1
|
Wu Y, Jewell S, Xing X, Nan Y, Strong AJ, Yang G, Boutelle MG. Real-Time Non-Invasive Imaging and Detection of Spreading Depolarizations through EEG: An Ultra-Light Explainable Deep Learning Approach. IEEE J Biomed Health Inform 2024; 28:5780-5791. [PMID: 38412076 DOI: 10.1109/jbhi.2024.3370502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
A core aim of neurocritical care is to prevent secondary brain injury. Spreading depolarizations (SDs) have been identified as an important independent cause of secondary brain injury. SDs are usually detected using invasive electrocorticography recorded at high sampling frequency. Recent pilot studies suggest a possible utility of scalp electrodes generated electroencephalogram (EEG) for non-invasive SD detection. However, noise and attenuation of EEG signals makes this detection task extremely challenging. Previous methods focus on detecting temporal power change of EEG over a fixed high-density map of scalp electrodes, which is not always clinically feasible. Having a specialized spectrogram as an input to the automatic SD detection model, this study is the first to transform SD identification problem from a detection task on a 1-D time-series wave to a task on a sequential 2-D rendered imaging. This study presented a novel ultra-light-weight multi-modal deep-learning network to fuse EEG spectrogram imaging and temporal power vectors to enhance SD identification accuracy over each single electrode, allowing flexible EEG map and paving the way for SD detection on ultra-low-density EEG with variable electrode positioning. Our proposed model has an ultra-fast processing speed (<0.3 sec). Compared to the conventional methods (2 hours), this is a huge advancement towards early SD detection and to facilitate instant brain injury prognosis. Seeing SDs with a new dimension - frequency on spectrograms, we demonstrated that such additional dimension could improve SD detection accuracy, providing preliminary evidence to support the hypothesis that SDs may show implicit features over the frequency profile.
Collapse
|
2
|
Stern MA, Cole ER, Gutekunst CA, Yang JJ, Berglund K, Gross RE. Organellular imaging in vivo reveals a depletion of endoplasmic reticular calcium during post-ictal cortical spreading depolarization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.21.614252. [PMID: 39386598 PMCID: PMC11463492 DOI: 10.1101/2024.09.21.614252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
During cortical spreading depolarization (CSD), neurons exhibit a dramatic increase in cytosolic calcium, which may be integral to CSD-mediated seizure termination. This calcium increase greatly exceeds that during seizures, suggesting the calcium source may not be solely extracellular. Thus, we sought to determine if the endoplasmic reticulum (ER), the largest intracellular calcium store, is involved. We developed a two-photon calcium imaging paradigm to simultaneously record the cytosol and ER during seizures in awake mice. Paired with direct current recording, we reveal that CSD can manifest as a slow post-ictal cytosolic calcium wave with a concomitant depletion of ER calcium that is spatiotemporally consistent with a calcium-induced calcium release. Importantly, we observed both naturally occurring and electrically induced CSD suppressed post-ictal epileptiform activity. Collectively, this work links ER dynamics to CSD, which serves as an innate process for seizure suppression and a potential mechanism underlying therapeutic electrical stimulation for epilepsy.
Collapse
Affiliation(s)
- Matthew A. Stern
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Eric R. Cole
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States
| | - Claire-Anne Gutekunst
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Jenny J. Yang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA, United States
| | - Ken Berglund
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Robert E. Gross
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
3
|
Albury CL, Sutherland HG, Lam AWY, Tran NK, Lea RA, Haupt LM, Griffiths LR. Identification of Polymorphisms in EAAT1 Glutamate Transporter Gene SLC1A3 Associated with Reduced Migraine Risk. Genes (Basel) 2024; 15:797. [PMID: 38927733 PMCID: PMC11202508 DOI: 10.3390/genes15060797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Dysfunction in ion channels or processes involved in maintaining ionic homeostasis is thought to lower the threshold for cortical spreading depression (CSD), and plays a role in susceptibility to associated neurological disorders, including pathogenesis of a migraine. Rare pathogenic variants in specific ion channels have been implicated in monogenic migraine subtypes. In this study, we further examined the channelopathic nature of a migraine through the analysis of common genetic variants in three selected ion channel or transporter genes: SLC4A4, SLC1A3, and CHRNA4. Using the Agena MassARRAY platform, 28 single-nucleotide polymorphisms (SNPs) across the three candidate genes were genotyped in a case-control cohort comprised of 182 migraine cases and 179 matched controls. Initial results identified significant associations between migraine and rs3776578 (p = 0.04) and rs16903247 (p = 0.05) genotypes within the SLC1A3 gene, which encodes the EAAT1 glutamate transporter. These SNPs were subsequently genotyped in an independent cohort of 258 migraine cases and 290 controls using a high-resolution melt assay, and association testing supported the replication of initial findings-rs3776578 (p = 0.0041) and rs16903247 (p = 0.0127). The polymorphisms are in linkage disequilibrium and localise within a putative intronic enhancer region of SLC1A3. The minor alleles of both SNPs show a protective effect on migraine risk, which may be conferred via influencing the expression of SLC1A3.
Collapse
Affiliation(s)
- Cassie L. Albury
- Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, QLD 4059, Australia; (C.L.A.); (H.G.S.); (A.W.Y.L.); (N.K.T.); (R.A.L.)
| | - Heidi G. Sutherland
- Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, QLD 4059, Australia; (C.L.A.); (H.G.S.); (A.W.Y.L.); (N.K.T.); (R.A.L.)
| | - Alexis W. Y. Lam
- Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, QLD 4059, Australia; (C.L.A.); (H.G.S.); (A.W.Y.L.); (N.K.T.); (R.A.L.)
| | - Ngan K. Tran
- Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, QLD 4059, Australia; (C.L.A.); (H.G.S.); (A.W.Y.L.); (N.K.T.); (R.A.L.)
| | - Rod A. Lea
- Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, QLD 4059, Australia; (C.L.A.); (H.G.S.); (A.W.Y.L.); (N.K.T.); (R.A.L.)
| | - Larisa M. Haupt
- Stem Cell and Neurogenesis Group, Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Kelvin Grove, QLD 4059, Australia;
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology(QUT), Kelvin Grove, QLD 4059, Australia
- Max Planck Queensland Centre for the Materials Science of Extracellular Matrices, Kelvin Grove, QLD 4059, Australia
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, QLD 4059, Australia
| | - Lyn R. Griffiths
- Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, QLD 4059, Australia; (C.L.A.); (H.G.S.); (A.W.Y.L.); (N.K.T.); (R.A.L.)
| |
Collapse
|
4
|
Riederer F, Beiersdorf J, Lang C, Pirker-Kees A, Klein A, Scutelnic A, Platho-Elwischger K, Baumgartner C, Dreier JP, Schankin C. Signatures of migraine aura in high-density-EEG. Clin Neurophysiol 2024; 160:113-120. [PMID: 38422969 DOI: 10.1016/j.clinph.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/17/2023] [Accepted: 01/04/2024] [Indexed: 03/02/2024]
Abstract
OBJECTIVE Cortical spreading depolarization is highly conserved among the species. It is easily detectable in direct cortical surface recordings and has been recorded in the cortex of humans with severe neurological disease. It is considered the pathophysiological correlate of human migraine aura, but direct electrophysiological evidence is still missing. As signatures of cortical spreading depolarization have been recognized in scalp EEG, we investigated typical spontaneous migraine aura, using full band high-density EEG (HD-EEG). METHODS In this prospective study, patients with migraine with aura were investigated during spontaneous migraine aura and interictally. Time compressed HD-EEG were analyzed for the presence of cortical spreading depolarization characterized by (a) slow potential changes below 0.05 Hz, (b) suppression of faster activity from 0.5 Hz - 45 Hz (c) spreading of these changes to neighboring regions during the aura phase. Further, topographical changes in alpha-power spectral density (8-14 Hz) during aura were analyzed. RESULTS In total, 26 HD-EEGs were recorded in patients with migraine with aura, thereof 10 HD-EEGs during aura. Eight HD-EEGs were recorded in the same subject. During aura, no slow potentials were recorded, but alpha-power was significantly decreased in parieto-occipito-temporal location on the hemisphere contralateral to visual aura, lasting into the headache phase. Interictal alpha-power in patients with migraine with aura did not differ significantly from age- and sex-matched healthy controls. CONCLUSIONS Unequivocal signatures of spreading depolarization were not recorded with EEG on the intact scalp in migraine. The decrease in alpha-power contralateral to predominant visual symptoms is consistent with focal depression of spontaneous brain activity as a consequence of cortical spreading depolarization but is not specific thereof. SIGNIFICANCE Cortical spreading depolarization is relevant in migraine, other paroxysmal neurological disorders and neurointensive care.
Collapse
Affiliation(s)
- Franz Riederer
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; University of Zurich, Medical Faculty, Zurich, Switzerland.
| | - Johannes Beiersdorf
- Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology
| | - Clemens Lang
- Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology; Department of Neurology, Clinic Hietzing, Vienna, Austria
| | - Agnes Pirker-Kees
- Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology; Department of Neurology, Clinic Hietzing, Vienna, Austria
| | - Antonia Klein
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Adrian Scutelnic
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Kirsten Platho-Elwischger
- Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology; Department of Neurology, Clinic Hietzing, Vienna, Austria
| | - Christoph Baumgartner
- Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology; Department of Neurology, Clinic Hietzing, Vienna, Austria
| | - Jens P Dreier
- Department of Neurology and Experimental Neurology Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Schankin
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Dreier JP, Lemale CL, Horst V, Major S, Kola V, Schoknecht K, Scheel M, Hartings JA, Vajkoczy P, Wolf S, Woitzik J, Hecht N. Similarities in the Electrographic Patterns of Delayed Cerebral Infarction and Brain Death After Aneurysmal and Traumatic Subarachnoid Hemorrhage. Transl Stroke Res 2024:10.1007/s12975-024-01237-w. [PMID: 38396252 DOI: 10.1007/s12975-024-01237-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024]
Abstract
While subarachnoid hemorrhage is the second most common hemorrhagic stroke in epidemiologic studies, the recent DISCHARGE-1 trial has shown that in reality, three-quarters of focal brain damage after subarachnoid hemorrhage is ischemic. Two-fifths of these ischemic infarctions occur early and three-fifths are delayed. The vast majority are cortical infarcts whose pathomorphology corresponds to anemic infarcts. Therefore, we propose in this review that subarachnoid hemorrhage as an ischemic-hemorrhagic stroke is rather a third, separate entity in addition to purely ischemic or hemorrhagic strokes. Cumulative focal brain damage, determined by neuroimaging after the first 2 weeks, is the strongest known predictor of patient outcome half a year after the initial hemorrhage. Because of the unique ability to implant neuromonitoring probes at the brain surface before stroke onset and to perform longitudinal MRI scans before and after stroke, delayed cerebral ischemia is currently the stroke variant in humans whose pathophysiological details are by far the best characterized. Optoelectrodes located directly over newly developing delayed infarcts have shown that, as mechanistic correlates of infarct development, spreading depolarizations trigger (1) spreading ischemia, (2) severe hypoxia, (3) persistent activity depression, and (4) transition from clustered spreading depolarizations to a negative ultraslow potential. Furthermore, traumatic brain injury and subarachnoid hemorrhage are the second and third most common etiologies of brain death during continued systemic circulation. Here, we use examples to illustrate that although the pathophysiological cascades associated with brain death are global, they closely resemble the local cascades associated with the development of delayed cerebral infarcts.
Collapse
Affiliation(s)
- Jens P Dreier
- Center for Stroke Research Berlin, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
- Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.
- Einstein Center for Neurosciences Berlin, Berlin, Germany.
| | - Coline L Lemale
- Center for Stroke Research Berlin, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
- Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Viktor Horst
- Center for Stroke Research Berlin, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
- Institute of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sebastian Major
- Center for Stroke Research Berlin, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
- Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Vasilis Kola
- Center for Stroke Research Berlin, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Karl Schoknecht
- Medical Faculty, Carl Ludwig Institute for Physiology, University of Leipzig, Leipzig, Germany
| | - Michael Scheel
- Department of Neuroradiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jed A Hartings
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Stefan Wolf
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Johannes Woitzik
- Department of Neurosurgery, Evangelisches Krankenhaus Oldenburg, University of Oldenburg, Oldenburg, Germany
| | - Nils Hecht
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
6
|
Enger R, Heuser K. Astrocytes as critical players of the fine balance between inhibition and excitation in the brain: spreading depolarization as a mechanism to curb epileptic activity. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1360297. [PMID: 38405021 PMCID: PMC10884165 DOI: 10.3389/fnetp.2024.1360297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/25/2024] [Indexed: 02/27/2024]
Abstract
Spreading depolarizations (SD) are slow waves of complete depolarization of brain tissue followed by neuronal silencing that may play a role in seizure termination. Even though SD was first discovered in the context of epilepsy research, the link between SD and epileptic activity remains understudied. Both seizures and SD share fundamental pathophysiological features, and recent evidence highlights the frequent occurrence of SD in experimental seizure models. Human data on co-occurring seizures and SD are limited but suggestive. This mini-review addresses possible roles of SD during epileptiform activity, shedding light on SD as a potential mechanism for terminating epileptiform activity. A common denominator for many forms of epilepsy is reactive astrogliosis, a process characterized by morphological and functional changes to astrocytes. Data suggest that SD mechanisms are potentially perturbed in reactive astrogliosis and we propose that this may affect seizure pathophysiology.
Collapse
Affiliation(s)
- Rune Enger
- Letten Centre and GliaLab, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Kjell Heuser
- Department of Neurology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| |
Collapse
|
7
|
Ringuette D, EbrahimAmini A, Sangphosuk W, Aquilino MS, Carroll G, Ashley M, Bazzigaluppi P, Dufour S, Droguerre M, Stefanovic B, Levi O, Charveriat M, Monnier PP, Carlen PL. Spreading depolarization suppression from inter-astrocytic gap junction blockade assessed with multimodal imaging and a novel wavefront detection scheme. Neurotherapeutics 2024; 21:e00298. [PMID: 38241157 PMCID: PMC10903093 DOI: 10.1016/j.neurot.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 10/07/2023] [Indexed: 01/21/2024] Open
Abstract
Spreading depolarizations (SDs) are an enigmatic and ubiquitous co-morbidity of neural dysfunction. SDs are propagating waves of local field depolarization and increased extracellular potassium. They increase the metabolic demand on brain tissue, resulting in changes in tissue blood flow, and are associated with adverse neurological consequences including stroke, epilepsy, neurotrauma, and migraine. Their occurrence is associated with poor patient prognosis through mechanisms which are only partially understood. Here we show in vivo that two (structurally dissimilar) drugs, which suppress astroglial gap junctional communication, can acutely suppress SDs. We found that mefloquine hydrochloride (MQH), administered IP, slowed the propagation of the SD potassium waveform and intermittently led to its suppression. The hemodynamic response was similarly delayed and intermittently suppressed. Furthermore, in instances where SD led to transient tissue swelling, MQH reduced observable tissue displacement. Administration of meclofenamic acid (MFA) IP was found to reduce blood flow, both proximal and distal, to the site of SD induction, preceding a large reduction in the amplitude of the SD-associated potassium wave. We introduce a novel image processing scheme for SD wavefront localization under low-contrast imaging conditions permitting full-field wavefront velocity mapping and wavefront parametrization. We found that MQH administration delayed SD wavefront's optical correlates. These two clinically used drugs, both gap junctional blockers found to distinctly suppress SDs, may be of therapeutic benefit in the various brain disorders associated with recurrent SDs.
Collapse
Affiliation(s)
- Dene Ringuette
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada; Division of Genetics and Development, Krembil Research Institute, 60 Leonard Ave., Toronto, Ontario M5T 2S8, Canada; Krembil Neuroscience, Krembil Research Institute, 60 Leonard Ave., Toronto, Ontario M5T 2S8, Canada.
| | - Azin EbrahimAmini
- Krembil Neuroscience, Krembil Research Institute, 60 Leonard Ave., Toronto, Ontario M5T 2S8, Canada; The Institute Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario M5S 3G9, Canada
| | - Weerawong Sangphosuk
- Krembil Neuroscience, Krembil Research Institute, 60 Leonard Ave., Toronto, Ontario M5T 2S8, Canada
| | - Mark S Aquilino
- The Institute Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario M5S 3G9, Canada
| | - Gwennyth Carroll
- The Institute Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario M5S 3G9, Canada
| | - Max Ashley
- Krembil Neuroscience, Krembil Research Institute, 60 Leonard Ave., Toronto, Ontario M5T 2S8, Canada
| | - Paolo Bazzigaluppi
- Sunnybrook Health Sciences Center, 2075 Bayview Ave., Toronto, Ontario M4N 3M5, Canada
| | - Suzie Dufour
- The Institute Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario M5S 3G9, Canada
| | | | - Bojana Stefanovic
- Department of Medical Biophysics, University of Toronto, 610 University Ave., Toronto, Ontario M5G 2M9, Canada; Sunnybrook Health Sciences Center, 2075 Bayview Ave., Toronto, Ontario M4N 3M5, Canada
| | - Ofer Levi
- The Institute Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario M5S 3G9, Canada; The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Rd., Toronto, Ontario M5S 3G4, Canada
| | | | - Philippe P Monnier
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada; Division of Genetics and Development, Krembil Research Institute, 60 Leonard Ave., Toronto, Ontario M5T 2S8, Canada; Department of Ophthalmology & Vision Science, Faculty of Medicine, University of Toronto, 340 College St., Toronto, Ontario M5T 3A9, Canada
| | - Peter L Carlen
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada; Division of Genetics and Development, Krembil Research Institute, 60 Leonard Ave., Toronto, Ontario M5T 2S8, Canada; Krembil Neuroscience, Krembil Research Institute, 60 Leonard Ave., Toronto, Ontario M5T 2S8, Canada; The Institute Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
8
|
LaSarge CL, McCoy C, Namboodiri DV, Hartings JA, Danzer SC, Batie MR, Skoch J. Spatial and Temporal Comparisons of Calcium Channel and Intrinsic Signal Imaging During in Vivo Cortical Spreading Depolarizations in Healthy and Hypoxic Brains. Neurocrit Care 2023; 39:655-668. [PMID: 36539593 DOI: 10.1007/s12028-022-01660-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Spreading depolarizations (SDs) can be viewed at a cellular level using calcium imaging (CI), but this approach is limited to laboratory applications and animal experiments. Optical intrinsic signal imaging (OISI), on the other hand, is amenable to clinical use and allows viewing of large cortical areas without contrast agents. A better understanding of the behavior of OISI-observed SDs under different brain conditions is needed. METHODS We performed simultaneous calcium and OISI of SDs in GCaMP6f mice. SDs propagate through the cortex as a pathological wave and trigger a neurovascular response that can be imaged with both techniques. We imaged both mechanically stimulated SDs (sSDs) in healthy brains and terminal SDs (tSDs) induced by system hypoxia and cardiopulmonary failure. RESULTS We observed a lag in the detection of SDs in the OISI channels compared with CI. sSDs had a faster velocity than tSDs, and tSDs had a greater initial velocity for the first 400 µm when observed with CI compared with OISI. However, both imaging methods revealed similar characteristics, including a decrease in the sSD (but not tSD) velocities as the wave moved away from the site of initial detection. CI and OISI also showed similar spatial propagation of the SD throughout the image field. Importantly, only OISI allowed regional ischemia to be detected before tSDs occurred. CONCLUSIONS Altogether, data indicate that monitoring either neural activity or intrinsic signals with high-resolution optical imaging can be useful to assess SDs, but OISI may be a clinically applicable way to predict, and therefore possibly mitigate, hypoxic-ischemic tSDs.
Collapse
Affiliation(s)
- Candi L LaSarge
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Anesthesia, University of Cincinnati, Cincinnati, OH, USA
- Center for Pediatric Neuroscience, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Carlie McCoy
- Division of Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Devi V Namboodiri
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jed A Hartings
- Department of Neurosurgery, University of Cincinnati, Cincinnati, OH, USA
| | - Steve C Danzer
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Anesthesia, University of Cincinnati, Cincinnati, OH, USA
- Center for Pediatric Neuroscience, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Matthew R Batie
- Clinical Engineering, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jesse Skoch
- Center for Pediatric Neuroscience, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Division of Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Neurosurgery, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
9
|
Hartings JA, Dreier JP, Ngwenya LB, Balu R, Carlson AP, Foreman B. Improving Neurotrauma by Depolarization Inhibition With Combination Therapy: A Phase 2 Randomized Feasibility Trial. Neurosurgery 2023; 93:924-931. [PMID: 37083682 PMCID: PMC10637430 DOI: 10.1227/neu.0000000000002509] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/01/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Spreading depolarizations (SDs) are a pathological mechanism that mediates lesion development in cerebral gray matter. They occur in ∼60% of patients with severe traumatic brain injury (TBI), often in recurring and progressive patterns from days 0 to 10 after injury, and are associated with worse outcomes. However, there are no protocols or trials suggesting how SD monitoring might be incorporated into clinical management. The objective of this protocol is to determine the feasibility and efficacy of implementing a treatment protocol for intensive care of patients with severe TBI that is guided by electrocorticographic monitoring of SDs. METHODS Patients who undergo surgery for severe TBI with placement of a subdural electrode strip will be eligible for enrollment. Those who exhibit SDs on electrocorticography during intensive care will be randomized 1:1 to either (1) standard care that is blinded to the further course of SDs or (2) a tiered intervention protocol based on efficacy to suppress further SDs. Interventions aim to block the triggering and propagation of SDs and include adjusted targets for management of blood pressure, CO 2 , temperature, and glucose, as well as ketamine pharmacotherapy up to 4 mg/kg/ hour. Interventions will be escalated and de-escalated depending on the course of SD pathology. EXPECTED OUTCOMES We expect to demonstrate that electrocorticographic monitoring of SDs can be used as a real- time diagnostic in intensive care that leads to meaningful changes in patient management and a reduction in secondary injury, as compared with standard care, without increasing medical complications or adverse events. DISCUSSION This trial holds potential for personalization of intensive care management by tailoring therapies based on monitoring and confirmation of the targeted neuronal mechanism of SD. Results are expected to validate the concept of this approach, inform refinement of the treatment protocol, and lead to larger-scale trials.
Collapse
Affiliation(s)
- Jed A. Hartings
- Department of Neurosurgery, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jens P. Dreier
- Department of Neurology, Charité– Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Experimental Neurology, Charité– Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Center for Stroke Research Berlin, Charité– Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
- Einstein Center for Neurosciences, Berlin, Germany
| | - Laura B. Ngwenya
- Department of Neurosurgery, University of Cincinnati, Cincinnati, Ohio, USA
| | - Ramani Balu
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Neurocritical Care, Medical Critical Care Service, Inova Fairfax Hospital, Falls Church, Virginia, USA
| | - Andrew P. Carlson
- Department of Neurosurgery, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Brandon Foreman
- Department of Neurosurgery, University of Cincinnati, Cincinnati, Ohio, USA
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
10
|
Zheng F. Canonical Transient Receptor Potential Channel 3 Contributes to Cerebral Blood Flow Changes Associated with Cortical Spreading Depression in Mice. Int J Mol Sci 2023; 24:12611. [PMID: 37628789 PMCID: PMC10454766 DOI: 10.3390/ijms241612611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Cortical spreading depression is a pathophysiological event shared in migraines, strokes, traumatic brain injuries, and epilepsy. It is associated with complex hemodynamic responses, which, in turn, contribute to neurological problems. In this study, we investigated the role of canonical transient receptor potential channel 3 (TRPC3) in the hemodynamic responses elicited by cortical spreading depression. Cerebral blood flow was monitored using laser speckle contrast imaging, and cortical spreading depression was triggered using three well-established experimental approaches in mice. A comparison of TRPC3 knockout mice to controls revealed that the genetic ablation of TRPC3 expression significantly altered the hemodynamic responses elicited using cortical spreading depression and promoted hyperemia consistently. Our results indicate that TRPC3 contributes to hemodynamic responses associated with cortical spreading depression and could be a novel therapeutic target for a host of neurological disorders.
Collapse
Affiliation(s)
- Fang Zheng
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
11
|
Koster LK, Zamyadi R, Yan L, Payne ET, McBain KL, Dunkley BT, Hahn CD. Brain network properties of clinical versus subclinical seizures among critically ill children. Clin Neurophysiol 2023; 149:33-41. [PMID: 36878028 DOI: 10.1016/j.clinph.2023.02.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 01/16/2023] [Accepted: 02/05/2023] [Indexed: 02/17/2023]
Abstract
OBJECTIVE Electrographic seizures are common among critically ill children, and have been associated with worse outcomes. Despite their often-widespread cortical representation, most of these seizures remain subclinical, a phenomenon which remains poorly understood. We compared the brain network properties of clinical versus subclinical seizures to gain insight into their relative potential deleterious effects. METHODS Functional connectivity (phase lag index) and graph measures (global efficiency and clustering coefficients) were computed for 2178 electrographic seizures recorded during 48-hours of 19-channel continuous EEG monitoring obtained in 20 comatose children. Frequency-specific group differences in clinical versus subclinical seizures were analyzed using a non-parametric ANCOVA, adjusting for age, sex, medication exposure, treatment intensity and seizures per subject. RESULTS Clinical seizures demonstrated greater functional connectivity than subclinical seizures at alpha frequencies, but less connectivity than subclinical seizures at delta frequencies. Clinical seizures also demonstrated significantly higher median global efficiency than subclinical seizures (p < 0.01), and significantly higher median clustering coefficients across all electrodes at alpha frequencies. CONCLUSIONS Clinical expression of seizures correlates with greater alpha synchronization of distributed brain networks. SIGNIFICANCE The stronger global and local alpha-mediated functional connectivity observed during clinical seizures may indicate greater pathological network recruitment. These observations motivate further studies to investigate whether the clinical expression of seizures may influence their potential to cause secondary brain injury.
Collapse
Affiliation(s)
- Laura K Koster
- Division of Neurology, The Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, Canada; Neurosciences & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Rouzbeh Zamyadi
- Neurosciences & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Luowei Yan
- Neurosciences & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Eric T Payne
- Department of Pediatrics, Section of Neurology, Alberta Children's Hospital and University of Calgary, Calgary, Canada
| | - Kristin L McBain
- MAP Centre for Urban Health Solutions, Unity Health Toronto, Toronto, Canada
| | - Benjamin T Dunkley
- Neurosciences & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada; Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada; Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Cecil D Hahn
- Division of Neurology, The Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, Canada; Neurosciences & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada.
| |
Collapse
|
12
|
Tanaka T, Fukuma K, Abe S, Matsubara S, Ikeda S, Kamogawa N, Ishiyama H, Hosoki S, Kobayashi K, Shimotake A, Nakaoku Y, Ogata S, Nishimura K, Koga M, Toyoda K, Matsumoto R, Takahashi R, Ikeda A, Ihara M. Association of Cortical Superficial Siderosis with Post-Stroke Epilepsy. Ann Neurol 2023; 93:357-370. [PMID: 36053955 PMCID: PMC10087209 DOI: 10.1002/ana.26497] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 08/06/2022] [Accepted: 08/29/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To assess whether post-stroke epilepsy (PSE) is associated with neuroimaging findings of hemosiderin in a case-control study, and whether the addition of hemosiderin markers improves the risk stratification models of PSE. METHODS We performed a post-hoc analysis of the PROgnosis of POST-Stroke Epilepsy study enrolling PSE patients at National Cerebral and Cardiovascular Center, Osaka, Japan, from November 2014 to September 2019. PSE was diagnosed when one unprovoked seizure was experienced >7 days after the index stroke, as proposed by the International League Against Epilepsy. As controls, consecutive acute stroke patients with no history or absence of any late seizure or continuing antiseizure medications at least 3 months after stroke were retrospectively enrolled during the same study period. We examined cortical microbleeds and cortical superficial siderosis (cSS) using gradient-echo T2*-weighted images. A logistic regression model with ridge penalties was tuned using 10-fold cross-validation. We added the item of cSS to the existing models (SeLECT and CAVE) for predicting PSE and evaluated performance of new models. RESULTS The study included 180 patients with PSE (67 women; median age 74 years) and 1,183 controls (440 women; median age 74 years). The cSS frequency was higher in PSE than control groups (48.9% vs 5.7%, p < 0.0001). Compared with the existing models, the new models with cSS (SeLECT-S and CAVE-S) demonstrated significantly better predictive performance of PSE (net reclassification improvement 0.63 [p = 0.004] for SeLECT-S and 0.88 [p = 0.001] for CAVE-S at the testing data). INTERPRETATION Cortical superficial siderosis was associated with PSE, stratifying stroke survivors at high risk of PSE. ANN NEUROL 2023;93:357-370.
Collapse
Affiliation(s)
- Tomotaka Tanaka
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Kazuki Fukuma
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Soichiro Abe
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Soichiro Matsubara
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shuhei Ikeda
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Naruhiko Kamogawa
- Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Hiroyuki Ishiyama
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Satoshi Hosoki
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Katsuya Kobayashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akihiro Shimotake
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuriko Nakaoku
- Departments of Preventive Medicine and Epidemiology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Soshiro Ogata
- Departments of Preventive Medicine and Epidemiology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Kunihiro Nishimura
- Departments of Preventive Medicine and Epidemiology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Masatoshi Koga
- Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Kazunori Toyoda
- Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Riki Matsumoto
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| |
Collapse
|
13
|
Busl KM, Fong MWK, Newcomer Z, Patel M, Cohen SA, Jadav R, Smith CN, Mitropanopoulos S, Bruzzone M, Hella M, Eisenschenk S, Robinson CP, Roth WH, Ameli PA, Babi MA, Pizzi MA, Gilmore EJ, Hirsch LJ, Maciel CB. Pregabalin for Recurrent Seizures in Critical Illness: A Promising Adjunctive Therapy, Especially for cyclic Seizures. Neurocrit Care 2022; 37:140-148. [PMID: 35217998 DOI: 10.1007/s12028-022-01459-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/27/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Pregabalin (PGB) is an effective adjunctive treatment for focal epilepsy and acts by binding to the alpha2-delta subunit of voltage-gated calcium channels to reduce excitatory neurotransmitter release. Limited data exist on its use in the neurocritical care setting, including cyclic seizures-a pattern of recurrent seizures occurring at nearly regular intervals. Although the mechanism underpinning cyclic seizures remains elusive, spreading excitation linked to spreading depolarizations may play a role in seizure recurrence and periodicity. PGB has been shown to increase spreading depolarization threshold; hence, we hypothesized that the magnitude of antiseizure effect from PGB is more pronounced in patients with cyclic versus noncyclic seizures in a critically ill cohort with recurrent seizures. METHODS We conducted a retrospective case series of adults admitted to two academic neurointensive care units between January 2017 and March 2019 who received PGB for treatment of seizures. Data collected included demographics, etiology of brain injury, antiseizure medications, and outcome. Continuous electroencephalogram recordings 48 hours before and after PGB administration were reviewed by electroencephalographers blinded to the administration of antiseizure medications to obtain granular data on electrographic seizure burden. Cyclic seizures were determined quantitatively (i.e., < 50% variation of interseizure intervals for at least 50% of consecutive seizures). Coprimary outcomes were decrease in hourly seizure burden in minutes and decrease in seizure frequency in the 48 hours after PGB initiation. We used nonparametric tests for comparison of seizure frequency and burden and segmented linear regression to assess PGB effect. RESULTS We included 16 patients; the median age was 69 years, 11 (68.7%) were women, three (18.8%) had undergone a neurosurgical procedure, and five (31%) had underlying epilepsy. All seizures had focal onset; ten patients (62.5%) had cyclic seizures. The median hourly seizure burden over the 48 hours prior to PGB initiation was 1.87 min/hour (interquartile range 1.49-8.53), and the median seizure frequency was 1.96 seizures/hour (interquartile range 1.06-3.41). In the 48 hours following PGB (median daily dose 300 mg, range 75-300 mg), the median number of seizures per hour was reduced by 0.80 seizures/hour (95% confidence interval 0.19-1.40), whereas the median hourly seizure burden decreased by 1.71 min/hour (95% confidence interval 0.38-3.04). When we compared patients with cyclic versus noncyclic seizures, there was a relative decrease in hourly seizure frequency (- 86.7% versus - 2%, p = 0.04) and hourly seizure burden (- 89% versus - 7.8%, p = 0.03) at 48 hours. CONCLUSIONS PGB was associated with a relative reduction in seizure burden in neurocritically ill patients with recurrent seizures, especially those with cyclic seizures, and may be considered in the therapeutic arsenal for refractory seizures. Whether this effect is mediated via modulation of spreading depolarization requires further study.
Collapse
Affiliation(s)
- Katharina M Busl
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA.,Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL, USA
| | - Michael W K Fong
- Westmead Comprehensive Epilepsy Unit, Westmead Hospital, University of Sydney, Sydney, Australia.,Comprehensive Epilepsy Center, Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Mitesh Patel
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Scott A Cohen
- Department of Emergency Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - Rakesh Jadav
- Comprehensive Epilepsy Center, Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Christine N Smith
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA
| | | | - Maria Bruzzone
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA
| | | | - Stephan Eisenschenk
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Christopher P Robinson
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA.,Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL, USA
| | - William H Roth
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA.,Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL, USA
| | - Pouya Alexander Ameli
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA.,Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL, USA
| | - Marc-Alain Babi
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA.,Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL, USA
| | - Michael A Pizzi
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA.,Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL, USA
| | - Emily J Gilmore
- Comprehensive Epilepsy Center, Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Lawrence J Hirsch
- Comprehensive Epilepsy Center, Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Carolina B Maciel
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA. .,Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL, USA. .,Comprehensive Epilepsy Center, Department of Neurology, Yale University School of Medicine, New Haven, CT, USA. .,Department of Neurology, University of Utah, Salt Lake City, UT, 81432, USA. .,Neurocritical Care, McKnight Brain Institute, 1149 Newell Drive, L3-100, Gainesville, FL, 32610, USA.
| |
Collapse
|
14
|
Cramer SW, Pino IP, Naik A, Carlson D, Park MC, Darrow DP. Mapping spreading depolarisations after traumatic brain injury: a pilot clinical study protocol. BMJ Open 2022; 12:e061663. [PMID: 35831043 PMCID: PMC9280885 DOI: 10.1136/bmjopen-2022-061663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/27/2022] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION Cortical spreading depolarisation (CSD) is characterised by a near-complete loss of the ionic membrane potential of cortical neurons and glia propagating across the cerebral cortex, which generates a transient suppression of spontaneous neuronal activity. CSDs have become a recognised phenomenon that imparts ongoing secondary insults after brain injury. Studies delineating CSD generation and propagation in humans after traumatic brain injury (TBI) are lacking. Therefore, this study aims to determine the feasibility of using a multistrip electrode array to identify CSDs and characterise their propagation in space and time after TBI. METHODS AND ANALYSIS This pilot, prospective observational study will enrol patients with TBI requiring therapeutic craniotomy or craniectomy. Subdural electrodes will be placed for continuous electrocorticography monitoring for seizures and CSDs as a research procedure, with surrogate informed consent obtained preoperatively. The propagation of CSDs relative to structural brain pathology will be mapped using reconstructed CT and electrophysiological cross-correlations. The novel use of multiple subdural strip electrodes in conjunction with brain morphometric segmentation is hypothesised to provide sufficient spatial information to characterise CSD propagation across the cerebral cortex and identify cortical foci giving rise to CSDs. ETHICS AND DISSEMINATION Ethical approval for the study was obtained from the Hennepin Healthcare Research Institute's ethics committee, HSR 17-4400, 25 October 2017 to present. Study findings will be submitted for publication in peer-reviewed journals and presented at scientific conferences. TRIAL REGISTRATION NUMBER NCT03321370.
Collapse
Affiliation(s)
- Samuel W Cramer
- Department of Neurosurgery, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Isabela Peña Pino
- Department of Neurosurgery, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Anant Naik
- University of Illinois Urbana-Champaign Carle Illinois College of Medicine, Champaign, Illinois, USA
| | - Danielle Carlson
- Department of Neurosurgery, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Michael C Park
- Department of Neurosurgery, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - David P Darrow
- Neurosurgery, University of Minnesota Medical School Twin Cities, Minneapolis, Minnesota, USA
- Division of Neurosurgery, Hennepin County Medical Center, Minneapolis, Minnesota, USA
| |
Collapse
|
15
|
Gugger JJ, Diaz-Arrastia R. The Frontier of Electrophysiologic Monitoring in Acute Brain Injury. Neurocrit Care 2022; 37:3-4. [PMID: 35488170 DOI: 10.1007/s12028-022-01500-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023]
Affiliation(s)
- James J Gugger
- Department of Neurology, University of Pennsylvania Perelman School of Medicine Penn Presbyterian Medical Center, Andrew Mutch Bldg., Room 409 51 North 39th St.,, Philadelphia, PA, 19104, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania Perelman School of Medicine Penn Presbyterian Medical Center, Andrew Mutch Bldg., Room 409 51 North 39th St.,, Philadelphia, PA, 19104, USA.
| |
Collapse
|
16
|
Foreman B, Lee H, Okonkwo DO, Strong AJ, Pahl C, Shutter LA, Dreier JP, Ngwenya LB, Hartings JA. The Relationship Between Seizures and Spreading Depolarizations in Patients with Severe Traumatic Brain Injury. Neurocrit Care 2022; 37:31-48. [PMID: 35174446 DOI: 10.1007/s12028-022-01441-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 01/04/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Both seizures and spreading depolarizations (SDs) are commonly detected using electrocorticography (ECoG) after severe traumatic brain injury (TBI). A close relationship between seizures and SDs has been described, but the implications of detecting either or both remain unclear. We sought to characterize the relationship between these two phenomena and their clinical significance. METHODS We performed a post hoc analysis of a prospective observational clinical study of patients with severe TBI requiring neurosurgery at five academic neurotrauma centers. A subdural electrode array was placed intraoperatively and ECoG was recorded during intensive care. SDs, seizures, and high-frequency background characteristics were quantified offline using published standards and terminology. The primary outcome was the Glasgow Outcome Scale-Extended score at 6 months post injury. RESULTS There were 138 patients with valid ECoG recordings; the mean age was 47 ± 19 years, and 104 (75%) were men. Overall, 2,219 ECoG-detected seizures occurred in 38 of 138 (28%) patients in a bimodal pattern, with peak incidences at 1.7-1.8 days and 3.8-4.0 days post injury. Seizures detected on scalp electroencephalography (EEG) were diagnosed by standard clinical care in only 18 of 138 (13%). Of 15 patients with ECoG-detected seizures and contemporaneous scalp EEG, seven (47%) had no definite scalp EEG correlate. ECoG-detected seizures were significantly associated with the severity and number of SDs, which occurred in 83 of 138 (60%) of patients. Temporal interactions were observed in 17 of 24 (70.8%) patients with both ECoG-detected seizures and SDs. After controlling for known prognostic covariates and the presence of SDs, seizures detected on either ECoG or scalp EEG did not have an independent association with 6-month functional outcome but portended worse outcome among those with clustered or isoelectric SDs. CONCLUSIONS In patients with severe TBI requiring neurosurgery, seizures were half as common as SDs. Seizures would have gone undetected without ECoG monitoring in 20% of patients. Although seizures alone did not influence 6-month functional outcomes in this cohort, they were independently associated with electrographic worsening and a lack of motor improvement following surgery. Temporal interactions between ECoG-detected seizures and SDs were common and held prognostic implications. Together, seizures and SDs may occur along a dynamic continuum of factors critical to the development of secondary brain injury. ECoG provides information integral to the clinical management of patients with TBI.
Collapse
Affiliation(s)
- Brandon Foreman
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, USA. .,Collaborative for Research on Acute Neurological Injuries, University of Cincinnati, Cincinnati, OH, USA.
| | - Hyunjo Lee
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, USA.,Collaborative for Research on Acute Neurological Injuries, University of Cincinnati, Cincinnati, OH, USA
| | - David O Okonkwo
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anthony J Strong
- Department of Basic and Clinical Neuroscience, King's College London, London, UK
| | - Clemens Pahl
- Department of Intensive Care Medicine, King's College Hospital, London, UK
| | - Lori A Shutter
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Critical Care Medicine and Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jens P Dreier
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.,Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Laura B Ngwenya
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, USA.,Collaborative for Research on Acute Neurological Injuries, University of Cincinnati, Cincinnati, OH, USA.,Department of Neurosurgery, University of Cincinnati, Cincinnati, OH, USA
| | - Jed A Hartings
- Collaborative for Research on Acute Neurological Injuries, University of Cincinnati, Cincinnati, OH, USA.,Department of Neurosurgery, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
17
|
Lemale CL, Lückl J, Horst V, Reiffurth C, Major S, Hecht N, Woitzik J, Dreier JP. Migraine Aura, Transient Ischemic Attacks, Stroke, and Dying of the Brain Share the Same Key Pathophysiological Process in Neurons Driven by Gibbs–Donnan Forces, Namely Spreading Depolarization. Front Cell Neurosci 2022; 16:837650. [PMID: 35237133 PMCID: PMC8884062 DOI: 10.3389/fncel.2022.837650] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/19/2022] [Indexed: 12/15/2022] Open
Abstract
Neuronal cytotoxic edema is the morphological correlate of the near-complete neuronal battery breakdown called spreading depolarization, or conversely, spreading depolarization is the electrophysiological correlate of the initial, still reversible phase of neuronal cytotoxic edema. Cytotoxic edema and spreading depolarization are thus different modalities of the same process, which represents a metastable universal reference state in the gray matter of the brain close to Gibbs–Donnan equilibrium. Different but merging sections of the spreading-depolarization continuum from short duration waves to intermediate duration waves to terminal waves occur in a plethora of clinical conditions, including migraine aura, ischemic stroke, traumatic brain injury, aneurysmal subarachnoid hemorrhage (aSAH) and delayed cerebral ischemia (DCI), spontaneous intracerebral hemorrhage, subdural hematoma, development of brain death, and the dying process during cardio circulatory arrest. Thus, spreading depolarization represents a prime and simultaneously the most neglected pathophysiological process in acute neurology. Aristides Leão postulated as early as the 1940s that the pathophysiological process in neurons underlying migraine aura is of the same nature as the pathophysiological process in neurons that occurs in response to cerebral circulatory arrest, because he assumed that spreading depolarization occurs in both conditions. With this in mind, it is not surprising that patients with migraine with aura have about a twofold increased risk of stroke, as some spreading depolarizations leading to the patient percept of migraine aura could be caused by cerebral ischemia. However, it is in the nature of spreading depolarization that it can have different etiologies and not all spreading depolarizations arise because of ischemia. Spreading depolarization is observed as a negative direct current (DC) shift and associated with different changes in spontaneous brain activity in the alternating current (AC) band of the electrocorticogram. These are non-spreading depression and spreading activity depression and epileptiform activity. The same spreading depolarization wave may be associated with different activity changes in adjacent brain regions. Here, we review the basal mechanism underlying spreading depolarization and the associated activity changes. Using original recordings in animals and patients, we illustrate that the associated changes in spontaneous activity are by no means trivial, but pose unsolved mechanistic puzzles and require proper scientific analysis.
Collapse
Affiliation(s)
- Coline L. Lemale
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Experimental Neurology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Janos Lückl
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - Viktor Horst
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Clemens Reiffurth
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Experimental Neurology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sebastian Major
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Experimental Neurology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nils Hecht
- Department of Neurosurgery, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Johannes Woitzik
- Department of Neurosurgery, Evangelisches Krankenhaus Oldenburg, University of Oldenburg, Oldenburg, Germany
| | - Jens P. Dreier
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Experimental Neurology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
- *Correspondence: Jens P. Dreier,
| |
Collapse
|
18
|
Outcomes of patients with nonepileptic transient neurologic symptoms after subdural hematoma evacuation. Acta Neurochir (Wien) 2021; 163:3267-3277. [PMID: 34668079 DOI: 10.1007/s00701-021-05030-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/11/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Patients undergoing a subdural hematoma (SDH) evacuation can experience transient neurological symptoms (TNS) postoperatively. Electroencephalography (EEG) is used to rule out seizures. We aim to characterize patients with TNS and negative epileptiform activity on EEG and compare them to those with positive epileptiform EEG findings. METHODS We performed a retrospective study of adult patients who underwent EEG for evaluation of TNS after undergoing SDH evacuation. Patients were stratified based on SDH type (acute and non-acute) and whether or not their EEG demonstrated positive epileptiform activity. A multivariate analysis was performed to identify predictors of negative EEG findings. RESULTS One hundred twenty-nine SDH patients were included (45 (34.9%) acute; 84 (65.1%) non-acute). Overall, 45 (24 acute and 21 non-acute SDH patients) had positive epileptiform EEG findings, and 84 (21 acute and 63 non-acute SDH patients) had a negative EEG. Acute and non-acute SDH patients with positive EEG findings were more likely to suffer from greater than five episodes of TNS, impaired awareness, and motor symptoms, while the negative EEG group was more likely to suffer from negative symptoms. Non-acute SDH patients with positive EEG had longer mean ICU stays (14.6 vs. 7.2; p = 0.005). Both acute and non-acute SDH-positive EEG patients had worse disposition upon discharge (p < 0.05), worse modified Rankin score at discharge (p < 0.05), and 3-month follow-up (p < 0.05) and were more likely to be discharged on more than one antiepileptic drug (p < 0.001). CONCLUSION Postoperative acute and non-acute SDH patients with TNS and negative EEG results are likely to have a favorable clinical picture. This distinction is therapeutically and prognostically important as these patients may not respond to typical antiepileptic drugs and they have better functional outcomes.
Collapse
|
19
|
Brainstem and Cortical Spreading Depolarization in a Closed Head Injury Rat Model. Int J Mol Sci 2021; 22:ijms222111642. [PMID: 34769073 PMCID: PMC8584184 DOI: 10.3390/ijms222111642] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/14/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022] Open
Abstract
Traumatic brain injury (TBI) is the leading cause of death in young individuals, and is a major health concern that often leads to long-lasting complications. However, the electrophysiological events that occur immediately after traumatic brain injury, and may underlie impact outcomes, have not been fully elucidated. To investigate the electrophysiological events that immediately follow traumatic brain injury, a weight-drop model of traumatic brain injury was used in rats pre-implanted with epidural and intracerebral electrodes. Electrophysiological (near-direct current) recordings and simultaneous alternating current recordings of brain activity were started within seconds following impact. Cortical spreading depolarization (SD) and SD-induced spreading depression occurred in approximately 50% of mild and severe impacts. SD was recorded within three minutes after injury in either one or both brain hemispheres. Electrographic seizures were rare. While both TBI- and electrically induced SDs resulted in elevated oxidative stress, TBI-exposed brains showed a reduced antioxidant defense. In severe TBI, brainstem SD could be recorded in addition to cortical SD, but this did not lead to the death of the animals. Severe impact, however, led to immediate death in 24% of animals, and was electrocorticographically characterized by non-spreading depression (NSD) of activity followed by terminal SD in both cortex and brainstem.
Collapse
|
20
|
Aiba I, Noebels JL. Kcnq2/Kv7.2 controls the threshold and bi-hemispheric symmetry of cortical spreading depolarization. Brain 2021; 144:2863-2878. [PMID: 33768249 PMCID: PMC8536937 DOI: 10.1093/brain/awab141] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/22/2021] [Accepted: 03/20/2021] [Indexed: 12/03/2022] Open
Abstract
Spreading depolarization is a slowly propagating wave of massive cellular depolarization associated with acute brain injury and migraine aura. Genetic studies link depolarizing molecular defects in Ca2+ flux, Na+ current in interneurons, and glial Na+-K+ ATPase with spreading depolarization susceptibility, emphasizing the important roles of synaptic activity and extracellular ionic homeostasis in determining spreading depolarization threshold. In contrast, although gene mutations in voltage-gated potassium ion channels that shape intrinsic membrane excitability are frequently associated with epilepsy susceptibility, it is not known whether epileptogenic mutations that regulate membrane repolarization also modify spreading depolarization threshold and propagation. Here we report that the Kcnq2/Kv7.2 potassium channel subunit, frequently mutated in developmental epilepsy, is a spreading depolarization modulatory gene with significant control over the seizure-spreading depolarization transition threshold, bi-hemispheric cortical expression, and diurnal temporal susceptibility. Chronic DC-band cortical EEG recording from behaving conditional Kcnq2 deletion mice (Emx1cre/+::Kcnq2flox/flox) revealed spontaneous cortical seizures and spreading depolarization. In contrast to the related potassium channel deficient model, Kv1.1-KO mice, spontaneous cortical spreading depolarizations in Kcnq2 cKO mice are tightly coupled to the terminal phase of seizures, arise bilaterally, and are observed predominantly during the dark phase. Administration of the non-selective Kv7.2 inhibitor XE991 to Kv1.1-KO mice partly reproduced the Kcnq2 cKO-like spreading depolarization phenotype (tight seizure coupling and bilateral symmetry) in these mice, indicating that Kv7.2 currents can directly and actively modulate spreading depolarization properties. In vitro brain slice studies confirmed that Kcnq2/Kv7.2 depletion or pharmacological inhibition intrinsically lowers the cortical spreading depolarization threshold, whereas pharmacological Kv7.2 activators elevate the threshold to multiple depolarizing and hypometabolic spreading depolarization triggers. Together these results identify Kcnq2/Kv7.2 as a distinctive spreading depolarization regulatory gene, and point to spreading depolarization as a potentially significant pathophysiological component of KCNQ2-linked epileptic encephalopathy syndromes. Our results also implicate KCNQ2/Kv7.2 channel activation as a potential adjunctive therapeutic target to inhibit spreading depolarization incidence.
Collapse
Affiliation(s)
- Isamu Aiba
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jeffrey L Noebels
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
21
|
Oxygen-Induced and pH-Induced Direct Current Artifacts on Invasive Platinum/Iridium Electrodes for Electrocorticography. Neurocrit Care 2021; 35:146-159. [PMID: 34622418 PMCID: PMC8496677 DOI: 10.1007/s12028-021-01358-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 09/15/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Spreading depolarization (SD) and the initial, still reversible phase of neuronal cytotoxic edema in the cerebral gray matter are two modalities of the same process. SD may thus serve as a real-time mechanistic biomarker for impending parenchyma damage in patients during neurocritical care. Using subdural platinum/iridium (Pt/Ir) electrodes, SD is observed as a large negative direct current (DC) shift. Besides SD, there are other causes of DC shifts that are not to be confused with SD. Here, we systematically analyzed DC artifacts in ventilated patients by observing changes in the fraction of inspired oxygen. For the same change in blood oxygenation, we found that negative and positive DC shifts can simultaneously occur at adjacent Pt/Ir electrodes. METHODS Nurses and intensivists typically increase blood oxygenation by increasing the fraction of inspired oxygen at the ventilator before performing manipulations on the patient. We retrospectively identified 20 such episodes in six patients via tissue partial pressure of oxygen (ptiO2) measurements with an intracortical O2 sensor and analyzed the associated DC shifts. In vitro, we compared Pt/Ir with silver/silver chloride (Ag/AgCl) to assess DC responses to changes in pO2, pH, or 5-min square voltage pulses and investigated the effect of electrode polarization on pO2-induced DC artifacts. RESULTS Hyperoxygenation episodes started from a ptiO2 of 37 (30-40) mmHg (median and interquartile range) reaching 71 (50-97) mmHg. During a total of 20 episodes on each of six subdural Pt/Ir electrodes in six patients, we observed 95 predominantly negative responses in six patients, 25 predominantly positive responses in four patients, and no brain activity changes. Adjacent electrodes could show positive and negative responses simultaneously. In vitro, Pt/Ir in contrast with Ag/AgCl responded to changes in either pO2 or pH with large DC shifts. In response to square voltage pulses, Pt/Ir falsely showed smaller DC shifts than Ag/AgCl, with the worst performance under anoxia. In response to pO2 increase, Pt/Ir showed DC positivity when positively polarized and DC negativity when negatively polarized. CONCLUSIONS The magnitude of pO2-induced subdural DC shifts by approximately 6 mV was similar to that of SDs, but they did not show a sequential onset at adjacent recording sites, could be either predominantly negative or positive in contrast with the always negative DC shifts of SD, and were not accompanied by brain activity depression. Opposing polarities of pO2-induced DC artifacts may result from differences in baseline electrode polarization or subdural ptiO2 inhomogeneities relative to subdermal ptiO2 at the quasi-reference.
Collapse
|
22
|
Robinson D, Kreitzer N, Ngwenya LB, Adeoye O, Woo D, Hartings J, Foreman B. Diffusion-Weighted Imaging Reveals Distinct Patterns of Cytotoxic Edema in Patients with Subdural Hematomas. J Neurotrauma 2021; 38:2677-2685. [PMID: 34107754 PMCID: PMC8820833 DOI: 10.1089/neu.2021.0125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Subdural hematomas (SDHs) are increasingly common and can cause ischemic brain injury. Previous work has suggested that this is driven largely by vascular compression from herniation, although this work was done before the era of magnetic resonance imaging (MRI). We thus sought to study SDH-related ischemic brain injury by looking at patterns of cytotoxic edema on diffusion-weighted MRI. To do so, we identified all SDH patients at a single institution from 2015 to 2019 who received an MRI within 2 weeks of presentation. We reviewed all MRIs for evidence of restricted diffusion consistent with cytotoxic edema. Cases were excluded if the restricted diffusion could have occurred as a result of alternative etiologies (e.g., cardioembolic stroke or diffuse axonal injury). We identified 450 SDH patients who received an MRI within 2 weeks of presentation. Twenty-nine patients (∼6.5% of all MRIs) had SDH-related cytotoxic edema, which occurred in two distinct patterns. In one pattern (N = 9), patients presented as comatose with severe midline shift and were found to have cytotoxic edema in the vascular territories of the anterior and posterior cerebral artery, consistent with herniation-related vascular compression. In the other pattern (N = 19), patients often presented as awake with less midline shift and developed cytotoxic edema in the cortex adjacent to the SDH outside of typical vascular territories (peri-SDH cytotoxic edema). Both patterns occurred in 1 patient. The peri-SDH cytotoxic edema pattern is a newly described type of secondary injury and may involve direct toxic effects of the SDH, spreading depolarizations, or other mechanisms.
Collapse
Affiliation(s)
- David Robinson
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Natalie Kreitzer
- Department of Emergency Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Laura B. Ngwenya
- Department of Neurosurgery, University of Cincinnati, Cincinnati, Ohio, USA
- Collaborative for Research on Acute Neurological Injuries, Cincinnati, Ohio, USA
| | - Opeolu Adeoye
- Department of Emergency Medicine, Washington University, St. Louis, Missouri, USA
| | - Daniel Woo
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jed Hartings
- Department of Neurosurgery, University of Cincinnati, Cincinnati, Ohio, USA
- Collaborative for Research on Acute Neurological Injuries, Cincinnati, Ohio, USA
| | - Brandon Foreman
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, Ohio, USA
- Collaborative for Research on Acute Neurological Injuries, Cincinnati, Ohio, USA
| |
Collapse
|
23
|
Bazzigaluppi P, Mester J, Joo IL, Weisspapir I, Dorr A, Koletar MM, Beckett TL, Khosravani H, Carlen P, Stefanovic B. Frequency selective neuronal modulation triggers spreading depolarizations in the rat endothelin-1 model of stroke. J Cereb Blood Flow Metab 2021; 41:2756-2768. [PMID: 33969731 PMCID: PMC8504421 DOI: 10.1177/0271678x211013656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Ischemia is one of the most common causes of acquired brain injury. Central to its noxious sequelae are spreading depolarizations (SDs), waves of persistent depolarizations which start at the location of the flow obstruction and expand outwards leading to excitotoxic damage. The majority of acute stage of stroke studies to date have focused on the phenomenology of SDs and their association with brain damage. In the current work, we investigated the role of peri-injection zone pyramidal neurons in triggering SDs by optogenetic stimulation in an endothelin-1 rat model of focal ischemia. Our concurrent two photon fluorescence microscopy data and local field potential recordings indicated that a ≥ 60% drop in cortical arteriolar red blood cell velocity was associated with SDs at the ET-1 injection site. SDs were also observed in the peri-injection zone, which subsequently exhibited elevated neuronal activity in the low-frequency bands. Critically, SDs were triggered by low- but not high-frequency optogenetic stimulation of peri-injection zone pyramidal neurons. Our findings depict a complex etiology of SDs post focal ischemia and reveal that effects of neuronal modulation exhibit spectral and spatial selectivity.
Collapse
Affiliation(s)
- Paolo Bazzigaluppi
- Sunnybrook Research Institute, Physical Sciences, Toronto, ON, Canada
- Paolo Bazzigaluppi, Sunnybrook Research Institute, 2075 Bayview Ave., S646, Toronto, ON M4N 3M5, Canada.
| | - James Mester
- Sunnybrook Research Institute, Physical Sciences, Toronto, ON, Canada
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Illsung L Joo
- Sunnybrook Research Institute, Physical Sciences, Toronto, ON, Canada
| | - Iliya Weisspapir
- Sunnybrook Research Institute, Physical Sciences, Toronto, ON, Canada
| | - Adrienne Dorr
- Sunnybrook Research Institute, Physical Sciences, Toronto, ON, Canada
| | | | - Tina L Beckett
- Sunnybrook Research Institute, Physical Sciences, Toronto, ON, Canada
| | - Houman Khosravani
- Division of Neurology and Interdepartmental Division of Critical Care, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
- Interdepartmental Division of Critical Care, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Peter Carlen
- Krembil Research Institute, University of Toronto, Toronto, ON, Canada
| | - Bojana Stefanovic
- Sunnybrook Research Institute, Physical Sciences, Toronto, ON, Canada
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
24
|
Bauer PR, Tolner EA, Keezer MR, Ferrari MD, Sander JW. Headache in people with epilepsy. Nat Rev Neurol 2021; 17:529-544. [PMID: 34312533 DOI: 10.1038/s41582-021-00516-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2021] [Indexed: 02/06/2023]
Abstract
Epidemiological estimates indicate that individuals with epilepsy are more likely to experience headaches, including migraine, than individuals without epilepsy. Headaches can be temporally unrelated to seizures, or can occur before, during or after an episode; seizures and migraine attacks are mostly not temporally linked. The pathophysiological links between headaches (including migraine) and epilepsy are complex and have not yet been fully elucidated. Correct diagnoses and appropriate treatment of headaches in individuals with epilepsy is essential, as headaches can contribute substantially to disease burden. Here, we review the insights that have been made into the associations between headache and epilepsy over the past 5 years, including information on the pathophysiological mechanisms and genetic variants that link the two disorders. We also discuss the current best practice for the management of headaches co-occurring with epilepsy and highlight future challenges for this area of research.
Collapse
Affiliation(s)
- Prisca R Bauer
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center Freiburg, Freiburg, Germany.
| | - Else A Tolner
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Mark R Keezer
- Research Centre of the Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.,School of Public Health, Université de Montréal, Montreal, Quebec, Canada.,Stichting Epilepsie Instellingen Nederland, Heemstede, The Netherlands
| | - Michel D Ferrari
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Josemir W Sander
- Stichting Epilepsie Instellingen Nederland, Heemstede, The Netherlands.,NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, London, UK.,Chalfont Centre for Epilepsy, Chalfont St Peter, UK
| |
Collapse
|
25
|
Insights into the role of epigenetic mechanisms in migraine: the future perspective of disease management. THE NUCLEUS 2021. [DOI: 10.1007/s13237-021-00366-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
26
|
Tamim I, Chung DY, de Morais AL, Loonen ICM, Qin T, Misra A, Schlunk F, Endres M, Schiff SJ, Ayata C. Spreading depression as an innate antiseizure mechanism. Nat Commun 2021; 12:2206. [PMID: 33850125 PMCID: PMC8044138 DOI: 10.1038/s41467-021-22464-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 03/15/2021] [Indexed: 12/16/2022] Open
Abstract
Spreading depression (SD) is an intense and prolonged depolarization in the central nervous systems from insect to man. It is implicated in neurological disorders such as migraine and brain injury. Here, using an in vivo mouse model of focal neocortical seizures, we show that SD may be a fundamental defense against seizures. Seizures induced by topical 4-aminopyridine, penicillin or bicuculline, or systemic kainic acid, culminated in SDs at a variable rate. Greater seizure power and area of recruitment predicted SD. Once triggered, SD immediately suppressed the seizure. Optogenetic or KCl-induced SDs had similar antiseizure effect sustained for more than 30 min. Conversely, pharmacologically inhibiting SD occurrence during a focal seizure facilitated seizure generalization. Altogether, our data indicate that seizures trigger SD, which then terminates the seizure and prevents its generalization.
Collapse
Affiliation(s)
- Isra Tamim
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Charité-Universitätsmedizin Berlin, Klinik und Hochschulambulanz für Neurologie und Centrum für Schlaganfallforschung Berlin (CSB), Berlin, Germany
| | - David Y Chung
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andreia Lopes de Morais
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Inge C M Loonen
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tao Qin
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Amrit Misra
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Frieder Schlunk
- Charité-Universitätsmedizin Berlin, Klinik und Hochschulambulanz für Neurologie und Centrum für Schlaganfallforschung Berlin (CSB), Berlin, Germany
| | - Matthias Endres
- Charité-Universitätsmedizin Berlin, Klinik und Hochschulambulanz für Neurologie und Centrum für Schlaganfallforschung Berlin (CSB), Berlin, Germany
| | - Steven J Schiff
- Center for Neural Engineering, Departments of Engineering Science and Mechanics and Physics, The Pennsylvania State University, State College, PA, USA
| | - Cenk Ayata
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
27
|
Masvidal-Codina E, Smith TM, Rathore D, Gao Y, Illa X, Prats-Alfonso E, Corro ED, Calia AB, Rius G, Martin-Fernandez I, Guger C, Reitner P, Villa R, Garrido JA, Guimerà-Brunet A, Wykes RC. Characterization of optogenetically-induced cortical spreading depression in awake mice using graphene micro-transistor arrays. J Neural Eng 2021; 18. [PMID: 33690187 DOI: 10.1088/1741-2552/abecf3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/09/2021] [Indexed: 11/11/2022]
Abstract
Objective.The development of experimental methodology utilizing graphene micro-transistor arrays to facilitate and advance translational research into cortical spreading depression (CSD) in the awake brain.Approach.CSDs were reliably induced in awake nontransgenic mice using optogenetic methods. High-fidelity DC-coupled electrophysiological mapping of propagating CSDs was obtained using flexible arrays of graphene soultion-gated field-effect transistors (gSGFETs).Main results.Viral vectors targetted channelrhopsin expression in neurons of the motor cortex resulting in a transduction volume ⩾1 mm3. 5-10 s of continous blue light stimulation induced CSD that propagated across the cortex at a velocity of 3.0 ± 0.1 mm min-1. Graphene micro-transistor arrays enabled high-density mapping of infraslow activity correlated with neuronal activity suppression across multiple frequency bands during both CSD initiation and propagation. Localized differences in the CSD waveform could be detected and categorized into distinct clusters demonstrating the spatial resolution advantages of DC-coupled recordings. We exploited the reliable and repeatable induction of CSDs using this preparation to perform proof-of-principle pharmacological interrogation studies using NMDA antagonists. MK801 (3 mg kg-1) suppressed CSD induction and propagation, an effect mirrored, albeit transiently, by ketamine (15 mg kg-1), thus demonstrating this models' applicability as a preclinical drug screening platform. Finally, we report that CSDs could be detected through the skull using graphene micro-transistors, highlighting additional advantages and future applications of this technology.Significance.CSD is thought to contribute to the pathophysiology of several neurological diseases. CSD research will benefit from technological advances that permit high density electrophysiological mapping of the CSD waveform and propagation across the cortex. We report anin vivoassay that permits minimally invasive optogenetic induction, combined with multichannel DC-coupled recordings enabled by gSGFETs in the awake brain. Adoption of this technological approach could facilitate and transform preclinical investigations of CSD in disease relevant models.
Collapse
Affiliation(s)
- Eduard Masvidal-Codina
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Bellaterra 08193, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
| | - Trevor M Smith
- Department of Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
| | - Daman Rathore
- Department of Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
| | - Yunan Gao
- Department of Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
| | - Xavi Illa
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Bellaterra 08193, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
| | - Elisabet Prats-Alfonso
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Bellaterra 08193, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
| | - Elena Del Corro
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Andrea Bonaccini Calia
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Gemma Rius
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Bellaterra 08193, Spain
| | - Iñigo Martin-Fernandez
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Bellaterra 08193, Spain.,Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Christoph Guger
- g.tec medical engineering GmbH, Guger Technologies OG, 8020 Graz, Austria
| | - Patrick Reitner
- g.tec medical engineering GmbH, Guger Technologies OG, 8020 Graz, Austria
| | - Rosa Villa
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Bellaterra 08193, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
| | - Jose A Garrido
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona 08193, Spain.,ICREA, Barcelona 08010, Spain
| | - Anton Guimerà-Brunet
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Bellaterra 08193, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
| | - Rob C Wykes
- Department of Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, University College London, London WC1N 3BG, United Kingdom.,Nanomedicine Lab, Faculty of Biology Medicine and Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
28
|
Periodic electroclinical seizures following an ischemic stroke revealed by continuous-EEG. Epilepsy Behav Rep 2021; 15:100428. [PMID: 33665600 PMCID: PMC7905351 DOI: 10.1016/j.ebr.2021.100428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 11/20/2022] Open
Abstract
Background Periodic EEG patterns are mostly associated with critical illnesses and acute disruptions of the central nervous system. Periodic or cyclic seizures are extremely rare phenomena, most of which are nonconvulsive, only reported in critically ill patients. Here we report a patient with periodic focal impaired awareness seizures following a minor stroke and address possible pathophysiological mechanisms. Case A 49 years old male patient presented with periodic seizures, associated with an acute stroke in the left occipital and parietal regions. These focal seizures, recorded during long-term video-EEG monitoring in the scalp EEG, appeared every 9-11 min, and responded to iv valproic acid treatment but not to iv treatments of diazepam, phenytoin, and levetiracetam. Discussion We believe that the blood-brain barrier disruption due to stroke, in conjunction with hyperglycemia and antiphospholipid antibodies have led to an imbalance of the surrounding tissue and sustained hyperexcitability to a point of pacemaker potentials. It is tempting to speculate that repetitive cycles of cortical spreading depression due to tissue injury have aided the periodicity of the seizures. Conclusion Continuous EEG monitoring is crucial, not only to diagnose and appropriately treat accompanying subtle seizures but also to further understand the underlying intriguing pathophysiological processes like periodicity.
Collapse
|
29
|
AlKhaja M, Alhowity I, Alotaibi F, Khoja A, Alsumaili M, Alsulami A, Baz S, AlKhateeb M, Abalkhail T. Lateralization value of peri-ictal headache in drug-resistant focal epilepsy. Epilepsy Behav 2021; 116:107712. [PMID: 33460988 DOI: 10.1016/j.yebeh.2020.107712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To examine the lateralizing value of unilateral peri-ictal and interictal headaches in patients with drug-resistant focal epilepsy (DRFE). METHODS Four-hundred consecutive patients undergoing presurgical evaluation for DRFE were interviewed. Patients with headache were broadly divided into two groups: peri-ictal and interictal headache. The lateralizing value of unilateral headache was compared in each group between three diagnoses: temporal lobe epilepsy (TLE), extratemporal lobe epilepsy (ETLE), and temporal-plus epilepsy (TEMP+ epilepsy). RESULTS Out of 400 patients, 169 (42.25%) had headaches. Peri-ictal headaches were experienced in 106 patients (26.5%) and interictal headaches were experienced in 63 (15.75%). In the peri-ictal group, unilateral headaches were present in 48 out of 60 patients (80%) with TLE; they were ipsilateral to the seizure focus in 45 out of 48 patients (93.75%). Unilateral headaches in patients with ETLE were present in 20 out of 31 patients (64.5%) and were ipsilateral to the seizure focus in 14 out of 20 patients (70%). In patients with TEMP + epilepsy, unilateral peri-ictal headaches were present in 9 out of 15 patients (60%); they were ipsilateral to the seizure focus in all 9 patients (100%). In the interictal headache group, unilateral headaches were ipsilateral the seizure focus in 9 out of 10 patients (90%) with TLE and 5 out of 6 patients (83.3%) with ETLE. None of the TEMP + epilepsy patients had a unilateral interictal headache. CONCLUSION Headache is a frequently encountered symptom in patients with DRFE. When occurring in a unilateral fashion, it has a high lateralizing value in temporal and extratemporal lobe epilepsies. This has been demonstrated to be true for both peri-ictal and interictal headaches. In the vast majority of patients with DRFE, unilateral headache occurs ipsilateral to the seizure focus.
Collapse
Affiliation(s)
- Mohamed AlKhaja
- Department of Internal Medicine, King Hamad University Hospital, Busaiteen, Bahrain; Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
| | - Ibrahim Alhowity
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Fawaz Alotaibi
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Abeer Khoja
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia; Department of Medicine, King Abdulaziz University Hospital, Jeddah, Saudi Arabia.
| | - Mohammad Alsumaili
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Ashwaq Alsulami
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Salah Baz
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
| | - Mashael AlKhateeb
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
| | - Tariq Abalkhail
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
| |
Collapse
|
30
|
Sueiras M, Thonon V, Santamarina E, Sánchez-Guerrero Á, Poca MA, Quintana M, Riveiro M, Sahuquillo J. Cortical Spreading Depression Phenomena Are Frequent in Ischemic and Traumatic Penumbra: A Prospective Study in Patients With Traumatic Brain Injury and Large Hemispheric Ischemic Stroke. J Clin Neurophysiol 2021; 38:47-55. [PMID: 31702708 DOI: 10.1097/wnp.0000000000000648] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
PURPOSE Spreading depolarization (SD) phenomena are waves of neuronal depolarization, which propagate slowly at a velocity of 1 to 5 mm/minute and can occur in patients with ischemic or hemorrhagic stroke, traumatic brain injury, and migraine with aura. They form part of secondary injury, occurring after spreading ischemia. The purposes of this study were to describe the frequency and characteristics of SD phenomena and to define whether a correlation existed between SD and outcome in a group of patients with TBI and large hemispheric ischemic stroke. METHODS This was a prospective observational study of 39 adult patients, 17 with malignant middle cerebral artery infarction and 22 with moderate or severe traumatic brain injury, who underwent decompressive craniectomy and multimodal neuromonitoring including electrocorticography. Identification, classification, and interpretation of SDs were performed using the published recommendations from the Cooperative Study on Brain Injury Depolarization group. The outcomes assessed were functional disability at 6 and 12 months after injury, according to the extended Glasgow outcome scale, Barthel index, and modified Rankin scale. RESULTS Four hundred eighty-three SDs were detected, in 58.9% of the patients. Spreading depolarizations were more common, particularly the isoelectric SD type, in patients with malignant middle cerebral artery infarction (P < 0.04). In 65.21% of patients with SDs on electrocorticography, the "peak" day of depolarization was day 0 (the first 24 hours of recording). Spreading depolarization convulsions were present in 26.08% of patients with SDs. Patients with more SDs and higher depolarization indices scored worse on extended Glasgow outcome scale (6 months) and Barthel index (6 and 12 months) (P < 0.05). CONCLUSIONS Evidence on SD phenomena is important to ensure continued progress in understanding their pathophysiology, in the search for therapeutic targets to avoid additional damage from these secondary injuries.
Collapse
Affiliation(s)
- Maria Sueiras
- Department of Clinical Neurophysiology, Vall d'Hebron University Hospital, Barcelona, Spain
- Neurotrauma and Neurosurgery Research Unit (UNINN), Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
- Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Vanessa Thonon
- Department of Clinical Neurophysiology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Estevo Santamarina
- Epilepsy Unit, Department of Neurology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Ángela Sánchez-Guerrero
- Neurotrauma and Neurosurgery Research Unit (UNINN), Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Maria A Poca
- Neurotrauma and Neurosurgery Research Unit (UNINN), Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
- Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Department of Neurosurgery, Vall d'Hebron University Hospital, Barcelona, Spain ; and
| | - Manuel Quintana
- Epilepsy Unit, Department of Neurology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Marilyn Riveiro
- Neurotrauma Intensive Care Unit, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Juan Sahuquillo
- Neurotrauma and Neurosurgery Research Unit (UNINN), Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
- Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Department of Neurosurgery, Vall d'Hebron University Hospital, Barcelona, Spain ; and
| |
Collapse
|
31
|
Association of cortical spreading depression and seizures in patients with medically intractable epilepsy. Clin Neurophysiol 2020; 131:2861-2874. [PMID: 33152524 DOI: 10.1016/j.clinph.2020.09.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/14/2020] [Accepted: 09/07/2020] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Monitoring of the ultra-low frequency potentials, particularly cortical spreading depression (CSD), is excluded in epilepsy monitoring due to technical barriers imposed by the scalp ultra-low frequency electroencephalogram (EEG). As a result, clinical studies of CSD have been limited to invasive EEG. Therefore, the occurrence of CSD and its interaction with epileptiform field potentials (EFP) require investigation in epilepsy monitoring. METHODS Using a novel AC/DC-EEG approach, the occurrence of DC potentials in patients with intractable epilepsy presenting different symptoms of aura was investigated during long-term video-EEG monitoring. RESULTS Various forms of slow potentials, including simultaneous negative direct current (DC) potentials and prolonged EFP, propagated negative DC potentials, and non-propagated single negative DC potentials were recorded from the scalp of the epileptic patients. The propagated and single negative DC potentials preceded the prolonged EFP with a time lag and seizure appeared at the final shoulder of some instances of the propagated negative DC potentials. The slow potential deflections had a high amplitude and prolonged duration and propagated slowly through the brain. The high-frequency EEG was suppressed in the vicinity of the negative DC potential propagations. CONCLUSIONS The study is the first to report the recording of the propagated and single negative DC potentials with EFP at the scalp of patients with intractable epilepsy. The negative DC potentials preceded the prolonged EFP and may trigger seizures. The propagated and single negative DC potentials may be considered as CSD. SIGNIFICANCE Recordings of CSD may serve as diagnostic and prognostic monitoring tools in epilepsy.
Collapse
|
32
|
Sawant-Pokam PA, Vail TJ, Metcalf CS, Maguire JL, McKean TO, McKean NO, Brennan K. Preventing neuronal edema increases network excitability after traumatic brain injury. J Clin Invest 2020; 130:6005-6020. [PMID: 33044227 PMCID: PMC7598047 DOI: 10.1172/jci134793] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 08/06/2020] [Indexed: 12/31/2022] Open
Abstract
Edema is an important target for clinical intervention after traumatic brain injury (TBI). We used in vivo cellular resolution imaging and electrophysiological recording to examine the ionic mechanisms underlying neuronal edema and their effects on neuronal and network excitability after controlled cortical impact (CCI) in mice. Unexpectedly, we found that neuronal edema 48 hours after CCI was associated with reduced cellular and network excitability, concurrent with an increase in the expression ratio of the cation-chloride cotransporters (CCCs) NKCC1 and KCC2. Treatment with the CCC blocker bumetanide prevented neuronal swelling via a reversal in the NKCC1/KCC2 expression ratio, identifying altered chloride flux as the mechanism of neuronal edema. Importantly, bumetanide treatment was associated with increased neuronal and network excitability after injury, including increased susceptibility to spreading depolarizations (SDs) and seizures, known agents of clinical worsening after TBI. Treatment with mannitol, a first-line edema treatment in clinical practice, was also associated with increased susceptibility to SDs and seizures after CCI, showing that neuronal volume reduction, regardless of mechanism, was associated with an excitability increase. Finally, we observed an increase in excitability when neuronal edema normalized by 1 week after CCI. We conclude that neuronal swelling may exert protective effects against damaging excitability in the aftermath of TBI and that treatment of edema has the potential to reverse these effects.
Collapse
Affiliation(s)
| | | | - Cameron S. Metcalf
- Anticonvulsant Drug Development Program, Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | - Jamie L. Maguire
- Neuroscience Department, Tufts University School of Medicine, Boston, Massachusetts, USA
| | | | | | - K.C. Brennan
- Department of Neurology, School of Medicine, and
| |
Collapse
|
33
|
Sueiras M, Thonon V, Santamarina E, Sánchez-Guerrero Á, Riveiro M, Poca MA, Quintana M, Gándara D, Sahuquillo J. Is Spreading Depolarization a Risk Factor for Late Epilepsy? A Prospective Study in Patients with Traumatic Brain Injury and Malignant Ischemic Stroke Undergoing Decompressive Craniectomy. Neurocrit Care 2020; 34:876-888. [PMID: 33000378 DOI: 10.1007/s12028-020-01107-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 09/05/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Spreading depolarizations (SDs) have been described in patients with ischemic and haemorrhagic stroke, traumatic brain injury, and migraine with aura, among other conditions. The exact pathophysiological mechanism of SDs is not yet fully established. Our aim in this study was to evaluate the relationship between the electrocorticography (ECoG) findings of SDs and/or epileptiform activity and subsequent epilepsy and electroclinical outcome. METHODS This was a prospective observational study of 39 adults, 17 with malignant middle cerebral artery infarction (MMCAI) and 22 with traumatic brain injury, who underwent decompressive craniectomy and multimodal neuromonitoring including ECoG in penumbral tissue. Serial electroencephalography (EEG) recordings were obtained for all surviving patients. Functional disability at 6 and 12 months after injury were assessed using the Barthel, modified Rankin (mRS), and Extended Glasgow Outcome (GOS-E) scales. RESULTS SDs were recorded in 58.9% of patients, being more common-particularly those of isoelectric type-in patients with MMCAI (p < 0.04). At follow-up, 74.7% of patients had epileptiform abnormalities on EEG and/or seizures. A significant correlation was observed between the degree of preserved brain activity on EEG and disability severity (R [mRS]: + 0.7, R [GOS-E, Barthel]: - 0.6, p < 0.001), and between the presence of multifocal epileptiform abnormalities on EEG and more severe disability on the GOS-E at 6 months (R: - 0.3, p = 0.03) and 12 months (R: - 0.3, p = 0.05). Patients with more SDs and higher depression ratios scored worse on the GOS-E (R: - 0.4 at 6 and 12 months) and Barthel (R: - 0.4 at 6 and 12 months) disability scales (p < 0.05). The number of SDs (p = 0.064) and the depression ratio (p = 0.1) on ECoG did not show a statistically significant correlation with late epilepsy. CONCLUSIONS SDs are common in the cortex of ischemic or traumatic penumbra. Our study suggests an association between the presence of SDs in the acute phase and worse long-term outcome, although no association with subsequent epilepsy was found. More comprehensive studies, involving ECoG and EEG could help determine their association with epileptogenesis.
Collapse
Affiliation(s)
- Maria Sueiras
- Department of Clinical Neurophysiology, Vall d'Hebron University Hospital, Paseo Vall d'Hebron 119-129, 08035, Barcelona, Spain. .,Neurotrauma and Neurosurgery Research Unit (UNINN), Vall d'Hebron Research Institute (VHIR), Paseo Vall d'Hebron 119-129, 08035, Barcelona, Spain. .,Universitat Autònoma de Barcelona (UAB), Paseo Vall d'Hebron 119-129, 08035, Barcelona, Spain.
| | - Vanessa Thonon
- Department of Clinical Neurophysiology, Vall d'Hebron University Hospital, Paseo Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Estevo Santamarina
- Epilepsy Unit, Department of Neurology, Vall d'Hebron University Hospital, Paseo Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Ángela Sánchez-Guerrero
- Neurotrauma and Neurosurgery Research Unit (UNINN), Vall d'Hebron Research Institute (VHIR), Paseo Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Marilyn Riveiro
- Neurotrauma Intensive Care Unit, Vall d'Hebron University Hospital, Paseo Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Maria-Antonia Poca
- Neurotrauma and Neurosurgery Research Unit (UNINN), Vall d'Hebron Research Institute (VHIR), Paseo Vall d'Hebron 119-129, 08035, Barcelona, Spain.,Universitat Autònoma de Barcelona (UAB), Paseo Vall d'Hebron 119-129, 08035, Barcelona, Spain.,Department of Neurosurgery, Vall d'Hebron University Hospital, Paseo Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Manuel Quintana
- Epilepsy Unit, Department of Neurology, Vall d'Hebron University Hospital, Paseo Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Dario Gándara
- Neurotrauma and Neurosurgery Research Unit (UNINN), Vall d'Hebron Research Institute (VHIR), Paseo Vall d'Hebron 119-129, 08035, Barcelona, Spain.,Department of Neurosurgery, Vall d'Hebron University Hospital, Paseo Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Juan Sahuquillo
- Neurotrauma and Neurosurgery Research Unit (UNINN), Vall d'Hebron Research Institute (VHIR), Paseo Vall d'Hebron 119-129, 08035, Barcelona, Spain.,Universitat Autònoma de Barcelona (UAB), Paseo Vall d'Hebron 119-129, 08035, Barcelona, Spain.,Department of Neurosurgery, Vall d'Hebron University Hospital, Paseo Vall d'Hebron 119-129, 08035, Barcelona, Spain
| |
Collapse
|
34
|
Farrell JS, Colangeli R, Dudok B, Wolff MD, Nguyen SL, Jackson J, Dickson CT, Soltesz I, Teskey GC. In vivo assessment of mechanisms underlying the neurovascular basis of postictal amnesia. Sci Rep 2020; 10:14992. [PMID: 32929133 PMCID: PMC7490395 DOI: 10.1038/s41598-020-71935-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/21/2020] [Indexed: 12/16/2022] Open
Abstract
Long-lasting confusion and memory difficulties during the postictal state remain a major unmet problem in epilepsy that lacks pathophysiological explanation and treatment. We previously identified that long-lasting periods of severe postictal hypoperfusion/hypoxia, not seizures per se, are associated with memory impairment after temporal lobe seizures. While this observation suggests a key pathophysiological role for insufficient energy delivery, it is unclear how the networks that underlie episodic memory respond to vascular constraints that ultimately give rise to amnesia. Here, we focused on cellular/network level analyses in the CA1 of hippocampus in vivo to determine if neural activity, network oscillations, synaptic transmission, and/or synaptic plasticity are impaired following kindled seizures. Importantly, the induction of severe postictal hypoperfusion/hypoxia was prevented in animals treated by a COX-2 inhibitor, which experimentally separated seizures from their vascular consequences. We observed complete activation of CA1 pyramidal neurons during brief seizures, followed by a short period of reduced activity and flattening of the local field potential that resolved within minutes. During the postictal state, constituting tens of minutes to hours, we observed no changes in neural activity, network oscillations, and synaptic transmission. However, long-term potentiation of the temporoammonic pathway to CA1 was impaired in the postictal period, but only when severe local hypoxia occurred. Lastly, we tested the ability of rats to perform object-context discrimination, which has been proposed to require temporoammonic input to differentiate between sensory experience and the stored representation of the expected object-context pairing. Deficits in this task following seizures were reversed by COX-2 inhibition, which prevented severe postictal hypoxia. These results support a key role for hypoperfusion/hypoxia in postictal memory impairments and identify that many aspects of hippocampal network function are resilient during severe hypoxia except for long-term synaptic plasticity.
Collapse
Affiliation(s)
- Jordan S Farrell
- Department of Neurosurgery, Stanford University, Stanford, CA, USA.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| | - Roberto Colangeli
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Barna Dudok
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Marshal D Wolff
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Sarah L Nguyen
- Department of Psychology, University of Alberta, Edmonton, AB, Canada
| | - Jesse Jackson
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Clayton T Dickson
- Department of Psychology, University of Alberta, Edmonton, AB, Canada
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - G Campbell Teskey
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
35
|
Iftikhar W, Cheema FF, Khanal S, Khan QU. Migrainous Infarction and Cortical Spreading Depression. Discoveries (Craiova) 2020; 8:e112. [PMID: 33083518 PMCID: PMC7553730 DOI: 10.15190/d.2020.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Migraine is a very common disorder of the nervous system. It shares similar physiological processes with stroke. Migrainous infarction is a rare complication of migraine with aura. The neuro-logical symptoms of migraine aura correspond to the cortical spreading depression and this depression can lead to a migrainous infarction. It is pertinent to state that the investigation and detection of the cortical depression might have a great clinical significance. Blood vessels in the cranium play an important role in the pathophysiology of migraine. In the case of injured states of brain, the cortical spreading depression causes extreme vasoconstriction rather than vasodilation. The endothelial damage caused by the cortical spreading depression can result in hypercoagulability, leading to an increased risk of stroke. There are many genetic disorders in which migraine and stroke are the major symptoms and an insight into these disorders can help us in the understanding of complex mechanisms of migrainous infarction. It is pertinent to state that some derangements in the vascular function accompany migraine which may also serve as targets for research and treatment. This article will describe the hemodynamic and genetic relationship between migraine induced stroke and how it relates to the cortical spreading depression.
Collapse
Affiliation(s)
- Waleed Iftikhar
- CMH Lahore Medical College and Institute of Dentistry (NUMS), Lahore, Pakistan
| | | | - Sneha Khanal
- Jahurul Islam Medical College and Hospital, Bajitpur, Kishoregonj, Bangladesh
| | - Qudsia Umaira Khan
- CMH Lahore Medical College and Institute of Dentistry (NUMS), Lahore, Pakistan
| |
Collapse
|
36
|
Rathmann T, Khaleghi Ghadiri M, Stummer W, Gorji A. Spreading Depolarization Facilitates the Transition of Neuronal Burst Firing from Interictal to Ictal State. Neuroscience 2020; 441:176-183. [PMID: 32450296 DOI: 10.1016/j.neuroscience.2020.05.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/24/2020] [Accepted: 05/17/2020] [Indexed: 12/13/2022]
Abstract
The transition of neuronal burst firing from the interictal to ictal state contributes to seizure initiation in human temporal lobe epilepsy. The low-Mg2+ model of seizure is characterized by initial spontaneous interictal bursting events, which later developed into ictaform discharges. Both experimental and clinical studies point to a complex link between spreading depolarization (SD) and epileptiform field potentials (EFP), including SD-induced epileptic seizures. To investigate the mechanism of SD and EFP interactions, the effect of SD on the transition of interictal to ictal state in low-Mg2+ model of seizure was studied in the rat hippocampus in vitro. After the appearance of interictal activities, SD was elicited by local application of KCl. SD significantly increased the amplitude and duration of action potentials and after-hyperpolarization, and hyperpolarized the membrane potential. Furthermore, SD significantly increased the duration of interictal activities and the threshold potentials of interictal activities. In addition, SD significantly accelerated the transition from interictal to ictal state compared to the control tissues. Ictal activities after induction of SD exhibited a significantly longer duration. This study revealed that SD accelerates interictal-to-ictal transitions and facilitates development of ictaform discharges, possibly via the enhancement of neural synchronization, and points to the potential role of SD in seizure initiation.
Collapse
Affiliation(s)
- Thomas Rathmann
- Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Germany
| | | | - Walter Stummer
- Department of Neurosurgery, Westfälische Wilhelms-Universität Münster, Germany
| | - Ali Gorji
- Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Germany; Department of Neurosurgery, Westfälische Wilhelms-Universität Münster, Germany; Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran; Department of Neurology and Institute of Translational Neurology, Westfälische Wilhelms-Universität Münster, Germany; Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
37
|
Tsukamoto T, Kajikawa S, Hitomi T, Funaki T, Urushitani M, Takahashi R, Ikeda A. [Scalp-recorded cortical spreading depolarizations (CSDs) of EEG with time constant of 2 seconds in a patient with acute traumatic brain injury]. Rinsho Shinkeigaku 2020; 60:473-478. [PMID: 32536664 DOI: 10.5692/clinicalneurol.60.cn-001421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
An 82-year-old female suffered from head trauma, and developed acute consciousness disturbance 6 days after the event. Head CT showed the acute subdural hematoma in the left temporooccipital area and the patient underwent emergency hematoma evacuation and decompression. However, her consciousness disturbance became worse after surgery. Intermittent large negative infraslow shifts (lasting longer than 40 seconds) were recorded in the right posterior quadrant by scalp EEG with TC of 2 sec, that was defined as cortical spreading depolarizations (CSDs). Clinically consciousness disturbance sustained poor until 1 month after surgery in spite of treatment by anti-epileptic drugs. CSDs were observed on the right side where head injury most likely occurred. It may explain the sustained consciousness disturbance associated with significant prolonged ischemia. Once scalp EEG could record CSDs in this particular patient, the degree and its prognosis of traumatic head injury were estimated.
Collapse
Affiliation(s)
- Takahito Tsukamoto
- Department of Neurology, Kyoto University Graduate School of Medicine
- Department of Neurology, Shiga University of Medical Science
| | - Shunsuke Kajikawa
- Department of Neurology, Kyoto University Graduate School of Medicine
| | - Takefumi Hitomi
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine
| | - Takeshi Funaki
- Department of Neurosurgery, Kyoto University Graduate School of Medicine
| | | | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine
| |
Collapse
|
38
|
Marcellino C, Van Gompel JJ, Hocker S. Letter: Nonepileptic, Stereotypical, and Intermittent Symptoms (NESIS) in Patients With Subdural Hematoma: Proposal for a New Clinical Entity With Therapeutic and Prognostic Implications. Neurosurgery 2020; 86:E484. [PMID: 31980823 DOI: 10.1093/neuros/nyaa010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Chris Marcellino
- Department of Neurologic Surgery Mayo Clinic Rochester, Minnesota.,Department of Neurology Mayo Clinic Rochester, Minnesota
| | | | - Sara Hocker
- Department of Neurology Mayo Clinic Rochester, Minnesota
| |
Collapse
|
39
|
Stafstrom CE. Stopped At the Border: Cortical Spreading Depolarization Blocks Seizure Propagation. Epilepsy Curr 2020; 20:171-172. [PMID: 32550840 PMCID: PMC7281895 DOI: 10.1177/1535759720916448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Segregation of Seizures and Spreading Depolarization Across Cortical
Layers Zakharov A, Chernova K, Burkhanova G, Holmes GL, Khazipov R.
Epilepsia. 2019;60(12):2386-2397. doi:10.1111/epi.16390. Objective: Cortical spreading depolarization (SD) and seizures are often co-occurring
electrophysiological phenomena. However, the cross-layer dynamics of SD during
seizures and the effect of SD on epileptic activity across cortical layers remain
largely unknown. Methods: We explored the spatial–temporal dynamics of SD and epileptic activity across
layers of the rat barrel cortex using direct current silicone probe recordings
during flurothyl-induced seizures. Results: Spreading depolarization occurred in half of the flurothyl-evoked seizures.
Spreading depolarization always started from the superficial layers and spread
downward either through all cortical layers or stopping at the L4/L5 border. In
cases without SD, seizures were characterized by synchronized population firing
across all cortical layers throughout the entire seizure. However, when SD occurred,
epileptic activity was transiently silenced in layers involved with SD but persisted
in deeper layers. During partial SD, epileptiform activity persisted in deep layers
throughout the entire seizure, with positive signals at the cortical surface
reflecting passive sources of population spikes generated in deeper cortical layers.
During full SD, the initial phase of SD propagation through the superficial layers
was similar to partial SD, with suppression of activity at the superficial layers
and segregation of seizures to deep layers. Further propagation of SD to deep layers
resulted in a wave of transient suppression of epileptic activity through the entire
cortical column. Thus, vertical propagation of SD through the cortical column
creates dynamic network states during which epileptiform activity is restricted to
layers without SD. Significance: Our results point to the importance of vertical SD spread in the SD-related
depression of epileptiform activity across cortical layers.
Collapse
|
40
|
Ashayeri Ahmadabad R, Khaleghi Ghadiri M, Gorji A. The role of Toll-like receptor signaling pathways in cerebrovascular disorders: the impact of spreading depolarization. J Neuroinflammation 2020; 17:108. [PMID: 32264928 PMCID: PMC7140571 DOI: 10.1186/s12974-020-01785-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/24/2020] [Indexed: 02/08/2023] Open
Abstract
Cerebral vascular diseases (CVDs) are a group of disorders that affect the blood supply to the brain and lead to the reduction of oxygen and glucose supply to the neurons and the supporting cells. Spreading depolarization (SD), a propagating wave of neuroglial depolarization, occurs in different CVDs. A growing amount of evidence suggests that the inflammatory responses following hypoxic-ischemic insults and after SD plays a double-edged role in brain tissue injury and clinical outcome; a beneficial effect in the acute phase and a destructive role in the late phase. Toll-like receptors (TLRs) play a crucial role in the activation of inflammatory cascades and subsequent neuroprotective or harmful effects after CVDs and SD. Here, we review current data regarding the pathophysiological role of TLR signaling pathways in different CVDs and discuss the role of SD in the potentiation of the inflammatory cascade in CVDs through the modulation of TLRs.
Collapse
Affiliation(s)
- Rezan Ashayeri Ahmadabad
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
- Department of Neurosurgery, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | | | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Department of Neurosurgery, Westfälische Wilhelms-Universität Münster, Münster, Germany.
- Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Münster, Germany.
- Department of Neurology, Westfälische Wilhelms-Universität Münster, Münster, Germany.
- Neuroscience research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
41
|
Moser N, Leong CL, Hu Y, Cicatiello C, Gowers S, Boutelle M, Georgiou P. Complementary Metal-Oxide-Semiconductor Potentiometric Field-Effect Transistor Array Platform Using Sensor Learning for Multi-ion Imaging. Anal Chem 2020; 92:5276-5285. [PMID: 32142259 PMCID: PMC7145285 DOI: 10.1021/acs.analchem.9b05836] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/06/2020] [Indexed: 01/06/2023]
Abstract
This work describes an array of 1024 ion-sensitive field-effect transistors (ISFETs) using sensor-learning techniques to perform multi-ion imaging for concurrent detection of potassium, sodium, calcium, and hydrogen. Analyte-specific ionophore membranes are deposited on the surface of the ISFET array chip, yielding pixels with quasi-Nernstian sensitivity to K+, Na+, or Ca2+. Uncoated pixels display pH sensitivity from the standard Si3N4 passivation layer. The platform is then trained by inducing a change in single-ion concentration and measuring the responses of all pixels. Sensor learning relies on offline training algorithms including k-means clustering and density-based spatial clustering of applications with noise to yield membrane mapping and sensitivity of each pixel to target electrolytes. We demonstrate multi-ion imaging with an average error of 3.7% (K+), 4.6% (Na+), and 1.8% (pH) for each ion, respectively, while Ca2+ incurs a larger error of 24.2% and hence is included to demonstrate versatility. We validate the platform with a brain dialysate fluid sample and demonstrate reading by comparing with a gold-standard spectrometry technique.
Collapse
Affiliation(s)
- Nicolas Moser
- Department
of Electrical and Electronic Engineering and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Chi Leng Leong
- Department
of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Yuanqi Hu
- Department
of Electrical and Electronic Engineering and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Chiara Cicatiello
- Department
of Electrical and Electronic Engineering and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, United Kingdom
- Department
of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Sally Gowers
- Department
of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Martyn Boutelle
- Department
of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Pantelis Georgiou
- Department
of Electrical and Electronic Engineering and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
42
|
Major S, Huo S, Lemale CL, Siebert E, Milakara D, Woitzik J, Gertz K, Dreier JP. Direct electrophysiological evidence that spreading depolarization-induced spreading depression is the pathophysiological correlate of the migraine aura and a review of the spreading depolarization continuum of acute neuronal mass injury. GeroScience 2020; 42:57-80. [PMID: 31820363 PMCID: PMC7031471 DOI: 10.1007/s11357-019-00142-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023] Open
Abstract
Spreading depolarization is observed as a large negative shift of the direct current potential, swelling of neuronal somas, and dendritic beading in the brain's gray matter and represents a state of a potentially reversible mass injury. Its hallmark is the abrupt, massive ion translocation between intraneuronal and extracellular compartment that causes water uptake (= cytotoxic edema) and massive glutamate release. Dependent on the tissue's energy status, spreading depolarization can co-occur with different depression or silencing patterns of spontaneous activity. In adequately supplied tissue, spreading depolarization induces spreading depression of activity. In severely ischemic tissue, nonspreading depression of activity precedes spreading depolarization. The depression pattern determines the neurological deficit which is either spreading such as in migraine aura or migraine stroke or nonspreading such as in transient ischemic attack or typical stroke. Although a clinical distinction between spreading and nonspreading focal neurological deficits is useful because they are associated with different probabilities of permanent damage, it is important to note that spreading depolarization, the neuronal injury potential, occurs in all of these conditions. Here, we first review the scientific basis of the continuum of spreading depolarizations. Second, we highlight the transition zone of the continuum from reversibility to irreversibility using clinical cases of aneurysmal subarachnoid hemorrhage and cerebral amyloid angiopathy. These illustrate how modern neuroimaging and neuromonitoring technologies increasingly bridge the gap between basic sciences and clinic. For example, we provide direct electrophysiological evidence for the first time that spreading depolarization-induced spreading depression is the pathophysiological correlate of the migraine aura.
Collapse
Affiliation(s)
- Sebastian Major
- Center for Stroke Research, Campus Charité Mitte, Charité University Medicine Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Shufan Huo
- Center for Stroke Research, Campus Charité Mitte, Charité University Medicine Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Coline L Lemale
- Center for Stroke Research, Campus Charité Mitte, Charité University Medicine Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Eberhard Siebert
- Department of Neuroradiology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Denny Milakara
- Solution Centre for Image Guided Local Therapies (STIMULATE), Otto-von-Guericke-University, Magdeburg, Germany
| | - Johannes Woitzik
- Evangelisches Krankenhaus Oldenburg, University of Oldenburg, Oldenburg, Germany
| | - Karen Gertz
- Center for Stroke Research, Campus Charité Mitte, Charité University Medicine Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jens P Dreier
- Center for Stroke Research, Campus Charité Mitte, Charité University Medicine Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- Department of Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.
- Einstein Center for Neurosciences Berlin, Berlin, Germany.
| |
Collapse
|
43
|
Rienecker KDA, Poston RG, Saha RN. Merits and Limitations of Studying Neuronal Depolarization-Dependent Processes Using Elevated External Potassium. ASN Neuro 2020; 12:1759091420974807. [PMID: 33256465 PMCID: PMC7711227 DOI: 10.1177/1759091420974807] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/07/2020] [Accepted: 10/22/2020] [Indexed: 01/24/2023] Open
Abstract
Elevated extracellular potassium chloride is widely used to achieve membrane depolarization of cultured neurons. This technique has illuminated mechanisms of calcium influx through L-type voltage sensitive calcium channels, activity-regulated signaling, downstream transcriptional events, and many other intracellular responses to depolarization. However, there is enormous variability in these treatments, including durations from seconds to days and concentrations from 3mM to 150 mM KCl. Differential effects of these variable protocols on neuronal activity and transcriptional programs are underexplored. Furthermore, potassium chloride treatments in vitro are criticized for being poor representatives of in vivo phenomena and are questioned for their effects on cell viability. In this review, we discuss the intracellular consequences of elevated extracellular potassium chloride treatment in vitro, the variability of such treatments in the literature, the strengths and limitations of this tool, and relevance of these studies to brain functions and dysfunctions.
Collapse
Affiliation(s)
- Kira D. A. Rienecker
- Department of Molecular and Cell Biology,
School of Natural Sciences, University of California, Merced, United
States
| | - Robert G. Poston
- Department of Molecular and Cell Biology,
School of Natural Sciences, University of California, Merced, United
States
| | - Ramendra N. Saha
- Department of Molecular and Cell Biology,
School of Natural Sciences, University of California, Merced, United
States
| |
Collapse
|
44
|
Electrographic seizure burden and outcomes following pediatric status epilepticus. Epilepsy Behav 2019; 101:106409. [PMID: 31420288 DOI: 10.1016/j.yebeh.2019.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/04/2019] [Indexed: 12/11/2022]
Abstract
Pediatric status epilepticus carries a substantial risk for morbidity and mortality, but the relationship between seizure burden, treatment, and outcome remains incompletely understood. This review summarizes the evidence linking seizure burden and outcomes among critically ill children in the intensive care unit (ICU), a population in whom accurate quantification of seizure burden is possible using continuous electroencephalographic monitoring. Several high-quality observational studies among critically ill children have reported an association between higher seizure burden and worse outcome, even after adjusting for potential confounders such as age, etiology, and illness severity. Although these studies support the hypothesis that seizures contribute to brain injury and worsen outcome, a causal link between seizures and outcome remains to be proven. The relationship between seizures and outcome is likely complex, and dependent on factors such as etiology, preexisting neurological disability, medication exposure, and possibly individual genetic factors. Studies attempting to define this complex relationship will need to measure and account for these factors in their analyses. This article is part of the Special Issue "Proceedings of the 7th London-Innsbruck Colloquium on Status Epilepticus and Acute Seizures".
Collapse
|
45
|
Zakharov A, Chernova K, Burkhanova G, Holmes GL, Khazipov R. Segregation of seizures and spreading depolarization across cortical layers. Epilepsia 2019; 60:2386-2397. [PMID: 31755112 DOI: 10.1111/epi.16390] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Cortical spreading depolarization (SD) and seizures are often co-occurring electrophysiological phenomena. However, the cross-layer dynamics of SD during seizures and the effect of SD on epileptic activity across cortical layers remain largely unknown. METHODS We explored the spatial-temporal dynamics of SD and epileptic activity across layers of the rat barrel cortex using direct current silicone probe recordings during flurothyl-induced seizures. RESULTS SD occurred in half of the flurothyl-evoked seizures. SD always started from the superficial layers and spread downward either through all cortical layers or stopping at the L4/L5 border. In cases without SD, seizures were characterized by synchronized population firing across all cortical layers throughout the entire seizure. However, when SD occurred, epileptic activity was transiently silenced in layers involved with SD but persisted in deeper layers. During partial SD, epileptiform activity persisted in deep layers throughout the entire seizure, with positive signals at the cortical surface reflecting passive sources of population spikes generated in deeper cortical layers. During full SD, the initial phase of SD propagation through the superficial layers was similar to partial SD, with suppression of activity at the superficial layers and segregation of seizures to deep layers. Further propagation of SD to deep layers resulted in a wave of transient suppression of epileptic activity through the entire cortical column. Thus, vertical propagation of SD through the cortical column creates dynamic network states during which epileptiform activity is restricted to layers without SD. SIGNIFICANCE Our results point to the importance of vertical SD spread in the SD-related depression of epileptiform activity across cortical layers.
Collapse
Affiliation(s)
- Andrey Zakharov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia.,Department of physiology, Kazan State Medical University, Kazan, Russia
| | - Kseniya Chernova
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | | | - Gregory L Holmes
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Roustem Khazipov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia.,Mediterranean Institute of Neurobiology, National Institute of Health and Medical Research Mixed Unit of Research 1249, Aix-Marseille University, Marseille, France
| |
Collapse
|
46
|
Chen X, Sobczak F, Chen Y, Jiang Y, Qian C, Lu Z, Ayata C, Logothetis NK, Yu X. Mapping optogenetically-driven single-vessel fMRI with concurrent neuronal calcium recordings in the rat hippocampus. Nat Commun 2019; 10:5239. [PMID: 31748553 PMCID: PMC6868210 DOI: 10.1038/s41467-019-12850-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/01/2019] [Indexed: 01/07/2023] Open
Abstract
Extensive in vivo imaging studies investigate the hippocampal neural network function, mainly focusing on the dorsal CA1 region given its optical accessibility. Multi-modality fMRI with simultaneous hippocampal electrophysiological recording reveal broad cortical correlation patterns, but the detailed spatial hippocampal functional map remains lacking given the limited fMRI resolution. In particular, hemodynamic responses linked to specific neural activity are unclear at the single-vessel level across hippocampal vasculature, which hinders the deciphering of the hippocampal malfunction in animal models and the translation to critical neurovascular coupling (NVC) patterns for human fMRI. We simultaneously acquired optogenetically-driven neuronal Ca2+ signals with single-vessel blood-oxygen-level-dependent (BOLD) and cerebral-blood-volume (CBV)-fMRI from individual venules and arterioles. Distinct spatiotemporal patterns of hippocampal hemodynamic responses were correlated to optogenetically evoked and spreading depression-like calcium events. The calcium event-related single-vessel hemodynamic modeling revealed significantly reduced NVC efficiency upon spreading depression-like (SDL) events, providing a direct measure of the NVC function at various hippocampal states.
Collapse
Affiliation(s)
- Xuming Chen
- Research Group of Translational Neuroimaging and Neural Control, High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, 72076, Tuebingen, Germany
- University of Tuebingen, 72074, Tuebingen, Germany
- Department of Neurology, Wuhan University, Renmin Hospital, Wuhan, 430060, China
| | - Filip Sobczak
- Research Group of Translational Neuroimaging and Neural Control, High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, 72076, Tuebingen, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tuebingen, 72074, Tuebingen, Germany
| | - Yi Chen
- Research Group of Translational Neuroimaging and Neural Control, High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, 72076, Tuebingen, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tuebingen, 72074, Tuebingen, Germany
| | - Yuanyuan Jiang
- Research Group of Translational Neuroimaging and Neural Control, High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, 72076, Tuebingen, Germany
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, 02129, MA, USA
| | - Chunqi Qian
- Department of Radiology, Michigan State University, East Lansing, 48824, MI, USA
| | - Zuneng Lu
- Department of Neurology, Wuhan University, Renmin Hospital, Wuhan, 430060, China
| | - Cenk Ayata
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, 02129, MA, USA
- Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 02129, Boston, USA
| | - Nikos K Logothetis
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tuebingen, 72076, Germany
- Department of Imaging Science and Biomedical Engineering, University of Manchester, Manchester, M13 9PT, UK
| | - Xin Yu
- Research Group of Translational Neuroimaging and Neural Control, High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, 72076, Tuebingen, Germany.
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, 02129, MA, USA.
| |
Collapse
|
47
|
Levesque M, Iorio-Morin C, Bocti C, Vézina C, Deacon C. Nonepileptic, Stereotypical, and Intermittent Symptoms (NESIS) in Patients With Subdural Hematoma: Proposal for a New Clinical Entity With Therapeutic and Prognostic Implications. Neurosurgery 2019; 87:96-103. [DOI: 10.1093/neuros/nyz355] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/27/2019] [Indexed: 11/13/2022] Open
Abstract
Abstract
BACKGROUND
Transient neurological symptoms (TNS) are frequent in patients with subdural hematomas (SDH) and many will receive a diagnosis of epilepsy despite a negative workup.
OBJECTIVE
To explore if patients with TNS and a negative epilepsy workup (cases) evolved differently than those with a positive EEG (controls), which would suggest the existence of alternative etiologies for TNS.
METHODS
We performed a single-center, retrospective, case-control study of patients with TNS post-SDH. The demographics and clinical and semiological features of cases and controls were compared. The outcome and response to antiepileptic drugs were also assessed and a scoring system developed to predict negative EEG.
RESULTS
Fifty-nine patients with SDH-associated TNS were included (39 cases and 20 controls). Demographic characteristics were comparable in both groups. Dysphasia and prolonged episodes were associated with a negative EEG. Clonic movements, impaired awareness, positive symptomatology, complete response to antiepileptic drugs, and mortality were associated with a positive EEG. Using semiological variables, we created a scoring system with a 96.6% sensitivity and 100% specificity in predicting case group patients. The differences observed between both groups support the existence of an alternative etiology to seizures in our case group. We propose the term NESIS (NonEpileptic, Stereotypical, and Intermittent Symptoms) to refer to this subgroup and hypothesize that TNS in these patients might result from cortical spreading depolarization.
CONCLUSION
We describe NESIS as a syndrome experienced by SDH patients with specific prognostic and therapeutic implications. Independent validation of this new entity is now required.
Collapse
Affiliation(s)
- Mathieu Levesque
- Division of Neurology, Department of Medicine, Université de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Canada
| | - Christian Iorio-Morin
- Division of Neurosurgery, Department of Surgery, Université de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Canada
| | - Christian Bocti
- Division of Neurology, Department of Medicine, Université de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Canada
| | - Caroline Vézina
- Division of Family Medicine, Department of Family Medicine, Université de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Canada
| | - Charles Deacon
- Division of Neurology, Department of Medicine, Université de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Canada
| |
Collapse
|
48
|
Toglia P, Ullah G. Mitochondrial dysfunction and role in spreading depolarization and seizure. J Comput Neurosci 2019; 47:91-108. [PMID: 31506806 DOI: 10.1007/s10827-019-00724-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 03/12/2019] [Accepted: 07/26/2019] [Indexed: 11/24/2022]
Abstract
The effect of pathological phenomena such as epileptic seizures and spreading depolarization (SD) on mitochondria and the potential feedback of mitochondrial dysfunction into the dynamics of those phenomena are complex and difficult to study experimentally due to the simultaneous changes in many variables governing neuronal behavior. By combining a model that accounts for a wide range of neuronal behaviors including seizures, normoxic SD, and hypoxic SD (HSD), together with a detailed model of mitochondrial function and intracellular Ca2+ dynamics, we investigate mitochondrial dysfunction and its potential role in recovery of the neuron from seizures, HSD, and SD. Our results demonstrate that HSD leads to the collapse of mitochondrial membrane potential and cellular ATP levels that recover only when normal oxygen supply is restored. Mitochondrial organic phosphate and pH gradients determine the strength of the depolarization block during HSD and SD, how quickly the cell enters the depolarization block when the oxygen supply is disrupted or potassium in the bath solution is raised beyond the physiological value, and how fast the cell recovers from SD and HSD when normal potassium concentration and oxygen supply are restored. Although not as dramatic as phosphate and pH gradients, mitochondrial Ca2+ uptake has a similar effect on neuronal behavior during these conditions.
Collapse
Affiliation(s)
- Patrick Toglia
- Department of Physics, University of South Florida, 4202 E. Fowler Ave., Tampa, FL, 33620, USA
| | - Ghanim Ullah
- Department of Physics, University of South Florida, 4202 E. Fowler Ave., Tampa, FL, 33620, USA.
| |
Collapse
|
49
|
Parisi P, Paolino MC, Raucci U, Della Vecchia N, Belcastro V, Villa MP, Striano P. Ictal Epileptic Headache: When Terminology Is Not a Moot Question. Front Neurol 2019; 10:785. [PMID: 31396147 PMCID: PMC6664028 DOI: 10.3389/fneur.2019.00785] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 07/08/2019] [Indexed: 11/13/2022] Open
Abstract
The relationship between headache and epilepsy is complex and despite the nature of this association is not yet clear. In the last few years, it has been progressively introduced the concept of the “ictal epileptic headache” that was included in the recently revised International Classification of Headaches Disorders 3rd edition (ICHD-3-revised). The diagnostic criteria for ictal epileptic headache (IEH) suggested in 2012 were quite restrictive thus leading to the underestimation of this phenomenon. However, these criteria have not yet been included into the ICHD-3 revision published in 2018, thus creating confusion among both, physicians and experts in this field. Here, we highlight the importance to strictly apply the original IEH criteria explaining the reasons through the analysis of the clinical, historical, epidemiological and pathophysiological characteristics of the IEH itself. In addition, we discuss the issues related to the neurophysiopathological link between headache and epilepsy as well as to the classification of these epileptic events as “autonomic seizure.”
Collapse
Affiliation(s)
- Pasquale Parisi
- Chair of Pediatrics, Child Neurology, NESMOS Department, Faculty of Medicine and Psychology, Sapienza University, Sant'Andrea Hospital, Rome, Italy
| | - Maria Chiara Paolino
- Chair of Pediatrics, Child Neurology, NESMOS Department, Faculty of Medicine and Psychology, Sapienza University, Sant'Andrea Hospital, Rome, Italy
| | - Umberto Raucci
- Pediatric Emergency Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Vincenzo Belcastro
- Neurology Unit, Department of Neuroscience, Sant'Anna Hospital, Como, Italy
| | - Maria Pia Villa
- Chair of Pediatrics, Child Neurology, NESMOS Department, Faculty of Medicine and Psychology, Sapienza University, Sant'Andrea Hospital, Rome, Italy
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy.,Paediatric Neurology and Muscular Diseases Unit, G. Gaslini' Institute, Genova, Italy
| |
Collapse
|
50
|
Screening spreading depolarizations during epilepsy surgery. Acta Neurochir (Wien) 2019; 161:911-916. [PMID: 30852674 DOI: 10.1007/s00701-019-03870-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/03/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Spreading depolarization (SD) is a fundamental pathophysiological mechanism of both pannecrotic and selective neuronal lesions following deprivation of energy. SD with brain injury has been reported including in one patient during an intracranial operation. However, the incidence of SDs in operative resections is unknown. METHODS We performed (a) retrospective analysis of intraoperative AC-recordings of 69 patients and (b) a prospective study using intraoperative near-DC recording. All patients had the diagnosis of pharmaco-resistant epilepsy. Both studies were designed to determine the incidence and characteristics of SDs intraoperatively. In the retrospective analysis, we used intraoperative electrocorticography (iECoG) recordings obtained from AC-recording of 69 patients. In the prospective analysis, we used an Octal Bio Amp and Power Lab ECoG recorder with near-DC range. RESULTS In the retrospective study, we included 69 patients with a mean of 1 h 3 min of iECoG recordings. In the prospective study, we recruited 20 patients with near DC recordings. A total of 35 h 41 min of iECoG recordings with mean of 2 h 32 min/patient were analyzed. We did not find SD in either study. CONCLUSIONS SDs were not detected during intraoperative recordings of epilepsy surgery using AC- or DC-amplifiers.
Collapse
|