1
|
Shan M, Li C, Sun J, Xie H, Qi Y, Niu W, Zhang M. The trunk segmental motion complexity and balance performance in challenging seated perturbation among individuals with spinal cord injury. J Neuroeng Rehabil 2025; 22:4. [PMID: 39780141 PMCID: PMC11708067 DOI: 10.1186/s12984-024-01522-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Motion complexity is necessary for adapting to external changes, but little is known about trunk motion complexity during seated perturbation in individuals with spinal cord injury (SCI). We aimed to investigate changes following SCI in trunk segmental motion complexity across different perturbation directions and how they affect postural control ability in individuals with SCI. METHODS A total of 17 individuals with SCI and 18 healthy controls participated in challenging sagittal-seated perturbations with hand protection. Upper arm activation was measured using surface electromyography for trial consistency. Motion complexity parameters, quantified across three degrees of freedom, was assessed using relative angular acceleration from six trunk segments obtained through motion capturing system. Motion performance parameters were assessed using center of pressure (CoP) measurements from a force plate, including settling time, maximum CoP displacement (MD) variability, and steady-state error. Statistical analyses examined group and direction differences, while complexity-performance relationships were evaluated using multiple response least partial squares regression. RESULTS Compared to healthy controls, individuals with SCI showed significantly lower motion complexity in the lumbar and upper thoracic segments (approximately10% - 20%), with identical settling time and higher MD variability. Backward perturbations, as opposed to forward perturbations, resulted in reduced complexity in the aforementioned segments and increased steady-state error. Lower lumbar rotation complexity negatively correlated with MD variability (β = -0.240) and steady-state error (β = -0.485) in individuals with SCI, while showing a minor positive correlation with settling time (β = 0.152) during backward perturbation. CONCLUSION Simplified motion control in individuals with SCI may arise from uncoordinated lumbar and overactive thoracic neuromuscular control, compromising stability despite maintaining speed. Increasing lumbar motion complexity could enhance postural stability and accuracy during backward perturbation, representing a potential target for developing seated balance rehabilitation strategies and promoting more adaptive trunk control.
Collapse
Affiliation(s)
- Mianjia Shan
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, 201619, China
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Chenhao Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, 201619, China
| | - Jiayi Sun
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, 201619, China
| | - Haixia Xie
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, 201619, China
| | - Yan Qi
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, 201619, China
| | - Wenxin Niu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, 201619, China.
| | - Ming Zhang
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
- Research Institute for Sports Science and Technology, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
2
|
Qanbari S, Khanmohammadi R, Olyaei G, Hosseini Z, Hejazi HS. Effects of combining sensory-motor exercises with transcranial direct current stimulation on cortical processing and clinical symptoms in patients with lumbosacral radiculopathy: An exploratory randomized controlled trial. PLoS One 2024; 19:e0314361. [PMID: 39700238 DOI: 10.1371/journal.pone.0314361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/05/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Chronic low back pain (CLBP) is linked to reduced excitability in the primary motor (M1) and sensory (S1) cortices. Combining sensory-motor exercises with transcranial direct current stimulation (tDCS) to boost M1 and S1 excitability may improve treatment outcomes. This combined approach aligns with the neurophysiological mechanisms underlying CLBP and may target the neuroplastic changes induced by low back pain. This study aimed to assess whether enhancing M1 and S1 excitability via tDCS, alongside sensory-motor exercises, offers additional benefits for CLBP patients. METHOD Participants were randomly assigned to receive either real or sham tDCS alongside sensory-motor exercises. Outcome measures included pain intensity, disability level, motor control ability, amplitudes of N80 and N150, and the amplitude of motor-evoked potential (MEP) and active motor threshold (AMT) for the multifidus (MF) and transversus abdominis/internal oblique (TrA/IO) muscles. A linear mixed-effects model (LMM) analyzed group, time, and interaction effects, while Spearman's correlation assessed relationships between neurophysiological and clinical outcomes. RESULTS The results showed significant reductions in pain intensity and disability levels (P < 0.001) and improved motor control (P < 0.001) in both groups. Both groups also exhibited increase in MF MEP amplitude (P = 0.042) and N150 amplitude (P = 0.028). The tDCS group demonstrated a significant decrease in AMT of MF and TrA/IO muscles (P < 0.05) and an increase in N80 amplitude (P = 0.027), with no significant changes in the control group. Additionally, the tDCS group had significantly lower AMT for the TrA/IO muscle in the post-test compared to the sham group (P = 0.001). Increased N150 amplitude was correlated with improved motor control. CONCLUSIONS The findings showed that sensory-motor exercises combined with either tDCS or sham tDCS effectively reduced pain intensity, decreased disability, and improved lumbar motor control in lumbosacral radiculopathy patients. No significant differences were observed between groups, indicating no added clinical benefit from tDCS over exercises alone. However, both groups demonstrated increased N150 and MF MEP amplitudes, suggesting enhanced cortical excitability in motor and sensory regions. While clinical outcomes were similar, neurophysiological data indicate that sensory-motor exercises play a central role in boosting cortical excitability, with tDCS further amplifying this effect, as evidenced by a significant AMT reduction in MF and TrA/IO muscles and an increase in N80 amplitude.
Collapse
Affiliation(s)
- Soheila Qanbari
- Physical Therapy Department, Tehran University of Medical Sciences, Tehran, Iran
| | - Roya Khanmohammadi
- Physical Therapy Department, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Olyaei
- Physical Therapy Department, Tehran University of Medical Sciences, Tehran, Iran
| | - Zohreh Hosseini
- Physical Therapy Department, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanie Sadat Hejazi
- Physical Therapy Department, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Massé-Alarie H, Shraim M, Hodges PW. Sensorimotor Integration in Chronic Low Back Pain. Neuroscience 2024; 552:29-38. [PMID: 38878816 DOI: 10.1016/j.neuroscience.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/02/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
OBJECTIVE Chronic low back pain (CLBP) impacts on spine movement. Altered sensorimotor integration can be involved. Afferents from the lumbo-pelvic area might be processed differently in CLBP and impact on descending motor control. This study aimed to determine whether afferents influence the corticomotor control of paravertebral muscles in CLBP. Fourteen individuals with CLBP (11 females) and 13 pain-free controls (8 females) were tested with transcranial magnetic stimulation (TMS) to measure the motor-evoked potential [MEP] amplitude of paravertebral muscles. Noxious and non-noxious electrical stimulation, and magnetic stimulation in the lumbo-sacral area were used as afferent stimuli and triggered 20 to 200 ms prior to TMS. EMG modulation elicited by afferent stimulation alone was measured to control net motoneuron excitability. MEP/EMG ratio was used as a measure of corticospinal excitability with control of net motoneuron excitability. MEP/EMG ratio was larger at 60, 80 and 100-ms intervals in CLBP compared to controls, and afferent stimulations alone reduced EMG amplitude greater in CLBP than controls at 100 ms. Our results suggest alteration in sensorimotor integration in CLBP highlighted by a greater facilitation of the descending corticospinal input to paravertebral muscles. Our results can help to optimise interventions by better targeting mechanisms.
Collapse
Affiliation(s)
- Hugo Massé-Alarie
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, Brisbane, QLD, Australia; Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale (CIRRIS), Université Laval, Québec, Canada.
| | - Muath Shraim
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, Brisbane, QLD, Australia
| | - Paul W Hodges
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, Brisbane, QLD, Australia
| |
Collapse
|
4
|
Gallina A, Abboud J, Blouin JS. Vestibular control of deep and superficial lumbar muscles. J Neurophysiol 2024; 131:516-528. [PMID: 38230879 DOI: 10.1152/jn.00171.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 11/20/2023] [Accepted: 12/26/2023] [Indexed: 01/18/2024] Open
Abstract
The active control of the lumbar musculature provides a stable platform critical for postures and goal-directed movements. Voluntary and perturbation-evoked motor commands can recruit individual lumbar muscles in a task-specific manner according to their presumed biomechanics. Here, we investigated the vestibular control of the deep and superficial lumbar musculature. Ten healthy participants were exposed to noisy electrical vestibular stimulation while balancing upright with their head facing forward, left, or right to characterize the differential modulation in the vestibular-evoked lumbar extensor responses in generating multidirectional whole body motion. We quantified the activation of the lumbar muscles on the right side using indwelling [deep multifidus, superficial multifidus, caudal longissimus (L4), and cranial longissimus (L1)] and high-density surface recordings. We characterized the vestibular-evoked responses using coherence and peak-to-peak cross-covariance amplitude between the vestibular and electromyographic signals. Participants exhibited responses in all lumbar muscles. The vestibular control of the lumbar musculature exhibited muscle-specific modulations: responses were larger in the longissimus (combined cranio-caudal) compared with the multifidus (combined deep-superficial) when participants faced forward (P < 0.001) and right (P = 0.011) but not when they faced left. The high-density surface recordings partly supported this observation: the location of the responses was more lateral when facing right compared with left (P < 0.001). The vestibular control of muscle subregions within the longissimus or the multifidus was similar. Our results demonstrate muscle-specific vestibular control of the lumbar muscles in response to perturbations of vestibular origin. The lack of differential activation of lumbar muscle subregions suggests the vestibular control of these subregions is co-regulated for standing balance.NEW & NOTEWORTHY We investigated the vestibular control of the deep and superficial lumbar extensor muscles using electrical vestibular stimuli. Vestibular stimuli elicited preferential activation of the longissimus muscle over the multifidus muscle. We did not observe clear regional activation of lumbar muscle subregions in response to the vestibular stimuli. Our findings show that the central nervous system can finely tune the vestibular control of individual lumbar muscles and suggest minimal regional variations in the activation of lumbar muscle subregions.
Collapse
Affiliation(s)
- Alessio Gallina
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre of Precision Rehabilitation for Spinal Pain, School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jacques Abboud
- Département des Sciences de l'Activité Physique, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
| | - Jean-Sébastien Blouin
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
- Institute for Computing, Information and Cognitive Systems, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Desmons M, Theberge M, Mercier C, Massé-Alarie H. Contribution of neural circuits tested by transcranial magnetic stimulation in corticomotor control of low back muscle: a systematic review. Front Neurosci 2023; 17:1180816. [PMID: 37304019 PMCID: PMC10247989 DOI: 10.3389/fnins.2023.1180816] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Transcranial magnetic stimulation (TMS) is widely used to investigate central nervous system mechanisms underlying motor control. Despite thousands of TMS studies on neurophysiological underpinnings of corticomotor control, a large majority of studies have focused on distal muscles, and little is known about axial muscles (e.g., low back muscles). Yet, differences between corticomotor control of low back and distal muscles (e.g., gross vs. fine motor control) suggest differences in the neural circuits involved. This systematic review of the literature aims at detailing the organisation and neural circuitry underlying corticomotor control of low back muscles tested with TMS in healthy humans. Methods The literature search was performed in four databases (CINAHL, Embase, Medline (Ovid) and Web of science) up to May 2022. Included studies had to use TMS in combination with EMG recording of paraspinal muscles (between T12 and L5) in healthy participants. Weighted average was used to synthesise quantitative study results. Results Forty-four articles met the selection criteria. TMS studies of low back muscles provided consistent evidence of contralateral and ipsilateral motor evoked potentials (with longer ipsilateral latencies) as well as of short intracortical inhibition/facilitation. However, few or no studies using other paired pulse protocols were found (e.g., long intracortical inhibition, interhemispheric inhibition). In addition, no study explored the interaction between different cortical areas using dual TMS coil protocol (e.g., between primary motor cortex and supplementary motor area). Discussion Corticomotor control of low back muscles are distinct from hand muscles. Our main findings suggest: (i) bilateral projections from each single primary motor cortex, for which contralateral and ipsilateral tracts are probably of different nature (contra: monosynaptic; ipsi: oligo/polysynaptic) and (ii) the presence of intracortical inhibitory and excitatory circuits in M1 influencing the excitability of the contralateral corticospinal cells projecting to low back muscles. Understanding of these mechanisms are important for improving the understanding of neuromuscular function of low back muscles and to improve the management of clinical populations (e.g., low back pain, stroke).
Collapse
Affiliation(s)
- Mikaël Desmons
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), CIUSSS de la Capitale-Nationale, Quebec, QC, Canada
- Rehabilitation Department, Université Laval, Quebec, QC, Canada
| | - Michael Theberge
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), CIUSSS de la Capitale-Nationale, Quebec, QC, Canada
| | - Catherine Mercier
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), CIUSSS de la Capitale-Nationale, Quebec, QC, Canada
- Rehabilitation Department, Université Laval, Quebec, QC, Canada
| | - Hugo Massé-Alarie
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), CIUSSS de la Capitale-Nationale, Quebec, QC, Canada
- Rehabilitation Department, Université Laval, Quebec, QC, Canada
| |
Collapse
|
6
|
Cole DM, Stämpfli P, Gandia R, Schibli L, Gantner S, Schuetz P, Meier ML. In the back of your mind: Cortical mapping of paraspinal afferent inputs. Hum Brain Mapp 2022; 43:4943-4953. [PMID: 35979921 PMCID: PMC9582373 DOI: 10.1002/hbm.26052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/22/2022] [Accepted: 08/02/2022] [Indexed: 11/06/2022] Open
Abstract
Topographic organisation is a hallmark of vertebrate cortex architecture, characterised by ordered projections of the body's sensory surfaces onto brain systems. High-resolution functional magnetic resonance imaging (fMRI) has proven itself as a valuable tool to investigate the cortical landscape and its (mal-)adaptive plasticity with respect to various body part representations, in particular extremities such as the hand and fingers. Less is known, however, about the cortical representation of the human back. We therefore validated a novel, MRI-compatible method of mapping cortical representations of sensory afferents of the back, using vibrotactile stimulation at varying frequencies and paraspinal locations, in conjunction with fMRI. We expected high-frequency stimulation to be associated with differential neuronal activity in the primary somatosensory cortex (S1) compared with low-frequency stimulation and that somatosensory representations would differ across the thoracolumbar axis. We found significant differences between neural representations of high-frequency and low-frequency stimulation and between representations of thoracic and lumbar paraspinal locations, in several bilateral S1 sub-regions, and in regions of the primary motor cortex (M1). High-frequency stimulation preferentially activated Brodmann Area (BA) regions BA3a and BA4p, whereas low-frequency stimulation was more encoded in BA3b and BA4a. Moreover, we found clear topographic differences in S1 for representations of the upper and lower back during high-frequency stimulation. We present the first neurobiological validation of a method for establishing detailed cortical maps of the human back, which might serve as a novel tool to evaluate the pathological significance of neuroplastic changes in clinical conditions such as chronic low back pain.
Collapse
Affiliation(s)
- David M Cole
- Integrative Spinal Research, Department of Chiropractic Medicine, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.,Department of Psychiatry, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of Zurich, Zurich, Switzerland
| | - Philipp Stämpfli
- Department of Psychiatry, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of Zurich, Zurich, Switzerland.,MR-Center of the Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Robert Gandia
- Competence Center Thermal Energy Storage, Lucerne University of Applied Sciences and Arts, Lucerne, Switzerland
| | - Louis Schibli
- Competence Center Thermal Energy Storage, Lucerne University of Applied Sciences and Arts, Lucerne, Switzerland
| | - Sandro Gantner
- Competence Center Thermal Energy Storage, Lucerne University of Applied Sciences and Arts, Lucerne, Switzerland
| | - Philipp Schuetz
- Competence Center Thermal Energy Storage, Lucerne University of Applied Sciences and Arts, Lucerne, Switzerland
| | - Michael L Meier
- Integrative Spinal Research, Department of Chiropractic Medicine, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Journée HL, Journée SL. Transcranial Magnetic Stimulation and Transcranial Electrical Stimulation in Horses. Vet Clin North Am Equine Pract 2022; 38:189-211. [PMID: 35811197 DOI: 10.1016/j.cveq.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Depending on the localization of the lesion, spinal cord ataxia is the most common type of ataxia in horses. Most prevalent diagnoses include cervical vertebral stenotic myelopathy (CVSM), equine protozoal myeloencephalitis (EPM), trauma and equine degenerative myeloencephalopathy (EDM). Other causes of ataxia and weakness are associated with infectious causes, trauma and neoplasia. A neurologic examination is indispensable to identify the type of ataxia. In addition, clinical neurophysiology offers tools to locate functional abnormalities in the central and peripheral nervous system. Clinical EMG assessment looks at the lower motoneuron function (LMN) and is used to differentiate between neuropathy in peripheral nerves, which belong to LMNs and myopathy. As LMNs reside in the spinal cord, it is possible to grossly localize lesions in the myelum by muscle examination. Transcranial (tc) stimulation techniques are gaining importance in all areas of medicine to assess the motor function of the spinal cord along the motor tracts to the LMNs. Applications in diagnostics, intraoperative neurophysiological monitoring (IONM), and evaluation of effects of treatment are still evolving in human medicine and offer new challenges in equine medicine. Tc stimulation techniques comprise transcranial magnetic stimulation (TMS) and transcranial electrical stimulation (TES). TMS was first applied in horses in 1996 by Mayhew and colleagues and followed by TES. The methods are exchangeable for clinical diagnostic assessment but show a few differences. An outline is given on the principles, current clinical diagnostic applications and challenging possibilities of muscle evoked potentials (MEP) from transcranial stimulation in horses.
Collapse
Affiliation(s)
- Henricus Louis Journée
- Department of Neurosurgery, University of Groningen, Univ Med Center Groningen, Hanzeplein 1, Groningen 9713 GZ, the Netherlands; Department of Orthopedics, Univ Utrecht, Univ Med Ctr Utrecht, PO-box 85500 NL-3508 GA, Utrecht, Netherlands.
| | | |
Collapse
|
8
|
Rohel A, Desmons M, Leonard G, Desgagnés A, da Silva R, Simoneau M, Mercier C, Massé-Alarie H. The influence of experimental low back pain on neural networks involved in the control of lumbar erector spinae muscles. J Neurophysiol 2022; 127:1593-1605. [PMID: 35608262 DOI: 10.1152/jn.00030.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Low back pain (LBP) often modifies spine motor control, but the neural origin of these motor control changes remains largely unexplored. This study aimed to determine the impact of experimental low back pain on the excitability of cortical, subcortical, and spinal networks involved in the control of back muscles. METHOD Thirty healthy subjects were recruited and allocated to Pain (capsaicin and heat) or Control (heat) groups. Corticospinal excitability (motor-evoked potential-MEP) and intracortical networks were assessed by single- and paired-pulse transcranial magnetic stimulation, respectively. Electrical vestibular stimulation was applied to assess vestibulospinal excitability (vestibular MEP-VMEP), and the stretch reflex for excitability of the spinal or supraspinal loop (R1 and R2, respectively). Evoked back motor responses were measured before, during and after pain induction. Nonparametric rank-based ANOVA determined if pain modulated motor neural networks. RESULTS A decrease of R1 amplitude was present after the pain disappearance (p=0.01) whereas an increase was observed in the control group (p=0.03) compared to the R1 amplitude measured at pre-pain and pre-heat period, respectively (Group x Time interaction - p<0.001). No difference in MEP and VMEP amplitude was present during and after pain (p>0.05). CONCLUSION During experimental LBP, no change in cortical, subcortical, or spinal networks was observed. After pain disappearance, the reduction of the R1 amplitude without modification of MEP and VMEP amplitude suggest a reduction in spinal excitability potentially combined with an increase in descending drives. The absence of effect during pain needs to be further explored.
Collapse
Affiliation(s)
- Antoine Rohel
- Cirris research centre, Centre intégré universitaire de santé et services sociaux (CIUSSS) de la Capitale-Nationale, Quebec City, Canada.,Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Mikaël Desmons
- Cirris research centre, Centre intégré universitaire de santé et services sociaux (CIUSSS) de la Capitale-Nationale, Quebec City, Canada.,Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Guillaume Leonard
- Research Center on Aging, CIUSSS de l'Estrie - CHUS, Sherbrooke, Canada
| | - Amélie Desgagnés
- Cirris research centre, Centre intégré universitaire de santé et services sociaux (CIUSSS) de la Capitale-Nationale, Quebec City, Canada.,Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Rubens da Silva
- BioNR Research Lab, Université du Québec à Chicoutimi, Chicoutimi, Quebec, Canada
| | - Martin Simoneau
- Cirris research centre, Centre intégré universitaire de santé et services sociaux (CIUSSS) de la Capitale-Nationale, Quebec City, Canada.,Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Catherine Mercier
- Cirris research centre, Centre intégré universitaire de santé et services sociaux (CIUSSS) de la Capitale-Nationale, Quebec City, Canada.,Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Hugo Massé-Alarie
- Cirris research centre, Centre intégré universitaire de santé et services sociaux (CIUSSS) de la Capitale-Nationale, Quebec City, Canada.,Faculty of Medicine, Université Laval, Quebec City, Canada
| |
Collapse
|
9
|
Shraim MA, Massé-Alarie H, Salomoni SE, Hodges PW. Can training of a skilled pelvic movement change corticomotor control of back muscles? Comparison of single and paired-pulse transcranial magnetic stimulation. Eur J Neurosci 2022; 56:3705-3719. [PMID: 35501123 PMCID: PMC9540878 DOI: 10.1111/ejn.15683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022]
Abstract
Evidence suggests excitability of the motor cortex (M1) changes in response to motor skill learning of the upper limb. Few studies have examined immediate changes in corticospinal excitability and intra‐cortical mechanisms following motor learning in the lower back. Further, it is unknown which transcranial magnetic stimulation (TMS) paradigms are likely to reveal changes in cortical function in this region. This study aimed to (1) compare corticospinal excitability and intra‐cortical mechanisms in the lower back region of M1 before and after a single session of lumbopelvic tilt motor learning task in healthy people and (2) compare these measures between two TMS coils and two methods of recruitment curve (RC) acquisition. Twenty‐eight young participants (23.6 ± 4.6 years) completed a lumbopelvic tilting task involving three 5‐min blocks. Single‐pulse (RC from 70% to 150% of active motor threshold) and paired‐pulse TMS measures (ICF, SICF and SICI) were undertaken before (using 2 coils: figure‐of‐8 and double cone) and after (using double cone coil only) training. RCs were also acquired using a traditional and rapid method. A significant increase in corticospinal excitability was found after training as measured by RC intensities, but this was not related to the RC slope. No significant differences were found for paired‐pulse measures after training. Finally, there was good agreement between RC parameters when measured with the two different TMS coils or different acquisition methods (traditional vs. rapid). Changes in corticospinal excitability after a single session of lumbopelvic motor learning task are seen, but these changes are not explained by changes in intra‐cortical mechanisms.
Collapse
Affiliation(s)
- Muath A Shraim
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, QLD, Australia
| | - Hugo Massé-Alarie
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, QLD, Australia.,Centre interdisciplinaire de recherche en réadaptation et integration sociale (CIRRIS), Université Laval, Québec, QC, Canada
| | - Sauro E Salomoni
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, QLD, Australia
| | - Paul W Hodges
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, QLD, Australia
| |
Collapse
|
10
|
Massé-Alarie H, Shraim MA, Taylor JL, Hodges PW. Effects of different modalities of afferent stimuli of the lumbo-sacral area on control of lumbar paravertebral muscles. Eur J Neurosci 2022; 56:3687-3704. [PMID: 35478204 DOI: 10.1111/ejn.15677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/23/2022] [Accepted: 04/07/2022] [Indexed: 11/30/2022]
Abstract
Somatosensory feedback to the central nervous system is essential to plan, perform and refine spine motor control. However, the influence of somatosensory afferent input from the trunk on the motor output to trunk muscles has received little attention. The objective was to compare the effects of distinct modalities of afferent stimulation on the net motoneuron and corticomotor excitability of paravertebral muscles. Fourteen individuals were recruited. Modulation of corticospinal excitability (motor-evoked potential [MEP]) of paravertebral muscles was measured when afferent stimuli (cutaneous noxious and non-noxious, muscle contraction) were delivered to the trunk at 10 intervals prior to transcranial magnetic stimulation. Each peripheral stimulation was applied alone, and subsequent EMG modulation was measured to control for net motoneuron excitability. MEP modulation and MEP/EMG ratio were used as measures of corticospinal excitability with and without control of net motoneuron excitability, respectively. MEP and EMG modulation were smaller after evoked muscle contraction than after cutaneous noxious and non-noxious stimuli. MEP/EMG ratio was not different between stimulation types. Both MEP and EMG amplitudes were reduced after evoked muscle contraction, but not when expressed as MEP/EMG ratio. Noxious and non-noxious stimulation had limited impact on all variables. Distinct modalities of peripheral afferent stimulation of the lumbo-sacral area differently modulated responses of paravertebral muscles, but without an influence on corticospinal excitability with control of net motoneuron excitability. Muscle stimulation reduced paravertebral activity and was best explained by spinal mechanisms. The impact of afferent stimulation on back muscles differs from the effects reported for limb muscles.
Collapse
Affiliation(s)
- Hugo Massé-Alarie
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, Brisbane, Qld, Australia.,Centre interdisciplinaire de recherche en réadaptation et intégration sociale (CIRRIS), Université Laval, Québec, Canada
| | - Muath A Shraim
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, Brisbane, Qld, Australia
| | - Janet L Taylor
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia.,Neuroscience Research Australia, Randwick, NSW, Australia
| | - Paul W Hodges
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, Brisbane, Qld, Australia
| |
Collapse
|
11
|
Elgueta-Cancino E, Sheeran L, Salomoni S, Hall L, Hodges PW. Characterisation of motor cortex organisation in patients with different presentations of persistent low back pain. Eur J Neurosci 2021; 54:7989-8005. [PMID: 34719827 PMCID: PMC10138737 DOI: 10.1111/ejn.15511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/14/2021] [Accepted: 10/24/2021] [Indexed: 02/06/2023]
Abstract
Persistence of low back pain is thought to be associated with different underlying pain mechanisms, including ongoing nociceptive input and central sensitisation. We hypothesised that primary motor cortex (M1) representations of back muscles (a measure of motor system adaptation) would differ between pain mechanisms, with more consistent observations in individuals presumed to have an ongoing contribution of nociceptive input consistently related to movement/posture. We tested 28 participants with low back pain sub-grouped by the presumed underlying pain mechanisms: nociceptive pain, nociplastic pain and a mixed group with features consistent with both. Transcranial magnetic stimulation was used to study M1 organisation of back muscles. M1 maps of multifidus (deep and superficial) and longissimus erector spinae were recorded with fine-wire electromyography and thoracic erector spinae with surface electromyography. The nociplastic pain group had greater variability in M1 map location (centre of gravity) than other groups (p < .01), which may suggest less consistency, and perhaps relevance, of motor cortex adaptation for that group. The mixed group had greater overlap of M1 representations between deep/superficial muscles than nociceptive pain (deep multifidus/longissimus: p = .001, deep multifidus/thoracic erector spinae: p = .008) and nociplastic pain (deep multifidus/longissimus: p = .02, deep multifidus/thoracic erector spinae: p = .02) groups. This study provides preliminary evidence of differences in M1 organisation in subgroups of low back pain classified by likely underlying pain mechanisms. Despite the sample size, differences in cortical re-organisation between subgroups were detected. Differences in M1 organisation in subgroups of low back pain supports tailoring of treatment based on pain mechanism and motor adaptation.
Collapse
Affiliation(s)
- Edith Elgueta-Cancino
- Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Queensland, Australia.,School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Liba Sheeran
- Biomechanics and Bioengineering Research Centre Versus Arthritis, Cardiff University, Cardiff, UK.,School of Healthcare Sciences, Cardiff University, Cardiff, UK
| | - Sauro Salomoni
- Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Leanne Hall
- Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Paul W Hodges
- Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
12
|
Desmons M, Rohel A, Desgagnés A, Mercier C, Massé-Alarie H. Influence of different transcranial magnetic stimulation current directions on the corticomotor control of lumbar erector spinae muscles during a static task. J Neurophysiol 2021; 126:1276-1288. [PMID: 34550037 DOI: 10.1152/jn.00137.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Different directions of transcranial magnetic stimulation (TMS) can activate different neuronal circuits. Whereas posteroanterior current (PA-TMS) depolarizes mainly interneurons in primary motor cortex (M1), an anteroposterior current (AP-TMS) has been suggested to activate different M1 circuits and perhaps axons from the premotor regions. Although M1 is also involved in the control of axial muscles, no study has explored whether different current directions activate different M1 circuits that may have distinct functional roles. The aim of the study was to compare the effect of different current directions (PA- and AP-TMS) on the corticomotor control and spatial cortical organization of the lumbar erector spinae muscle (LES). Thirty-four healthy participants were recruited for two independent experiments, and LES motor-evoked potentials (MEPs) were recorded. In experiment 1 (n = 17), active motor threshold (AMT), MEP latencies, recruitment curve (90% to 160% AMT), and excitatory and inhibitory intracortical mechanisms by paired-pulse TMS (80% followed by 120% AMT stimuli at 2-, 3-, 10-, and 15-ms interstimulus intervals) were tested with a double-cone (n = 12) and a figure-of-eight (n = 5) coil. In experiment 2 (n = 17), LES cortical representations were tested with PA- and AP-TMS. AMT was higher for AP- compared with PA-TMS (P = 0.002). Longer latencies with AP-TMS were present compared with PA-TMS (P = 0.017). AP-TMS produced more inhibition compared with PA-TMS at 2 ms and 3 ms (P = 0.010), but no difference was observed for longer intervals. No difference was found for recruitment curve and mapping. These findings suggest that PA- and AP-TMS may activate different cortical circuits controlling low back muscles, as proposed for hand muscles.NEW & NOTEWORTHY For the first time, anteroposterior and posteroanterior induced electric currents in the brain were compared when targeting back muscle representation with transcranial magnetic stimulation. The use of the anteroposterior current resulted in later response latency, larger inhibition probed by paired-pulse stimulation, and higher motor threshold. These important differences between current directions suggest that each of the current directions may recruit specific cortical circuits involved in the control of back muscles, similar to that for hand muscles.
Collapse
Affiliation(s)
- Mikaël Desmons
- CIRRIS Research Centre, Université Laval, Quebec City, Quebec, Canada
| | - Antoine Rohel
- CIRRIS Research Centre, Université Laval, Quebec City, Quebec, Canada
| | - Amélie Desgagnés
- CIRRIS Research Centre, Université Laval, Quebec City, Quebec, Canada
| | - Catherine Mercier
- CIRRIS Research Centre, Université Laval, Quebec City, Quebec, Canada.,Rehabilitation Unit, Université Laval, Quebec City, Quebec, Canada
| | - Hugo Massé-Alarie
- CIRRIS Research Centre, Université Laval, Quebec City, Quebec, Canada.,Rehabilitation Unit, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
13
|
Desgagnés A, Desmons M, Cyr JP, Simoneau M, Massé-Alarie H. Motor Responses of Lumbar Erector Spinae Induced by Electrical Vestibular Stimulation in Seated Participants. Front Hum Neurosci 2021; 15:690433. [PMID: 34366814 PMCID: PMC8339290 DOI: 10.3389/fnhum.2021.690433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/22/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: The study of motor responses induced by electrical vestibular stimulation (EVS) may help clarify the role of the vestibular system in postural control. Although back muscles have an important role in postural control, their EVS-induced motor responses were rarely studied. Moreover, the effects of EVS parameters, head position, and vision on EVS-induced back muscles responses remain little explored. Objectives: To explore the effects of EVS parameters, head position, and vision on lumbar erector spinae muscles EVS-induced responses. Design: Exploratory, cross-sectional study. Materials and Methods: Ten healthy participants were recruited. Three head positions (right, left and no head rotation), 4 intensities (2, 3, 4, 5 mA), and 4 EVS durations (5, 20, 100, 200 ms) were tested in sitting position with eyes open or closed. EVS usually induced a body sway toward the anode (placed on the right mastoid). EMG activity of the right lumbar erector spinae was recorded. Variables of interest were amplitude, occurrence, and latency of the EVS-induced modulation of the EMG activity. Results: The short-latency response was inhibitory and the medium-latency response was excitatory. Increased EVS current intensity augmented the occurrence and the amplitude of the short- and medium-latency responses (more inhibition and more excitation, respectively). EVS duration influenced the medium-latency response differently depending on the position of the head. Right head rotation produced larger responses amplitude and occurrence than left head rotation. Opposite head rotation (left vs. right) did not induce a reversal of the short- and medium-latency responses (i.e., the inhibition did not become an excitation), as typically reported in lower legs muscles. The eyes open condition did not modulate muscle responses. Conclusion: Modulation of EVS parameters (current intensity and duration of EVS) affects the amplitude and occurrence of the lumbar erector spinae responses. In contrast, vision did not influence the responses, suggesting its minimal contribution to vestibulomotor control in sitting. The lack of response reversal in sagittal plane may reflect the biomechanical role of lumbar erector spinae to fine-tune the lumbar lordosis during the induced body sway. This hypothesis remains to be further tested.
Collapse
Affiliation(s)
- Amélie Desgagnés
- Centre Interdisciplinaire de Recherche en Réadaptation et en Intégration Sociale (CIRRIS), Laval University, Quebec City, QC, Canada
| | - Mikaël Desmons
- Centre Interdisciplinaire de Recherche en Réadaptation et en Intégration Sociale (CIRRIS), Laval University, Quebec City, QC, Canada
| | - Jean-Philippe Cyr
- Centre Interdisciplinaire de Recherche en Réadaptation et en Intégration Sociale (CIRRIS), Laval University, Quebec City, QC, Canada
| | - Martin Simoneau
- Centre Interdisciplinaire de Recherche en Réadaptation et en Intégration Sociale (CIRRIS), Laval University, Quebec City, QC, Canada.,Kinesiology Department, Laval University, Quebec City, QC, Canada
| | - Hugo Massé-Alarie
- Centre Interdisciplinaire de Recherche en Réadaptation et en Intégration Sociale (CIRRIS), Laval University, Quebec City, QC, Canada.,Rehabilitation Department, Laval University, Quebec City, QC, Canada
| |
Collapse
|
14
|
Jiang N, Wang L, Huang Z, Li G. Mapping Responses of Lumbar Paravertebral Muscles to Single-Pulse Cortical TMS Using High-Density Surface Electromyography. IEEE Trans Neural Syst Rehabil Eng 2021; 29:831-840. [PMID: 33905333 DOI: 10.1109/tnsre.2021.3076095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Motor evoked potential (MEP), which was elicited by transcranial magnetic stimulation (TMS), has been widely used to detect corticospinal projection from TMS cortical site to trunk muscles. It can help to find the stimulation hotspot in the scalp. However, it fails to precisely describe coordinated activities of trunk muscle groups with only single-channel myoelectric signal. In this study, we aimed to use high-density surface electromyography (sEMG) to explore the effect of cortical TMS on lumbar paravertebral muscles in healthy subjects. The cortical site at 1 cm anterior and 4 cm lateral to vertex was chosen to simulate using a single-pulse TMS with different intensities and forward-bending angles. A high-density electrode array (45 channels) was placed on the surface of lumbar paravertebral muscles to record sEMG signals during a TMS experiment. MEP signals elicited by TMS were extracted from 45-channel recordings and one topographic map of the MEP amplitudes with six spatial features was constructed at each sampling point. The results showed TMS could successfully evoke an oval area with high intensity in the MEP topographic map, while this area mainly located in ipsilateral side of the TMS site. Intensity features related to the high intensity area rose significantly with TMS intensity and forward-bending angle increasing, but location features showed no change. The optimal stimulation parameters were 80% of maximum stimulator output (MSO) for TMS intensity and 30/60 degree for forward-bending angle. This study provided a potentially effective mapping tool to explore the hotspot for transcranial stimulation on trunk muscles.
Collapse
|
15
|
Cortical Representations of Transversus Abdominis and Multifidus Muscles Were Discrete in Patients with Chronic Low Back Pain: Evidence Elicited by TMS. Neural Plast 2021; 2021:6666024. [PMID: 33679969 PMCID: PMC7906820 DOI: 10.1155/2021/6666024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 11/17/2022] Open
Abstract
Introduction The transversus abdominis (TVA) and multifidus (MF) muscles are the main segmental spinal stabilizers that are controlled by the primary motor cortex of the brain. However, relocations of the muscle representation in the motor cortex may occur after chronic lower back pain (cLBP); it still needs more evidence to be proven. The current study was aimed at applying transcranial magnetic stimulation (TMS) to investigate the changes of representation of TVA and MF muscles at the cortical network in individuals with cLBP. Methods Twenty-four patients with cLBP and 12 age-matched healthy individuals were recruited. Responses of TVA and MF to TMS during muscle contraction were monitored and mapped over the contralateral cortex using a standardized grid cap. Maps of the center of gravity (CoG), area, volume, and latency were analyzed, and the asymmetry index was also computed and compared. Results The locations of MF CoG in cLBP individuals were posterior and lateral to the CoG locations in healthy individuals. In the healthy group, the locations of TVA and MF CoG were closed to each other in both the left and right hemispheres. In the cLBP group, these two locations were next to each other in the right hemisphere but discrete in the left hemisphere. In the cLBP group, the cortical motor map of TVA and MF were mutually symmetric in five out of eleven (45.5%) subjects and leftward asymmetric in four out of ten (40.0%) subjects. Conclusions Neural representations of TVA and MF muscles were closely organized in both the right and left motor cortices in the healthy group but were discretely organized in the left motor cortex in the cLBP group. This provides strong support for the neural basis of pathokinesiology and clinical treatment of cLBP.
Collapse
|
16
|
Ganesh GS, Kaur P, Meena S. Systematic reviews evaluating the effectiveness of motor control exercises in patients with non-specific low back pain do not consider its principles - A review. J Bodyw Mov Ther 2020; 26:374-393. [PMID: 33992272 DOI: 10.1016/j.jbmt.2020.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 07/11/2020] [Accepted: 08/28/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Motor control exercise (MCEs), spinal stabilization or core stability exercises were developed with the aim of restoring the coordination, control, and capacity of the trunk muscles and systematic reviews (SR) evaluating their effectiveness has shown conflicting results. This we hypothesized was due to the non-consideration of principles of neuroplasticity. The objective of this review was to review the operating definitions used in these reviews for these exercises and evaluate if these reviews have considered and satisfied the principles of these exercises in persons with NSLBP, both acute and chronic. METHODS The available evidence to address the research question was sought in the reviews published in English between January 2006 and April 2019 using the population, intervention, comparison, and outcome format. Data were extracted against the following factors: satisfy the principles of specific inclusion criteria; interventions; experience-dependent plasticity; and measure any one of the concepts of motor control. The quality of the evidence obtained was graded using the National Institute for Health and Care Excellence protocol and the quality of SRs evaluated using the R-AMSTAR. RESULTS Eleven reviews on core stability/spinal stabilization exercises and four reviews on MCE were considered in this review. The results showed that most of the studies considered by the reviews did not adhere to the principles of these exercises. CONCLUSION There is wide heterogeneity in the understanding, administration, and progression of exercises. The exercises were implemented without considering the potential for neuroplasticity of the nervous system and the principles of motor learning.
Collapse
Affiliation(s)
- G Shankar Ganesh
- Composite Regional Centre for Skill Development, Rehabilitation and Empowerment of Persons with Disabilities, Lucknow, Uttar Pradesh, India.
| | | | - Sadhana Meena
- Department of Physiotherapy, Sports Injury Centre, Safdarjung Hospital, New Delhi, India.
| |
Collapse
|
17
|
Agten A, Stevens S, Verbrugghe J, Eijnde BO, Timmermans A, Vandenabeele F. The lumbar multifidus is characterised by larger type I muscle fibres compared to the erector spinae. Anat Cell Biol 2020; 53:143-150. [PMID: 32647082 PMCID: PMC7343561 DOI: 10.5115/acb.20.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 01/30/2020] [Accepted: 02/07/2020] [Indexed: 12/17/2022] Open
Abstract
The metabolic capacity of a muscle is one of the determinants of muscle function. Muscle fiber type characteristics give an indication about this metabolic capacity. Therefore it might be expected that the lumbar multifidus (MF) as a local stabilizer contains higher proportions of slow type I fibers, compared to the erector spinae (ES) as a global mobilizer. The aim of this study is to determine the muscle fiber characteristics of the ES and MF to provide insight into their structural and metabolic characteristics, and thereby the functional capacity of both muscles. Muscle fiber type characteristics in the ES and MF were investigated with an immunofluorescence staining of the myosin heavy chain isoforms. In both the ES and MF, type I muscle fibers are predominantly present. The cross-sectional area (CSA) of type I muscle fibers is significantly larger in the lumbar MF compared to the ES. However, the mean muscle fiber type percentage for type I was not significantly different, which resulted in an insignificant difference in relative cross-sectional area (RCSA) for type I. No significant differences were found for all other muscle fiber types. This may indicate that the MF displays muscle fiber type characteristics that tend to be more appropriate to maintain stability of the spine. However, because we could not demonstrate significant differences in RCSA between ES and MF, we cannot firmly state that there are functional differences between the ES an MF based only on structural characteristics.
Collapse
Affiliation(s)
- Anouk Agten
- Department of Rehabilitation Sciences and Physiotherapy, Hasselt University, Rehabilitation Research Centre, Faculty of Rehabilitation Sciences, Diepenbeek, Belgium
| | - Sjoerd Stevens
- Department of Rehabilitation Sciences and Physiotherapy, Hasselt University, Rehabilitation Research Centre, Faculty of Rehabilitation Sciences, Diepenbeek, Belgium
| | - Jonas Verbrugghe
- Department of Rehabilitation Sciences and Physiotherapy, Hasselt University, Rehabilitation Research Centre, Faculty of Rehabilitation Sciences, Diepenbeek, Belgium
| | - Bert O Eijnde
- Department of Cardio and Internal Systems, Hasselt University, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Diepenbeek, Belgium
| | - Annick Timmermans
- Department of Rehabilitation Sciences and Physiotherapy, Hasselt University, Rehabilitation Research Centre, Faculty of Rehabilitation Sciences, Diepenbeek, Belgium
| | - Frank Vandenabeele
- Department of Rehabilitation Sciences and Physiotherapy, Hasselt University, Rehabilitation Research Centre, Faculty of Rehabilitation Sciences, Diepenbeek, Belgium
| |
Collapse
|
18
|
Davies JL. Using transcranial magnetic stimulation to map the cortical representation of lower-limb muscles. Clin Neurophysiol Pract 2020; 5:87-99. [PMID: 32455179 PMCID: PMC7235616 DOI: 10.1016/j.cnp.2020.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/30/2020] [Accepted: 04/18/2020] [Indexed: 01/25/2023] Open
Abstract
Objective To evaluate the extent to which transcranial magnetic stimulation (TMS) can identify discrete cortical representation of lower-limb muscles in healthy individuals. Methods Motor evoked potentials were recorded from resting vastus medialis, rectus femoris, vastus lateralis, medial and lateral hamstring, and medial and lateral gastrocnemius muscles on the right leg of 16 young healthy adults using bipolar surface electrodes. TMS was delivered through a 110-mm double-cone coil at 63 sites over the left hemisphere. Location and size of cortical representation and number of discrete peaks were quantified. Results Within the quadriceps group there was a main effect of muscle on anterior-posterior centre of gravity (p = 0.010), but the magnitude of the difference was small. There was also a main effect of muscle on medial-lateral hotspot (p = 0.027) and map volume (p = 0.047), but no post-hoc tests were significant. The topography of each lower-limb muscle was complex and variable across individuals. Conclusions TMS delivered with a 110-mm double-cone coil could not reliably identify discrete cortical representations of resting lower-limb muscles when responses were measured using bipolar surface electromyography. Significance The characteristics of the cortical representation provide a basis against which to evaluate cortical reorganisation in clinical populations.
Collapse
Affiliation(s)
- Jennifer L Davies
- School of Healthcare Sciences, Cardiff University, United Kingdom.,Biomechanics and Bioengineering Research Centre Versus Arthritis, Cardiff University, United Kingdom.,Cardiff University Brain Research Imaging Centre, Cardiff University, United Kingdom
| |
Collapse
|
19
|
Meier ML, Vrana A, Schweinhardt P. Low Back Pain: The Potential Contribution of Supraspinal Motor Control and Proprioception. Neuroscientist 2019; 25:583-596. [PMID: 30387689 PMCID: PMC6900582 DOI: 10.1177/1073858418809074] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Motor control, which relies on constant communication between motor and sensory systems, is crucial for spine posture, stability and movement. Adaptions of motor control occur in low back pain (LBP) while different motor adaption strategies exist across individuals, probably to reduce LBP and risk of injury. However, in some individuals with LBP, adapted motor control strategies might have long-term consequences, such as increased spinal loading that has been linked with degeneration of intervertebral discs and other tissues, potentially maintaining recurrent or chronic LBP. Factors contributing to motor control adaptations in LBP have been extensively studied on the motor output side, but less attention has been paid to changes in sensory input, specifically proprioception. Furthermore, motor cortex reorganization has been linked with chronic and recurrent LBP, but underlying factors are poorly understood. Here, we review current research on behavioral and neural effects of motor control adaptions in LBP. We conclude that back pain-induced disrupted or reduced proprioceptive signaling likely plays a pivotal role in driving long-term changes in the top-down control of the motor system via motor and sensory cortical reorganization. In the outlook of this review, we explore whether motor control adaptations are also important for other (musculoskeletal) pain conditions.
Collapse
Affiliation(s)
- Michael Lukas Meier
- Integrative Spinal Research, Department of
Chiropractic Medicine, University Hospital Balgrist, Zurich, Switzerland
| | - Andrea Vrana
- Integrative Spinal Research, Department of
Chiropractic Medicine, University Hospital Balgrist, Zurich, Switzerland
| | - Petra Schweinhardt
- Integrative Spinal Research, Department of
Chiropractic Medicine, University Hospital Balgrist, Zurich, Switzerland
- Alan Edwards Center for Research on Pain,
McGill University, Montreal, Quebec, Canada
| |
Collapse
|
20
|
Schabrun SM, Burns E, Thapa T, Hodges P. The Response of the Primary Motor Cortex to Neuromodulation is Altered in Chronic Low Back Pain: A Preliminary Study. PAIN MEDICINE 2019; 19:1227-1236. [PMID: 29016867 DOI: 10.1093/pm/pnx168] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Objective Neuromodulation is increasingly investigated for the treatment of low back pain (LBP). However, the neurophysiological effects of common neuromodulatory techniques (anodal transcranial direct current stimulation [tDCS] and peripheral electrical stimulation [PES]) have not been investigated in people with chronic LBP. Here we aimed to compare the effect of three neuromodulatory protocols (anodal tDCS, high intensity PES, and a priming protocol of combined tDCS/PES) on primary motor cortex (M1) excitability in people with and without chronic LBP. Design Cross-sectional. Setting University laboratory. Participants Ten individuals with chronic LBP and 10 pain-free controls. Methods Participants received four interventions in random order across separate sessions: 1) anodal tDCS to M1 + PES to the back muscles; 2) tDCS + sham PES; 3) sham tDCS + PES; or 4) sham tDCS + sham PES. Motor cortical excitability (map volume, discrete map peaks, and cortical silent period [CSP]) was measured before and after each intervention. Results Anodal tDCS increased M1 excitability (increased map volume and reduced CSP) in controls but had no effect in the LBP group. PES reduced M1 excitability in both groups. The combined tDCS + PES treatment increased M1 excitability in the LBP group but had no effect in controls. Conclusions The neurophysiological response to common neuromodulatory treatments differs between people with and without LBP. This has relevance for the design and tailoring of neuromodulation in pain. Further, if the goal of treatment is to increase M1 excitability, a priming protocol (e.g., combined tDCS + PES) may be more effective than tDCS alone.
Collapse
Affiliation(s)
- Siobhan M Schabrun
- Brain Rehabilitation and Neuroplasticity Unit, School of Science and Health, Western Sydney University, Penrith, New South Wales, Australia
- School of Health and Rehabilitations Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Emma Burns
- Brain Rehabilitation and Neuroplasticity Unit, School of Science and Health, Western Sydney University, Penrith, New South Wales, Australia
| | - Tribikram Thapa
- Brain Rehabilitation and Neuroplasticity Unit, School of Science and Health, Western Sydney University, Penrith, New South Wales, Australia
| | - Paul Hodges
- School of Health and Rehabilitations Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
21
|
Is the Organization of the Primary Motor Cortex in Low Back Pain Related to Pain, Movement, and/or Sensation? Clin J Pain 2019; 34:207-216. [PMID: 28719508 DOI: 10.1097/ajp.0000000000000535] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AIM/BACKGROUND Primary motor cortex (M1) organization differs between individuals with and without chronic low back pain (CLBP), in parallel with motor and sensory impairments. This study investigated whether movement behaviour and tactile/pain sensation are related to M1 organisation in CLBP. METHODS Transcranial magnetic stimulation (TMS) was used to map the M1 representation of the erector spinae and multifidus muscles in 20 participants with and without CLBP. Cortical organisation was quantified by: map volume; center of gravity (CoG); number of peaks; and primary and secondary peak location. Movement behaviour was assessed as the ability to dissociate lumbar from thorax motion and sensory function as two-point discrimination, pressure pain thresholds, and pain intensity (visual analogue scale). RESULTS People with CLBP showed more anterior location of the CoG than controls. Map peaks were more numerous in CLBP participants who performed the movement task good than those with poor performance. In CLBP, smaller map volume correlated with greater pain during the movement task. Movement behaviour was not linearly correlated with M1 features. CONCLUSIONS This study confirms that M1 maps differ between people with and without CLBP, but these changes are variable within the CLBP group and are not related to motor and sensory features in a simple manner.
Collapse
|
22
|
Massé-Alarie H, Salomoni SE, Hodges PW. The nociceptive withdrawal reflex of the trunk is organized with unique muscle receptive fields and motor strategies. Eur J Neurosci 2019; 50:1932-1947. [PMID: 30746786 DOI: 10.1111/ejn.14369] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/16/2019] [Accepted: 02/07/2019] [Indexed: 11/26/2022]
Abstract
Noxious stimuli induce a nociceptive withdrawal reflex (NWR) to protect the tissue from injury. Although the NWR was once considered as a stereotyped response, previous studies report distinct responses depending on the stimulation site and context for limbs. We aimed to determine whether noxious stimuli over the trunk produced adaptable complex NWR. We hypothesized that organization of the NWR of the trunk muscle would vary with the site of noxious input and would differ between body and spine postures, which modify the potential for specific muscles to remove threat. Fourteen participants were tested in sitting and three lumbar spine postures in side lying (neutral, flexion and extension). Noxious electrical stimuli were applied over the sacrum, spinous process of L3 and T12, lateral side of the 8th rib and anterior midline. NWR latency and amplitude were recorded with surface electromyography (EMG) electrodes over different trunk muscles. Distinct patterns of muscle activation depended on the stimulation site and were consistent with motor strategies needed to withdraw from the noxious stimuli. The NWR pattern differed between body positions, with less modulation observed in sitting than side lying. Spine posture did not affect the NWR organisation. Our results suggest the circuits controlling trunk muscle NWR presents with adaptability as a function of stimulation site and body position by utilizing the great complexity of the trunk muscle system to produce an efficient protective response. This suggests that the central nervous system (CNS) uses multiple adaptable strategies that are unique depending on which context the noxious stimuli are applied.
Collapse
Affiliation(s)
- Hugo Massé-Alarie
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, The University of Queensland, Brisbane, Queensland, Australia.,Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale (CIRRIS), Université Laval, Quebec City, Quebec, Canada
| | - Sauro E Salomoni
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Paul W Hodges
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
23
|
Elgueta-Cancino E, Marinovic W, Jull G, Hodges PW. Motor cortex representation of deep and superficial neck flexor muscles in individuals with and without neck pain. Hum Brain Mapp 2019; 40:2759-2770. [PMID: 30835902 DOI: 10.1002/hbm.24558] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 02/04/2019] [Accepted: 02/20/2019] [Indexed: 01/07/2023] Open
Abstract
Sensorimotor control of neck muscles differs between individuals with and without pain. Differences in the primary motor cortex (M1) maps of these muscles may be involved. This study compared M1 representations of deep (DNF) and superficial (SNF) neck flexor muscles between 10 individuals with neck pain (NP) and 10 painfree controls. M1 organisation was studied using transcranial magnetic stimulation (TMS) applied to a grid over the skull and surface electromyography of DNF (pharyngeal electrode) and SNF. Three-dimensional maps of M1 representation of each muscle were generated. Peaks in the SNF map that represented the sternocleidomastoid (SCM) and platysma muscles were identified. Unique centre of gravity (CoG)/map peaks were identified for the three muscles. In comparison to painfree controls, NP participants had more medial location of the CoG/peak of DNF, SCM, and platysma, greater mediolateral variation in DNF CoG (p = 0.02), fewer SNF and DNF map peaks (p = 0.01). These data show that neck flexor muscle M1 maps relate to trunk, neck, and face areas of the motor homunculus. Differences in M1 representation in NP have some similarities and some differences with observations for other musculoskeletal pain conditions. Despite the small sample size, our data did reveal differences and is comparable to other similar studies. The results of this study should be interpreted with consideration of methodological issues.
Collapse
Affiliation(s)
- Edith Elgueta-Cancino
- Centre of Clinical Excellence Research in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Welber Marinovic
- Centre of Clinical Excellence Research in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Queensland, Australia.,School of Psychology, Curtin University, Perth, Western Australia, Australia
| | - Gwendolen Jull
- Centre of Clinical Excellence Research in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Paul W Hodges
- Centre of Clinical Excellence Research in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
24
|
Lumbar erector spinae and sacral multifidus contractile properties in healthy females and males as determined by laser displacement mechanomyography. Biomed Signal Process Control 2019. [DOI: 10.1016/j.bspc.2018.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Experimental muscle hyperalgesia modulates sensorimotor cortical excitability, which is partially altered by unaccustomed exercise. Pain 2018; 159:2493-2502. [DOI: 10.1097/j.pain.0000000000001351] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Lim YH, Song JM, Choi EH, Lee JW. Effects of Repetitive Peripheral Magnetic Stimulation on Patients With Acute Low Back Pain: A Pilot Study. Ann Rehabil Med 2018; 42:229-238. [PMID: 29765876 PMCID: PMC5940599 DOI: 10.5535/arm.2018.42.2.229] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/17/2017] [Indexed: 01/13/2023] Open
Abstract
Objective To investigate the effects of real repetitive peripheral magnetic stimulation (rPMS) treatment compared to sham rPMS treatment on pain reduction and functional recovery of patients with acute low back pain. Methods A total of 26 patients with acute low back pain were randomly allocated to the real rPMS group and the sham rPMS group. Subjects were then administered a total of 10 treatment sessions. Visual analogue scale (VAS) was assessed before and after each session. Oswestry Disability Index (ODI) and Roland-Morris Disability Questionnaire (RMDQ) were employed to assess functional recovery at baseline and after sessions 5 and 10. Results Real rPMS treatment showed significant pain reduction immediately after each session. Sustained and significant pain relief was observed after administering only one session in the real rPMS group. Significant functional improvement was observed in the real rPMS group compared to that in the sham rPMS group after sessions 5 and 10 based on ODI and after session 5 based on RMDQ. Conclusion Real rPMS treatment has immediate effect on pain reduction and sustained effect on pain relief for patients with acute low back pain compared to sham rPMS.
Collapse
Affiliation(s)
- Young-Ho Lim
- Department of Physical Medicine and Rehabilitation, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Ji Min Song
- Department of Physical Medicine and Rehabilitation, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Eun-Hi Choi
- Department of Rehabilitation Medicine, Hallym University Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Korea
| | - Jang Woo Lee
- Department of Physical Medicine and Rehabilitation, National Health Insurance Service Ilsan Hospital, Goyang, Korea
| |
Collapse
|
27
|
Ivanenko Y, Gurfinkel VS. Human Postural Control. Front Neurosci 2018; 12:171. [PMID: 29615859 PMCID: PMC5869197 DOI: 10.3389/fnins.2018.00171] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 03/05/2018] [Indexed: 12/21/2022] Open
Abstract
From ancient Greece to nowadays, research on posture control was guided and shaped by many concepts. Equilibrium control is often considered part of postural control. However, two different levels have become increasingly apparent in the postural control system, one level sets a distribution of tonic muscle activity (“posture”) and the other is assigned to compensate for internal or external perturbations (“equilibrium”). While the two levels are inherently interrelated, both neurophysiological and functional considerations point toward distinct neuromuscular underpinnings. Disturbances of muscle tone may in turn affect movement performance. The unique structure, specialization and properties of skeletal muscles should also be taken into account for understanding important peripheral contributors to postural regulation. Here, we will consider the neuromechanical basis of habitual posture and various concepts that were rather influential in many experimental studies and mathematical models of human posture control.
Collapse
Affiliation(s)
- Yury Ivanenko
- Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Victor S Gurfinkel
- Biomedical Engineering Department, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
28
|
Modulation of Corticospinal Excitability of Trunk Muscles in Preparation of Rapid Arm Movement. Neuroscience 2018; 369:231-241. [DOI: 10.1016/j.neuroscience.2017.11.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 11/14/2017] [Accepted: 11/15/2017] [Indexed: 12/22/2022]
|
29
|
Russo M, Deckers K, Eldabe S, Kiesel K, Gilligan C, Vieceli J, Crosby P. Muscle Control and Non-specific Chronic Low Back Pain. Neuromodulation 2017; 21:1-9. [PMID: 29230905 PMCID: PMC5814909 DOI: 10.1111/ner.12738] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 10/14/2017] [Indexed: 12/15/2022]
Abstract
Objectives Chronic low back pain (CLBP) is the most prevalent of the painful musculoskeletal conditions. CLBP is a heterogeneous condition with many causes and diagnoses, but there are few established therapies with strong evidence of effectiveness (or cost effectiveness). CLBP for which it is not possible to identify any specific cause is often referred to as non‐specific chronic LBP (NSCLBP). One type of NSCLBP is continuing and recurrent primarily nociceptive CLBP due to vertebral joint overload subsequent to functional instability of the lumbar spine. This condition may occur due to disruption of the motor control system to the key stabilizing muscles in the lumbar spine, particularly the lumbar multifidus muscle (MF). Methods This review presents the evidence for MF involvement in CLBP, mechanisms of action of disruption of control of the MF, and options for restoring control of the MF as a treatment for NSCLBP. Results Imaging assessment of motor control dysfunction of the MF in individual patients is fraught with difficulty. MRI or ultrasound imaging techniques, while reliable, have limited diagnostic or predictive utility. For some patients, restoration of motor control to the MF with specific exercises can be effective, but population results are not persuasive since most patients are unable to voluntarily contract the MF and may be inhibited from doing so due to arthrogenic muscle inhibition. Conclusions Targeting MF control with restorative neurostimulation promises a new treatment option.
Collapse
Affiliation(s)
- Marc Russo
- Hunter Pain Clinic, Broadmeadow, NSW, Australia
| | | | - Sam Eldabe
- The James Cook University Hospital, Middlesbrough, UK
| | - Kyle Kiesel
- University of Evansville, Evansville, IN, USA
| | | | - John Vieceli
- Physioscope Pain Medicine of SA, South Australia, Australia
| | - Peter Crosby
- Mainstay Medical International plc, Dublin, Ireland
| |
Collapse
|
30
|
Massé-Alarie H, Bergin MJG, Schneider C, Schabrun S, Hodges PW. "Discrete peaks" of excitability and map overlap reveal task-specific organization of primary motor cortex for control of human forearm muscles. Hum Brain Mapp 2017; 38:6118-6132. [PMID: 28921724 DOI: 10.1002/hbm.23816] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 08/22/2017] [Accepted: 09/08/2017] [Indexed: 01/06/2023] Open
Abstract
The primary motor cortex (M1) presents a somatotopic organization of body parts, but with overlap between muscle/movement representations. This distinct but overlapping M1 organization is believed to be important for individuated control and movement coordination, respectively. Discrete peaks of greater excitability observed within M1 might underpin organization of cortical motor control. This study aimed to examine interactions between M1 representations of synergist and antagonist forearm muscles, compare regions of greater excitability during different functional tasks, and compare characteristics of M1 representation recorded using surface and fine-wire (fw ) electrodes. Transcranial magnetic stimulation (TMS) was applied over M1 for mapping the representation of 4 forearm muscles (extensor carpi radialis brevis [ECRB], extensor digitorum communis, flexor carpi radialis, and flexor digitorum superficialis) during three tasks: rest, grip, and wrist extension in 14 participants. There are three main findings. First, discrete areas of peak excitability within the M1 representation of ECRBfw were identified during grip and wrist extension suggesting that different M1 areas are involved in different motor functions. Second, M1 representations of synergist muscles presented with greater overlap of M1 representations than muscles with mainly antagonist actions, which suggests a role in muscle coordination. Third, as larger normalized map volume and overlap were observed using surface than fine-wire electrodes, data suggest that cross-talk from adjacent muscles compromised interpretation of recordings made with surface electrodes in response to TMS. These results provide a novel understanding of the spatial organization of M1 with evidence of "functional somatotopy." This has important implications for cortical control of movement. Hum Brain Mapp 38:6118-6132, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hugo Massé-Alarie
- Injury & Health, School of Health & Rehabilitation Sciences, The University of Queensland NHMRC Centre of Clinical Research Excellence in Spinal Pain, Brisbane, Queensland, Australia.,CHU de Québec Research Center, Neuroscience Unit (CHUL), Laboratory of Clinical Neuroscience and neuroStimulation, Université Laval (Rehabilitation Dept), Québec City, Quebec, Canada
| | - Michael J G Bergin
- Injury & Health, School of Health & Rehabilitation Sciences, The University of Queensland NHMRC Centre of Clinical Research Excellence in Spinal Pain, Brisbane, Queensland, Australia.,Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Cyril Schneider
- CHU de Québec Research Center, Neuroscience Unit (CHUL), Laboratory of Clinical Neuroscience and neuroStimulation, Université Laval (Rehabilitation Dept), Québec City, Quebec, Canada
| | - Siobhan Schabrun
- Injury & Health, School of Health & Rehabilitation Sciences, The University of Queensland NHMRC Centre of Clinical Research Excellence in Spinal Pain, Brisbane, Queensland, Australia.,Western Sydney University, Brain Rehabilitation and Neuroplasticity Unit, School of Science and Health, Campbelltown Campus, Locked Bag 1797, Penrith, New South Wales, 2751, Australia
| | - Paul W Hodges
- Injury & Health, School of Health & Rehabilitation Sciences, The University of Queensland NHMRC Centre of Clinical Research Excellence in Spinal Pain, Brisbane, Queensland, Australia
| |
Collapse
|
31
|
Goubert D, De Pauw R, Meeus M, Willems T, Cagnie B, Schouppe S, Van Oosterwijck J, Dhondt E, Danneels L. Lumbar muscle structure and function in chronic versus recurrent low back pain: a cross-sectional study. Spine J 2017; 17:1285-1296. [PMID: 28456669 DOI: 10.1016/j.spinee.2017.04.025] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 01/23/2017] [Accepted: 04/24/2017] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Heterogeneity exists within the low back pain (LBP) population. Some patients recover after every pain episode, whereas others suffer daily from LBP complaints. Until now, studies rarely make a distinction between recurrent low back pain (RLBP) and chronic low back pain (CLBP), although both are characterized by a different clinical picture. Clinical experiences also indicate that heterogeneity exists within the CLBP population. Muscle degeneration, like atrophy, fat infiltration, alterations in muscle fiber type, and altered muscle activity, compromises proper biomechanics and motion of the spinal units in LBP patients. The amount of alterations in muscle structure and muscle function of the paraspinal muscles might be related to the recurrence or chronicity of LBP. PURPOSE The aim of this experimental study is to evaluate differences in muscle structure (cross-sectional area and lean muscle fat index) and muscle activity of the multifidus (MF) and erector spinae (ES) during trunk extension, in patients with RLBP, non-continuous CLBP, and continuous CLBP. STUDY DESIGN AND SETTING This cross-sectional study took place in the university hospital of Ghent, Belgium. Muscle structure characteristics and muscle activity were assessed by magnetic resonance imaging (MRI). PATIENT SAMPLE Fifty-five adults with non-specific LBP (24 RLBP in remission, 15 non-continuous CLBP, 16 continuous CLBP) participated in this study. OUTCOME MEASURES Total cross-sectional area, muscle cross-sectional area, fat cross-sectional area, lean muscle fat index, T2-rest and T2-shift were assessed. METHODS A T1-weighted Dixon MRI scan was used to evaluate spinal muscle cross-sectional area and fat infiltration in the lumbar MF and ES. Muscle functional MRI was used to evaluate the muscle activity of the lumbar MF and ES during a lumbar extension exercise. Before and after the exercise, a pain assessment was performed. This study was supported by grants from the Special Research Fund of Ghent University (DEF12/AOP/022) without potential conflict of interest-associated biases in the text of the paper. RESULTS Fat cross-sectional area and lean muscle fat index were significantly higher in MF and ES in continuous CLBP compared with non-continuous CLBP and RLBP (p<.05). No differencesbetween groups were found for total cross-sectional area and muscle cross-sectional area in MF or ES (p>.05). Also, no significant differences between groups for T2-rest were established. T2-shift, however, was significantly lower in MF and ES in RLBP compared with, respectively, non-continuous CLBP and continuous CLBP (p<.05). CONCLUSIONS These results indicate a higher amount of fat infiltration in the lumbar muscles, in the absence of clear atrophy, in continuous CLBP compared with RLBP. A lower metabolic activity of the lumbar muscles was seen in RLBP replicating a relative lower intensity in contractions performed by the lumbar muscles in RLBP compared with non-continuous and continuous CLBP. In conclusion, RLBP differs from continuous CLBP for both muscle structure and muscle function, whereas non-continuous CLBP seems comparable with RLBP for lumbar muscle structure and with continuous CLBP for lumbar muscle function. These results underline the differences in muscle structure and muscle function between different LBP populations.
Collapse
Affiliation(s)
- Dorien Goubert
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, Ghent University, St Pietersnieuwstraat 33, 9000 Ghent, Belgium; Pain in Motion Research Group, Belgium; Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Boulevard de la Plaine 2, 1050 Ixelles, Belgium
| | - Robby De Pauw
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, Ghent University, St Pietersnieuwstraat 33, 9000 Ghent, Belgium
| | - Mira Meeus
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, Ghent University, St Pietersnieuwstraat 33, 9000 Ghent, Belgium; Pain in Motion Research Group, Belgium; Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, University of Antwerp, Prinsstraat 13, 2000 Antwerpen, Belgium
| | - Tine Willems
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, Ghent University, St Pietersnieuwstraat 33, 9000 Ghent, Belgium
| | - Barbara Cagnie
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, Ghent University, St Pietersnieuwstraat 33, 9000 Ghent, Belgium
| | - Stijn Schouppe
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, Ghent University, St Pietersnieuwstraat 33, 9000 Ghent, Belgium
| | - Jessica Van Oosterwijck
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, Ghent University, St Pietersnieuwstraat 33, 9000 Ghent, Belgium; Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, University of Antwerp, Prinsstraat 13, 2000 Antwerpen, Belgium
| | - Evy Dhondt
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, Ghent University, St Pietersnieuwstraat 33, 9000 Ghent, Belgium
| | - Lieven Danneels
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, Ghent University, St Pietersnieuwstraat 33, 9000 Ghent, Belgium.
| |
Collapse
|
32
|
Abstract
STUDY DESIGN Cross-sectional design. OBJECTIVE Here we aimed to determine whether motor cortical reorganization in low back pain (LBP) can be identified using noninvasive surface electromyographic (EMG) recordings of back muscles at different lumbar levels, and whether cortical reorganization is related to clinical features of LBP. SUMMARY OF BACKGROUND DATA Reorganization of motor regions of the brain may contribute to altered motor control, pain, and disability in chronic LBP. However, data have been limited by the need for invasive recordings of back muscle myoelectric activity. The relationship between altered cortical organization and clinical features of LBP remains unclear. METHODS In 27 individuals with recurrent, nonspecific LBP and 23 pain-free controls, we mapped the motor cortical representation of the paraspinal muscles using transcranial magnetic stimulation in conjunction with noninvasive surface EMG recordings at L3 and L5 levels. Clinical measures of pain severity, location, and duration were made. RESULTS The results demonstrate a loss of discrete motor cortical organization of the paraspinal muscles in chronic LBP that can be identified using noninvasive EMG recordings. A loss of discrete cortical organization was clearer when surface electrodes were positioned at L3 rather than L5. A novel finding was that altered motor cortical organization (number of discrete peaks and map volume) was associated with the severity and location of LBP. CONCLUSION These data suggest that surface EMG positioned at L3 is appropriate for the identification of changes in the motor cortex in LBP. Furthermore, our data have implications for treatment strategies that aim to restore cortical organization in LBP. LEVEL OF EVIDENCE 2.
Collapse
|
33
|
Burns E, Chipchase LS, Schabrun SM. Temporal and spatial characteristics of post-silent period electromyographic bursting in low back muscles: comparison between persons with and without low back pain. Int J Neurosci 2017; 127:1074-1081. [DOI: 10.1080/00207454.2017.1326036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Emma Burns
- Brain Rehabilitation and Neuroplasticity Unit, School of Science and Health, Western Sydney University, Penrith, Australia
| | - Lucy S. Chipchase
- Brain Rehabilitation and Neuroplasticity Unit, School of Science and Health, Western Sydney University, Penrith, Australia
| | - Siobhan M. Schabrun
- Brain Rehabilitation and Neuroplasticity Unit, School of Science and Health, Western Sydney University, Penrith, Australia
| |
Collapse
|
34
|
Optimising conservative management of chronic low back pain: study protocol for a randomised controlled trial. Trials 2017; 18:184. [PMID: 28427472 PMCID: PMC5399383 DOI: 10.1186/s13063-017-1913-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/22/2017] [Indexed: 12/19/2022] Open
Abstract
Background Lower back pain is a global health issue affecting approximately 80% of people at some stage in their life. The current literature suggests that any exercise is beneficial for reducing back pain. However, as pain is a subjective evaluation and physical deficits are evident in low back pain, using it as the sole outcome measure to evaluate superiority of an exercise protocol for low back pain treatment is insufficient. The overarching goal of the current clinical trial is to implement two common, conservative intervention approaches and examine their impact on deficits in chronic low back pain. Methods/design Forty participants, 25–45 years old with chronic (>3 months), non-specific low back pain will be recruited. Participants will be randomised to receive either motor control and manual therapy (n = 20) or general strength and conditioning (n = 20) exercise treatments for 6 months. The motor control/manual therapy group will receive twelve 30-min sessions, ten in the first 3 months (one or two per week) and two in the last 3 months. The general exercise group will attend two 1-hour sessions weekly for 3 months, and one or two a week for the following 3 months. Primary outcome measures are average lumbar spine intervertebral disc T2 relaxation time and changes in thickness of the transversus abdominis muscle on a leg lift using magnetic resonance imaging (MRI). Secondary outcomes include muscle size and fat content, vertebral body fat content, intervertebral disc morphology and water diffusion measured by MRI, body composition using dual energy X-ray absorptiometry, physical function through functional tests, changes in corticospinal excitability and cortical motor representation of the spinal muscles using transcranial magnetic stimulation and self-reported measure of pain symptoms, health and disability. Outcome measures will be conducted at baseline, at the 3-month follow-up and at 6 months at the end of intervention. Pain, depressive symptomology and emotions will be captured fortnightly by questionnaires. Discussion Chronic low back pain is ranked the highest disabling disorder in Australia. The findings of this study will inform clinical practice guidelines to assist with decision-making approaches where outcomes beyond pain are sought for adults with chronic low back pain. Trial registration Australian New Zealand Clinical Trials Registry, ACTRN12615001270505. Registered on 20 November 2015. Electronic supplementary material The online version of this article (doi:10.1186/s13063-017-1913-8) contains supplementary material, which is available to authorized users.
Collapse
|
35
|
Massé-Alarie H, Beaulieu LD, Preuss R, Schneider C. Repetitive peripheral magnetic neurostimulation of multifidus muscles combined with motor training influences spine motor control and chronic low back pain. Clin Neurophysiol 2017; 128:442-453. [DOI: 10.1016/j.clinph.2016.12.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 12/15/2016] [Accepted: 12/21/2016] [Indexed: 12/15/2022]
|
36
|
Massé-Alarie H, Beaulieu LD, Preuss R, Schneider C. The side of chronic low back pain matters: evidence from the primary motor cortex excitability and the postural adjustments of multifidi muscles. Exp Brain Res 2016; 235:647-659. [PMID: 27847987 DOI: 10.1007/s00221-016-4834-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 11/10/2016] [Indexed: 12/27/2022]
Abstract
Hemispheric lateralization of pain processing was reported with overactivation of the right frontal lobe. Specifically in chronic low back pain (CLBP), functional changes in the left primary motor cortex (M1) with impaired anticipatory postural activation (APA) of trunk muscles have been observed. Given the connections between frontal and M1 areas for motor planning, it is hypothesized that the pain side could differently influence M1 function and APA of paravertebral multifidus (MF) muscles. This study aimed at testing whether people with right- versus left-sided CLBP showed different M1 excitability and APA. Thirty-five individuals with lateralized CLBP (19 right-sided and 16 left-sided) and 13 pain-free subjects (normative values) were tested for the excitability of MF M1 area (active motor threshold-AMT) with transcranial magnetic stimulation and for the latency of MF APA during bilateral shoulder flexion and during unilateral hip extension in prone lying. In the right-sided CLBP group, the AMT of both M1 areas was lower than in the left-sided group and the pain-free subjects; the latency of MF APA was shorter in bilateral shoulder flexion and in the left hip extension tasks as compared to the left-sided group. In CLBP, an earlier MF APA was correlated with lower AMT in both tasks. People with right-sided CLBP presented with increased M1 excitability in both hemispheres and earlier MF APA. These results likely rely on cortical motor adaptation related to the tasks and axial muscles tested. Future studies should investigate whether CLBP side-related differences have a clinical impact, e.g. in diagnosis and intervention.
Collapse
Affiliation(s)
- Hugo Massé-Alarie
- Laboratory of Clinical Neuroscience and Neurostimulation, Neuroscience Division of the Centre de recherche du CHU de Québec, RC-9800, 2705 Blvd. Laurier, Quebec City, QC, G1V 4G2, Canada
- Constance Lethbridge Rehabilitation Center Research Site of the CRIR, Montreal, QC, Canada
| | - Louis-David Beaulieu
- Laboratory of Clinical Neuroscience and Neurostimulation, Neuroscience Division of the Centre de recherche du CHU de Québec, RC-9800, 2705 Blvd. Laurier, Quebec City, QC, G1V 4G2, Canada
| | - Richard Preuss
- Constance Lethbridge Rehabilitation Center Research Site of the CRIR, Montreal, QC, Canada
- School of Physical and Occupational Therapy, McGill University, Montreal, QC, Canada
| | - Cyril Schneider
- Laboratory of Clinical Neuroscience and Neurostimulation, Neuroscience Division of the Centre de recherche du CHU de Québec, RC-9800, 2705 Blvd. Laurier, Quebec City, QC, G1V 4G2, Canada.
- Department of Rehabilitation, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
37
|
Revisiting the Corticomotor Plasticity in Low Back Pain: Challenges and Perspectives. Healthcare (Basel) 2016; 4:healthcare4030067. [PMID: 27618123 PMCID: PMC5041068 DOI: 10.3390/healthcare4030067] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/29/2016] [Accepted: 09/02/2016] [Indexed: 12/19/2022] Open
Abstract
Chronic low back pain (CLBP) is a recurrent debilitating condition that costs billions to society. Refractoriness to conventional treatment, lack of improvement, and associated movement disorders could be related to the extensive brain plasticity present in this condition, especially in the sensorimotor cortices. This narrative review on corticomotor plasticity in CLBP will try to delineate how interventions such as training and neuromodulation can improve the condition. The review recommends subgrouping classification in CLBP owing to brain plasticity markers with a view of better understanding and treating this complex condition.
Collapse
|
38
|
Massé-Alarie H, Elgueta Cancino E, Schneider C, Hodges P. Paired-Pulse TMS and Fine-Wire Recordings Reveal Short-Interval Intracortical Inhibition and Facilitation of Deep Multifidus Muscle Fascicles. PLoS One 2016; 11:e0159391. [PMID: 27509086 PMCID: PMC4980005 DOI: 10.1371/journal.pone.0159391] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 07/03/2016] [Indexed: 11/19/2022] Open
Abstract
Objective Paired-pulse transcranial magnetic stimulation (ppTMS) is used to probe inhibitory and excitatory networks within the primary motor cortex (M1). These mechanisms are identified for limb muscles but it is unclear whether they share properties with trunk muscles. The aim was to determine whether it was possible to test the intracortical inhibition and facilitation of the deep multifidus muscle fascicles (DM) and at which inter-stimulus intervals (ISI). Methods In ten pain-free individuals, TMS was applied over M1 and motor evoked potentials (MEP) were recorded using fine-wire electrodes in DM. MEPs were conditioned with subthreshold stimuli at ISIs of 1 to 12 ms to test short-interval intracortical inhibition (SICI) and at 15 ms for long-interval intracortical facilitation. Short-interval facilitation (SICF) was tested using 1-ms ISI. Results SICI of DM was consistently obtained with ISI of 1-, 3-, 4- and 12-ms. Facilitation of DM MEP was only identified using SICF paradigm. Conclusions A similar pattern of MEP modulation with ISI changes for deep trunk and limb muscles implies that M1 networks share some functional properties. Significance The ppTMS paradigm presents a potential to determine how M1 inhibitory and excitatory mechanisms participate in brain re-organization in back pain that affects control of trunk muscles.
Collapse
Affiliation(s)
- Hugo Massé-Alarie
- Laboratory of Clinical Neuroscience and neuroStimulation, Université Laval (Dept of Rehabilitation), CHU de Québec Research Center, Neuroscience Unit (CHUL), Quebec City, QC, Canada
| | - Edith Elgueta Cancino
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, Brisbane, Qld Australia
| | - Cyril Schneider
- Laboratory of Clinical Neuroscience and neuroStimulation, Université Laval (Dept of Rehabilitation), CHU de Québec Research Center, Neuroscience Unit (CHUL), Quebec City, QC, Canada
| | - Paul Hodges
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, Brisbane, Qld Australia
- * E-mail:
| |
Collapse
|
39
|
Massé-Alarie H, Beaulieu LD, Preuss R, Schneider C. Influence of paravertebral muscles training on brain plasticity and postural control in chronic low back pain. Scand J Pain 2016; 12:74-83. [PMID: 28850499 DOI: 10.1016/j.sjpain.2016.03.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/19/2016] [Accepted: 03/17/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND PURPOSE Isometric activation (ISOM) of deep multifidi muscles (MF) can influence postural adjustments and primary motor cortex (M1) function in chronic low back pain (CLBP). In order to better understand how ISOM impacts on CLBP condition, the present study contrasted ISOM after-effects on M1 function, MF postural activation and pain with another training, the global activation of paravertebral muscles (GLOB, hip extension). The main objective of this study was to compare the effects of ISOM and GLOB (3-week training each) on MF postural activation and M1 function in a CLBP population. METHODS Twenty-four people with CLBP were randomly allocated to ISOM and GLOB groups for a 3-week daily practice. Pre/post-training after-effects were assessed by the onset of superficial MF (MF-S) activation during ballistic limb movements (bilateral shoulder flexion in standing; unilateral hip extension in prine lying), MF-S corticomotor control tested by transcranial magnetic stimulation of M1, and assessment of pain, kinesiophobia and disability by standardized questionnaires. RESULTS Both ISOM and GLOB improved pain and disability. However, only ISOM influenced M1 function (decreased corticospinal excitability and increased intracortical inhibition), fastened MF-S postural activation and decreased kinesiophobia. CONCLUSIONS Changes of corticospinal excitability and of MF-S postural adjustments suggest that ISOM better influenced brain plasticity. Future studies should further test whether our novel findings relate to an influence of the exercises on the lumbopelvic control of different muscles and on cognitive function. Clinically, individual's evaluation remains warranted before prescribing one or the other of these two conventional exercises for reducing pain. IMPLICATIONS This original study presents how motor control exercises can influence brain plasticity and postural control in chronic low back pain. This knowledge will impact on the decision of clinicians to prescribe specific exercises with a view of improving motor control in this musculoskeletal condition.
Collapse
Affiliation(s)
- Hugo Massé-Alarie
- Research Center of CHU de Québec, Neuroscience Division, Clinical Neuroscience and Neurostimulation Laboratory, Quebec City, QC, Canada.
| | - Louis-David Beaulieu
- Research Center of CHU de Québec, Neuroscience Division, Clinical Neuroscience and Neurostimulation Laboratory, Quebec City, QC, Canada
| | - Richard Preuss
- McGill University, Constance-Lethbridge Rehabilitation Center-CRIR, Montreal, QC, Canada
| | - Cyril Schneider
- Research Center of CHU de Québec, Neuroscience Division, Clinical Neuroscience and Neurostimulation Laboratory, Quebec City, QC, Canada; Department of Rehabilitation, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
40
|
Chiou SY, Gottardi SEA, Hodges PW, Strutton PH. Corticospinal Excitability of Trunk Muscles during Different Postural Tasks. PLoS One 2016; 11:e0147650. [PMID: 26807583 PMCID: PMC4726526 DOI: 10.1371/journal.pone.0147650] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/06/2016] [Indexed: 11/19/2022] Open
Abstract
Evidence suggests that the primary motor cortex (M1) is involved in both voluntary, goal-directed movements and in postural control. Trunk muscles are involved in both tasks, however, the extent to which M1 controls these muscles in trunk flexion/extension (voluntary movement) and in rapid shoulder flexion (postural control) remains unclear. The purpose of this study was to investigate this question by examining excitability of corticospinal inputs to trunk muscles during voluntary and postural tasks. Twenty healthy adults participated. Transcranial magnetic stimulation was delivered to the M1 to examine motor evoked potentials (MEPs) in the trunk muscles (erector spinae (ES) and rectus abdominis (RA)) during dynamic shoulder flexion (DSF), static shoulder flexion (SSF), and static trunk extension (STE). The level of background muscle activity in the ES muscles was matched across tasks. MEP amplitudes in ES were significantly larger in DSF than in SSF or in STE; however, this was not observed for RA. Further, there were no differences in levels of muscle activity in RA between tasks. Our findings reveal that corticospinal excitability of the ES muscles appears greater during dynamic anticipatory posture-related adjustments than during static tasks requiring postural (SSF) and goal-directed voluntary (STE) activity. These results suggest that task-oriented rehabilitation of trunk muscles should be considered for optimal transfer of therapeutic effect to function.
Collapse
Affiliation(s)
- Shin-Yi Chiou
- The Nick Davey Laboratory, Human Performance Group, Division of Surgery, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Charing Cross Hospital, London, United Kingdom
| | - Sam E. A. Gottardi
- The Nick Davey Laboratory, Human Performance Group, Division of Surgery, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Charing Cross Hospital, London, United Kingdom
| | - Paul W. Hodges
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Science, Brisbane, Queensland, Australia
| | - Paul H. Strutton
- The Nick Davey Laboratory, Human Performance Group, Division of Surgery, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Charing Cross Hospital, London, United Kingdom
- * E-mail:
| |
Collapse
|
41
|
Massé-Alarie H, Beaulieu LD, Preuss R, Schneider C. Corticomotor control of lumbar multifidus muscles is impaired in chronic low back pain: concurrent evidence from ultrasound imaging and double-pulse transcranial magnetic stimulation. Exp Brain Res 2015; 234:1033-45. [PMID: 26708518 DOI: 10.1007/s00221-015-4528-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 12/10/2015] [Indexed: 12/14/2022]
Abstract
Chronic low back pain (CLBP) is often associated with impaired control of deep trunk muscles and reorganization of the primary motor areas (M1). Precisely, functional changes of the lumbar multifidus muscles (MF) involved in spine stability may be of special interest in rehabilitation. Therefore, we tested MF corticomotor control using double transcranial magnetic stimulation (TMS) paradigms for the first time in this muscle and examined its link with MF volitional activation. Eleven individuals with lateralized CLBP and 13 pain-free participants were recruited. Ultrasound imaging enabled measurement of MF volitional isometric contraction in prone lying. TMS of MF M1 area was used to test hemispheric excitability and mechanisms in relation to motor programming, i.e., active motor threshold (AMT), amplitude of motor-evoked potentials and short-interval intracortical inhibition (SICI) and facilitation (SICF). In CLBP, SICI level was lower in the left hemisphere and MF volitional contraction was not related to AMT (M1 excitability), conversely to what was observed in the pain-free group. No other between-group difference was detected. These original findings support a plasticity of cortical maps controlling paravertebral muscles and likely including a different motor strategy for the control of MF. Changes of M1 function may thus underlie impaired motor control of lumbopelvic spine and pain persistence in CLBP.
Collapse
Affiliation(s)
- Hugo Massé-Alarie
- Laboratory of Clinical Neuroscience and Neurostimulation, Neuroscience Division of the Centre de Recherche du CHU de Québec, RC-9800, 2705 Blvd. Laurier, Quebec City, QC, G1V 4G2, Canada.,Constance Lethbridge Rehabilitation Center Research Site of the CRIR, Montreal, QC, Canada
| | - Louis-David Beaulieu
- Laboratory of Clinical Neuroscience and Neurostimulation, Neuroscience Division of the Centre de Recherche du CHU de Québec, RC-9800, 2705 Blvd. Laurier, Quebec City, QC, G1V 4G2, Canada
| | - Richard Preuss
- Constance Lethbridge Rehabilitation Center Research Site of the CRIR, Montreal, QC, Canada.,School of Physical and Occupational Therapy, McGill University, Montreal, QC, Canada
| | - Cyril Schneider
- Laboratory of Clinical Neuroscience and Neurostimulation, Neuroscience Division of the Centre de Recherche du CHU de Québec, RC-9800, 2705 Blvd. Laurier, Quebec City, QC, G1V 4G2, Canada. .,Department of Rehabilitation, Faculty of Medicine, Université Laval, Québec City, QC, Canada.
| |
Collapse
|
42
|
Cagnie B, Dhooge F, Schumacher C, De Meulemeester K, Petrovic M, van Oosterwijck J, Danneels L. Fiber Typing of the Erector Spinae and Multifidus Muscles in Healthy Controls and Back Pain Patients: A Systematic Literature Review. J Manipulative Physiol Ther 2015; 38:653-663. [PMID: 26547762 DOI: 10.1016/j.jmpt.2015.10.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 09/01/2015] [Accepted: 09/18/2015] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Understanding the changes in muscle fiber typing is relevant in the context of muscle disorders because it provides information on the metabolic profile and functional capacity. The aim of this study was to systematically review the literature comparing muscle fiber typing in the back muscles of healthy subjects with low back pain (LBP) patients. METHODS Predefined keywords regarding muscle fiber typing and back muscles were combined in PubMed and Web of Science electronic search engines from inception to August 2014. Full-text articles were independently screened by 2 independent, blinded researchers. Full texts fulfilling the predefined inclusion criteria were assessed on risk of bias by 2 independent researchers, and relative data were extracted. Data were not pooled because of heterogeneity in biopsy locations and population. RESULTS From the 214 articles that were identified, 18 met the inclusion criteria. These articles evaluated the muscle fiber type distribution or proportional fiber type area between muscles, muscle layers, men, and women or healthy subjects and LBP patients. Regarding muscle fiber type distribution, findings in healthy subjects and LBP patients show no or inconclusive evidence for intermuscular and interindividual differentiation. Studies evaluating the proportional fiber type area also suggest little intermuscular differentiation but provide plausible evidence that the proportional area occupied by type I fibers is higher in women compared to men. The evidence for differentiation based on the presence of low back pain is conflicting. CONCLUSION This study found that the evidence regarding muscle fiber typing in back muscles is either inconclusive or shows little differences. The most plausible evidence exists for differentiation in proportional fiber type area depending on sex.
Collapse
Affiliation(s)
- Barbara Cagnie
- Assistant Professor, Department of Rehabilitation Sciences and Physiotherapy, Ghent University, Ghent, Belgium.
| | - Famke Dhooge
- Research Fellow, Department of Rehabilitation Sciences and Physiotherapy, Ghent University, Ghent, Belgium
| | - Charline Schumacher
- Research Fellow, Department of Rehabilitation Sciences and Physiotherapy, Ghent University, Ghent, Belgium
| | - Kayleigh De Meulemeester
- Research Fellow, Department of Rehabilitation Sciences and Physiotherapy, Ghent University, Ghent, Belgium
| | - Mirko Petrovic
- Full Professor, Ghent University Hospital, Department of Geriatrics, Ghent, Belgium
| | - Jessica van Oosterwijck
- Postdoctoral Research Fellow, Department of Rehabilitation Sciences and Physiotherapy, Ghent University, Ghent, Belgium
| | - Lieven Danneels
- Full Professor, Department of Rehabilitation Sciences and Physiotherapy, Ghent University, Ghent, Belgium
| |
Collapse
|
43
|
Targeting chronic recurrent low back pain from the top-down and the bottom-up: a combined transcranial direct current stimulation and peripheral electrical stimulation intervention. Brain Stimul 2014; 7:451-9. [PMID: 24582372 DOI: 10.1016/j.brs.2014.01.058] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 01/20/2014] [Accepted: 01/26/2014] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Mechanisms such as neural sensitization and maladaptive cortical organization provide novel targets for therapy in chronic recurrent low back pain (CLBP). OBJECTIVE We investigated the effect of a transcranial direct current stimulation (tDCS) and peripheral electrical stimulation (PES) treatment on pain, cortical organization, sensitization and sensory function in CLBP. METHODS Using a placebo-controlled crossover design, 16 individuals received four treatments in separate sessions: (i) anodal tDCS/PES; (ii) anodal tDCS/sham PES; (iii) sham tDCS/PES; or (iv) sham tDCS/sham PES. Pain was assessed at baseline, immediately following, and at 1 and 3 days after treatment. Motor cortical organization, sensitization and sensory function were measured before and immediately after treatment. RESULTS Combined tDCS/PES reduced pain and sensitization, normalized motor cortical organization and improved sensory function. The reduction in pain was greater in individuals with more pronounced sensitization. Applied alone, tDCS or PES also reduced pain. However, with the exception of improved sensory function and reduced map volume following PES, clinical and neurophysiological outcomes were unaltered by tDCS or PES applied separately. No changes were observed following sham treatment. CONCLUSION Our data suggest a combined tDCS/PES intervention more effectively improves CLBP symptoms and mechanisms of cortical organization and sensitization, than either intervention applied alone or a sham control.
Collapse
|
44
|
De Ridder EM, Van Oosterwijck JO, Vleeming A, Vanderstraeten GG, Danneels LA. Posterior muscle chain activity during various extension exercises: an observational study. BMC Musculoskelet Disord 2013; 14:204. [PMID: 23834759 PMCID: PMC3716991 DOI: 10.1186/1471-2474-14-204] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 07/06/2013] [Indexed: 11/16/2022] Open
Abstract
Background Back extension exercises are often used in the rehabilitation of low back pain. However, at present it is not clear how the posterior muscles are recruited during different types of extension exercises. Therefore, the present study will evaluate the myoelectric activity of thoracic, lumbar and hip extensor muscles during different extension exercises in healthy persons. Based on these physiological observations we will make recommendations regarding the use of extensions exercises in clinical practice. Methods Fourteen healthy subjects performed four standardized extension exercises (dynamic trunk extension, dynamic-static trunk extension, dynamic leg extension, dynamic-static leg extension) in randomized order at an intensity of 60% of 1-RM (one repetition maximum). Surface EMG signals of Latissimus dorsi (LD), Longissimus thoracis pars thoracic (LTT) and lumborum (LTL), Iliocostalis lumborum pars thoracic (ILT) and lumborum (ILL), lumbar Multifidus (LM) and Gluteus Maximus (GM) were measured during the various exercises. Subsequently, EMG root mean square values were calculated and compared between trunk and leg extension exercises, as well as between a dynamic and dynamic-static performance using mixed model analysis. During the dynamic exercises a 2 second concentric contraction was followed by a 2 second eccentric contraction, whereas in the dynamic-static performance, a 5 second isometric interval was added in between the concentric and eccentric contraction phase. Results In general, the muscles of the posterior chain were recruited on a higher level during trunk extension (mean ± SD, 56.6 ± 30.8%MVC) compared to leg extension (47.4 ± 30.3%MVC) (p ≤ 0.001). No significant differences were found in mean muscle activity between dynamic and dynamic-static performances (p = 0.053). The thoracic muscles (LTT and ILT) were recruited more during trunk extension (64.9 ± 27.1%MVC) than during leg extension (54.2 ± 22.1%MVC) (p = 0.045) without significant differences in activity between both muscles (p = 0.138). There was no significant differences in thoracic muscle usage between the dynamic or dynamic-static performance of the extension exercises (p = 0.574). Lumbar muscle activity (LTT, ILL, LM) was higher during trunk extension (70.6 ± 22.2%MVC) compared to leg extension (61.7 ± 27.0%MVC) (p = 0.047). No differences in myoelectric activity between the lumbar muscles could be demonstrated during the extension exercises (p = 0.574). During each exercise the LD (19.2 ± 13.9%MVC) and GM (28.2 ± 14.6%MVC) were recruited significantly less than the thoracic and lumbar muscles. Conclusion The recruitment of the posterior muscle chain during different types of extension exercises was influenced by the moving body part, but not by the type of contraction. All muscle groups were activated at a higher degree during trunk extension compared to leg extension. Based on the recruitment level of the different muscles, all exercises can be used to improve the endurance capacity of thoracic muscles, however for improvement of lumbar muscle endurance leg extension exercises seem to be more appropriate. To train the endurance capacity of the LD and GM extension exercises are not appropriate.
Collapse
|
45
|
Hubley-Kozey CL, Butler HL, Kozey JW. Activation amplitude and temporal synchrony among back extensor and abdominal muscles during a controlled transfer task: Comparison of men and women. Hum Mov Sci 2012; 31:863-79. [DOI: 10.1016/j.humov.2011.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 07/29/2011] [Accepted: 08/14/2011] [Indexed: 10/28/2022]
|