USA.
| | | | | |
Collapse
|
14
|
Bolton DA, Staines WR. Age-related loss in attention-based modulation of tactile stimuli at early stages of somatosensory processing. Neuropsychologia 2012; 50:1502-13. [DOI: 10.1016/j.neuropsychologia.2012.03.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 02/25/2012] [Accepted: 03/01/2012] [Indexed: 11/15/2022]
|
15
|
Jääskeläinen IP, Ahveninen J, Andermann ML, Belliveau JW, Raij T, Sams M. Short-term plasticity as a neural mechanism supporting memory and attentional functions. Brain Res 2011; 1422:66-81. [PMID: 21985958 DOI: 10.1016/j.brainres.2011.09.031] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 08/16/2011] [Accepted: 09/16/2011] [Indexed: 10/17/2022]
Abstract
Based on behavioral studies, several relatively distinct perceptual and cognitive functions have been defined in cognitive psychology such as sensory memory, short-term memory, and selective attention. Here, we review evidence suggesting that some of these functions may be supported by shared underlying neuronal mechanisms. Specifically, we present, based on an integrative review of the literature, a hypothetical model wherein short-term plasticity, in the form of transient center-excitatory and surround-inhibitory modulations, constitutes a generic processing principle that supports sensory memory, short-term memory, involuntary attention, selective attention, and perceptual learning. In our model, the size and complexity of receptive fields/level of abstraction of neural representations, as well as the length of temporal receptive windows, increases as one steps up the cortical hierarchy. Consequently, the type of input (bottom-up vs. top down) and the level of cortical hierarchy that the inputs target, determine whether short-term plasticity supports purely sensory vs. semantic short-term memory or attentional functions. Furthermore, we suggest that rather than discrete memory systems, there are continuums of memory representations from short-lived sensory ones to more abstract longer-duration representations, such as those tapped by behavioral studies of short-term memory.
Collapse
Affiliation(s)
- Iiro P Jääskeläinen
- Brain and Mind Laboratory, Department of Biomedical Engineering and Computational Science, Aalto University, School of Science, Espoo, Finland.
| | | | | | | | | | | |
Collapse
|
16
|
The impact of light fingertip touch on haptic cortical processing during a standing balance task. Exp Brain Res 2011; 212:279-91. [PMID: 21584624 DOI: 10.1007/s00221-011-2728-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 05/05/2011] [Indexed: 10/18/2022]
Abstract
Availability of fingertip touch onto a stable surface reduces body sway for subjects standing with eyes closed. This is largely associated with sensory feedback from the fingertip when mechanical load is limited. Here, it is possible that the central nervous system facilitates cortical sensory processing to augment feedback to control upright stance. To test this, we compared cortical sensory excitability between tasks with and without light finger touch while standing. Subjects stood in tandem on a force plate with eyes closed while lightly touching a stable surface with the index finger. This was, in two different studies, compared to: (1) no haptic contact or (2) light touch on an object not referenced to balance. Throughout testing, the median nerve was stimulated and electroencephalography was used to measure somatosensory evoked potentials (SEPs). As expected, availability of stable light touch reduced medial-lateral COP sway. Peak amplitudes for SEP components revealed reduced P100 (48%), but increased P50 (31%), N140 (80%), and P200 (20%) during stable touch versus no touch. The modulation of P50 and N140 was no longer present when comparing stable to control (touch), which suggested that attending to touch on either surface, regardless of stability reference, accounted for these changes. Conversely, P200 was increased (19%) when touching the stable surface. Our data show SEP modulation during a standing balance task related to hand contact. Facilitation of P200 in particular may indicate task-specific regulation of the cortical representation of fingertip afferent input when it is relevant to providing stable cues for static balance control.
Collapse
|
17
|
Transient inhibition of the dorsolateral prefrontal cortex disrupts attention-based modulation of tactile stimuli at early stages of somatosensory processing. Neuropsychologia 2011; 49:1928-37. [PMID: 21439987 DOI: 10.1016/j.neuropsychologia.2011.03.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 02/21/2011] [Accepted: 03/14/2011] [Indexed: 11/22/2022]
Abstract
Damage to the dorsolateral prefrontal cortex (DLPFC) impairs gating of irrelevant sensory information at early cortical processing stages. We investigated how transient inhibition of DLPFC impacts early event-related potentials (ERPs) arising from relevant or irrelevant vibrotactile stimuli to the fingertips. Specifically, we hypothesized that suppression of DLPFC using continuous theta burst stimulation (cTBS) would result in reduced attention-based modulation of tactile ERPs generated at early stages of cortical somatosensory processing. Participants received vibrotactile stimulation to the second and fifth digit on the left hand and reported target stimuli on one digit only (as instructed) in one of three groups following: (1) cTBS over DLPFC (40s; 600 pulses of 3 stimuli at 50 Hz repeated at 5 Hz using 80% of resting motor threshold for abductor pollicis brevis), (2) sham stimulation, or (3) no stimulation. ERP amplitudes for the P50, N70, P100, N140 and long latency positivity (LLP) were quantified for attended and non-attended trials at C4, CP4, and CP3 electrodes. There was no effect of attention on the P50 and N70 however the P100, N140 and LLP were modulated with attention. The P100 and LLP were significantly more positive during trials where the stimuli were attended to, while the N140 was enhanced for non-attended stimuli. Comparisons between groups revealed a reduction in P100 attention-based modulation for the cTBS group versus sham and no-stimulation groups. While the P100 was clearly reduced for non-attended stimuli relative to attended stimuli in the sham and no-stimulation groups, this effect was attenuated following cTBS. The reduction in attentional modulation of the P100 following cTBS suggests that the DLPFC contributes to filtering irrelevant somatosensory information at early cortical processing stages. Notably the influence of the DLPFC in attention-based modulation was evident even within digits of the same hand. The present results support the use of cTBS as an effective means of transiently suppressing DLPFC excitability.
Collapse
|
18
|
Effects of fusion between tactile and proprioceptive inputs on tactile perception. PLoS One 2011; 6:e18073. [PMID: 21464943 PMCID: PMC3064587 DOI: 10.1371/journal.pone.0018073] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 02/24/2011] [Indexed: 11/30/2022] Open
Abstract
Tactile perception is typically considered the result of cortical interpretation of afferent signals from a network of mechanical sensors underneath the skin. Yet, tactile illusion studies suggest that tactile perception can be elicited without afferent signals from mechanoceptors. Therefore, the extent that tactile perception arises from isomorphic mapping of tactile afferents onto the somatosensory cortex remains controversial. We tested whether isomorphic mapping of tactile afferent fibers onto the cortex leads directly to tactile perception by examining whether it is independent from proprioceptive input by evaluating the impact of different hand postures on the perception of a tactile illusion across fingertips. Using the Cutaneous Rabbit Effect, a well studied illusion evoking the perception that a stimulus occurs at a location where none has been delivered, we found that hand posture has a significant effect on the perception of the illusion across the fingertips. This finding emphasizes that tactile perception arises from integration of perceived mechanical and proprioceptive input and not purely from tactile interaction with the external environment.
Collapse
|
19
|
Lan X, Legare CH, Ponitz CC, Li S, Morrison FJ. Investigating the links between the subcomponents of executive function and academic achievement: A cross-cultural analysis of Chinese and American preschoolers. J Exp Child Psychol 2011; 108:677-92. [DOI: 10.1016/j.jecp.2010.11.001] [Citation(s) in RCA: 267] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 11/02/2010] [Accepted: 11/03/2010] [Indexed: 11/24/2022]
|
20
|
Task requirements change signal strength of the primary somatosensory M50: Oddball vs. one-back tasks. Psychophysiology 2010; 48:569-77. [DOI: 10.1111/j.1469-8986.2010.01116.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Onishi H, Oyama M, Soma T, Kubo M, Kirimoto H, Murakami H, Kameyama S. Neuromagnetic activation of primary and secondary somatosensory cortex following tactile-on and tactile-off stimulation. Clin Neurophysiol 2010; 121:588-93. [DOI: 10.1016/j.clinph.2009.12.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2009] [Revised: 11/24/2009] [Accepted: 12/17/2009] [Indexed: 10/19/2022]
|
22
|
Pleger B, Ruff CC, Blankenburg F, Klöppel S, Driver J, Dolan RJ. Influence of dopaminergically mediated reward on somatosensory decision-making. PLoS Biol 2009; 7:e1000164. [PMID: 19636360 PMCID: PMC2709435 DOI: 10.1371/journal.pbio.1000164] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 06/17/2009] [Indexed: 11/18/2022] Open
Abstract
This pharmacological fMRI study shows that during reward-based sensory decision-making, dopamine is crucially involved in reward-related modulation of human primary sensory cortex. Reward-related dopaminergic influences on learning and overt behaviour are well established, but any influence on sensory decision-making is largely unknown. We used functional magnetic resonance imaging (fMRI) while participants judged electric somatosensory stimuli on one hand or other, before being rewarded for correct performance at trial end via a visual signal, at one of four anticipated financial levels. Prior to the procedure, participants received either placebo (saline), a dopamine agonist (levodopa), or an antagonist (haloperidol). Principal findings: higher anticipated reward improved tactile decisions. Visually signalled reward reactivated primary somatosensory cortex for the judged hand, more strongly for higher reward. After receiving a higher reward on one trial, somatosensory activations and decisions were enhanced on the next trial. These behavioural and neural effects were all enhanced by levodopa and attenuated by haloperidol, indicating dopaminergic dependency. Dopaminergic reward-related influences extend even to early somatosensory cortex and sensory decision-making. The rewards one receives during decision-making has a profound impact on learning. Much recent interest has focused on the role of the neurotransmitter dopamine in the basal ganglia for influencing learning and behaviour. Here, we ask whether reward can influence low-level sensory processing, for instance in primary sensory cortex, and how dopamine mediates this process. We show in humans that dopamine level, as manipulated with a dopamine agonist and antagonist in a double-blind placebo-controlled design, is involved in reward modulation of primary somatosensory cortex. Higher anticipated reward improved tactile decisions, and receipt of visual reward signals reactivated primary somatosensory cortex for the judged hand as measured using functional neuroimaging. After receiving a higher reward on one trial, somatosensory activations and decisions were enhanced on the next trial, suggesting that reward outcome provides a form of teaching signal that may be fed back to task-relevant sensory cortex. All these behavioural and neural effects of reward on somatosensory decision-making were strongly modulated by the availability of dopamine as the mediating neurotransmitter. These findings raise the tantalising new possibility that reward manipulations in conjunction with dopaminergic drugs might be used to enhance pathologically deficient or lapsed sensory processes, analogous to how rewards can be used to shape or correct behaviour.
Collapse
Affiliation(s)
- Burkhard Pleger
- Wellcome Trust Centre for Neuroimaging at UCL, London, United Kingdom.
| | | | | | | | | | | |
Collapse
|
23
|
Mandl RCW, Schnack HG, Zwiers MP, van der Schaaf A, Kahn RS, Hulshoff Pol HE. Functional diffusion tensor imaging: measuring task-related fractional anisotropy changes in the human brain along white matter tracts. PLoS One 2008; 3:e3631. [PMID: 18982065 PMCID: PMC2574009 DOI: 10.1371/journal.pone.0003631] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 10/10/2008] [Indexed: 11/19/2022] Open
Abstract
Background Functional neural networks in the human brain can be studied from correlations between activated gray matter regions measured with fMRI. However, while providing important information on gray matter activation, no information is gathered on the co-activity along white matter tracts in neural networks. Methodology/Principal Findings We report on a functional diffusion tensor imaging (fDTI) method that measures task-related changes in fractional anisotropy (FA) along white matter tracts. We hypothesize that these fractional anisotropy changes relate to morphological changes of glial cells induced by axonal activity although the exact physiological underpinnings of the measured FA changes remain to be elucidated. As expected, these changes are very small as compared to the physiological noise and a reliable detection of the signal change would require a large number of measurements. However, a substantial increase in signal-to-noise ratio was achieved by pooling the signal over the complete fiber tract. Adopting such a tract-based statistics enabled us to measure the signal within a practically feasible time period. Activation in the sensory thalamocortical tract and optic radiation in eight healthy human subjects was found during tactile and visual stimulation, respectively. Conclusions/Significance The results of our experiments indicate that these FA changes may serve as a functional contrast mechanism for white matter. This noninvasive fDTI method may provide a new approach to study functional neural networks in the human brain.
Collapse
Affiliation(s)
- René C W Mandl
- Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
24
|
Cao XH, Wang DH, Bai J, Zhou SC, Zhou YD. Prefrontal modulation of tactile responses in the ventrobasal thalamus of rats. Neurosci Lett 2008; 435:152-7. [DOI: 10.1016/j.neulet.2008.02.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 09/25/2007] [Accepted: 02/11/2008] [Indexed: 11/26/2022]
|
25
|
Jones SR, Pritchett DL, Stufflebeam SM, Hämäläinen M, Moore CI. Neural correlates of tactile detection: a combined magnetoencephalography and biophysically based computational modeling study. J Neurosci 2007; 27:10751-64. [PMID: 17913909 PMCID: PMC2867095 DOI: 10.1523/jneurosci.0482-07.2007] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 08/16/2007] [Accepted: 08/19/2007] [Indexed: 11/21/2022] Open
Abstract
Previous reports conflict as to the role of primary somatosensory neocortex (SI) in tactile detection. We addressed this question in normal human subjects using whole-head magnetoencephalography (MEG) recording. We found that the evoked signal (0-175 ms) showed a prominent equivalent current dipole that localized to the anterior bank of the postcentral gyrus, area 3b of SI. The magnitude and timing of peaks in the SI waveform were stimulus amplitude dependent and predicted perception beginning at approximately 70 ms after stimulus. To make a direct and principled connection between the SI waveform and underlying neural dynamics, we developed a biophysically realistic computational SI model that contained excitatory and inhibitory neurons in supragranular and infragranular layers. The SI evoked response was successfully reproduced from the intracellular currents in pyramidal neurons driven by a sequence of lamina-specific excitatory input, consisting of output from the granular layer (approximately 25 ms), exogenous input to the supragranular layers (approximately 70 ms), and a second wave of granular output (approximately 135 ms). The model also predicted that SI correlates of perception reflect stronger and shorter-latency supragranular and late granular drive during perceived trials. These findings strongly support the view that signatures of tactile detection are present in human SI and are mediated by local neural dynamics induced by lamina-specific synaptic drive. Furthermore, our model provides a biophysically realistic solution to the MEG signal and can predict the electrophysiological correlates of human perception.
Collapse
Affiliation(s)
- Stephanie R Jones
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA.
| | | | | | | | | |
Collapse
|
26
|
Iguchi Y, Hoshi Y, Nemoto M, Taira M, Hashimoto I. Co-activation of the secondary somatosensory and auditory cortices facilitates frequency discrimination of vibrotactile stimuli. Neuroscience 2007; 148:461-72. [PMID: 17640818 DOI: 10.1016/j.neuroscience.2007.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Revised: 05/25/2007] [Accepted: 06/06/2007] [Indexed: 11/16/2022]
Abstract
The contribution of the auditory cortex to tactile information processing was studied by measuring somatosensory evoked magnetic fields (SEFs). Three kinds of vibrotactile stimuli with frequencies of 180, 280 and 380 Hz were randomly delivered on the right index finger with a probability of 40, 20 and 40%, respectively. Twenty normal subjects participated in four kinds of tasks: a control condition to ignore these stimuli, a simple task to discriminate the 280-Hz stimulus from the other two stimuli (discrimination task for the vibrotactile stimuli, Ts task), a feedback task modified from the Ts task by adding acoustic feedback of the vibratory frequency at 1300 ms poststimulus (tactile discrimination with auditory clues, TA), and an easy version of the TA task (TA-easy) to discriminate the 280-Hz stimulus (20% target) from the 180- or 380-Hz stimuli (80% nontarget). The Ts and TA tasks required accurate perception of the vibrotactile frequencies to discriminate among the three kinds of stimuli. Under such a task demand, the post hoc auditory feedback in the TA task was expected to induce acoustic imagery for the tactile sensation. The SEFs for the nontarget stimuli were analyzed. A middle-latency component (M150/200) was specifically evoked by the three discrimination tasks. In the Ts and TA-easy tasks, the M150/200 source indicated inferior parietal cortical activities (SII area). In the TA task, 11 subjects showed activity in both the SII area and the superior temporal auditory region and increased accuracy of discrimination compared with the Ts task, in contrast with other subjects who showed activity only in the SII area and small changes in task accuracy between the Ts and TA tasks. Asynchronous auditory feedback for the vibrotactile sensation induced the auditory cortex activity in the SEFs in relation to the progress in tactile discrimination, which suggested an induction of acoustic imagery to complement the tactile information processing.
Collapse
Affiliation(s)
- Yoshinobu Iguchi
- Integrated Neuroscience Research Team, Tokyo Institute of Psychiatry, 2-1-8 Kamikitazawa, Tokyo 156-8585, Japan.
| | | | | | | | | |
Collapse
|
27
|
Goldreich D. A Bayesian perceptual model replicates the cutaneous rabbit and other tactile spatiotemporal illusions. PLoS One 2007; 2:e333. [PMID: 17389923 PMCID: PMC1828626 DOI: 10.1371/journal.pone.0000333] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2006] [Accepted: 03/09/2007] [Indexed: 11/19/2022] Open
Abstract
Background When brief stimuli contact the skin in rapid succession at two or more locations, perception strikingly shrinks the intervening distance, and expands the elapsed time, between consecutive events. The origins of these perceptual space-time distortions are unknown. Methodology/Principal Findings Here I show that these illusory effects, which I term perceptual length contraction and time dilation, are emergent properties of a Bayesian observer model that incorporates prior expectation for speed. Rapidly moving stimuli violate expectation, provoking perceptual length contraction and time dilation. The Bayesian observer replicates the cutaneous rabbit illusion, the tau effect, the kappa effect, and other spatiotemporal illusions. Additionally, it shows realistic tactile temporal order judgment and spatial attention effects. Conclusions/Significance The remarkable explanatory power of this simple model supports the hypothesis, first proposed by Helmholtz, that the brain biases perception in favor of expectation. Specifically, the results suggest that the brain automatically incorporates prior expectation for speed in order to overcome spatial and temporal imprecision inherent in the sensorineural signal.
Collapse
Affiliation(s)
- Daniel Goldreich
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
28
|
Stavrinou ML, Della Penna S, Pizzella V, Torquati K, Cianflone F, Franciotti R, Bezerianos A, Romani GL, Rossini PM. Temporal Dynamics of Plastic Changes in Human Primary Somatosensory Cortex after Finger Webbing. Cereb Cortex 2006; 17:2134-42. [PMID: 17110591 DOI: 10.1093/cercor/bhl120] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The primary somatosensory cortex (SI) exhibits a detailed topographic organization of the hand and fingers, which has been found to undergo plastic changes following modifications of the sensory input. Although the spatial properties of these changes have been extensively investigated, little is known about their temporal dynamics. In this study, we adapted the paradigm of finger webbing, in which 4 fingers are temporarily webbed together, hence modifying their sensory feedback. We used magnetoencephalography, to measure changes in the hand representation in SI, before, during, and after finger webbing for about 5 h. Our results showed a decrease in the Euclidean distance (ED) between cortical sources activated by electrical stimuli to the index and small finger 30 min after webbing, followed by an increase lasting for about 2 h after webbing, which was followed by a return toward baseline values. These results provide a unique frame in which the different representational changes occur, merging previous findings that were only apparently controversial, in which either increases or decreases in ED were reported after sensory manipulation for relatively long or short duration, respectively. Moreover, these observations further confirm that the mechanisms that underlie cortical reorganization are extremely rapid in their expression and, for the first time, show how brain reorganization occurs over time.
Collapse
Affiliation(s)
- Maria L Stavrinou
- Institute for Advanced Biomedical Technologies, G. D'Annunzio University Foundation, Chieti, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Huttunen J, Komssi S, Lauronen L. Spatial dynamics of population activities at S1 after median and ulnar nerve stimulation revisited: An MEG study. Neuroimage 2006; 32:1024-31. [PMID: 16777434 DOI: 10.1016/j.neuroimage.2006.04.196] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Revised: 02/28/2006] [Accepted: 04/18/2006] [Indexed: 11/29/2022] Open
Abstract
In a number of studies, magnetoencephalography (MEG) has been successfully employed in localizing cortical neural population activities after stimulation of peripheral nerves. Little attention has been paid, however, to the spatiotemporal dynamics of these activations within the primary somatosensory cortex (SI). Here we report on the activation sequence at the right SI after left median and ulnar nerve stimulation. The results show that at least three macroscopically separable sources within or near SI are activated within 100 ms after the stimulus, corresponding to the somatosensory evoked field (SEF) deflections N20m, P35m and P60m. As P60m was localized significantly more posteriorly and also tended to be deeper than the two earlier deflections, its underlying source may be more extensive than during N20m and P35m, and it may get contribution from the postcentral gyrus and sulcus, possibly Brodmann areas 1 and 2. The source separation between the neural populations activated by the 2 nerves was 12 mm during N20m, 6 mm during P35m and 4 mm during P60m. Thus, at longer latencies, the centers of gravity of the activations were closer to each other for the 2 nerves. We argue that this reflects spreading of the activation with time from the site of initial excitation to encompass larger and more overlapping neural populations at longer latencies.
Collapse
Affiliation(s)
- Juha Huttunen
- BioMag Laboratory, Engineering Centre, Helsinki University Central Hospital, FIN-00029 Helsinki, Finland.
| | | | | |
Collapse
|