1
|
Ruas CV, Taylor JL, Latella C, Haff GG, Nosaka K. Neuromuscular characteristics of eccentric, concentric and isometric contractions of the knee extensors. Eur J Appl Physiol 2024:10.1007/s00421-024-05626-9. [PMID: 39367883 DOI: 10.1007/s00421-024-05626-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/25/2024] [Indexed: 10/07/2024]
Abstract
PURPOSE We compared voluntary drive and corticospinal responses during eccentric (ECC), isometric (ISOM) and concentric (CON) muscle contractions to shed light on neurophysiological mechanisms underpinning the lower voluntary drive in a greater force production in ECC than other contractions. METHODS Sixteen participants (20-33 years) performed ISOM and isokinetic (30°/s) CON and ECC knee extensor contractions (110°-40° knee flexion) in which electromyographic activity (EMG) was recorded from vastus lateralis. Voluntary activation (VA) was measured during ISOM, CON and ECC maximal voluntary contractions (MVCs). Transcranial magnetic stimulation elicited motor-evoked potentials (MEPs) and corticospinal silent periods (CSP) during MVCs and submaximal (30%) contractions, and short-interval intracortical inhibition (SICI) in submaximal contractions. RESULTS MVC torque was greater (P < 0.01) during ECC (302.6 ± 90.0 Nm) than ISOM (269.8 ± 81.5 Nm) and CON (235.4 ± 78.6 Nm), but VA was lower (P < 0.01) for ECC (68.4 ± 14.9%) than ISOM (78.3 ± 13.1%) and CON (80.7 ± 15.4%). In addition, EMG/torque was lower (P < 0.02) for ECC (1.9 ± 1.1 μV.Nm-1) than ISOM (2.2 ± 1.2 μV.Nm-1) and CON (2.7 ± 1.6 μV.Nm-1), CSP was shorter (p < 0.04) for ECC (0.097 ± 0.03 s) than ISOM (0.109 ± 0.02 s) and CON (0.109 ± 0.03 s), and MEP amplitude was lower (P < 0.01) for ECC (3.46 ± 1.67 mV) than ISOM (4.21 ± 2.33 mV) and CON (4.01 ± 2.06 mV). Similar results were found for EMG/torque and CSP during 30% contractions, but MEP and SICI showed no differences among contractions (p > 0.05). CONCLUSIONS The lower voluntary drive indicated by reduced VA during ECC may be partly explained by lower corticospinal excitability, while the shorter CSP may reflect extra muscle spindle excitation of the motoneurons from vastus lateralis muscle lengthening.
Collapse
Affiliation(s)
- Cassio V Ruas
- School of Medical and Health Sciences, Centre for Human Performance, Edith Cowan University, Joondalup, Australia.
- Neurophysiology Research Laboratory, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia.
- Brazilian Institute of Neuroscience and Neurotechnology, Institute of Physics Gleb Wataghin, Universidade Estadual de Campinas, R. Sérgio Buarque de Holanda, Campinas, São Paulo, 77713083-859, Brazil.
| | - Janet L Taylor
- School of Medical and Health Sciences, Centre for Human Performance, Edith Cowan University, Joondalup, Australia
- Neurophysiology Research Laboratory, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
- Neuroscience Research Australia, Randwick, Australia
| | - Christopher Latella
- School of Medical and Health Sciences, Centre for Human Performance, Edith Cowan University, Joondalup, Australia
- Neurophysiology Research Laboratory, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - G Gregory Haff
- School of Medical and Health Sciences, Centre for Human Performance, Edith Cowan University, Joondalup, Australia
- Directorate of Psychology and Sport, University of Salford, Salford, Greater Manchester, UK
| | - Kazunori Nosaka
- School of Medical and Health Sciences, Centre for Human Performance, Edith Cowan University, Joondalup, Australia
| |
Collapse
|
2
|
Gomez-Guerrero G, Ansdell P, Howatson G, Avela J, Walker S. Contraction intensity modulates spinal excitability during transcranial magnetic stimulation-evoked silent period in rectus femoris muscle. Eur J Appl Physiol 2024; 124:1355-1366. [PMID: 38032387 PMCID: PMC11055719 DOI: 10.1007/s00421-023-05367-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023]
Abstract
PURPOSE Reduced spinal excitability during the transcranial magnetic stimulation (TMS) silent period (SP) has recently been shown to last longer than previously thought in the upper limbs, as assessed via spinal electrical stimulation. Further, there is reason to expect that contraction intensity affects the duration of the reduced spinal excitability. METHODS This study investigated spinal excitability at different time delays within the TMS-evoked SP in m.rectus femoris. Fifteen participants performed non-fatiguing isometric knee extensions at 25%, 50% and 75% of maximum voluntary contraction (MVC). Lumbar stimulation (LS) induced a lumbar-evoked potential (LEP) of 50% resting M-max. TMS stimulator output induced a SP lasting ~ 200 ms. In each contraction, a LEP (unconditioned) was delivered ~ 2-3 s prior to TMS, which was followed by a second LEP (conditioned) 60, 90, 120 or 150 ms into the silent period. Five contractions were performed at each contraction intensity and for each time delay in random order. RESULTS Compared to the unconditioned LEP, the conditioned LEP amplitude was reduced (- 28 ± 34%, p = 0.007) only at 60 ms during 25% of MVC. Conditioned LEP amplitudes during 50% and 75% of MVC were reduced at 60 ms (- 37 ± 47%, p = 0.009 and - 37 ± 42%, p = 0.005, respectively) and 150 ms (- 30% ± 37%, p = 0.0083 and - 37 ± 43%, p = 0.005, respectively). LEP amplitude at 90 ms during 50% of MVC also reduced (- 25 ± 35%, p = 0.013). CONCLUSION Reduced spinal excitability is extended during 50% and 75% of MVC. In future, paired TMS-LS could be a potential method to understand changes in spinal excitability during SP (at different contraction intensities) when testing various neurophysiological phenomena.
Collapse
Affiliation(s)
- Gonzalo Gomez-Guerrero
- NeuroMuscular Research Center (NMRC), Faculty of Sport and Health Sciences, University of Jyväskylä, Viveca (VIV221), 40700, Jyväskylä, Finland.
| | - Paul Ansdell
- Faculty of Health and Life Science, Northumbria University, Newcastle Upon Tyne, UK
| | - Glyn Howatson
- Faculty of Health and Life Science, Northumbria University, Newcastle Upon Tyne, UK
- Water Research Group, North West University, Potchefstroom, South Africa
| | - Janne Avela
- NeuroMuscular Research Center (NMRC), Faculty of Sport and Health Sciences, University of Jyväskylä, Viveca (VIV221), 40700, Jyväskylä, Finland
| | - Simon Walker
- NeuroMuscular Research Center (NMRC), Faculty of Sport and Health Sciences, University of Jyväskylä, Viveca (VIV221), 40700, Jyväskylä, Finland
| |
Collapse
|
3
|
Bai Z, Zhang JJ, Fong KNK. Intracortical and intercortical networks in patients after stroke: a concurrent TMS-EEG study. J Neuroeng Rehabil 2023; 20:100. [PMID: 37533093 PMCID: PMC10398934 DOI: 10.1186/s12984-023-01223-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 07/21/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Concurrent transcranial magnetic stimulation and electroencephalography (TMS-EEG) recording provides information on both intracortical reorganization and networking, and that information could yield new insights into post-stroke neuroplasticity. However, a comprehensive investigation using both concurrent TMS-EEG and motor-evoked potential-based outcomes has not been carried out in patients with chronic stroke. Therefore, this study sought to investigate the intracortical and network neurophysiological features of patients with chronic stroke, using concurrent TMS-EEG and motor-evoked potential-based outcomes. METHODS A battery of motor-evoked potential-based measures and concurrent TMS-EEG recording were performed in 23 patients with chronic stroke and 21 age-matched healthy controls. RESULTS The ipsilesional primary motor cortex (M1) of the patients with stroke showed significantly higher resting motor threshold (P = 0.002), reduced active motor-evoked potential amplitudes (P = 0.001) and a prolonged cortical silent period (P = 0.007), compared with their contralesional M1. The ipsilesional stimulation also produced a reduction in N100 amplitude of TMS-evoked potentials around the stimulated M1 (P = 0.007), which was significantly correlated with the ipsilesional resting motor threshold (P = 0.011) and motor-evoked potential amplitudes (P = 0.020). In addition, TMS-related oscillatory power was significantly reduced over the ipsilesional midline-prefrontal and parietal regions. Both intra/interhemispheric connectivity and network measures in the theta band were significantly reduced in the ipsilesional hemisphere compared with those in the contralesional hemisphere. CONCLUSIONS The ipsilesional M1 demonstrated impaired GABA-B receptor-mediated intracortical inhibition characterized by reduced duration, but reduced magnitude. The N100 of TMS-evoked potentials appears to be a useful biomarker of post-stroke recovery.
Collapse
Affiliation(s)
- Zhongfei Bai
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR
- Department of Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Centre), School of Medicine, Tongji University, Shanghai, China
| | - Jack Jiaqi Zhang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR
| | - Kenneth N. K. Fong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR
| |
Collapse
|
4
|
Ruas CV, Latella C, Taylor JL, Haff GG, Nosaka K. Comparison between Eccentric-Only and Coupled Concentric-Eccentric Contractions for Neuromuscular Fatigue and Muscle Damage. Med Sci Sports Exerc 2022; 54:1635-1646. [PMID: 36106831 DOI: 10.1249/mss.0000000000002959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Eccentric contractions induce muscle damage, but less is known about the effects of preceding concentric contractions to eccentric contractions on muscle damage. We compared eccentric-only (ECC) and coupled concentric and eccentric contractions (CON-ECC) of the knee extensors for parameters of neuromuscular fatigue and muscle damage. METHODS Twenty participants (age, 19-36 yr) were randomly placed into an ECC or a CON-ECC group (n = 10 per group), without significant (P > 0.06) differences in baseline neuromuscular variables between groups. The ECC group performed six sets of eight ECC at 80% of ECC one-repetition maximum (1-RMecc), whereas the CON-ECC group performed six sets of eight alternating concentric (CON) and ECC (16 contractions per set) at 80% of CON 1-RM and 1-RMecc, respectively. Maximal voluntary isometric contraction force, rate of force development, resting twitch force, maximal M-wave (MMAX), voluntary activation, motor evoked potentials, corticospinal silent period, short interval intracortical inhibition, and muscle soreness were measured before, immediately after, and 1-3 d after exercise. RESULTS No significant (P ≥ 0.09) differences between ECC and CON-ECC were observed for changes in any variables after exercise. However, maximal voluntary isometric contraction force decreased immediately after exercise (ECC: -20.7% ± 12.8%, CON-ECC: -23.6% ± 23.3%) and was still reduced 3 d after exercise (ECC: -13.6% ± 13.4%, CON-ECC: -3.3% ± 21.2%). Rate of force development at 0-30 ms reduced immediately after exercise (ECC: -38.3% ± 33.9%, CON-ECC: -30.7% ± 38.3%). Voluntary activation, resting twitch force, and motor evoked potential/MMAX decreased and corticospinal silent period increased after exercise (all P ≤ 0.03), but short interval intracortical inhibition and MMAX did not change. Muscle soreness developed (P < 0.001) similarly for both groups (peak, 38.5 ± 29.5 mm). CONCLUSIONS CON-ECC did not exacerbate neuromuscular fatigue and muscle damage when compared with ECC, despite twice as many contractions performed. Thus, eccentric contractions (n = 48 in both groups) seemed to mainly mediate the neuromuscular responses observed.
Collapse
Affiliation(s)
| | | | | | | | - Kazunori Nosaka
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Joondalup, AUSTRALIA
| |
Collapse
|
5
|
Heimbuch IS, Fan TK, Wu AD, Faas GC, Charles AC, Iacoboni M. Ultrasound stimulation of the motor cortex during tonic muscle contraction. PLoS One 2022; 17:e0267268. [PMID: 35442956 PMCID: PMC9020726 DOI: 10.1371/journal.pone.0267268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 04/05/2022] [Indexed: 11/18/2022] Open
Abstract
Transcranial ultrasound stimulation (tUS) shows potential as a noninvasive brain stimulation (NIBS) technique, offering increased spatial precision compared to other NIBS techniques. However, its reported effects on primary motor cortex (M1) are limited. We aimed to better understand tUS effects in human M1 by performing tUS of the hand area of M1 (M1hand) during tonic muscle contraction of the index finger. Stimulation during muscle contraction was chosen because of the transcranial magnetic stimulation-induced phenomenon known as cortical silent period (cSP), in which transcranial magnetic stimulation (TMS) of M1hand involuntarily suppresses voluntary motor activity. Since cSP is widely considered an inhibitory phenomenon, it presents an ideal parallel for tUS, which has often been proposed to preferentially influence inhibitory interneurons. Recording electromyography (EMG) of the first dorsal interosseous (FDI) muscle, we investigated effects on muscle activity both during and after tUS. We found no change in FDI EMG activity concurrent with tUS stimulation. Using single-pulse TMS, we found no difference in M1 excitability before versus after sparsely repetitive tUS exposure. Using acoustic simulations in models made from structural MRI of the participants that matched the experimental setups, we estimated in-brain pressures and generated an estimate of cumulative tUS exposure experienced by M1hand for each subject. We were unable to find any correlation between cumulative M1hand exposure and M1 excitability change. We also present data that suggest a TMS-induced MEP always preceded a near-threshold cSP.
Collapse
Affiliation(s)
- Ian S. Heimbuch
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
- Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| | - Tiffany K. Fan
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Allan D. Wu
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Evanston, Illinois, United States of America
| | - Guido C. Faas
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Andrew C. Charles
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Marco Iacoboni
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
- Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
6
|
Ruas CV, Latella C, Taylor JL, Haff GG, Nosaka K. Early Detection of Prolonged Decreases in Maximal Voluntary Contraction Force after Eccentric Exercise of the Knee Extensors. Med Sci Sports Exerc 2022; 54:267-279. [PMID: 35029591 DOI: 10.1249/mss.0000000000002797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE We examined whether the magnitude of muscle damage indicated by changes in maximal voluntary isometric contraction (MVIC) strength 1 to 3 d after unaccustomed eccentric exercise (ECC) was correlated with changes in central and peripheral neuromuscular parameters immediately post-ECC. METHODS Twenty participants (19-36 yr) performed six sets of eight eccentric contractions of the knee extensors. Rate of force development (RFD) during knee extensor MVIC, twitch force, rate of force development (RFDRT) and rate of relaxation (RRRT) of the resting twitch, maximal M-wave (MMAX), voluntary activation, silent period duration, motor-evoked potentials (MEP) and short-interval intracortical inhibition were assessed before, immediately after, and 1 to 3 d post-ECC. Relationships between changes in these variables immediately post-ECC and changes in MVIC strength at 1 to 3 d post-ECC were examined by Pearson product-moment (r) or Spearman correlations. RESULTS Maximal voluntary isometric contraction strength decreased (-22.2% ± 18.4%) immediately postexercise, and remained below baseline at 1 (-16.3% ± 15.2%), 2 (-14.7% ± 13.2%) and 3 d post-ECC (-8.6% ± 15.7%). Immediately post-ECC, RFD (0-30-ms: -38.3% ± 31.4%), twitch force (-45.9% ± 22.4%), RFDRT (-32.5% ± 40.7%), RRRT (-38.0% ± 39.7%), voluntary activation (-21.4% ± 16.5%) and MEP/MMAX at rest (-42.5% ± 23.3%) also decreased, whereas the silent period duration at 10%-MVIC increased by 26.0% ± 12.2% (P < 0.05). Decreases in RFD at 0 to 30 ms, 0 to 50 ms, and 0 to 100 ms immediately post-ECC were correlated (P < 0.05) with changes in MVIC strength at 1 d (r = 0.56-0.60) and 2 d post-ECC (r = 0.53-0.63). Changes in MEP/MMAX at 10%-MVIC immediately post-ECC were correlated with changes in MVIC strength at 1 d (r = -0.53) and 2 d (r = -0.54) post-ECC (P < 0.05). CONCLUSIONS The magnitude of decrease in MVIC strength at 1 to 3 d after ECC was associated with the magnitude of changes in RFD and MEP/MMAX immediately post-ECC. However, based on individual data, these markers were not sensitive for the practical detection of muscle damage.
Collapse
Affiliation(s)
| | | | | | | | - Kazunori Nosaka
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, AUSTRALIA
| |
Collapse
|
7
|
Merlo A, Bò MC, Campanini I. Electrode Size and Placement for Surface EMG Bipolar Detection from the Brachioradialis Muscle: A Scoping Review. SENSORS 2021; 21:s21217322. [PMID: 34770627 PMCID: PMC8587451 DOI: 10.3390/s21217322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 11/19/2022]
Abstract
The brachioradialis muscle (BRD) is one of the main elbow flexors and is often assessed by surface electromyography (sEMG) in physiology, clinical, sports, ergonomics, and bioengineering applications. The reliability of the sEMG measurement strongly relies on the characteristics of the detection system used, because of possible crosstalk from the surrounding forearm muscles. We conducted a scoping review of the main databases to explore available guidelines of electrode placement on BRD and to map the electrode configurations used and authors’ awareness on the issues of crosstalk. One hundred and thirty-four studies were included in the review. The crosstalk was mentioned in 29 studies, although two studies only were specifically designed to assess it. One hundred and six studies (79%) did not even address the issue by generically placing the sensors above BRD, usually choosing large disposable ECG electrodes. The analysis of the literature highlights a general lack of awareness on the issues of crosstalk and the need for adequate training in the sEMG field. Three guidelines were found, whose recommendations have been compared and summarized to promote reliability in further studies. In particular, it is crucial to use miniaturized electrodes placed on a specific area over the muscle, especially when BRD activity is recorded for clinical applications.
Collapse
Affiliation(s)
- Andrea Merlo
- LAM-Motion Analysis Laboratory, S. Sebastiano Hospital, Neuromotor and Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Via Circondaria 29, 42015 Correggio, Italy;
- Merlo Bioengineering, 43100 Parma, Italy;
| | | | - Isabella Campanini
- LAM-Motion Analysis Laboratory, S. Sebastiano Hospital, Neuromotor and Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Via Circondaria 29, 42015 Correggio, Italy;
- Correspondence:
| |
Collapse
|
8
|
Zeugin D, Ionta S. Anatomo-Functional Origins of the Cortical Silent Period: Spotlight on the Basal Ganglia. Brain Sci 2021; 11:705. [PMID: 34071742 PMCID: PMC8227635 DOI: 10.3390/brainsci11060705] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/17/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
The so-called cortical silent period (CSP) refers to the temporary interruption of electromyographic signal from a muscle following a motor-evoked potential (MEP) triggered by transcranial magnetic stimulation (TMS) over the primary motor cortex (M1). The neurophysiological origins of the CSP are debated. Previous evidence suggests that both spinal and cortical mechanisms may account for the duration of the CSP. However, contextual factors such as cortical fatigue, experimental procedures, attentional load, as well as neuropathology can also influence the CSP duration. The present paper summarizes the most relevant evidence on the mechanisms underlying the duration of the CSP, with a particular focus on the central role of the basal ganglia in the "direct" (excitatory), "indirect" (inhibitory), and "hyperdirect" cortico-subcortical pathways to manage cortical motor inhibition. We propose new methods of interpretation of the CSP related, at least partially, to the inhibitory hyperdirect and indirect pathways in the basal ganglia. This view may help to explain the respective shortening and lengthening of the CSP in various neurological disorders. Shedding light on the complexity of the CSP's origins, the present review aims at constituting a reference for future work in fundamental research, technological development, and clinical settings.
Collapse
Affiliation(s)
| | - Silvio Ionta
- Sensory-Motor Laboratory (SeMoLa), Jules-Gonin Eye Hospital/Fondation Asile des Aveugles, Department of Ophthalmology, University of Lausanne, 1002 Lausanne, Switzerland
| |
Collapse
|
9
|
Brownstein CG, Espeit L, Royer N, Ansdell P, Škarabot J, Souron R, Lapole T, Millet GY. Reductions in motoneuron excitability during sustained isometric contractions are dependent on stimulus and contraction intensity. J Neurophysiol 2021; 125:1636-1646. [PMID: 33788627 DOI: 10.1152/jn.00070.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cervicomedullary stimulation provides a means of assessing motoneuron excitability. Previous studies demonstrated that during low-intensity sustained contractions, small cervicomedullary evoked potentials (CMEPs) conditioned using transcranial magnetic stimulation (TMS-CMEPs) are reduced, whereas large TMS-CMEPs are less affected. As small TMS-CMEPs recruit motoneurons most active during low-intensity contractions whereas large TMS-CMEPs recruit a high proportion of motoneurons inactive during the task, these results suggest that reductions in motoneuron excitability could be dependent on repetitive activation. To further test this hypothesis, this study assessed changes in small and large TMS-CMEPs across low- and high-intensity contractions. Twelve participants performed a sustained isometric contraction of the elbow flexor for 4.5 min at the electromyography (EMG) level associated with 20% maximal voluntary contraction force (MVC; low intensity) and 70% MVC (high intensity). Small and large TMS-CMEPs with amplitudes of ∼15% and ∼50% Mmax at baseline, respectively, were delivered every minute throughout the tasks. Recovery measures were taken at 1-, 2.5- and 4-min postexercise. During the low-intensity trial, small TMS-CMEPs were reduced at 2-4 min (P ≤ 0.049) by up to -10% Mmax, whereas large TMS-CMEPs remained unchanged (P ≥ 0.16). During the high-intensity trial, small and large TMS-CMEPs were reduced at all time points (P < 0.01) by up to -14% and -33% Mmax, respectively, and remained below baseline during all recovery measures (P ≤ 0.02). TMS-CMEPs were unchanged relative to baseline during recovery following the low-intensity trial (P ≥ 0.24). These results provide novel insight into motoneuron excitability during and following sustained contractions at different intensities and suggest that contraction-induced reductions in motoneuron excitability depend on repetitive activation.NEW & NOTEWORTHY This study measured motoneuron excitability using cervicomedullary evoked potentials conditioned using transcranial magnetic stimulation (TMS-CMEPs) of both small and large amplitudes during sustained low- and high-intensity contractions of the elbow flexors. During the low-intensity task, only the small TMS-CMEP was reduced. During the high-intensity task, both small and large TMS-CMEPs were substantially reduced. These results indicate that repetitively active motoneurons are specifically reduced in excitability compared with less active motoneurons in the same pool.
Collapse
Affiliation(s)
- Callum G Brownstein
- Inter-university Laboratory of Human Movement Science, University Lyon, Université Jean Monnet (UJM)-Saint-Etienne, Saint-Etienne, France
| | - Loïc Espeit
- Inter-university Laboratory of Human Movement Science, University Lyon, Université Jean Monnet (UJM)-Saint-Etienne, Saint-Etienne, France
| | - Nicolas Royer
- Inter-university Laboratory of Human Movement Science, University Lyon, Université Jean Monnet (UJM)-Saint-Etienne, Saint-Etienne, France
| | - Paul Ansdell
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Jakob Škarabot
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, United Kingdom
| | - Robin Souron
- Laboratory of Impact of Physical Activity on Health (IAPS), University of Toulon, France
| | - Thomas Lapole
- Inter-university Laboratory of Human Movement Science, University Lyon, Université Jean Monnet (UJM)-Saint-Etienne, Saint-Etienne, France
| | - Guillaume Y Millet
- Inter-university Laboratory of Human Movement Science, University Lyon, Université Jean Monnet (UJM)-Saint-Etienne, Saint-Etienne, France.,Institut Universitaire de France (IUF)
| |
Collapse
|
10
|
Hupfeld KE, Swanson CW, Fling BW, Seidler RD. TMS-induced silent periods: A review of methods and call for consistency. J Neurosci Methods 2020; 346:108950. [PMID: 32971133 PMCID: PMC8276277 DOI: 10.1016/j.jneumeth.2020.108950] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/24/2020] [Accepted: 09/15/2020] [Indexed: 12/31/2022]
Abstract
Transcranial magnetic stimulation (TMS)-induced silent periods provide an in vivo measure of human motor cortical inhibitory function. Cortical silent periods (cSP, also sometimes referred to as contralateral silent periods) and ipsilateral silent periods (iSP) may change with advancing age and disease and can provide insight into cortical control of the motor system. The majority of past silent period work has implemented largely varying methodology, sometimes including subjective analyses and incomplete methods descriptions. This limits reproducibility of silent period work and hampers comparisons of silent period measures across studies. Here, we discuss methodological differences in past silent period work, highlighting how these choices affect silent period outcome measures. We also outline challenges and possible solutions for measuring silent periods in the unique case of the lower limbs. Finally, we provide comprehensive recommendations for collection, analysis, and reporting of future silent period studies.
Collapse
Affiliation(s)
- K E Hupfeld
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - C W Swanson
- Department of Health & Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - B W Fling
- Department of Health & Exercise Science, Colorado State University, Fort Collins, CO, USA; Molecular, Cellular, and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO, USA
| | - R D Seidler
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; Department of Neurology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
11
|
Škarabot J, Mesquita RNO, Brownstein CG, Ansdell P. Myths and Methodologies: How loud is the story told by the transcranial magnetic stimulation-evoked silent period? Exp Physiol 2019; 104:635-642. [PMID: 30830992 DOI: 10.1113/ep087557] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 03/01/2019] [Indexed: 12/13/2022]
Abstract
NEW FINDINGS What is the topic of this review? The origin, interpretation and methodological constraints of the silent period induced by transcranial magnetic stimulation are reviewed. What advances does it highlight? The silent period is generated by both cortical and spinal mechanisms. Therefore, it seems inappropriate to preface silent period with 'cortical' unless additional measures are taken. Owing to many confounding variables, a standardized approach to the silent period measurement cannot be suggested. Rather, recommendations of best practice are provided based on the available evidence and the context of the research question. ABSTRACT Transcranial magnetic stimulation (TMS) of the motor cortex evokes a response in the muscle that can be recorded via electromyography (EMG). One component of this response, when elicited during a voluntary contraction, is a period of EMG silence, termed the silent period (SP), which follows a motor evoked potential (MEP). Modulation of SP duration was long thought to reflect the degree of intracortical inhibition. However, the evidence presented in this review suggests that both cortical and spinal mechanisms contribute to generation of the SP, which makes prefacing SP with 'cortical' misleading. Further investigations with multi-methodological approaches, such as TMS-EEG coupling or interaction of TMS with neuroactive drugs, are needed to make such inferences with greater confidence. A multitude of methodological factors can influence the SP and thus confound the interpretation of this measure; namely, background muscle activity, instructions given to the participant, stimulus intensity and the size of the MEP preceding the SP, and the approach to analysis. A systematic understanding of how the confounding factors influence the interpretation of SP is lacking, which makes standardization of the methodology difficult to conceptualize. Instead, the methodology should be guided through the lens of the research question and the population studied, ensuring greater reproducibility, repeatability and comparability of data sets. Recommendations are provided for the best practice within a given context of the experimental design.
Collapse
Affiliation(s)
- Jakob Škarabot
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Ricardo N O Mesquita
- Faculty of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | - Callum G Brownstein
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK.,Univ Lyon, UJM Saint-Etienne, Laboratoire Interuniversitaire de Biologie de la Motricité, Saint-Étienne, France
| | - Paul Ansdell
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| |
Collapse
|
12
|
EMG breakthrough during cortical silent period in congenital hemiparesis: a descriptive case series. Braz J Phys Ther 2018; 24:20-29. [PMID: 30471965 DOI: 10.1016/j.bjpt.2018.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 10/30/2018] [Accepted: 11/06/2018] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The cortical silent period is a transient suppression of electromyographic activity after a transcranial magnetic stimulation pulse, attributed to spinal and supraspinal inhibitory mechanisms. Electromyographic breakthrough activity has been observed in healthy adults as a result of a spinal reflex response within the cortical silent period. OBJECTIVES The objective of this case series is to report the ipsilesional and contralesional cortical silent period and the electromyographic breakthrough activity of 7 children with congenital hemiparesis. METHODS TMS was delivered over the ipsilesional and contralesional primary motor cortices with resting motor threshold and cortical silent period measures recorded from first dorsal interosseous muscle. RESULTS Seven children (13±2 years) were included. Ipsilesional and contralesional resting motor thresholds ranged from 49 to 80% and from 38 to 63% of maximum stimulator output, respectively. Ipsilesional (n=4) and contralesional (n=7) cortical silent period duration ranged from 49 to 206ms and 81 to 150ms, respectively. Electromyographic breakthrough activity was observed ipsilesionally in 3/4 (75%) and contralesionally in 3/7 (42.8%) participants. In the 3 children with ipsilesional breakthrough activity during the cortical silent period, all testing trials showed breakthrough. Contralesional breakthrough activity was observed in only one of the analyzable trials in each of those 3 participants. The mean peak amplitude of breakthrough activity ranged from 45 to 214μV (ipsilesional) and from 23 to 93μV (contralesional). CONCLUSION Further research is warranted to understand the mechanisms and significance of electromyographic breakthrough activity within the cortical silent period in congenital hemiparesis. Understanding these mechanisms may lead to the design of tailored neuromodulation interventions for physical rehabilitation. TRIAL REGISTRATION NCT02250092 (https://clinicaltrials.gov/ct2/show/NCT02250092).
Collapse
|
13
|
Molenaar JP, Voermans NC, de Jong LA, Stegeman DF, Doorduin J, van Engelen BG. Repeatability and reliability of muscle relaxation properties induced by motor cortical stimulation. J Appl Physiol (1985) 2018. [PMID: 29543137 DOI: 10.1152/japplphysiol.00455.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Impaired muscle relaxation is a feature of many neuromuscular disorders. However, few tests are available to quantify muscle relaxation. Transcranial magnetic stimulation (TMS) of the motor cortex can induce muscle relaxation by abruptly inhibiting corticospinal drive. The aim of our study was to investigate whether repeatability and reliability of TMS-induced relaxation are greater than voluntary relaxation. Furthermore, effects of sex, cooling, and fatigue on muscle relaxation properties were studied. Muscle relaxation of deep finger flexors was assessed in 25 healthy subjects (14 men and 11 women, age 39.1 ± 12.7 and 45.3 ± 8.7 yr, respectively) with handgrip dynamometry. All outcome measures showed greater repeatability and reliability in TMS-induced relaxation compared with voluntary relaxation. The within-subject coefficient of variability of normalized peak relaxation rate was lower in TMS-induced relaxation than in voluntary relaxation (3.0% vs. 19.7% in men and 6.1% vs. 14.3% in women). The repeatability coefficient was lower (1.3 vs. 6.1 s-1 in men and 2.3 vs. 3.1 s-1 in women) and the intraclass correlation coefficient was higher (0.95 vs. 0.53 in men and 0.78 vs. 0.69 in women) for TMS-induced relaxation compared with voluntary relaxation. TMS enabled demonstration of slowing effects of sex, muscle cooling, and muscle fatigue on relaxation properties that voluntary relaxation could not. In conclusion, repeatability and reliability of TMS-induced muscle relaxation were greater compared with voluntary muscle relaxation. TMS-induced muscle relaxation has the potential to be used in clinical practice for diagnostic purposes and therapy effect monitoring in patients with impaired muscle relaxation. NEW & NOTEWORTHY Transcranial magnetic stimulation (TMS)-induced muscle relaxation demonstrates greater repeatability and reliability compared with voluntary relaxation, represented by the ability to demonstrate typical effects of sex, cooling, and fatigue on muscle relaxation properties that were not seen in voluntary relaxation. In clinical practice, TMS-induced muscle relaxation could be used for diagnostic purposes and therapy effect monitoring. Furthermore, fewer subjects will be needed for future studies when using TMS to demonstrate differences in muscle relaxation properties.
Collapse
Affiliation(s)
- J P Molenaar
- Department of Neurology, Radboud University Medical Center , Nijmegen , The Netherlands.,Donders Institute for Brain, Cognition and Behavior, Nijmegen , The Netherlands
| | - N C Voermans
- Department of Neurology, Radboud University Medical Center , Nijmegen , The Netherlands.,Donders Institute for Brain, Cognition and Behavior, Nijmegen , The Netherlands
| | - L A de Jong
- Department of Neurology, Radboud University Medical Center , Nijmegen , The Netherlands.,Donders Institute for Brain, Cognition and Behavior, Nijmegen , The Netherlands
| | - D F Stegeman
- Department of Neurology, Radboud University Medical Center , Nijmegen , The Netherlands.,Donders Institute for Brain, Cognition and Behavior, Nijmegen , The Netherlands
| | - J Doorduin
- Department of Neurology, Radboud University Medical Center , Nijmegen , The Netherlands.,Donders Institute for Brain, Cognition and Behavior, Nijmegen , The Netherlands
| | - B G van Engelen
- Department of Neurology, Radboud University Medical Center , Nijmegen , The Netherlands.,Donders Institute for Brain, Cognition and Behavior, Nijmegen , The Netherlands
| |
Collapse
|
14
|
Rozand V, Senefeld JW, Hassanlouei H, Hunter SK. Voluntary activation and variability during maximal dynamic contractions with aging. Eur J Appl Physiol 2017; 117:2493-2507. [PMID: 29058113 DOI: 10.1007/s00421-017-3737-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 10/02/2017] [Indexed: 12/31/2022]
Abstract
Whether reduced supraspinal activation contributes to age-related reductions in maximal torque during dynamic contractions is not known. The purpose was to determine whether there are age differences in voluntary activation and its variability when assessed with stimulation at the motor cortex and the muscle during maximal isometric, concentric, and eccentric contractions. Thirty young (23.6 ± 4.1 years) and 31 old (69.0 ± 5.2 years) adults performed maximal isometric, shortening (concentric) and lengthening (eccentric) contractions with the elbow flexor muscles. Maximal isometric contractions were performed at 90° elbow flexion and dynamic contractions at a velocity of 60°/s. Voluntary activation was assessed by superimposing an evoked contraction with transcranial magnetic stimulation (TMS) or with electrical stimulation over the muscle during maximal voluntary contractions (MVCs). Old adults had lower MVC torque during isometric (- 17.9%), concentric (- 19.7%), and eccentric (- 9.9%) contractions than young adults, with less of an age difference for eccentric contractions. Voluntary activation was similar between the three contraction types when assessed with TMS and electrical stimulation, with no age group differences. Old adults, however, were more variable in voluntary activation than young (standard deviation 0.99 ± 0.47% vs. 0.73 ± 0.43%, respectively) to both the motor cortex and muscle, and had greater coactivation of the antagonist muscles during dynamic contractions. Thus, the average voluntary activation to the motor cortex and muscle did not differ with aging; however, supraspinal activation was more variable during maximal dynamic and isometric contractions in the old adults. Lower predictability of voluntary activation may indicate subclinical changes in the central nervous system with advanced aging.
Collapse
Affiliation(s)
- Vianney Rozand
- Exercise Science Program, Department of Physical Therapy, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201, USA
| | - Jonathon W Senefeld
- Exercise Science Program, Department of Physical Therapy, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201, USA
| | - Hamidollah Hassanlouei
- Exercise Science Program, Department of Physical Therapy, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201, USA
| | - Sandra K Hunter
- Exercise Science Program, Department of Physical Therapy, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201, USA.
| |
Collapse
|
15
|
Busan P, Del Ben G, Bernardini S, Natarelli G, Bencich M, Monti F, Manganotti P, Battaglini PP. Altered Modulation of Silent Period in Tongue Motor Cortex of Persistent Developmental Stuttering in Relation to Stuttering Severity. PLoS One 2016; 11:e0163959. [PMID: 27711148 PMCID: PMC5053488 DOI: 10.1371/journal.pone.0163959] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 09/16/2016] [Indexed: 12/20/2022] Open
Abstract
Motor balance in developmental stuttering (DS) was investigated with Transcranial Magnetic Stimulation (TMS), with the aim to define novel neural markers of persistent DS in adulthood. Eleven DS adult males were evaluated with TMS on tongue primary motor cortex, compared to 15 matched fluent speakers, in a “state” condition (i.e. stutterers vs. fluent speakers, no overt stuttering). Motor and silent period thresholds (SPT), recruitment curves, and silent period durations were acquired by recording tongue motor evoked potentials. Tongue silent period duration was increased in DS, especially in the left hemisphere (P<0.05; Hedge’s g or Cohen’s dunbiased = 1.054, i.e. large effect size), suggesting a “state” condition of higher intracortical inhibition in left motor cortex networks. Differences in motor thresholds (different excitatory/inhibitory ratios in DS) were evident, as well as significant differences in SPT. In fluent speakers, the left hemisphere may be marginally more excitable than the right one in motor thresholds at lower muscular activation, while active motor thresholds and SPT were higher in the left hemisphere of DS with respect to the right one, resulting also in a positive correlation with stuttering severity. Pre-TMS electromyography data gave overlapping evidence. Findings suggest the existence of a complex intracortical balance in DS tongue primary motor cortex, with a particular interplay between excitatory and inhibitory mechanisms, also in neural substrates related to silent periods. Findings are discussed with respect to functional and structural impairments in stuttering, and are also proposed as novel neural markers of a stuttering “state” in persistent DS, helping to define more focused treatments (e.g. neuro-modulation).
Collapse
Affiliation(s)
- Pierpaolo Busan
- IRCCS Fondazione Ospedale San Camillo, Venice, Italy
- * E-mail:
| | - Giovanni Del Ben
- B.R.A.I.N. Center for Neuroscience, Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | - Giulia Natarelli
- Department of Developmental and Social Psychology, University of Padua, Padua, Italy
| | - Marco Bencich
- B.R.A.I.N. Center for Neuroscience, Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Fabrizio Monti
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Paolo Manganotti
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Piero Paolo Battaglini
- B.R.A.I.N. Center for Neuroscience, Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
16
|
Central fatigue induced by short-lasting finger tapping and isometric tasks: A study of silent periods evoked at spinal and supraspinal levels. Neuroscience 2015; 305:316-27. [DOI: 10.1016/j.neuroscience.2015.07.081] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/24/2015] [Accepted: 07/30/2015] [Indexed: 11/21/2022]
|
17
|
Luu BL, Saboisky JP, Taylor JL, Gandevia SC, Butler JE. TMS-evoked silent periods in scalene and parasternal intercostal muscles during voluntary breathing. Respir Physiol Neurobiol 2015; 216:15-22. [DOI: 10.1016/j.resp.2015.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/13/2015] [Accepted: 05/18/2015] [Indexed: 10/23/2022]
|
18
|
Kidgell DJ, Frazer AK, Daly RM, Rantalainen T, Ruotsalainen I, Ahtiainen J, Avela J, Howatson G. Increased cross-education of muscle strength and reduced corticospinal inhibition following eccentric strength training. Neuroscience 2015; 300:566-75. [PMID: 26037804 DOI: 10.1016/j.neuroscience.2015.05.057] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/20/2015] [Accepted: 05/23/2015] [Indexed: 10/23/2022]
Abstract
AIM Strength training of one limb results in a substantial increase in the strength of the untrained limb, however, it remains unknown what the corticospinal responses are following either eccentric or concentric strength training and how this relates to the cross-education of strength. The aim of this study was to determine if eccentric or concentric unilateral strength training differentially modulates corticospinal excitability, inhibition and the cross-transfer of strength. METHODS Changes in contralateral (left limb) concentric strength, eccentric strength, motor-evoked potentials, short-interval intracortical inhibition and silent period durations were analyzed in groups of young adults who exercised the right wrist flexors with either eccentric (N=9) or concentric (N=9) contractions for 12 sessions over 4weeks. Control subjects (N=9) did not train. RESULTS Following training, both groups exhibited a significant strength gain in the trained limb (concentric group increased concentric strength by 64% and eccentric group increased eccentric strength by 62%) and the extent of the cross-transfer of strength was 28% and 47% for the concentric and eccentric group, respectively, which was different between groups (P=0.031). Transcranial magnetic stimulation revealed that eccentric training reduced intracortical inhibition (37%), silent period duration (15-27%) and increased corticospinal excitability (51%) compared to concentric training for the untrained limb (P=0.033). There was no change in the control group. CONCLUSION The results show that eccentric training uniquely modulates corticospinal excitability and inhibition of the untrained limb to a greater extent than concentric training. These findings suggest that unilateral eccentric contractions provide a greater stimulus in cross-education paradigms and should be an integral part of the rehabilitative process following unilateral injury to maximize the response.
Collapse
Affiliation(s)
- D J Kidgell
- Department of Rehabilitation, Nutrition and Sport, School of Allied Health, La Trobe University, Melbourne, Australia.
| | - A K Frazer
- Centre for Physical Activity and Nutrition Research, Deakin University, Melbourne, Australia
| | - R M Daly
- Centre for Physical Activity and Nutrition Research, Deakin University, Melbourne, Australia
| | - T Rantalainen
- Centre for Physical Activity and Nutrition Research, Deakin University, Melbourne, Australia
| | - I Ruotsalainen
- Department of Biology and Physical Activity, University of Jyväskylä, Jyväskylä, Finland
| | - J Ahtiainen
- Department of Biology and Physical Activity, University of Jyväskylä, Jyväskylä, Finland
| | - J Avela
- Department of Biology and Physical Activity, University of Jyväskylä, Jyväskylä, Finland
| | - G Howatson
- Department of Sport Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle, UK; Water Research Group, School of Environmental Sciences and Development, Northwest University, Potchefstroom, South Africa
| |
Collapse
|
19
|
Modulation of inhibitory corticospinal circuits induced by a nocebo procedure in motor performance. PLoS One 2015; 10:e0125223. [PMID: 25923533 PMCID: PMC4414618 DOI: 10.1371/journal.pone.0125223] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/16/2015] [Indexed: 11/19/2022] Open
Abstract
As recently demonstrated, a placebo procedure in motor performance increases force production and changes the excitability of the corticospinal system, by enhancing the amplitude of the motor evoked potentials (MEP) and reducing the duration of the cortical silent period (CSP). However, it is not clear whether these neurophysiological changes are related to the behavioural outcome (increased force) or to a general effect of expectation. To clarify this, we investigated the nocebo effect, in which the induced expectation decreases force production. Two groups of healthy volunteers (experimental and control) performed a motor task by pressing a piston with the right index finger. To induce a nocebo effect in the experimental group, low frequency transcutaneous electrical nerve stimulation (TENS) was applied over the index finger with instructions of its detrimental effects on force. To condition the subjects, the visual feedback on their force level was surreptitiously reduced after TENS. Results showed that the experimental group reduced the force, felt weaker and expected a worse performance than the control group, who was not suggested about TENS. By applying transcranial magnetic stimulation over the primary motor cortex, we found that while MEP amplitude remained stable throughout the procedure in both groups, the CSP duration was shorter in the experimental group after the nocebo procedure. The CSP reduction resembled previous findings on the placebo effect, suggesting that expectation of change in performance diminishes the inhibitory activation of the primary motor cortex, independently of the behavioural outcome.
Collapse
|
20
|
Clark BC, Mahato NK, Nakazawa M, Law TD, Thomas JS. The power of the mind: the cortex as a critical determinant of muscle strength/weakness. J Neurophysiol 2014; 112:3219-26. [PMID: 25274345 DOI: 10.1152/jn.00386.2014] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We tested the hypothesis that the nervous system, and the cortex in particular, is a critical determinant of muscle strength/weakness and that a high level of corticospinal inhibition is an important neurophysiological factor regulating force generation. A group of healthy individuals underwent 4 wk of wrist-hand immobilization to induce weakness. Another group also underwent 4 wk of immobilization, but they also performed mental imagery of strong muscle contractions 5 days/wk. Mental imagery has been shown to activate several cortical areas that are involved with actual motor behaviors, including premotor and M1 regions. A control group, who underwent no interventions, also participated in this study. Before, immediately after, and 1 wk following immobilization, we measured wrist flexor strength, voluntary activation (VA), and the cortical silent period (SP; a measure that reflect corticospinal inhibition quantified via transcranial magnetic stimulation). Immobilization decreased strength 45.1 ± 5.0%, impaired VA 23.2 ± 5.8%, and prolonged the SP 13.5 ± 2.6%. Mental imagery training, however, attenuated the loss of strength and VA by ∼50% (23.8 ± 5.6% and 12.9 ± 3.2% reductions, respectively) and eliminated prolongation of the SP (4.8 ± 2.8% reduction). Significant associations were observed between the changes in muscle strength and VA (r = 0.56) and SP (r = -0.39). These findings suggest neurological mechanisms, most likely at the cortical level, contribute significantly to disuse-induced weakness, and that regular activation of the cortical regions via imagery attenuates weakness and VA by maintaining normal levels of inhibition.
Collapse
Affiliation(s)
- Brian C Clark
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, Ohio; Department of Biomedical Sciences, Ohio University, Athens, Ohio; Department of Geriatric Medicine, Ohio University, Athens, Ohio;
| | - Niladri K Mahato
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, Ohio
| | - Masato Nakazawa
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, Ohio; Office of Research, Ohio University, Athens, Ohio
| | - Timothy D Law
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, Ohio; Department of Family Medicine, Ohio University, Athens, Ohio; and
| | - James S Thomas
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, Ohio; Department of Biomedical Sciences, Ohio University, Athens, Ohio; School of Rehabilitation and Communication Sciences, Ohio University, Athens, Ohio
| |
Collapse
|
21
|
Gruet M, Temesi J, Brisswalter J, Millet G, Vergès S. Stimulation magnétique transcrânienne : application à la physiologie de l’exercice. Sci Sports 2014. [DOI: 10.1016/j.scispo.2014.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Placebo-induced changes in excitatory and inhibitory corticospinal circuits during motor performance. J Neurosci 2014; 34:3993-4005. [PMID: 24623777 DOI: 10.1523/jneurosci.3931-13.2014] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Despite behavioral evidence showing placebo modulations of motor performance, the neurophysiological underpinnings of these effects are still unknown. By applying transcranial magnetic stimulation (TMS) over the primary motor cortex, we investigated whether a placebo modulation of force could change the excitability of the corticospinal system. Healthy human volunteers performed a motor task by pressing a piston as strongly as possible with the right index finger. Two experimental groups were instructed that treatment with peripheral low-frequency transcutaneous electrical nerve stimulation (TENS) applied on the first dorsal interosseus would induce force enhancement. One experimental group was conditioned about the effects of TENS with a surreptitious amplification of the visual feedback signaling the force level. The other group, instead, was only verbally influenced, without conditioning. At the end of the instructive placebo procedure, the two experimental groups reached higher levels of force, believed that TENS had been effective and expected to perform better compared with two control groups, who were not influenced about TENS. Moreover, the experimental groups presented enhanced excitability of the corticospinal system in the muscle specifically involved in the task (first dorsal interosseus), as shown by increased amplitude of the motor evoked potentials and decreased duration of the cortical silent period (the latter only in the conditioned group). Crucially, the TMS pulse was delivered when all the subjects exerted the same amount of force, ruling out bottom-up influences. These findings hint at a top-down, cognitive enhancement of corticospinal excitability as a neural signature of placebo modulation of motor performance.
Collapse
|
23
|
van Kuijk AA, Bakker CD, Hendriks JC, Geurts AC, Stegeman DF, Pasman JW. Definition dependent properties of the cortical silent period in upper-extremity muscles, a methodological study. J Neuroeng Rehabil 2014; 11:1. [PMID: 24393611 PMCID: PMC3892048 DOI: 10.1186/1743-0003-11-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 01/03/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To explore if stimulus-response (S-R) characteristics of the silent period (SP) after transcranial magnetic stimulation (TMS) are affected by changing the SP definition and by changing data presentation in healthy individuals. This information would be clinically relevant to predict motor recovery in patients with stroke using stimulus-response curves. METHODS Different landmarks to define the SP onset and offset were used to construct S-R curves from the biceps brachii (BB) and abductor digiti minimi (ADM) muscles in 15 healthy participants using rectified versus non-rectified surface electromyography (EMG). A non-linear mixed model fit to a sigmoid Boltzmann function described the S-R characteristics. Differences between S-R characteristics were compared using paired sample t-tests. The Bonferroni correction was used to adjust for multiple testing. RESULTS For the BB, no differences in S-R characteristics were observed between different SP onset and offset markers, while there was no influence of data presentation either. For the ADM, no differences were observed between different SP onset markers, whereas both the SP offset marker "the first return of any EMG-activity" and presenting non-rectified data showed lower active motor thresholds and less steep slopes. CONCLUSIONS The use of different landmarks to define the SP offset as well as data presentation affect SP S-R characteristics of the ADM in healthy individuals.
Collapse
Affiliation(s)
- Annette Aa van Kuijk
- Department of Rehabilitation, Radboud University Medical Centre, PO Box 9101, NL-6500 HB Nijmegen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
24
|
Selective effects of baclofen on use-dependent modulation of GABAB inhibition after tetraplegia. J Neurosci 2013; 33:12898-907. [PMID: 23904624 DOI: 10.1523/jneurosci.1552-13.2013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Baclofen is a GABAB receptor agonist commonly used to relief spasticity related to motor disorders. The effects of baclofen on voluntary motor output are limited and not yet understood. Using noninvasive transcranial magnetic and electrical stimulation techniques, we examined electrophysiological measures probably involving GABAB (long-interval intracortical inhibition and the cortical silent period) and GABAA (short-interval intracortical inhibition) receptors, which are inhibitory effects mediated by subcortical and cortical mechanisms. We demonstrate increased active long-interval intracortical inhibition and prolonged cortical silent period during voluntary activity of an intrinsic finger muscle in humans with chronic incomplete cervical spinal cord injury (SCI) compared with age-matched controls, whereas resting long-interval intracortical inhibition was unchanged. However, long-term (~6 years) use of baclofen decreased active long-interval intracortical inhibition to similar levels as controls but did not affect the duration of the cortical silent period. We found a correlation between signs of spasticity and long-interval intracortical inhibition in patients with SCI. Short-interval intracortical inhibition was decreased during voluntary contraction compared with rest but there was no effect of SCI or baclofen use. Together, these results demonstrate that baclofen selectively maintains use-dependent modulation of largely subcortical but not cortical GABAB neuronal pathways after human SCI. Thus, cortical GABA(B) circuits may be less sensitive to baclofen than spinal GABAB circuits. This may contribute to the limited effects of baclofen on voluntary motor output in subjects with motor disorders affected by spasticity.
Collapse
|
25
|
Gruet M, Temesi J, Rupp T, Levy P, Millet G, Verges S. Stimulation of the motor cortex and corticospinal tract to assess human muscle fatigue. Neuroscience 2013; 231:384-99. [DOI: 10.1016/j.neuroscience.2012.10.058] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 10/10/2012] [Accepted: 10/29/2012] [Indexed: 10/27/2022]
|