1
|
Tsugaya S, Sasaki A, Arai S, Nomura T, Milosevic M. Frequency-dependent corticospinal facilitation following tibialis anterior neuromuscular electrical stimulation. Neuroscience 2025; 566:60-71. [PMID: 39701273 DOI: 10.1016/j.neuroscience.2024.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/04/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
The optimal stimulation frequency for inducing neuromodulatory effects remains unclear. The purpose of our study was to investigate the effect of neuromuscular electrical stimulation (NMES) with different frequencies on cortical and spinal excitability. Thirteen able-bodied individuals participated in the experiment involving NMES: (i) low-frequency at 25 Hz, (ii) high-frequency at 100 Hz, and (iii) mixed-frequency at 25 and 100 Hz switched every one second. All interventions were applied on the tibialis anterior muscle using a 10 sec ON / 10 sec OFF duty cycle for 10 min, using motor-level NMES at 120 % of the individual motor threshold for each stimulating frequency. Assessments were performed at baseline, immediately after, and 30 min after the interventions. Corticospinal excitability and intracortical inhibition were examined using transcranial magnetic stimulation by assessing the motor evoked potentials and cortical silent period, respectively. Spinal motoneuron excitability and neuromuscular propagation were assessed using peripheral nerve stimulation by evaluating F-wave and maximum motor (Mmax) responses, respectively. Maximal voluntary contraction (MVC) was evaluated during isometric dorsiflexion force exertion. Motor performance was also evaluated during the ankle dorsiflexion force-matching task. Our results showed that mixed frequency was most effective in modulating corticospinal excitability, although motor performance was not affected by any intervention. The cortical silent period was prolonged and Mmax was inhibited by all frequencies, while the F-wave and MVC were unaffected. Mixed-frequency stimulation could recruit a more diverse range of motor units, which are recruited in a stimulus frequency-specific manner, than single-frequency stimulation, and thus may have affected corticospinal facilitation.
Collapse
Affiliation(s)
- Shota Tsugaya
- Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Atsushi Sasaki
- Graduate School of Engineering Science, Osaka University, Osaka, Japan; Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan; The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, FL, USA
| | - Suzufumi Arai
- Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Taishin Nomura
- Graduate School of Engineering Science, Osaka University, Osaka, Japan; Graduate School of Informatics, Kyoto University, Kyoto, Japan
| | - Matija Milosevic
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, FL, USA; Department of Neurological Surgery, University of Miami Miller School of Medicine, FL, USA; Department of Biomedical Engineering, University of Miami, FL, USA.
| |
Collapse
|
2
|
Souza VH, Nieminen JO, Tugin S, Koponen LM, Ziemann U, Baffa O, Ilmoniemi RJ. Probing the orientation specificity of excitatory and inhibitory circuitries in the primary motor cortex with multi-channel TMS. Clin Neurophysiol 2025; 169:23-32. [PMID: 39603156 DOI: 10.1016/j.clinph.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/30/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024]
Abstract
OBJECTIVE Electric-field orientation is crucial for optimizing neuronal excitation in transcranial magnetic stimulation (TMS). Yet, the stimulus orientation effects on short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) are poorly understood due to technical challenges in manipulating the TMS-induced stimulus orientation within milliseconds. We aimed to assess the orientation sensitivity of SICI and ICF paradigms and identify optimal orientations for motor evoked potential (MEP) facilitation and suppression. METHODS We applied paired-pulse multi-channel TMS to 12 healthy subjects with conditioning and test stimuli in the same, opposite, and perpendicular orientations to each other at four interstimulus intervals (ISI) to generate refractoriness, SICI, and ICF. RESULTS MEP modulation was affected by the conditioning- and test-stimulus orientation, being strongest when both pulses were in the same direction. MEP modulation with 2.5-ms and 6.0-ms ISIs were more sensitive to orientation changes than 0.5- and 8.0-ms ISIs. CONCLUSION SICI and ICF orientation sensitivity exhibit a complex dependence on the conditioning stimulus orientation, which might be explained by anatomical and morphological arrangements of inhibitory and excitatory neuronal populations. SIGNIFICANCE Distinct mechanisms mediating SICI and ICF are sensitive to stimulus orientation at specific ISIs, describing a structural-functional relationship that maximizes each effect at the cortical level.
Collapse
Affiliation(s)
- Victor H Souza
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, Aalto University, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Physics, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.
| | - Jaakko O Nieminen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, Aalto University, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Sergei Tugin
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, Aalto University, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Lari M Koponen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, Aalto University, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Psychiatry & Behavioral Sciences, Duke University, Durham, NC, USA; Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
| | - Ulf Ziemann
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Oswaldo Baffa
- Department of Physics, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Risto J Ilmoniemi
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, Aalto University, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
3
|
Souza VH, Castro KVFD, de Melo-Carneiro P, de Oliveira Gomes I, Camatti JR, Oliveira IAVFD, Sá KN, Baptista AF, Lucena R, Zugaib J. tDCS and local scalp cooling do not change corticomotor and intracortical excitability in healthy humans. Clin Neurophysiol 2024; 168:1-9. [PMID: 39388788 DOI: 10.1016/j.clinph.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/04/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024]
Abstract
OBJECTIVE Scalp cooling might increase the long-term potentiation (LTP)-like effect of transcranial direct current stimulation (tDCS) by reducing the threshold for after-effects according to metaplasticity and increasing electrical current density reaching the cortical neurons. We aimed to investigate whether priming scalp cooling potentiates the tDCS after-effect on motor cortex excitability. METHODS This study had a randomized, parallel-arms, sham-controlled, double-blinded design with an adequately powered sample of 105 healthy subjects. Corticomotor and intracortical excitability were assessed with motor evoked potentials (MEP) from transcranial magnetic stimulation (TMS) in short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) paradigms. Subjects were randomly allocated into six intervention groups, including anodal and cathodal tDCS (1-mA/20-min), scalp cooling, and sham. MEPs were recorded before, immediately, and 15 min after the interventions. RESULTS We did not observe changes in MEP amplitude from single-pulse TMS, SICI, and ICF with any intervention protocol. CONCLUSION Anodal and cathodal tDCS did not have an LTP-like neuromodulatory effect on corticospinal and did not provide detectable GABAergic and glutamatergic neurotransmission changes, which were not influenced by priming scalp cooling. SIGNIFICANCE We provide strong evidence that tDCS (1-mA/20-min) does not alter corticomotor and intracortical excitability with or without priming scalp cooling.
Collapse
Affiliation(s)
- Victor H Souza
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland.
| | | | | | | | - Janine Ribeiro Camatti
- Graduate Program in Neuroscience and Cognition, Federal University of ABC, São Bernardo do Campo, Brazil
| | | | - Katia Nunes Sá
- Postgraduation and Research, Bahiana School of Medicine and Public Health, Salvador, Brazil
| | - Abrahão Fontes Baptista
- Center for Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo, Brazil
| | - Rita Lucena
- Graduate Program in Medicine and Health, Federal University of Bahia, Salvador, Brazil; Faculty of Medicine, Federal University of Bahia, Salvador, Brazil; Department of Neuroscience and Mental Health, Federal University of Bahia, Salvador, Brazil
| | - João Zugaib
- Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| |
Collapse
|
4
|
Hayes KD, Khan MER, Graham KR, Staines WR, Meehan SK. Persistent adaptations in sensorimotor interneuron circuits in the motor cortex with a history of sport-related concussion. Exp Brain Res 2024; 243:5. [PMID: 39607543 DOI: 10.1007/s00221-024-06964-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/04/2024] [Indexed: 11/29/2024]
Abstract
Recent studies highlight a persistent increase in subsequent injury risk following a sport-related concussion (SRC) despite clinical recovery. However, markers of persistent alterations in sensorimotor integration have yet to be identified. One possibility is that compensatory adaptation following SRC may only be unmasked during transient periods of high task complexity in specific sensorimotor circuits. The current study used short-latency afferent inhibition (SAI) to investigate the long-term sequelae of sport-related concussion (SRC) in different short-latency sensorimotor circuits converging in the motor cortex. Specific sensorimotor circuits sensitive to posterior-anterior current with a positive phase lasting 120µs (PA120) and anterior-posterior current with a positive phase lasting 30µs (AP30) were assessed using controllable pulse parameter transcranial magnetic stimulation (cTMS) while young adults with and without a history of SRC were at rest or responded to valid and invalid sensorimotor cues. SAI was quantified as the ratio of the motor-evoked potential (MEP) elicited by peripherally conditioned cTMS stimuli to the unconditioned MEP for each cTMS configuration. Individuals with a SRC history demonstrated persistent adaptation in AP30 SAI, but only in response to invalid cues. Persistent adaptation in AP30 SAI was not apparent at rest or during simple sensorimotor transformations in response to valid cues. PA120 SAI demonstrated similar responses at rest and in response to both valid and invalid cues, regardless of SRC history. AP30-sensitive sensorimotor circuits may mark the long-term SRC sequelae and the increased susceptibility to momentary breakdowns in sensorimotor integration during periods of high cognitive-motor demands.
Collapse
Affiliation(s)
- Kara D Hayes
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Madison E R Khan
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Kylee R Graham
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - W Richard Staines
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Sean K Meehan
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
5
|
Rosenthal ZP, Majeski JB, Somarowthu A, Quinn DK, Lindquist BE, Putt ME, Karaj A, Favilla CG, Baker WB, Hosseini G, Rodriguez JP, Cristancho MA, Sheline YI, Shuttleworth CW, Abbott CC, Yodh AG, Goldberg EM. Electroconvulsive therapy generates a hidden wave after seizure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.31.621357. [PMID: 39554135 PMCID: PMC11565954 DOI: 10.1101/2024.10.31.621357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Electroconvulsive therapy (ECT) is a fast-acting, highly effective, and safe treatment for medication-resistant depression. Historically, the clinical benefits of ECT have been attributed to generating a controlled seizure; however, the underlying neurobiology is understudied and remains largely unresolved. Using optical neuroimaging to probe neural activity and hemodynamics in a mouse model of ECT, we demonstrated that a second brain event follows seizure: cortical spreading depolarization (CSD). We further found that ECT stimulation pulse parameters and electrode configuration directly shaped the wave dynamics of seizure and subsequent CSD. To translate these findings to human patients, we tested for the presence of hemodynamic signatures of post-ictal CSD using non-invasive diffuse optical monitoring of cerebral blood flow and oxygenation during routine ECT treatments. We found evidence that humans generate hyperemic waves after ECT seizure which are highly consistent with CSD. These results challenge a long-held assumption that seizure is the primary outcome of ECT and point to new opportunities for optimizing ECT stimulation parameters to precisely modulate brain activity and treatment outcomes.
Collapse
Affiliation(s)
- Zachary P Rosenthal
- Psychiatry Residency Physician-Scientist Research Track, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph B Majeski
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Ala Somarowthu
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, PA, USA
| | - Davin K Quinn
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Britta E Lindquist
- Department of Neurology, University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Mary E Putt
- Department of Biostatistics, Epidemiology & Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Antoneta Karaj
- Department of Biostatistics, Epidemiology & Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chris G Favilla
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wesley B Baker
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, PA, USA
| | - Golkoo Hosseini
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jenny P Rodriguez
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mario A Cristancho
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neuromodulation in Depression and Stress, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yvette I Sheline
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neuromodulation in Depression and Stress, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - C William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Christopher C Abbott
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Arjun G Yodh
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Ethan M Goldberg
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
6
|
Lee KJ, Jang JW, Kim JS, Kim S. Epidural magnetic stimulation of the motor cortex using an implantable coil. Brain Stimul 2024; 17:1157-1166. [PMID: 39384084 DOI: 10.1016/j.brs.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/20/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND Magnetic stimulation, represented by transcranial magnetic stimulation (TMS), is used to treat neurological diseases. Various strategies have been explored to improve the spatial resolution of magnetic stimulation. While reducing the coil size is the most impactful approach for increasing the spatial resolution, it decreases the stimulation intensity and increases heat generation. OBJECTIVE We aim to demonstrate the feasibility of magnetic stimulation using an epidurally implanted millimeter-sized coil and that it does not damage the cortical tissue via heating even when a repetitive stimulation protocol is used. METHODS A coil with dimensions of 3.5 × 3.5 × 2.6 mm3 was epidurally implanted on the left motor cortex of rat, corresponding to the right hindlimb. Before and after epidural magnetic stimulation using a quadripulse stimulation (QPS) protocol, changes in the amplitude of motor evoked potentials (MEPs) elicited by a TMS coil were compared. RESULTS The experimental group showed an average increase of 88 % in MEP amplitude in the right hindlimb after QPS, whereas the MEP amplitude in the left hindlimb increased by 18 % on average. The control group showed no significant change in MEP amplitude after QPS in either hindlimb. The temperature changes at the coil surface remained <2 °C during repetitive stimulation, meeting the thermal safety limit for implantable medical devices. CONCLUSION These results demonstrate the feasibility of epidural magnetic stimulation using an implantable coil to induce neuromodulation effects. This novel method is expected to be a promising alternative for focal magnetic stimulation with an improved spatial resolution and lowered stimulus current than previous magnetic stimulation methods.
Collapse
Affiliation(s)
- Kyeong Jae Lee
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Jae-Won Jang
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - June Sic Kim
- Clinical Research Institute, Konkuk University Medical Center, Seoul, Republic of Korea
| | - Sohee Kim
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea.
| |
Collapse
|
7
|
Pavey NA, Menon P, Peterchev AV, Kiernan MC, Vucic S. Abnormalities of cortical stimulation strength-duration time constant in amyotrophic lateral sclerosis. Clin Neurophysiol 2024; 164:161-167. [PMID: 38901111 PMCID: PMC11345808 DOI: 10.1016/j.clinph.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/23/2024] [Accepted: 05/26/2024] [Indexed: 06/22/2024]
Abstract
OBJECTIVES Strength-duration time constant (SDTC) may now be determined for cortical motor neurones, with activity mediated by transient Na+ conductances. The present study determined whether cortical SDTC is abnormal and linked to the pathogenesis of amyotrophic lateral sclerosis. METHODS Cortical SDTC and rheobase were estimated from 17 ALS patients using a controllable pulse parameter transcranial magnetic stimulation (cTMS) device. Resting motor thresholds (RMTs) were determined at pulse widths (PW) of 30, 45, 60, 90 and 120 µs and M-ratio of 0.1, using a figure-of-eight coil applied to the primary motor cortex. RESULTS SDTC was significantly reduced in ALS patients (150.58 ± 9.98 µs; controls 205.94 ± 13.7 µs, P < 0.01). The reduced SDTC correlated with a rate of disease progression (Rho = -0.440, P < 0.05), ALS functional rating score (ALSFRS-R) score (Rho = 0.446, P < 0.05), and disease duration (R = 0.428, P < 0.05). The degree of change in SDTC was greater in patients with cognitive abnormalities as manifested by an abnormal total Edinburgh Cognitive ALS Screen score (140.5 ± 28.7 µs, P < 0.001) and ALS-specific subscore (141.7 ± 33.2 µs, P = 0.003). CONCLUSIONS Cortical SDTC reduction was associated with a more aggressive ALS phenotype, or with more prominent cognitive impairment. SIGNIFICANCE An increase in transient Na+ conductances may account for the reduction in SDTC, linked to the pathogenesis of ALS.
Collapse
Affiliation(s)
- Nathan A Pavey
- Brain and Nerve Research Centre, Concord Clinical School, University of Sydney, Concord Hospital, Sydney, Australia
| | - Parvathi Menon
- Brain and Nerve Research Centre, Concord Clinical School, University of Sydney, Concord Hospital, Sydney, Australia
| | - Angel V Peterchev
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA; Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Psychiatry and Behavioural Sciences, Duke University, Durham, NC, USA; Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA; Department of Neurosurgery, Duke University, Durham, NC, USA
| | | | - Steve Vucic
- Brain and Nerve Research Centre, Concord Clinical School, University of Sydney, Concord Hospital, Sydney, Australia.
| |
Collapse
|
8
|
Phylactou P, Pham TNM, Narskhani N, Diya N, Seminowicz DA, Schabrun SM. Phosphene and motor transcranial magnetic stimulation thresholds are correlated: A meta-analytic investigation. Prog Neuropsychopharmacol Biol Psychiatry 2024; 133:111020. [PMID: 38692474 DOI: 10.1016/j.pnpbp.2024.111020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/22/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Transcranial magnetic stimulation (TMS) is commonly delivered at an intensity defined by the resting motor threshold (rMT), which is thought to represent cortical excitability, even if the TMS target area falls outside of the motor cortex. This approach rests on the assumption that cortical excitability, as measured through the motor cortex, represents a 'global' measure of excitability. Another common approach to measure cortical excitability relies on the phosphene threshold (PT), measured through the visual cortex of the brain. However, it remains unclear whether either estimate can serve as a singular measure to infer cortical excitability across different brain regions. If PT and rMT can indeed be used to infer cortical excitability across brain regions, they should be correlated. To test this, we systematically identified previous studies that measured PT and rMT to calculate an overall correlation between the two estimates. Our results, based on 16 effect sizes from eight studies, indicated that PT and rMT are correlated (ρ = 0.4), and thus one measure could potentially serve as a measure to infer cortical excitability across brain regions. Three exploratory meta-analyses revealed that the strength of the correlation is affected by different methodologies, and that PT intensities are higher than rMT. Evidence for a PT-rMT correlation remained robust across all analyses. Further research is necessary for an in-depth understanding of how cortical excitability is reflected through TMS.
Collapse
Affiliation(s)
- P Phylactou
- School of Physical Therapy, Faculty of Health Sciences, University of Western Ontario, London, ON, Canada; The Gray Centre for Mobility and Activity, Parkwood Institute, London, ON, Canada.
| | - T N M Pham
- The Gray Centre for Mobility and Activity, Parkwood Institute, London, ON, Canada
| | - N Narskhani
- The Gray Centre for Mobility and Activity, Parkwood Institute, London, ON, Canada
| | - N Diya
- The Gray Centre for Mobility and Activity, Parkwood Institute, London, ON, Canada
| | - D A Seminowicz
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada
| | - S M Schabrun
- School of Physical Therapy, Faculty of Health Sciences, University of Western Ontario, London, ON, Canada; The Gray Centre for Mobility and Activity, Parkwood Institute, London, ON, Canada
| |
Collapse
|
9
|
Osnabruegge M, Kanig C, Schoisswohl S, Litschel K, Mack W, Schecklmann M, Langguth B, Schwitzgebel F. Variability of pulse width in transcranial magnetic stimulation. J Neural Eng 2024; 21:026035. [PMID: 38513287 DOI: 10.1088/1741-2552/ad367a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/21/2024] [Indexed: 03/23/2024]
Abstract
Objective.There is a high variability in the physiological effects of transcranial magnetic brain stimulation, resulting in limited generalizability of measurements. The cause of the variability is assumed to be primarily based on differences in brain function and structure of the stimulated individuals, while the variability of the physical properties of the magnetic stimulus has so far been largely neglected. Thus, this study is dedicated to the systematic investigation of variability in the pulse width of different TMS pulse sources at different stimulation intensities.Approach.The pulse widths of seven MagVenture® pulse sources were measured at the output of 10%-100% stimulation intensity in 10% increments via Near Field Probe and oscilloscope. The same C-B60 coil was used to deliver biphasic pulses. Pulse widths were compared between pulse sources and stimulation intensities.Main results.The mean sample pulse width was 288.11 ± 0.37µs, which deviates from the value of 280µs specified by the manufacturer. The pulse sources and stimulation intensities differ in their average pulse width (p's< .001). However, the coefficient of variation within the groups (pulse source; stimulation intensity) were moderately low (CV = 0.13%-0.67%).Significance.The technical parameter of pulse width shows deviations from the proposed manufacturer value. According to our data, within a pulse source of the same manufacturer, the pulse width variability is minimal, but varies between pulse sources of the same and other pulse source models. Whether the observed variability in pulse width has potential physiological relevance was tested in a pilot experiment on a single healthy subject, showing no significant difference in motor evoked potential amplitude and significant difference in latencies. Future research should systematically investigate the physiological effects of different pulse lengths. Furthermore, potential hardware ageing effects and pulse amplitude should be investigated.
Collapse
Affiliation(s)
- Mirja Osnabruegge
- Institute of Psychology, Universität der Bundeswehr München, Neubiberg, Germany
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Carolina Kanig
- Institute of Psychology, Universität der Bundeswehr München, Neubiberg, Germany
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Stefan Schoisswohl
- Institute of Psychology, Universität der Bundeswehr München, Neubiberg, Germany
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Karsten Litschel
- Department of Electrical Engineering, Universität der Bundeswehr München, Neubiberg, Germany
| | - Wolfgang Mack
- Institute of Psychology, Universität der Bundeswehr München, Neubiberg, Germany
| | - Martin Schecklmann
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Florian Schwitzgebel
- Department of Electrical Engineering, Universität der Bundeswehr München, Neubiberg, Germany
| |
Collapse
|
10
|
Lisanby SH. Transcranial Magnetic Stimulation in Psychiatry: Historical Reflections and Future Directions. Biol Psychiatry 2024; 95:488-490. [PMID: 37169276 DOI: 10.1016/j.biopsych.2023.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Affiliation(s)
- Sarah H Lisanby
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, Maryland.
| |
Collapse
|
11
|
Abbasi S, Alluri S, Leung V, Asbeck P, Makale MT. Design and Validation of Miniaturized Repetitive Transcranial Magnetic Stimulation (rTMS) Head Coils. SENSORS (BASEL, SWITZERLAND) 2024; 24:1584. [PMID: 38475120 DOI: 10.3390/s24051584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a rapidly developing therapeutic modality for the safe and effective treatment of neuropsychiatric disorders. However, clinical rTMS driving systems and head coils are large, heavy, and expensive, so miniaturized, affordable rTMS devices may facilitate treatment access for patients at home, in underserved areas, in field and mobile hospitals, on ships and submarines, and in space. The central component of a portable rTMS system is a miniaturized, lightweight coil. Such a coil, when mated to lightweight driving circuits, must be able to induce B and E fields of sufficient intensity for medical use. This paper newly identifies and validates salient theoretical considerations specific to the dimensional scaling and miniaturization of coil geometries, particularly figure-8 coils, and delineates novel, key design criteria. In this context, the essential requirement of matching coil inductance with the characteristic resistance of the driver switches is highlighted. Computer simulations predicted E- and B-fields which were validated via benchtop experiments. Using a miniaturized coil with dimensions of 76 mm × 38 mm and weighing only 12.6 g, the peak E-field was 87 V/m at a distance of 1.5 cm. Practical considerations limited the maximum voltage and current to 350 V and 3.1 kA, respectively; nonetheless, this peak E-field value was well within the intensity range, 60-120 V/m, generally held to be therapeutically relevant. The presented parameters and results delineate coil and circuit guidelines for a future miniaturized, power-scalable rTMS system able to generate pulsed E-fields of sufficient amplitude for potential clinical use.
Collapse
Affiliation(s)
- Shaghayegh Abbasi
- Electrical Engineering Department, University of Portland, Portland, OR 97203, USA
| | - Sravya Alluri
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093, USA
- Calit2 Advanced Circuits Laboratory, University of California San Diego, La Jolla, CA 92093, USA
| | - Vincent Leung
- Department of Electrical and Computer Engineering, Baylor University, Waco, TX 76706, USA
| | - Peter Asbeck
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093, USA
- Calit2 Advanced Circuits Laboratory, University of California San Diego, La Jolla, CA 92093, USA
| | - Milan T Makale
- Moores Cancer Center, Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
12
|
Koponen LM, Martinez M, Wood E, Murphy DLK, Goetz SM, Appelbaum LG, Peterchev AV. Transcranial magnetic stimulation input-output curve slope differences suggest variation in recruitment across muscle representations in primary motor cortex. Front Hum Neurosci 2024; 18:1310320. [PMID: 38384332 PMCID: PMC10879434 DOI: 10.3389/fnhum.2024.1310320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/29/2024] [Indexed: 02/23/2024] Open
Abstract
Measurement of the input-output (IO) curves of motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) can be used to assess corticospinal excitability and motor recruitment. While IO curves have been used to study disease and pharmacology, few studies have compared the IO curves across the body. This study sought to characterize IO curve parameters across the dominant and non-dominant sides of upper and lower limbs in healthy participants. Laterality preferences were assessed in eight healthy participants and IO curves were measured bilaterally for the first dorsal interosseous (FDI), biceps brachii (BB), and tibialis anterior (TA) muscles. Results show that FDI has lower motor threshold than BB which is, in turn, lower than TA. In addition, both BB and TA have markedly shallower logarithmic IO curve slopes from small to large MEP responses than FDI. After normalizing these slopes by their midpoints to account for differences in motor thresholds, which could result from geometric factors such as the target depth, large differences in logarithmic slopes remain present between all three muscles. The differences in slopes between the muscles could not be explained by differences in normalized IO curve spreads, which relate to the extent of the cortical representation and were comparable across the muscles. The IO curve differences therefore suggest muscle-dependent variations in TMS-evoked recruitment across the primary motor cortex, which should be considered when utilizing TMS-evoked MEPs to study disease states and treatment effects.
Collapse
Affiliation(s)
- Lari M. Koponen
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, United States
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
| | - Miles Martinez
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, United States
- Center for Cognitive Neuroscience, Duke University, Durham, NC, United States
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, United States
| | - Eleanor Wood
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, United States
| | - David L. K. Murphy
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, United States
| | - Stefan M. Goetz
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, United States
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, United States
- Department of Neurosurgery, Duke University, Durham, NC, United States
| | - Lawrence G. Appelbaum
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, United States
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Angel V. Peterchev
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, United States
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, United States
- Department of Neurosurgery, Duke University, Durham, NC, United States
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| |
Collapse
|
13
|
Ma K, Goetz SM. A user-friendly input-output curve analysis tool for variable direct responses to brain stimulation. Brain Stimul 2024; 17:134-136. [PMID: 38244772 DOI: 10.1016/j.brs.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/22/2024] Open
Affiliation(s)
- Ke Ma
- Department of Engineering, School of Technology, University of Cambridge, Cambridge, United Kingdom
| | - Stephan M Goetz
- Department of Engineering, School of Technology, University of Cambridge, Cambridge, United Kingdom; Department of Psychiatry and Behavioural Sciences, School of Medicine, Duke University, Durham, NC, United States of America; Department of Electrical and Computer Engineering, School of Engineering, Duke University, Durham, NC, United States of America; Department of Neurosurgery, School of Medicine, Duke University, Durham, NC, United States of America; Duke Institute for Brain Sciences, Duke University, Durham, NC, United States of America.
| |
Collapse
|
14
|
Nguyen H, Makaroff SN, Li CQ, Hoffman S, Yang Y, Lu H. High inductance magnetic-core coils have enhanced efficiency in inducing suprathreshold motor response in rats. Phys Med Biol 2023; 68:10.1088/1361-6560/ad0bde. [PMID: 37949063 PMCID: PMC10990567 DOI: 10.1088/1361-6560/ad0bde] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 11/10/2023] [Indexed: 11/12/2023]
Abstract
Objective. Transcranial magnetic stimulation (TMS) coil design involves a tradeoff among multiple parameters, including magnetic flux density (B), inductance (L), induced electric (E) field, focality, penetration depth, coil heating, etc. Magnetic materials with high permeability have been suggested to enhance coil efficiency. However, the introduction of magnetic core invariably increases coil inductance compared to its air-core counterpart, which in turn weakens theEfield. Our lab previously reported a rodent-specific TMS coil with silicon steel magnetic core, achieving 2 mm focality. This study aims to better understand the tradeoffs amongB,L,andEin the presence of magnetic core.Approach. The magnetic core initially operates within the linear range, transitioning to the nonlinear range when it begins to saturate at high current levels and reverts to the linear range as coil current approaches zero; both linear and nonlinear analyses were performed. Linear analysis assumes a weak current condition when magnetic core is not saturated; a monophasic TMS circuit was employed for this purpose. Nonlinear analysis assumes a strong current condition with varying degrees of core saturation.Main results. Results reveal that, the secondaryEfield generated by the silicon steel core substantially changed the dynamics during TMS pulse. Linear and nonlinear analyses revealed that higher inductance coils produced stronger peakEfields and longerEfield waveforms. On a macroscopic scale, the effects of these two factors on neuronal activation could be conceptually explained through a one-time-constant linear membrane model. Four coils with differentB,L,andEcharacteristics were designed and constructed. BothEfield mapping and experiments on awake rats confirmed that inductance could be much higher than previously anticipated, provided that magnetic material possesses a high saturation threshold.Significance. Our results highlight the novel potentials of magnetic core in TMS coil designs, especially for small animals.
Collapse
Affiliation(s)
- Hieu Nguyen
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States of America
| | - Sergey N Makaroff
- Department of Electrical & Computer Engineering, Worcester Polytechnic Institute, Worcester, MA, United States of America
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Charlotte Qiong Li
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States of America
| | - Samantha Hoffman
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States of America
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States of America
| | - Hanbing Lu
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States of America
| |
Collapse
|
15
|
Wang B, Peterchev AV, Goetz SM. Three novel methods for determining motor threshold with transcranial magnetic stimulation outperform conventional procedures. J Neural Eng 2023; 20:10.1088/1741-2552/acf1cc. [PMID: 37595573 PMCID: PMC10516469 DOI: 10.1088/1741-2552/acf1cc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/18/2023] [Indexed: 08/20/2023]
Abstract
Objective. Thresholding of neural responses is central to many applications of transcranial magnetic stimulation (TMS), but the stochastic aspect of neuronal activity and motor evoked potentials (MEPs) challenges thresholding techniques. We analyzed existing methods for obtaining TMS motor threshold and their variations, introduced new methods from other fields, and compared their accuracy and speed.Approach. In addition to existing relative-frequency methods, such as the five-out-of-ten method, we examined adaptive methods based on a probabilistic motor threshold model using maximum-likelihood (ML) or maximuma-posteriori(MAP) estimation. To improve the performance of these adaptive estimation methods, we explored variations in the estimation procedure and inclusion of population-level prior information. We adapted a Bayesian estimation method which iteratively incorporated information of the TMS responses into the probability density function. A family of non-parametric stochastic root-finding methods with different convergence criteria and stepping rules were explored as well. The performance of the thresholding methods was evaluated with an independent stochastic MEP model.Main Results. The conventional relative-frequency methods required a large number of stimuli, were inherently biased on the population level, and had wide error distributions for individual subjects. The parametric estimation methods obtained the thresholds much faster and their accuracy depended on the estimation method, with performance significantly improved when population-level prior information was included. Stochastic root-finding methods were comparable to adaptive estimation methods but were much simpler to implement and did not rely on a potentially inaccurate underlying estimation model.Significance. Two-parameter MAP estimation, Bayesian estimation, and stochastic root-finding methods have better error convergence compared to conventional single-parameter ML estimation, and all these methods require significantly fewer TMS pulses for accurate estimation than conventional relative-frequency methods. Stochastic root-finding appears particularly attractive due to the low computational requirements, simplicity of the algorithmic implementation, and independence from potential model flaws in the parametric estimators.
Collapse
Affiliation(s)
- Boshuo Wang
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Duke University, Durham, NC, USA
| | - Angel V. Peterchev
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Duke University, Durham, NC, USA
- Department of Electrical and Computer Engineering, School of Engineering, Duke University, Durham, NC, USA
- Department of Biomedical Engineering, School of Engineering, Duke University, Durham, NC, USA
- Department of Neurosurgery, School of Medicine, Duke University, Durham, NC, USA
| | - Stefan M. Goetz
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Duke University, Durham, NC, USA
- Department of Electrical and Computer Engineering, School of Engineering, Duke University, Durham, NC, USA
- Department of Neurosurgery, School of Medicine, Duke University, Durham, NC, USA
- Department of Engineering, School of Technology, University of Cambridge, Cambridge, UK
| |
Collapse
|
16
|
Alavi SMM, Mahdi A, Vila-Rodriguez F, Goetz SM. Identifiability Analysis and Noninvasive Online Estimation of the First-Order Neural Activation Dynamics in the Brain With Closed-Loop Transcranial Magnetic Stimulation. IEEE Trans Biomed Eng 2023; 70:2564-2572. [PMID: 37656637 DOI: 10.1109/tbme.2023.3253674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
BACKGROUND Neurons demonstrate very distinct nonlinear activation dynamics, influenced by the neuron type, morphology, ion channel expression, and various other factors. The measurement of the activation dynamics can identify the neural target of stimulation and detect deviations, e.g., for diagnosis. This paper describes a tool for closed-loop sequential parameter estimation (SPE) of the activation dynamics through transcranial magnetic stimulation (TMS). The proposed SPE method operates in real time, selects ideal stimulus parameters, detects and processes the response, and concurrently estimates the input-output (IO) curve and the first-order approximation of the activated neural target. OBJECTIVE To develop a method for concurrent SPE of the first-order activation dynamics and IO curve with closed-loop TMS. METHOD First, identifiability of an integrated model of the first-order neural activation dynamics and IO curve is assessed, demonstrating that at least two IO curves need to be acquired with different pulse widths. Then, a two-stage SPE method is proposed. It estimates the IO curve by using Fisher information matrix (FIM) optimization in the first stage and subsequently estimates the membrane time constant as well as the coupling gain in the second stage. The procedure continues in a sequential manner until a stopping rule is satisfied. RESULTS The results of 73 simulation cases confirm the satisfactory estimation of the membrane time constant and coupling gain with average absolute relative errors (AREs) of 6.2% and 5.3%, respectively, with an average of 344 pulses (172 pulses for each IO curve or pulse width). The method estimates the IO curves' lower and upper plateaus, mid-point, and slope with average AREs of 0.2%, 0.7%, 0.9%, and 14.5%, respectively. The conventional time constant estimation method based on the strength-duration (S-D) curve leads to 33.3% ARE, which is 27.0% larger than 6.2% ARE obtained through the proposed real-time FIM-based SPE method in this paper. CONCLUSIONS SPE of the activation dynamics requires acquiring at least two IO curves with different pulse widths, which needs a controllable TMS (cTMS) device with adjustable pulse duration. SIGNIFICANCE The proposed SPE method enhances the cTMS functionality, which can contribute novel insights in research and clinical studies.
Collapse
|
17
|
Aberra AS, Lopez A, Grill WM, Peterchev AV. Rapid estimation of cortical neuron activation thresholds by transcranial magnetic stimulation using convolutional neural networks. Neuroimage 2023; 275:120184. [PMID: 37230204 PMCID: PMC10281353 DOI: 10.1016/j.neuroimage.2023.120184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/13/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) can modulate neural activity by evoking action potentials in cortical neurons. TMS neural activation can be predicted by coupling subject-specific head models of the TMS-induced electric field (E-field) to populations of biophysically realistic neuron models; however, the significant computational cost associated with these models limits their utility and eventual translation to clinically relevant applications. OBJECTIVE To develop computationally efficient estimators of the activation thresholds of multi-compartmental cortical neuron models in response to TMS-induced E-field distributions. METHODS Multi-scale models combining anatomically accurate finite element method (FEM) simulations of the TMS E-field with layer-specific representations of cortical neurons were used to generate a large dataset of activation thresholds. 3D convolutional neural networks (CNNs) were trained on these data to predict thresholds of model neurons given their local E-field distribution. The CNN estimator was compared to an approach using the uniform E-field approximation to estimate thresholds in the non-uniform TMS-induced E-field. RESULTS The 3D CNNs estimated thresholds with mean absolute percent error (MAPE) on the test dataset below 2.5% and strong correlation between the CNN predicted and actual thresholds for all cell types (R2 > 0.96). The CNNs estimated thresholds with a 2-4 orders of magnitude reduction in the computational cost of the multi-compartmental neuron models. The CNNs were also trained to predict the median threshold of populations of neurons, speeding up computation further. CONCLUSION 3D CNNs can estimate rapidly and accurately the TMS activation thresholds of biophysically realistic neuron models using sparse samples of the local E-field, enabling simulating responses of large neuron populations or parameter space exploration on a personal computer.
Collapse
Affiliation(s)
- Aman S Aberra
- Department of Biomedical Engineering, School of Engineering, Duke University, NC, USA
| | - Adrian Lopez
- Department of Electrical and Computer Engineering, School of Engineering, Duke University, NC, USA; Department of Mathematics, College of Arts and Sciences, Duke University, NC, USA
| | - Warren M Grill
- Department of Biomedical Engineering, School of Engineering, Duke University, NC, USA; Department of Electrical and Computer Engineering, School of Engineering, Duke University, NC, USA; Department of Neurobiology, School of Medicine, Duke University, NC, USA; Department of Neurosurgery, School of Medicine, Duke University, NC, USA
| | - Angel V Peterchev
- Department of Biomedical Engineering, School of Engineering, Duke University, NC, USA; Department of Electrical and Computer Engineering, School of Engineering, Duke University, NC, USA; Department of Neurosurgery, School of Medicine, Duke University, NC, USA; Department of Psychiatry and Behavioral Sciences, School of Medicine, Duke University, NC, USA.
| |
Collapse
|
18
|
Lee KJ, Park B, Jang JW, Kim S. Magnetic stimulation of the sciatic nerve using an implantable high-inductance coil with low-intensity current. J Neural Eng 2023; 20:036035. [PMID: 37290431 DOI: 10.1088/1741-2552/acdcbb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/08/2023] [Indexed: 06/10/2023]
Abstract
Objective.Magnetic stimulation using implantable devices may offer a promising alternative to other stimulation methods such as transcranial magnetic stimulation (TMS) or electric stimulation using implantable devices. This alternative may increase the selectivity of stimulation compared to TMS, and eliminate the need to expose tissue to metals in the body, as is required in electric stimulation using implantable devices. However, previous studies of magnetic stimulation of the sciatic nerve used large coils, with a diameter of several tens of mm, and a current intensity in the order of kA.Approach.Since such large coils and high current intensity are not suitable for implantable devices, we investigated the feasibility of using a smaller implantable coil and lower current to elicit neuronal responses. A coil with a diameter of 3 mm and an inductance of 1 mH was used as the implantable stimulator.Main results.Beforein vivoexperiments, we used 3D computational models to estimate the minimum stimulus intensity required to elicit neuronal responses, resulting in a threshold current above 3.5 A. Inin vivoexperiments, we observed successful nerve stimulation via compound muscle action potentials elicited in hind-limb muscles when the applied current was above 3.8 A, a significantly reduced current than that used in conventional magnetic stimulation.Significance.We report the feasibility of magnetic stimulation using an implantable millimeter-sized coil and low current of a few amperes to elicit neural responses in peripheral nerves. The proposed method is expected to be an alternative to TMS, with the merit of improved selectivity in stimulation, and to electrical stimulation based on implantable devices, with the merit of avoiding the exposure of conducting metals to neural tissues.
Collapse
Affiliation(s)
- Kyeong Jae Lee
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Byungwook Park
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Jae-Won Jang
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Sohee Kim
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| |
Collapse
|
19
|
Wang B, Zhang J, Li Z, Grill WM, Peterchev AV, Goetz SM. Optimized monophasic pulses with equivalent electric field for rapid-rate transcranial magnetic stimulation. J Neural Eng 2023; 20:10.1088/1741-2552/acd081. [PMID: 37100051 PMCID: PMC10464893 DOI: 10.1088/1741-2552/acd081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 04/26/2023] [Indexed: 04/28/2023]
Abstract
Objective.Transcranial magnetic stimulation (TMS) with monophasic pulses achieves greater changes in neuronal excitability but requires higher energy and generates more coil heating than TMS with biphasic pulses, and this limits the use of monophasic pulses in rapid-rate protocols. We sought to design a stimulation waveform that retains the characteristics of monophasic TMS but significantly reduces coil heating, thereby enabling higher pulse rates and increased neuromodulation effectiveness.Approach.A two-step optimization method was developed that uses the temporal relationship between the electric field (E-field) and coil current waveforms. The model-free optimization step reduced the ohmic losses of the coil current and constrained the error of the E-field waveform compared to a template monophasic pulse, with pulse duration as a second constraint. The second, amplitude adjustment step scaled the candidate waveforms based on simulated neural activation to account for differences in stimulation thresholds. The optimized waveforms were implemented to validate the changes in coil heating.Main results.Depending on the pulse duration and E-field matching constraints, the optimized waveforms produced 12%-75% less heating than the original monophasic pulse. The reduction in coil heating was robust across a range of neural models. The changes in the measured ohmic losses of the optimized pulses compared to the original pulse agreed with numeric predictions.Significance.The first step of the optimization approach was independent of any potentially inaccurate or incorrect model and exhibited robust performance by avoiding the highly nonlinear behavior of neural responses, whereas neural simulations were only run once for amplitude scaling in the second step. This significantly reduced computational cost compared to iterative methods using large populations of candidate solutions and more importantly reduced the sensitivity to the choice of neural model. The reduced coil heating and power losses of the optimized pulses can enable rapid-rate monophasic TMS protocols.
Collapse
Affiliation(s)
- Boshuo Wang
- Department of Psychiatry and Behavior Sciences, School of Medicine, Duke University, Durham, NC, USA
| | - Jinshui Zhang
- Department of Electrical and Computer Engineering, School of Engineering, Duke University, Durham, NC, USA
| | - Zhongxi Li
- Department of Electrical and Computer Engineering, School of Engineering, Duke University, Durham, NC, USA
| | - Warren M. Grill
- Department of Electrical and Computer Engineering, School of Engineering, Duke University, Durham, NC, USA
- Department of Biomedical Engineering, School of Engineering, Duke University, Durham, NC, USA
- Department of Neurosurgery, School of Medicine, Duke University, NC, USA
- Department of Neurobiology, School of Medicine, Duke University, NC, USA
| | - Angel V. Peterchev
- Department of Psychiatry and Behavior Sciences, School of Medicine, Duke University, Durham, NC, USA
- Department of Electrical and Computer Engineering, School of Engineering, Duke University, Durham, NC, USA
- Department of Biomedical Engineering, School of Engineering, Duke University, Durham, NC, USA
- Department of Neurosurgery, School of Medicine, Duke University, NC, USA
| | - Stefan M. Goetz
- Department of Psychiatry and Behavior Sciences, School of Medicine, Duke University, Durham, NC, USA
- Department of Electrical and Computer Engineering, School of Engineering, Duke University, Durham, NC, USA
- Department of Neurosurgery, School of Medicine, Duke University, NC, USA
- Department of Engineering, School of Technology, University of Cambridge, Cambridge, UK
| |
Collapse
|
20
|
Numssen O, van der Burght CL, Hartwigsen G. Revisiting the focality of non-invasive brain stimulation - Implications for studies of human cognition. Neurosci Biobehav Rev 2023; 149:105154. [PMID: 37011776 PMCID: PMC10186117 DOI: 10.1016/j.neubiorev.2023.105154] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/06/2023] [Accepted: 03/31/2023] [Indexed: 04/04/2023]
Abstract
Non-invasive brain stimulation techniques are popular tools to investigate brain function in health and disease. Although transcranial magnetic stimulation (TMS) is widely used in cognitive neuroscience research to probe causal structure-function relationships, studies often yield inconclusive results. To improve the effectiveness of TMS studies, we argue that the cognitive neuroscience community needs to revise the stimulation focality principle - the spatial resolution with which TMS can differentially stimulate cortical regions. In the motor domain, TMS can differentiate between cortical muscle representations of adjacent fingers. However, this high degree of spatial specificity cannot be obtained in all cortical regions due to the influences of cortical folding patterns on the TMS-induced electric field. The region-dependent focality of TMS should be assessed a priori to estimate the experimental feasibility. Post-hoc simulations allow modeling of the relationship between cortical stimulation exposure and behavioral modulation by integrating data across stimulation sites or subjects.
Collapse
Affiliation(s)
- Ole Numssen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Methods and Development Group Brain Networks, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | | | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Wilhelm Wundt Institute for Psychology, Leipzig University, Germany
| |
Collapse
|
21
|
Menon P, Pavey N, Aberra AS, van den Bos MAJ, Wang R, Kiernan MC, Peterchev AV, Vucic S. Dependence of cortical neuronal strength-duration properties on TMS pulse shape. Clin Neurophysiol 2023; 150:106-118. [PMID: 37060842 PMCID: PMC10280814 DOI: 10.1016/j.clinph.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/13/2023] [Accepted: 03/08/2023] [Indexed: 04/17/2023]
Abstract
OBJECTIVE The aim of present study was to explore the effects of different combinations of transcranial magnetic stimulation (TMS) pulse width and pulse shape on cortical strength-duration time constant (SDTC) and rheobase measurements. METHODS Resting motor thresholds (RMT) at pulse widths (PW) of 30, 45, 60, 90 and 120 µs and M-ratios of 0.2, 0.1 and 0.025 were determined using figure-of-eight coil with initial posterior-to-anterior induced current. The M-ratio indicates the relative phases of the induced current with lower values signifying a more unidirectional stimulus. Strength-duration time constant (SDTC) and rheobase were estimated for each M-ratio and various PW combinations. Simulations of biophysically realistic cortical neuron models assessed underlying neuronal populations and physiological mechanisms mediating pulse shape effects on strength-duration properties. RESULTS The M-ratio exerted significant effect on SDTC (F(2,44) = 4.386, P = 0.021), which was longer for M-ratio of 0.2 (243.4 ± 61.2 µs) compared to 0.025 (186.7 ± 52.5 µs, P = 0.034). Rheobase was significantly smaller when assessed with M-ratio 0.2 compared to 0.025 (P = 0.026). SDTC and rheobase values were most consistent with pulse width sets of 30/45/60/90/120 µs, 30/60/90/120 µs, and 30/60/120 µs. Simulation studies indicated that isolated pyramidal neurons in layers 2/3, 5, and large basket-cells in layer 4 exhibited SDTCs comparable to experimental results. Further, simulation studies indicated that reducing transient Na+ channel conductance increased SDTC with larger increases for higher M-ratios. CONCLUSIONS Cortical strength-duration curve properties vary with pulse shape, and the modulating effect of the hyperpolarising pulse phase on cortical axonal transient Na+ conductances could account for these changes, although a shift in the recruited neuronal populations may contribute as well. SIGNIFICANCE The dependence of the cortical strength-duration curve properties on the TMS pulse shape and pulse width selection underscores the need for consistent measurement methods across studies and the potential to extract information about pathophysiological processes.
Collapse
Affiliation(s)
- Parvathi Menon
- Brain and Nerve Research Centre, Concord Clinical School, University of Sydney, Concord Hospital, Sydney, Australia
| | - Nathan Pavey
- Brain and Nerve Research Centre, Concord Clinical School, University of Sydney, Concord Hospital, Sydney, Australia
| | - Aman S Aberra
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Mehdi A J van den Bos
- Brain and Nerve Research Centre, Concord Clinical School, University of Sydney, Concord Hospital, Sydney, Australia
| | - Ruochen Wang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Angel V Peterchev
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Psychiatry and Behavioural Sciences, Duke University, Durham, NC, USA; Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA; Department of Neurosurgery, Duke University, Durham, NC, USA.
| | - Steve Vucic
- Brain and Nerve Research Centre, Concord Clinical School, University of Sydney, Concord Hospital, Sydney, Australia.
| |
Collapse
|
22
|
Alavi SMM, Vila-Rodriguez F, Mahdi A, Goetz SM. Closed-loop optimal and automatic tuning of pulse amplitude and width in EMG-guided controllable transcranial magnetic stimulation. Biomed Eng Lett 2023; 13:119-127. [PMID: 37124104 PMCID: PMC10130260 DOI: 10.1007/s13534-022-00259-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/26/2022] [Accepted: 12/20/2022] [Indexed: 01/01/2023] Open
Abstract
This paper proposes an efficient algorithm for automatic and optimal tuning of pulse amplitude and width for sequential parameter estimation (SPE) of the neural membrane time constant and input-output (IO) curve parameters in closed-loop electromyography-guided (EMG-guided) controllable transcranial magnetic stimulation (cTMS). The proposed SPE is performed by administering a train of optimally tuned TMS pulses and updating the estimations until a stopping rule is satisfied or the maximum number of pulses is reached. The pulse amplitude is computed by the Fisher information maximization. The pulse width is chosen by maximizing a normalized depolarization factor, which is defined to separate the optimization and tuning of the pulse amplitude and width. The normalized depolarization factor maximization identifies the critical pulse width, which is an important parameter in the identifiability analysis, without any prior neurophysiological or anatomical knowledge of the neural membrane. The effectiveness of the proposed algorithm is evaluated through simulation. The results confirm satisfactory estimation of the membrane time constant and IO curve parameters for the simulation case. By defining the stopping rule based on the satisfaction of the convergence criterion with tolerance of 0.01 for 5 consecutive times for all parameters, the IO curve parameters are estimated with 52 TMS pulses, with absolute relative estimation errors (AREs) of less than 7%. The membrane time constant is estimated with 0.67% ARE, and the pulse width value tends to the critical pulse width with 0.16% ARE with 52 TMS pulses. The results confirm that the pulse width and amplitude can be tuned optimally and automatically to estimate the membrane time constant and IO curve parameters in real-time with closed-loop EMG-guided cTMS.
Collapse
Affiliation(s)
- S. M. Mahdi Alavi
- The Non-Invasive Neurostimulation Therapies (NINET) Laboratory, Department of Psychiatry, University of British Columbia, Vancouver, BC Canada
| | - Fidel Vila-Rodriguez
- The Non-Invasive Neurostimulation Therapies (NINET) Laboratory, Department of Psychiatry, University of British Columbia, Vancouver, BC Canada
| | - Adam Mahdi
- Surrey Institute for People-Centred AI, University of Surrey, Surrey, UK
- Oxford Internet Institute, University of Oxford, Oxford, UK
| | - Stefan M. Goetz
- Department of Engineering, University of Cambridge, Cambridge, UK
- Department of Psychiatry & Behavioral Sciences, Duke University, Durham, NC USA
- Department of Electrical and Computer Engineering, Duke University, Durham, NC USA
- Department of Neurosurgery, Duke University, Durham, NC USA
| |
Collapse
|
23
|
Wang B, Aberra AS, Grill WM, Peterchev AV. Responses of model cortical neurons to temporal interference stimulation and related transcranial alternating current stimulation modalities. J Neural Eng 2023; 19:10.1088/1741-2552/acab30. [PMID: 36594634 PMCID: PMC9942661 DOI: 10.1088/1741-2552/acab30] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Objective.Temporal interference stimulation (TIS) was proposed as a non-invasive, focal, and steerable deep brain stimulation method. However, the mechanisms underlying experimentally-observed suprathreshold TIS effects are unknown, and prior simulation studies had limitations in the representations of the TIS electric field (E-field) and cerebral neurons. We examined the E-field and neural response characteristics for TIS and related transcranial alternating current stimulation modalities.Approach.Using the uniform-field approximation, we simulated a range of stimulation parameters in biophysically realistic model cortical neurons, including different orientations, frequencies, amplitude ratios, amplitude modulation, and phase difference of the E-fields, and obtained thresholds for both activation and conduction block.Main results. For two E-fields with similar amplitudes (representative of E-field distributions at the target region), TIS generated an amplitude-modulated (AM) total E-field. Due to the phase difference of the individual E-fields, the total TIS E-field vector also exhibited rotation where the orientations of the two E-fields were not aligned (generally also at the target region). TIS activation thresholds (75-230 V m-1) were similar to those of high-frequency stimulation with or without modulation and/or rotation. For E-field dominated by the high-frequency carrier and with minimal amplitude modulation and/or rotation (typically outside the target region), TIS was less effective at activation and more effective at block. Unlike AM high-frequency stimulation, TIS generated conduction block with some orientations and amplitude ratios of individual E-fields at very high amplitudes of the total E-field (>1700 V m-1).Significance. The complex 3D properties of the TIS E-fields should be accounted for in computational and experimental studies. The mechanisms of suprathreshold cortical TIS appear to involve neural activity block and periodic activation or onset response, consistent with computational studies of peripheral axons. These phenomena occur at E-field strengths too high to be delivered tolerably through scalp electrodes and may inhibit endogenous activity in off-target regions, suggesting limited significance of suprathreshold TIS.
Collapse
Affiliation(s)
- Boshuo Wang
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Aman S. Aberra
- Department of Biomedical Engineering, School of Engineering, Duke University, Durham, NC 27708, USA
| | - Warren M. Grill
- Department of Biomedical Engineering, School of Engineering, Duke University, Durham, NC 27708, USA
- Department of Electrical and Computer Engineering, School of Engineering, Duke University, Durham, NC 27708, USA
- Department of Neurobiology, School of Medicine, Duke University, Durham, NC 27710, USA
- Department of Neurosurgery, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Angel V. Peterchev
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Duke University, Durham, NC 27710, USA
- Department of Biomedical Engineering, School of Engineering, Duke University, Durham, NC 27708, USA
- Department of Electrical and Computer Engineering, School of Engineering, Duke University, Durham, NC 27708, USA
- Department of Neurosurgery, School of Medicine, Duke University, Durham, NC 27710, USA
| |
Collapse
|
24
|
Li Z, Zhang J, Peterchev AV, Goetz SM. Modular pulse synthesizer for transcranial magnetic stimulation with fully adjustable pulse shape and sequence. J Neural Eng 2022; 19:10.1088/1741-2552/ac9d65. [PMID: 36301685 PMCID: PMC10206176 DOI: 10.1088/1741-2552/ac9d65] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/25/2022] [Indexed: 01/11/2023]
Abstract
The temporal shape of a pulse in transcranial magnetic stimulation (TMS) influences which neuron populations are activated preferentially as well as the strength and even direction of neuromodulation effects. Furthermore, various pulse shapes differ in their efficiency, coil heating, sensory perception, and clicking sound. However, the available TMS pulse shape repertoire is still very limited to a few biphasic, monophasic, and polyphasic pulses with sinusoidal or near-rectangular shapes. Monophasic pulses, though found to be more selective and stronger in neuromodulation, are generated inefficiently and therefore only available in simple low-frequency repetitive protocols. Despite a strong interest to exploit the temporal effects of TMS pulse shapes and pulse sequences, waveform control is relatively inflexible and only possible parametrically within certain limits. Previously proposed approaches for flexible pulse shape control, such as through power electronic inverters, have significant limitations: The semiconductor switches can fail under the immense electrical stress associated with free pulse shaping, and most conventional power inverter topologies are incapable of generating smooth electric fields or existing pulse shapes. Leveraging intensive preliminary work on modular power electronics, we present a modular pulse synthesizer (MPS) technology that can, for the first time, flexibly generate high-power TMS pulses (one-side peak ∼4000 V, ∼8000 A) with user-defined electric field shape as well as rapid sequences of pulses with high output quality. The circuit topology breaks the problem of simultaneous high power and switching speed into smaller, manageable portions, distributed across several identical modules. In consequence, the MPS TMS techology can use semiconductor devices with voltage and current ratings lower than the overall pulse voltage and distribute the overall switching of several hundred kilohertz among multiple transistors. MPS TMS can synthesize practically any pulse shape, including conventional ones, with fine quantization of the induced electric field (⩽17% granularity without modulation and ∼300 kHz bandwidth). Moreover, the technology allows optional symmetric differential coil driving so that the average electric potential of the coil, in contrast to conventional TMS devices, stays constant to prevent capacitive artifacts in sensitive recording amplifiers, such as electroencephalography. MPS TMS can enable the optimization of stimulation paradigms for more sophisticated probing of brain function as well as stronger and more selective neuromodulation, further expanding the parameter space available to users.
Collapse
Affiliation(s)
- Z Li
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, United States of America
| | - J Zhang
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, United States of America
| | - A V Peterchev
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, United States of America
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC 27710, United States of America
- Department of Neurosurgery, Duke University, Durham, NC 27710, United States of America
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States of America
- Duke Institute for Brain Sciences, Duke University, Durham, NC 27708, United States of America
| | - S M Goetz
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, United States of America
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC 27710, United States of America
- Department of Neurosurgery, Duke University, Durham, NC 27710, United States of America
- Duke Institute for Brain Sciences, Duke University, Durham, NC 27708, United States of America
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
| |
Collapse
|
25
|
Li Z, Peterchev AV, Rothwell JC, Goetz SM. Detection of motor-evoked potentials below the noise floor: rethinking the motor stimulation threshold. J Neural Eng 2022; 19:10.1088/1741-2552/ac7dfc. [PMID: 35785762 PMCID: PMC10155352 DOI: 10.1088/1741-2552/ac7dfc] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 07/04/2022] [Indexed: 12/24/2022]
Abstract
Objective. Motor-evoked potentials (MEPs) are among the most prominent responses to brain stimulation, such as supra-threshold transcranial magnetic stimulation and electrical stimulation. Understanding of the neurophysiology and the determination of the lowest stimulation strength that evokes responses requires the detection of even smaller responses, e.g. from single motor units. However, available detection and quantization methods suffer from a large noise floor. This paper develops a detection method that extracts MEPs hidden below the noise floor. With this method, we aim to estimate excitatory activations of the corticospinal pathways well below the conventional detection level.Approach. The presented MEP detection method presents a self-learning matched-filter approach for improved robustness against noise. The filter is adaptively generated per subject through iterative learning. For responses that are reliably detected by conventional detection, the new approach is fully compatible with established peak-to-peak readings and provides the same results but extends the dynamic range below the conventional noise floor.Main results. In contrast to the conventional peak-to-peak measure, the proposed method increases the signal-to-noise ratio by more than a factor of 5. The first detectable responses appear to be substantially lower than the conventional threshold definition of 50µV median peak-to-peak amplitude.Significance. The proposed method shows that stimuli well below the conventional 50µV threshold definition can consistently and repeatably evoke muscular responses and thus activate excitable neuron populations in the brain. As a consequence, the input-output (IO) curve is extended at the lower end, and the noise cut-off is shifted. Importantly, the IO curve extends so far that the 50µV point turns out to be closer to the center of the logarithmic sigmoid curve rather than close to the first detectable responses. The underlying method is applicable to a wide range of evoked potentials and other biosignals, such as in electroencephalography.
Collapse
Affiliation(s)
- Zhongxi Li
- Department of Electrical & Computer Engineering, Duke University, Durham, USA
| | - Angel V. Peterchev
- Departments of Psychiatry & Behavioral Sciences, Neurosurgery, Biomedical Engineering, and Electrical & Computer Engineering, Duke University, Durham, USA
| | | | - Stefan M. Goetz
- (Corresponding author) Department of Engineering, University of Cambridge, Cambridge, UK () and Departments of Psychiatry & Behavioral Sciences, Neurosurgery, and Electrical & Computer Engineering, Duke University, Durham, USA ()
| |
Collapse
|
26
|
Sarkar A, Dipani A, Leodori G, Popa T, Kassavetis P, Hallett M, Thirugnanasambandam N. Inter-Individual Variability in Motor Output Is Driven by Recruitment Gain in the Corticospinal Tract Rather Than Motor Threshold. Brain Sci 2022; 12:1401. [PMID: 36291333 PMCID: PMC9599681 DOI: 10.3390/brainsci12101401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 11/24/2022] Open
Abstract
Variability in the response of individuals to various non-invasive brain stimulation protocols is a major problem that limits their potential for clinical applications. Baseline motor-evoked potential (MEP) amplitude is the key predictor of an individual's response to transcranial magnetic stimulation protocols. However, the factors that predict MEP amplitude and its variability remain unclear. In this study, we aimed to identify the input-output curve (IOC) parameters that best predict MEP amplitude and its variability. We analysed IOC data from 75 subjects and built a general linear model (GLM) using the IOC parameters as regressors and MEP amplitude at 120% resting motor threshold (RMT) as the response variable. We bootstrapped the data to estimate variability of IOC parameters and included them in a GLM to identify the significant predictors of MEP amplitude variability. Peak slope, motor threshold, and maximum MEP amplitude of the IOC were significant predictors of MEP amplitude at 120% RMT and its variability was primarily driven by the variability of peak slope and maximum MEP amplitude. Recruitment gain and maximum corticospinal excitability are the key predictors of MEP amplitude and its variability. Inter-individual variability in motor output may be reduced by achieving a uniform IOC slope.
Collapse
Affiliation(s)
- Arkaprovo Sarkar
- Human Motor Neurophysiology and Neuromodulation Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
- National Brain Research Centre (NBRC), Manesar 122052, India
| | - Alish Dipani
- National Brain Research Centre (NBRC), Manesar 122052, India
| | - Giorgio Leodori
- Department of Human Neuroscience, Sapienza University of Rome, 00185 Roma, Italy
- Neuromed Mediterranean Neurological Institute, Scientific Institute for Research, Hospitalisation and Healthcare (I.R.C.C.S.), 86077 Pozzilli, Italy
| | - Traian Popa
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
- Department of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1950 Sion, Switzerland
| | - Panagiotis Kassavetis
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
- Department of Neurology, University of Utah, Salt Lake City, UT 84112, USA
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Nivethida Thirugnanasambandam
- Human Motor Neurophysiology and Neuromodulation Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
- National Brain Research Centre (NBRC), Manesar 122052, India
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| |
Collapse
|
27
|
Alavi SMM, Vila-Rodriguez F, Mahdi A, Goetz SM. A formalism for sequential estimation of neural membrane time constant and input--output curve towards selective and closed-loop transcranial magnetic stimulation. J Neural Eng 2022; 19. [PMID: 36055218 DOI: 10.1088/1741-2552/ac8ed5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/01/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE To obtain a formalism for real-time concurrent sequential estimation of neural membrane time constant and input--output (IO) curve with transcranial magnetic stimulation (TMS). APPROACH First, the neural membrane response and depolarization factor, which leads to motor evoked potentials (MEPs) with TMS are analytically computed and discussed. Then, an integrated model is developed which combines the neural membrane time constant and input--output curve. Identifiability of the proposed integrated model is discussed. A condition is derived, which assures estimation of the proposed integrated model. Finally, sequential parameter estimation (SPE) of the neural membrane time constant and IO curve is described through closed-loop optimal sampling and open-loop uniform sampling TMS. Without loss of generality, this paper focuses on a specific case of commercialized TMS pulse shapes. The proposed formalism and SPE method are directly applicable to other pulse shapes. MAIN RESULTS The results confirm satisfactory estimation of the membrane time constant and IO curve parameters. By defining a stopping rule based on five times consecutive convergence of the estimation parameters with a tolerances of 0.01, the membrane time constant and IO curve parameters are estimated with 82 TMS pulses with absolute relative estimation errors (AREs) of less than 4% with the optimal sampling SPE method. At this point, the uniform sampling SPE method leads to AREs up to 16%. The uniform sampling method does not satisfy the stopping rule due to the large estimation variations. SIGNIFICANCE This paper provides a tool for real-time closed-loop SPE of the neural time constant and IO curve, which can contribute novel insights in TMS studies. SPE of the membrane time constant enables selective stimulation, which can be used for advanced brain research, precision medicine and personalized medicine.
Collapse
Affiliation(s)
- S M Mahdi Alavi
- Department of Psychiatry , The University of British Columbia, 2255 Wesbrook Mall, Vancouver, British Columbia, V6T 2A1, CANADA
| | - Fidel Vila-Rodriguez
- Department of Psychiatry , The University of British Columbia Faculty of Medicine, Detwiller Pavilion, 2255 Wesbrook Mall, Vancouver, British Columbia, V6T 2A1, CANADA
| | - Adam Mahdi
- University of Oxford, Oxford Internet Institute, 1 St Giles, Oxford, Oxfordshire, OX1 2JD, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Stefan M Goetz
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, 200 Trent Drive, Duke University Medical Center, Durham, North Carolina, 27710, UNITED STATES
| |
Collapse
|
28
|
Siebner HR, Funke K, Aberra AS, Antal A, Bestmann S, Chen R, Classen J, Davare M, Di Lazzaro V, Fox PT, Hallett M, Karabanov AN, Kesselheim J, Beck MM, Koch G, Liebetanz D, Meunier S, Miniussi C, Paulus W, Peterchev AV, Popa T, Ridding MC, Thielscher A, Ziemann U, Rothwell JC, Ugawa Y. Transcranial magnetic stimulation of the brain: What is stimulated? - A consensus and critical position paper. Clin Neurophysiol 2022; 140:59-97. [PMID: 35738037 PMCID: PMC9753778 DOI: 10.1016/j.clinph.2022.04.022] [Citation(s) in RCA: 171] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 03/14/2022] [Accepted: 04/15/2022] [Indexed: 12/11/2022]
Abstract
Transcranial (electro)magnetic stimulation (TMS) is currently the method of choice to non-invasively induce neural activity in the human brain. A single transcranial stimulus induces a time-varying electric field in the brain that may evoke action potentials in cortical neurons. The spatial relationship between the locally induced electric field and the stimulated neurons determines axonal depolarization. The induced electric field is influenced by the conductive properties of the tissue compartments and is strongest in the superficial parts of the targeted cortical gyri and underlying white matter. TMS likely targets axons of both excitatory and inhibitory neurons. The propensity of individual axons to fire an action potential in response to TMS depends on their geometry, myelination and spatial relation to the imposed electric field and the physiological state of the neuron. The latter is determined by its transsynaptic dendritic and somatic inputs, intrinsic membrane potential and firing rate. Modeling work suggests that the primary target of TMS is axonal terminals in the crown top and lip regions of cortical gyri. The induced electric field may additionally excite bends of myelinated axons in the juxtacortical white matter below the gyral crown. Neuronal excitation spreads ortho- and antidromically along the stimulated axons and causes secondary excitation of connected neuronal populations within local intracortical microcircuits in the target area. Axonal and transsynaptic spread of excitation also occurs along cortico-cortical and cortico-subcortical connections, impacting on neuronal activity in the targeted network. Both local and remote neural excitation depend critically on the functional state of the stimulated target area and network. TMS also causes substantial direct co-stimulation of the peripheral nervous system. Peripheral co-excitation propagates centrally in auditory and somatosensory networks, but also produces brain responses in other networks subserving multisensory integration, orienting or arousal. The complexity of the response to TMS warrants cautious interpretation of its physiological and behavioural consequences, and a deeper understanding of the mechanistic underpinnings of TMS will be critical for advancing it as a scientific and therapeutic tool.
Collapse
Affiliation(s)
- Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark; Institute for Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Klaus Funke
- Department of Neurophysiology, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| | - Aman S Aberra
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Andrea Antal
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Sven Bestmann
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Robert Chen
- Krembil Brain Institute, University Health Network and Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Joseph Classen
- Department of Neurology, University of Leipzig, Leipzig, Germany
| | - Marco Davare
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Anke N Karabanov
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Nutrition and Exercise, University of Copenhagen, Copenhagen, Denmark
| | - Janine Kesselheim
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Mikkel M Beck
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Giacomo Koch
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy; Non-invasive Brain Stimulation Unit, Laboratorio di NeurologiaClinica e Comportamentale, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - David Liebetanz
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Sabine Meunier
- Sorbonne Université, Faculté de Médecine, INSERM U 1127, CNRS 4 UMR 7225, Institut du Cerveau, F-75013, Paris, France
| | - Carlo Miniussi
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Italy; Cognitive Neuroscience Section, IRCCS Centro San Giovanni di DioFatebenefratelli, Brescia, Italy
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Angel V Peterchev
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Psychiatry & Behavioral Sciences, School of Medicine, Duke University, Durham, NC, USA; Department of Electrical & Computer Engineering, Duke University, Durham, NC, USA; Department of Neurosurgery, School of Medicine, Duke University, Durham, NC, USA
| | - Traian Popa
- Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland; Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL Valais), Clinique Romande de Réadaptation, Sion, Switzerland
| | - Michael C Ridding
- University of South Australia, IIMPACT in Health, Adelaide, Australia
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ulf Ziemann
- Department of Neurology & Stroke, University Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, University Tübingen, Tübingen, Germany
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Yoshikazu Ugawa
- Department of Neurology, Fukushima Medical University, Fukushima, Japan; Fukushima Global Medical Science Centre, Advanced Clinical Research Centre, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
29
|
Database of 25 validated coil models for electric field simulations for TMS. Brain Stimul 2022; 15:697-706. [DOI: 10.1016/j.brs.2022.04.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 12/30/2022] Open
|
30
|
Ivan C, Andrea A, Simon ES, Walter P, Leif S, Konrad M, Mathias B, Onnen M, Caspar S. The role of the TMS parameters for activation of the corticospinal pathway to the diaphragm. Clin Neurophysiol 2022; 138:173-185. [DOI: 10.1016/j.clinph.2022.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/12/2022] [Accepted: 03/20/2022] [Indexed: 11/03/2022]
|
31
|
Zeng Z, Koponen LM, Hamdan R, Li Z, Goetz SM, Peterchev AV. Modular multilevel TMS device with wide output range and ultrabrief pulse capability for sound reduction. J Neural Eng 2022; 19:10.1088/1741-2552/ac572c. [PMID: 35189604 PMCID: PMC9425059 DOI: 10.1088/1741-2552/ac572c] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/21/2022] [Indexed: 11/12/2022]
Abstract
Objective.This article presents a novel transcranial magnetic stimulation (TMS) pulse generator with a wide range of pulse shape, amplitude, and width.Approach.Based on a modular multilevel TMS (MM-TMS) topology we had proposed previously, we realized the first such device operating at full TMS energy levels. It consists of ten cascaded H-bridge modules, each implemented with insulated-gate bipolar transistors, enabling both novel high-amplitude ultrabrief pulses as well as pulses with conventional amplitude and duration. The MM-TMS device can output pulses including up to 21 voltage levels with a step size of up to 1100 V, allowing relatively flexible generation of various pulse waveforms and sequences. The circuit further allows charging the energy storage capacitor on each of the ten cascaded modules with a conventional TMS power supply.Main results. The MM-TMS device can output peak coil voltages and currents of 11 kV and 10 kA, respectively, enabling suprathreshold ultrabrief pulses (>8.25μs active electric field phase). Further, the MM-TMS device can generate a wide range of near-rectangular monophasic and biphasic pulses, as well as more complex staircase-approximated sinusoidal, polyphasic, and amplitude-modulated pulses. At matched estimated stimulation strength, briefer pulses emit less sound, which could enable quieter TMS. Finally, the MM-TMS device can instantaneously increase or decrease the amplitude from one pulse to the next in discrete steps by adding or removing modules in series, which enables rapid pulse sequences and paired-pulse protocols with variable pulse shapes and amplitudes.Significance.The MM-TMS device allows unprecedented control of the pulse characteristics which could enable novel protocols and quieter pulses.
Collapse
Affiliation(s)
- Zhiyong Zeng
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, 27710, United States of America
| | - Lari M Koponen
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, 27710, United States of America
| | - Rena Hamdan
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, 27710, United States of America
| | - Zhongxi Li
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, 27708, United States of America
| | - Stefan M Goetz
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, 27710, United States of America.,Department of Electrical and Computer Engineering, Duke University, Durham, NC, 27708, United States of America.,Duke Institute for Brain Sciences, Duke University, Durham, NC, 27708, United States of America.,Department of Neurosurgery, Duke University, Durham, NC, 27710, United States of America
| | - Angel V Peterchev
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, 27710, United States of America.,Department of Electrical and Computer Engineering, Duke University, Durham, NC, 27708, United States of America.,Duke Institute for Brain Sciences, Duke University, Durham, NC, 27708, United States of America.,Department of Neurosurgery, Duke University, Durham, NC, 27710, United States of America.,Department of Biomedical Engineering, Duke University, Durham, NC, 27708, United States of America
| |
Collapse
|
32
|
Rapp J, Braun P, Hemmert W, Gleich B. Optimal pulse configuration for peripheral inductive nerve stimulation. Biomed Phys Eng Express 2022; 8. [DOI: 10.1088/2057-1976/ac52d8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/08/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Peripheral magnetic stimulation is a promising technique for several applications like rehabilitation or diagnose of neuronal pathways. However, most available magnetic stimulation devices are designed for transcranial stimulation and require high-power, expensive hardware. Modern technology such as rectangular pulses allows to adapt parameters like pulse shape and duration in order to reduce the required energy. Nevertheless, the effect of different temporal electromagnetic field shapes on neuronal structures is not yet fully understood. We created a simulation environment to find out how peripheral nerves are affected by induced magnetic fields and what pulse shapes have the lowest energy requirements. Using the electric field distribution of a Figure-of-8 coil together with an axon model in saline solution, we calculated the potential along the axon and determined the required threshold current to elicit an action potential. Further, for the purpose of selective stimulation, we investigated different axon diameters. Our results show that rectangular pulses have the lowest thresholds at a pulse duration of 20 μs. For sinusoidal coil currents, the optimal pulse duration was found to be 40 μs. Most importantly, with an asymmetric rectangular pulse, the coil current could be reduced from 2.3 kA (cosine shaped pulse) to 600 A. In summary, our results indicate that for magnetic nerve stimulation the use of rectangular pulse shapes holds the potential to reduce the required coil current by a factor of 4, which would be a massive improvement.
Collapse
|
33
|
Souza VH, Nieminen JO, Tugin S, Koponen LM, Baffa O, Ilmoniemi RJ. TMS with fast and accurate electronic control: Measuring the orientation sensitivity of corticomotor pathways. Brain Stimul 2022; 15:306-315. [PMID: 35038592 DOI: 10.1016/j.brs.2022.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/30/2021] [Accepted: 01/12/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) coils allow only a slow, mechanical adjustment of the stimulating electric field (E-field) orientation in the cerebral tissue. Fast E-field control is needed to synchronize the stimulation with the ongoing brain activity. Also, empirical models that fully describe the relationship between evoked responses and the stimulus orientation and intensity are still missing. OBJECTIVE We aimed to (1) develop a TMS transducer for manipulating the E-field orientation electronically with high accuracy at the neuronally meaningful millisecond-level time scale and (2) devise and validate a physiologically based model describing the orientation selectivity of neuronal excitability. METHODS We designed and manufactured a two-coil TMS transducer. The coil windings were computed with a minimum-energy optimization procedure, and the transducer was controlled with our custom-made electronics. The electronic E-field control was verified with a TMS characterizer. The motor evoked potential amplitude and latency of a hand muscle were mapped in 3° steps of the stimulus orientation in 16 healthy subjects for three stimulation intensities. We fitted a logistic model to the motor response amplitude. RESULTS The two-coil TMS transducer allows one to manipulate the pulse orientation accurately without manual coil movement. The motor response amplitude followed a logistic function of the stimulus orientation; this dependency was strongly affected by the stimulus intensity. CONCLUSION The developed electronic control of the E-field orientation allows exploring new stimulation paradigms and probing neuronal mechanisms. The presented model helps to disentangle the neuronal mechanisms of brain function and guide future non-invasive stimulation protocols.
Collapse
Affiliation(s)
- Victor Hugo Souza
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Physics, School of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; School of Physiotherapy, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil.
| | - Jaakko O Nieminen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Sergei Tugin
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Lari M Koponen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Psychiatry & Behavioral Sciences, Duke University, Durham, NC, USA
| | - Oswaldo Baffa
- Department of Physics, School of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Risto J Ilmoniemi
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
34
|
Nieminen JO, Sinisalo H, Souza VH, Malmi M, Yuryev M, Tervo AE, Stenroos M, Milardovich D, Korhonen JT, Koponen LM, Ilmoniemi RJ. Multi-locus transcranial magnetic stimulation system for electronically targeted brain stimulation. Brain Stimul 2022; 15:116-124. [PMID: 34818580 PMCID: PMC8807400 DOI: 10.1016/j.brs.2021.11.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) allows non-invasive stimulation of the cortex. In multi-locus TMS (mTMS), the stimulating electric field (E-field) is controlled electronically without coil movement by adjusting currents in the coils of a transducer. OBJECTIVE To develop an mTMS system that allows adjusting the location and orientation of the E-field maximum within a cortical region. METHODS We designed and manufactured a planar 5-coil mTMS transducer to allow controlling the maximum of the induced E-field within a cortical region approximately 30 mm in diameter. We developed electronics with a design consisting of independently controlled H-bridge circuits to drive up to six TMS coils. To control the hardware, we programmed software that runs on a field-programmable gate array and a computer. To induce the desired E-field in the cortex, we developed an optimization method to calculate the currents needed in the coils. We characterized the mTMS system and conducted a proof-of-concept motor-mapping experiment on a healthy volunteer. In the motor mapping, we kept the transducer placement fixed while electronically shifting the E-field maximum on the precentral gyrus and measuring electromyography from the contralateral hand. RESULTS The transducer consists of an oval coil, two figure-of-eight coils, and two four-leaf-clover coils stacked on top of each other. The technical characterization indicated that the mTMS system performs as designed. The measured motor evoked potential amplitudes varied consistently as a function of the location of the E-field maximum. CONCLUSION The developed mTMS system enables electronically targeted brain stimulation within a cortical region.
Collapse
Affiliation(s)
- Jaakko O Nieminen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| | - Heikki Sinisalo
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Victor H Souza
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; School of Physiotherapy, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Mikko Malmi
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mikhail Yuryev
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Aino E Tervo
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; AMI Centre, Aalto NeuroImaging, Aalto University School of Science, Espoo, Finland
| | - Matti Stenroos
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Diego Milardovich
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; Institute for Microelectronics, Technische Universität Wien, Vienna, Austria
| | - Juuso T Korhonen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Lari M Koponen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Risto J Ilmoniemi
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
35
|
Caulfield KA, Brown JC. The Problem and Potential of TMS' Infinite Parameter Space: A Targeted Review and Road Map Forward. Front Psychiatry 2022; 13:867091. [PMID: 35619619 PMCID: PMC9127062 DOI: 10.3389/fpsyt.2022.867091] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/21/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive, effective, and FDA-approved brain stimulation method. However, rTMS parameter selection remains largely unexplored, with great potential for optimization. In this review, we highlight key studies underlying next generation rTMS therapies, particularly focusing on: (1) rTMS Parameters, (2) rTMS Target Engagement, (3) rTMS Interactions with Endogenous Brain Activity, and (4) Heritable Predisposition to Brain Stimulation Treatments. METHODS We performed a targeted review of pre-clinical and clinical rTMS studies. RESULTS Current evidence suggests that rTMS pattern, intensity, frequency, train duration, intertrain interval, intersession interval, pulse and session number, pulse width, and pulse shape can alter motor excitability, long term potentiation (LTP)-like facilitation, and clinical antidepressant response. Additionally, an emerging theme is how endogenous brain state impacts rTMS response. Researchers have used resting state functional magnetic resonance imaging (rsfMRI) analyses to identify personalized rTMS targets. Electroencephalography (EEG) may measure endogenous alpha rhythms that preferentially respond to personalized stimulation frequencies, or in closed-loop EEG, may be synchronized with endogenous oscillations and even phase to optimize response. Lastly, neuroimaging and genotyping have identified individual predispositions that may underlie rTMS efficacy. CONCLUSIONS We envision next generation rTMS will be delivered using optimized stimulation parameters to rsfMRI-determined targets at intensities determined by energy delivered to the cortex, and frequency personalized and synchronized to endogenous alpha-rhythms. Further research is needed to define the dose-response curve of each parameter on plasticity and clinical response at the group level, to determine how these parameters interact, and to ultimately personalize these parameters.
Collapse
Affiliation(s)
- Kevin A Caulfield
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States
| | - Joshua C Brown
- Departments of Psychiatry and Neurology, Brown University Medical School, Providence, RI, United States
| |
Collapse
|
36
|
Halawa I, Reichert K, Aberra AS, Sommer M, Peterchev AV, Paulus W. Effect of Pulse Duration and Direction on Plasticity Induced by 5 Hz Repetitive Transcranial Magnetic Stimulation in Correlation With Neuronal Depolarization. Front Neurosci 2021; 15:773792. [PMID: 34899173 PMCID: PMC8661453 DOI: 10.3389/fnins.2021.773792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/28/2021] [Indexed: 11/20/2022] Open
Abstract
Introduction: High frequency repetitive transcranial magnetic stimulation applied to the motor cortex causes an increase in the amplitude of motor evoked potentials (MEPs) that persists after stimulation. Here, we focus on the aftereffects generated by high frequency controllable pulse TMS (cTMS) with different directions, intensities, and pulse durations. Objectives: To investigate the influence of pulse duration, direction, and amplitude in correlation to induced depolarization on the excitatory plastic aftereffects of 5 Hz repetitive transcranial magnetic stimulation (rTMS) using bidirectional cTMS pulses. Methods: We stimulated the hand motor cortex with 5 Hz rTMS applying 1,200 bidirectional pulses with the main component durations of 80, 100, and 120 μs using a controllable pulse stimulator TMS (cTMS). Fourteen healthy subjects were investigated in nine sessions with 80% resting motor threshold (RMT) for posterior-anterior (PA) and 80 and 90% RMT anterior-posterior (AP) induced current direction. We used a model approximating neuronal membranes as a linear first order low-pass filter to estimate the strength–duration time constant and to simulate the membrane polarization produced by each waveform. Results: PA and AP 5 Hz rTMS at 80% RMT produced no significant excitation. An exploratory analysis indicated that 90% RMT AP stimulation with 100 and 120 μs pulses but not 80 μs pulses led to significant excitation. We found a positive correlation between the plastic outcome of each session and the simulated peak neural membrane depolarization for time constants >100 μs. This correlation was strongest for neural elements that are depolarized by the main phase of the AP pulse, suggesting the effects were dependent on pulse direction. Conclusions: Among the tested conditions, only 5 Hz rTMS with higher intensity and wider pulses appeared to produce excitatory aftereffects. This correlated with the greater depolarization of neural elements with time constants slower than the directly activated neural elements responsible for producing the motor output (e.g., somatic or dendritic membrane). Significance: Higher intensities and wider pulses seem to be more efficient in inducing excitation. If confirmed, this observation could lead to better results in future clinical studies performed with wider pulses.
Collapse
Affiliation(s)
- Islam Halawa
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany.,Medical Research Division, National Research Center, Cairo, Egypt
| | - Katharina Reichert
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Aman S Aberra
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Martin Sommer
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany.,Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.,Department of Geriatrics, University Medical Center Göttingen, Göttingen, Germany
| | - Angel V Peterchev
- Department of Biomedical Engineering, Duke University, Durham, NC, United States.,Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, United States.,Department of Electrical and Computer Engineering, Duke University, Durham, NC, United States.,Department of Neurosurgery, Duke University, Durham, NC, United States
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany.,Department of Neurology, Ludwig-Maximilians University of Munich, Munich, Germany
| |
Collapse
|
37
|
Sorkhabi MM, Gingell F, Wendt K, Benjaber M, Ali K, Rogers DJ, Denison T. Design Analysis and Circuit Topology Optimization for Programmable Magnetic Neurostimulator. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:6384-6389. [PMID: 34892573 DOI: 10.1109/embc46164.2021.9630915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Transcranial magnetic stimulation (TMS) is a form of non-invasive brain stimulation commonly used to modulate neural activity. Despite three decades of examination, the generation of flexible magnetic pulses is still a challenging technical question. It has been revealed that the characteristics of pulses influence the bio-physiology of neuromodulation. In this study, a second-generation programmable TMS (xTMS) equipment with advanced stimulus shaping is introduced that uses cascaded H-bridge inverters and a phase-shifted pulse-width modulation (PWM). A low-pass RC filter model is used to estimate stimulated neural behavior, which helps to design the magnetic pulse generator, according to neural dynamics. The proposed device can generate highly adjustable magnetic pulses, in terms of waveform, polarity and pattern. We present experimental measurements of different stimuli waveforms, such as monophasic, biphasic and polyphasic shapes with peak coil current and the delivered energy of up to 6 kA and 250 J, respectively. The modular and scalable design idea presented here is a potential solution for generating arbitrary and highly customizable magnetic pulses and transferring repetitive paradigms.
Collapse
|
38
|
Numssen O, Zier AL, Thielscher A, Hartwigsen G, Knösche TR, Weise K. Efficient high-resolution TMS mapping of the human motor cortex by nonlinear regression. Neuroimage 2021; 245:118654. [PMID: 34653612 DOI: 10.1016/j.neuroimage.2021.118654] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/22/2021] [Accepted: 10/11/2021] [Indexed: 11/29/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is a powerful tool to investigate causal structure-function relationships in the human brain. However, a precise delineation of the effectively stimulated neuronal populations is notoriously impeded by the widespread and complex distribution of the induced electric field. Here, we propose a method that allows rapid and feasible cortical localization at the individual subject level. The functional relationship between electric field and behavioral effect is quantified by combining experimental data with numerically modeled fields to identify the cortical origin of the modulated effect. Motor evoked potentials (MEPs) from three finger muscles were recorded for a set of random stimulations around the primary motor area. All induced electric fields were nonlinearly regressed against the elicited MEPs to identify their cortical origin. We could distinguish cortical muscle representation with high spatial resolution and localized them primarily on the crowns and rims of the precentral gyrus. A post-hoc analysis revealed exponential convergence of the method with the number of stimulations, yielding a minimum of about 180 random stimulations to obtain stable results. Establishing a functional link between the modulated effect and the underlying mode of action, the induced electric field, is a fundamental step to fully exploit the potential of TMS. In contrast to previous approaches, the presented protocol is particularly easy to implement, fast to apply, and very robust due to the random coil positioning and therefore is suitable for practical and clinical applications.
Collapse
Affiliation(s)
- Ole Numssen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germany.
| | - Anna-Leah Zier
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germany; Methods and Development Group "Brain Networks", Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germany
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Denmark; Technical University of Denmark, Center for Magnetic Resonance, Department of Health Technology, Kongens Lyngby, Denmark
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germany
| | - Thomas R Knösche
- Methods and Development Group "Brain Networks", Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germany; Technische Universität Ilmenau, Institute of Biomedical Engineering and Informatics, Gustav-Kirchhoff-Straße 2, 98693 Ilmenau, Germany
| | - Konstantin Weise
- Methods and Development Group "Brain Networks", Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germany; Technische Universität Ilmenau, Advanced Electromagnetics Group, Helmholtzplatz 2, 98693 Ilmenau, Germany
| |
Collapse
|
39
|
Corp DT, Bereznicki HGK, Clark GM, Youssef GJ, Fried PJ, Jannati A, Davies CB, Gomes-Osman J, Kirkovski M, Albein-Urios N, Fitzgerald PB, Koch G, Di Lazzaro V, Pascual-Leone A, Enticott PG. Large-scale analysis of interindividual variability in single and paired-pulse TMS data. Clin Neurophysiol 2021; 132:2639-2653. [PMID: 34344609 DOI: 10.1016/j.clinph.2021.06.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 01/01/2023]
Abstract
OBJECTIVE This study brought together over 60 transcranial magnetic stimulation (TMS) researchers to create the largest known sample of individual participant single and paired-pulse TMS data to date, enabling a more comprehensive evaluation of factors driving response variability. METHODS Authors of previously published studies were contacted and asked to share deidentified individual TMS data. Mixed-effects regression investigated a range of individual and study level variables for their contribution to variability in response to single and paired-pulse TMS data. RESULTS 687 healthy participant's data were pooled across 35 studies. Target muscle, pulse waveform, neuronavigation use, and TMS machine significantly predicted an individual's single-pulse TMS amplitude. Baseline motor evoked potential amplitude, motor cortex hemisphere, and motor threshold (MT) significantly predicted short-interval intracortical inhibition response. Baseline motor evoked potential amplitude, test stimulus intensity, interstimulus interval, and MT significantly predicted intracortical facilitation response. Age, hemisphere, and TMS machine significantly predicted MT. CONCLUSIONS This large-scale analysis has identified a number of factors influencing participants' responses to single and paired-pulse TMS. We provide specific recommendations to minimise interindividual variability in single and paired-pulse TMS data. SIGNIFICANCE This study has used large-scale analyses to give clarity to factors driving variance in TMS data. We hope that this ongoing collaborative approach will increase standardisation of methods and thus the utility of single and paired-pulse TMS.
Collapse
Affiliation(s)
- Daniel T Corp
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Hannah G K Bereznicki
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Gillian M Clark
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - George J Youssef
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Centre for Adolescent Health, Murdoch Children's Research Institute, Parkville, Australia
| | - Peter J Fried
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ali Jannati
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Charlotte B Davies
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Joyce Gomes-Osman
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Physical Therapy, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Melissa Kirkovski
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Natalia Albein-Urios
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Paul B Fitzgerald
- Monash Alfred Psychiatry Research Centre, Central Clinical School, The Alfred and Monash University, Melbourne, Australia; Epworth Centre for Innovation in Mental Health, Epworth HealthCare and Central Clinical School, Melbourne, Australia
| | - Giacomo Koch
- Non-invasive Brain Stimulation Unit, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy; Department of Biomedical and Specialty Surgical Sciences, Section of Human Physiology, University of Ferrara, Italy
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology and Neurobiology, Università Campus Bio-Medico, Rome, Italy
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Guttmann Brain Health Institute, Institut Guttmann de Neurorehabilitació, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Peter G Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | | |
Collapse
|
40
|
Sorkhabi MM, Benjaber M, Wendt K, West TO. Programmable Transcranial Magnetic Stimulation: A Modulation Approach for the Generation of Controllable Magnetic Stimuli. IEEE Trans Biomed Eng 2021; 68:1847-1858. [PMID: 32946379 PMCID: PMC7610606 DOI: 10.1109/tbme.2020.3024902] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE A transcranial magnetic stimulation system with programmable stimulus pulses and patterns is presented. The stimulus pulses of the implemented system expand beyond conventional damped cosine or near-rectangular pulses and approach an arbitrary waveform. METHODS The desired stimulus waveform shape is defined as a reference signal. This signal controls the semiconductor switches of an H-bridge inverter to generate a high-power imitation of the reference. The design uses a new paradigm for TMS, applying pulse-width modulation with a non-resonant, high-frequency switching architecture to synthesize waveforms that leverages the low-pass filtering properties of neuronal cells. The modulation technique enables control of the waveform, frequency, pattern, and intensity of the stimulus. RESULTS A system prototype was developed to demonstrate the technique. The experimental measurements demonstrate that the system is capable of generating stimuli up to 4 kHz with peak voltage and current values of ±1000 V and ±3600 A, respectively. The maximum transferred energy measured in the experimental validation was 100.4 Joules. To characterize repetitive TMS modalities, the efficiency of generating consecutive pulse triplets and quadruplets with interstimulus intervals of 1 ms was tested and verified. CONCLUSION The implemented TMS device can generate consecutive rectangular pulses with a predetermined time interval, widths and polarities, enables the synthesis of a wide range of magnetic stimuli. SIGNIFICANCE New waveforms promise functional advantages over the waveforms generated by current-generation TMS systems for clinical neuroscience research.
Collapse
Affiliation(s)
| | - Moaad Benjaber
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, OX1 3TH, UK
| | - Karen Wendt
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, OX1 3TH, UK
| | - Timothy O. West
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, OX1 3TH, UK
| |
Collapse
|
41
|
Mohammad Mahdi Alavi S, Goetz SM, Saif M. Input-output slope curve estimation in neural stimulation based on optimal sampling principles . J Neural Eng 2021; 18:10.1088/1741-2552/abffe5. [PMID: 33975287 PMCID: PMC8384062 DOI: 10.1088/1741-2552/abffe5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/11/2021] [Indexed: 11/11/2022]
Abstract
This paper discusses some of the practical limitations and issues, which exist for the input-output (IO) slope curve estimation (SCE) in neural, brain and spinal, stimulation techniques. The drawbacks of the SCE techniques by using existing uniform sampling and Fisher-information-based optimal IO curve estimation (FO-IOCE) methods are elaborated. A novel IO SCE technique is proposed with a modified sampling strategy and stopping rule which improve the SCE performance compared to these methods. The effectiveness of the proposed IO SCE is tested on 1000 simulation runs in transcranial magnetic stimulation (TMS), with a realistic model of motor evoked potentials. The results show that the proposed IO SCE method successfully satisfies the stopping rule, before reaching the maximum number of TMS pulses in 79.5% of runs, while the estimation based on the uniform sampling technique never converges and satisfies the stopping rule. At the time of successful termination, the proposed IO SCE method decreases the 95th percentile (mean value in the parentheses) of the absolute relative estimation errors (AREs) of the slope curve parameters up to 7.45% (2.2%), with only 18 additional pulses on average compared to that of the FO-IOCE technique. It also decreases the 95th percentile (mean value in the parentheses) of the AREs of the IO slope curve parameters up to 59.33% (16.71%), compared to that of the uniform sampling method. The proposed IO SCE also identifies the peak slope with higher accuracy, with the 95th percentile (mean value in the parentheses) of AREs reduced by up to 9.96% (2.01%) compared to that of the FO-IOCE method, and by up to 46.29% (13.13%) compared to that of the uniform sampling method.
Collapse
Affiliation(s)
- Seyed Mohammad Mahdi Alavi
- Department of Applied Computing and Engineering, School of Technologies, Cardiff Metropolitan University, Llandaff Campus, Western Avenue, Cardiff CF5 2YB, United Kingdom
| | - Stefan M Goetz
- Departments of Psychiatry and Behavioral Sciences, Electrical and Computer Engineering, and Neurosurgery as well as the Duke Brain Initiative, Duke University, Durham, NC 27708, United States of America
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
| | - Mehrdad Saif
- Department of Electrical Engineering, University of Windsor, Windsor, ON N9B 3P4, Canada
| |
Collapse
|
42
|
The Myelin Content of the Human Precentral Hand Knob Reflects Interindividual Differences in Manual Motor Control at the Physiological and Behavioral Level. J Neurosci 2021; 41:3163-3179. [PMID: 33653698 PMCID: PMC8026359 DOI: 10.1523/jneurosci.0390-20.2021] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 11/21/2022] Open
Abstract
The primary motor cortex hand area (M1HAND) and adjacent dorsal premotor cortex (PMd) form the so-called motor hand knob in the precentral gyrus. M1HAND and PMd are critical for dexterous hand use and are densely interconnected via corticocortical axons, lacking a sharp demarcating border. In 24 young right-handed volunteers, we performed multimodal mapping to delineate the relationship between structure and function in the right motor hand knob. Quantitative structural magnetic resonance imaging (MRI) at 3 tesla yielded regional R1 maps as a proxy of cortical myelin content. Participants also underwent functional MRI (fMRI). We mapped task-related activation and temporal precision, while they performed a visuomotor synchronization task requiring visually cued abduction movements with the left index or little finger. We also performed sulcus-aligned transcranial magnetic stimulation of the motor hand knob to localize the optimal site (hotspot) for evoking a motor evoked potential (MEP) in two intrinsic hand muscles. Individual motor hotspot locations varied along the rostrocaudal axis. The more rostral the motor hotspot location in the precentral crown, the longer were corticomotor MEP latencies. “Hotspot rostrality” was associated with the regional myelin content in the precentral hand knob. Cortical myelin content also correlated positively with task-related activation of the precentral crown and temporal precision during the visuomotor synchronization task. Together, our results suggest a link among cortical myelination, the spatial cortical representation, and temporal precision of finger movements. We hypothesize that the myelination of cortical axons facilitates neuronal integration in PMd and M1HAND and, hereby, promotes the precise timing of movements. SIGNIFICANCE STATEMENT Here we used magnetic resonance imaging and transcranial magnetic stimulation of the precentral motor hand knob to test for a link among cortical myelin content, functional corticomotor representations, and manual motor control. A higher myelin content of the precentral motor hand knob was associated with more rostral corticomotor presentations, with stronger task-related activation and a higher precision of movement timing during a visuomotor synchronization task. We propose that a high precentral myelin content enables fast and precise neuronal integration in M1 (primary motor cortex) and dorsal premotor cortex, resulting in higher temporal precision during dexterous hand use. Our results identify the degree of myelination as an important structural feature of the neocortex that is tightly linked to the function and behavior supported by the cortical area.
Collapse
|
43
|
Koponen LM, Goetz SM, Peterchev AV. Double-Containment Coil With Enhanced Winding Mounting for Transcranial Magnetic Stimulation With Reduced Acoustic Noise. IEEE Trans Biomed Eng 2020; 68:2233-2240. [PMID: 33378258 DOI: 10.1109/tbme.2020.3048321] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE This work aims to reduce the acoustic noise level of transcranial magnetic stimulation (TMS) coils. TMS requires high currents (several thousand amperes) to be pulsed through the coil, which generates a loud acoustic impulse whose peak sound pressure level (SPL) can exceed 130 dB(Z). This sound poses a risk to hearing and elicits unwanted neural activation of auditory brain circuits. METHODS We propose a new double-containment coil with enhanced winding mounting (DCC), which utilizes acoustic impedance mismatch to contain and dissipate the impulsive sound within an air-tight outer casing. The coil winding is potted into a rigid block, which is mounted to the outer casing through the block´s acoustic nodes that are subject to minimum vibration during the pulse. The rest of the winding block is isolated from the casing by an air gap, and the sound is absorbed by polyester fiber panels within the casing. The casing thickness under the winding center is minimized to maximize the electric field output. RESULTS Compared to commercial figure-of-eight TMS coils, the DCC prototype has 18-41 dB(Z) lower peak SPL at matched stimulation strength, whilst providing 28% higher maximum stimulation strength than equally focal coils. CONCLUSION The DCC design greatly reduces the acoustic noise of TMS while increasing the achievable stimulation strength. SIGNIFICANCE The acoustic noise reduction from our coil design is comparable to that provided by typical hearing protection devices. This coil design approach can enhance hearing safety and reduce auditory co-activations in the brain and other detrimental effects of TMS sound.
Collapse
|
44
|
Opie GM, Semmler JG. Preferential Activation of Unique Motor Cortical Networks With Transcranial Magnetic Stimulation: A Review of the Physiological, Functional, and Clinical Evidence. Neuromodulation 2020; 24:813-828. [PMID: 33295685 DOI: 10.1111/ner.13314] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/30/2020] [Accepted: 10/19/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVES The corticospinal volley produced by application of transcranial magnetic stimulation (TMS) over primary motor cortex consists of a number of waves generated by trans-synaptic input from interneuronal circuits. These indirect (I)-waves mediate the sensitivity of TMS to cortical plasticity and intracortical excitability and can be assessed by altering the direction of cortical current induced by TMS. While this methodological approach has been conventionally viewed as preferentially recruiting early or late I-wave inputs from a given populations of neurons, growing evidence suggests recruitment of different neuronal populations, and this would strongly influence interpretation and application of these measures. The aim of this review is therefore to consider the physiological, functional, and clinical evidence for the independence of the neuronal circuits activated by different current directions. MATERIALS AND METHODS To provide the relevant context, we begin with an overview of TMS methodology, focusing on the different techniques used to quantify I-waves. We then comprehensively review the literature that has used variations in coil orientation to investigate the I-wave circuits, grouping studies based on the neurophysiological, functional, and clinical relevance of their outcomes. RESULTS Review of the existing literature reveals significant evidence supporting the idea that varying current direction can recruit different neuronal populations having unique functionally and clinically relevant characteristics. CONCLUSIONS Further research providing greater characterization of the I-wave circuits activated with different current directions is required. This will facilitate the development of interventions that are able to modulate specific intracortical circuits, which will be an important application of TMS.
Collapse
Affiliation(s)
- George M Opie
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - John G Semmler
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
45
|
Weak rTMS-induced electric fields produce neural entrainment in humans. Sci Rep 2020; 10:11994. [PMID: 32686711 PMCID: PMC7371859 DOI: 10.1038/s41598-020-68687-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/01/2020] [Indexed: 01/09/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a potent tool for modulating endogenous oscillations in humans. The current standard method for rTMS defines the stimulation intensity based on the evoked liminal response in the visual or motor system (e.g., resting motor threshold). The key limitation of the current approach is that the magnitude of the resulting electric field remains elusive. A better characterization of the electric field strength induced by a given rTMS protocol is necessary in order to improve the understanding of the neural mechanisms of rTMS. In this study we used a novel approach, in which individualized prospective computational modeling of the induced electric field guided the choice of stimulation intensity. We consistently found that rhythmic rTMS protocols increased neural synchronization in the posterior alpha frequency band when measured simultaneously with scalp electroencephalography. We observed this effect already at electric field strengths of roughly half the lowest conventional field strength, which is 80% of the resting motor threshold. We conclude that rTMS can induce immediate electrophysiological effects at much weaker electric field strengths than previously thought.
Collapse
|
46
|
Koponen LM, Goetz SM, Tucci DL, Peterchev AV. Sound comparison of seven TMS coils at matched stimulation strength. Brain Stimul 2020; 13:873-880. [PMID: 32289720 PMCID: PMC7263763 DOI: 10.1016/j.brs.2020.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 02/11/2020] [Accepted: 03/04/2020] [Indexed: 11/30/2022] Open
Abstract
Background: Accurate data on the sound emitted by transcranial magnetic stimulation (TMS) coils is lacking. Methods: We recorded the sound waveforms of seven coils with high bandwidth. We estimated the neural stimulation strength by measuring the induced electric field and applying a strengtheduration model to account for different waveforms. Results: Across coils, at maximum stimulator output and 25 cm distance, the sound pressure level (SPL) was 98–125 dB(Z) per pulse and 76–98 dB(A) for a 20 Hz pulse train. At 5 cm distance, these values were estimated to increase to 112–139 dB(Z) and 90–112 dB(A), respectively. Conclusions: The coils’ airborne sound can exceed some exposure limits for TMS subjects and, in some cases, for operators. These findings are consistent with the current TMS safety guidelines that recommend the use of hearing protection.
Collapse
Affiliation(s)
- Lari M Koponen
- Department of Psychiatry & Behavioral Sciences, Duke University, Durham, NC, 27710, USA
| | - Stefan M Goetz
- Department of Psychiatry & Behavioral Sciences, Duke University, Durham, NC, 27710, USA; Department of Electrical & Computer Engineering, Duke University, Durham, NC, 27708, USA; Department of Neurosurgery, Duke University, Durham, NC, 27710, USA
| | - Debara L Tucci
- Department of Head and Neck Surgery & Communication Sciences, Duke University, Durham, NC, 27710, USA
| | - Angel V Peterchev
- Department of Psychiatry & Behavioral Sciences, Duke University, Durham, NC, 27710, USA; Department of Electrical & Computer Engineering, Duke University, Durham, NC, 27708, USA; Department of Neurosurgery, Duke University, Durham, NC, 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
47
|
Lisanby SH, McClintock SM, Alexopoulos G, Bailine SH, Bernhardt E, Briggs MC, Cullum CM, Deng ZD, Dooley M, Geduldig ET, Greenberg RM, Husain MM, Kaliora S, Knapp RG, Latoussakis V, Liebman LS, McCall WV, Mueller M, Petrides G, Prudic J, Rosenquist PB, Rudorfer MV, Sampson S, Teklehaimanot AA, Tobias KG, Weiner RD, Young RC, Kellner CH. Neurocognitive Effects of Combined Electroconvulsive Therapy (ECT) and Venlafaxine in Geriatric Depression: Phase 1 of the PRIDE Study. Am J Geriatr Psychiatry 2020; 28:304-316. [PMID: 31706638 PMCID: PMC7050408 DOI: 10.1016/j.jagp.2019.10.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/04/2019] [Accepted: 10/04/2019] [Indexed: 11/16/2022]
Abstract
OBJECTIVE There is limited information regarding the tolerability of electroconvulsive therapy (ECT) combined with pharmacotherapy in elderly adults with major depressive disorder (MDD). Addressing this gap, we report acute neurocognitive outcomes from Phase 1 of the Prolonging Remission in Depressed Elderly (PRIDE) study. METHODS Elderly adults (age ≥60) with MDD received an acute course of 6 times seizure threshold right unilateral ultrabrief pulse (RUL-UB) ECT. Venlafaxine was initiated during the first treatment week and continued throughout the study. A comprehensive neurocognitive battery was administered at baseline and 72 hours following the last ECT session. Statistical significance was defined as a two-sided p-value of less than 0.05. RESULTS A total of 240 elderly adults were enrolled. Neurocognitive performance acutely declined post ECT on measures of psychomotor and verbal processing speed, autobiographical memory consistency, short-term verbal recall and recognition of learned words, phonemic fluency, and complex visual scanning/cognitive flexibility. The magnitude of change from baseline to end for most neurocognitive measures was modest. CONCLUSION This is the first study to characterize the neurocognitive effects of combined RUL-UB ECT and venlafaxine in elderly adults with MDD and provides new evidence for the tolerability of RUL-UB ECT in an elderly sample. Of the cognitive domains assessed, only phonemic fluency, complex visual scanning, and cognitive flexibility qualitatively declined from low average to mildly impaired. While some acute changes in neurocognitive performance were statistically significant, the majority of the indices as based on the effect sizes remained relatively stable.
Collapse
Affiliation(s)
- Sarah H. Lisanby
- Division of Brain Stimulation and Neurophysiology, Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC (Now at the National Institute of Mental Health),Noninvasive Neuromodulation Unit, Experimental Therapeutics Branch, Intramural Research Program, National Institute of Mental Health
| | - Shawn M. McClintock
- Division of Brain Stimulation and Neurophysiology, Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC (Now at the National Institute of Mental Health),Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX
| | - George Alexopoulos
- Department of Psychiatry and Behavioral Sciences, New York Presbyterian/Weill Cornell Medical Center, White Plains, NY
| | - Samuel H. Bailine
- Department of Psychiatry, Zucker Hillside Hospital/North Shore-LIJ Health System, New York, NY
| | | | - Mimi C. Briggs
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY
| | - C. Munro Cullum
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX
| | - Zhi-De Deng
- Noninvasive Neuromodulation Unit, Experimental Therapeutics Branch, Intramural Research Program, National Institute of Mental Health
| | - Mary Dooley
- Department of Public Health Sciences, College of Medicine, Medical University of South Carolina, Charleston, SC
| | - Emma T. Geduldig
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Mustafa M. Husain
- Division of Brain Stimulation and Neurophysiology, Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC (Now at the National Institute of Mental Health),Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX
| | - Styliani Kaliora
- Department of Psychiatry, Zucker Hillside Hospital/North Shore-LIJ Health System, New York, NY
| | - Rebecca G. Knapp
- Department of Public Health Sciences, College of Medicine, Medical University of South Carolina, Charleston, SC
| | - Vassilios Latoussakis
- Department of Psychiatry and Behavioral Sciences, New York Presbyterian/Weill Cornell Medical Center, White Plains, NY
| | - Lauren S. Liebman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY
| | - William V. McCall
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Augusta University, Augusta, GA
| | - Martina Mueller
- Department of Public Health Sciences, College of Medicine, Medical University of South Carolina, Charleston, SC
| | - Georgios Petrides
- Department of Psychiatry, Zucker Hillside Hospital/North Shore-LIJ Health System, New York, NY
| | - Joan Prudic
- Department of Psychiatry, Columbia University/New York State Psychiatric Institute, New York, NY
| | - Peter B. Rosenquist
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Augusta University, Augusta, GA
| | - Matthew V. Rudorfer
- Division of Services and Intervention Research, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| | - Shirlene Sampson
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN
| | - Abeba A. Teklehaimanot
- Department of Public Health Sciences, College of Medicine, Medical University of South Carolina, Charleston, SC
| | - Kristen G. Tobias
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Richard D. Weiner
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC
| | - Robert C. Young
- Department of Psychiatry and Behavioral Sciences, New York Presbyterian/Weill Cornell Medical Center, White Plains, NY
| | - Charles H. Kellner
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY
| | | |
Collapse
|
48
|
Nieminen JO, Koponen LM, Mäkelä N, Souza VH, Stenroos M, Ilmoniemi RJ. Short-interval intracortical inhibition in human primary motor cortex: A multi-locus transcranial magnetic stimulation study. Neuroimage 2019; 203:116194. [DOI: 10.1016/j.neuroimage.2019.116194] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 09/03/2019] [Accepted: 09/13/2019] [Indexed: 12/22/2022] Open
|
49
|
Giustiniani A, Tarantino V, Bonaventura R, Smirni D, Turriziani P, Oliveri M. Effects of low-gamma tACS on primary motor cortex in implicit motor learning. Behav Brain Res 2019; 376:112170. [DOI: 10.1016/j.bbr.2019.112170] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/11/2019] [Accepted: 08/19/2019] [Indexed: 11/27/2022]
|
50
|
Goetz SM, Li Z, Peterchev AV. Noninvasive Detection of Motor-Evoked Potentials in Response to Brain Stimulation Below the Noise Floor-How Weak Can a Stimulus Be and Still Stimulate. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2018:2687-2690. [PMID: 30440960 DOI: 10.1109/embc.2018.8512765] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Motor-evoked potentials (MEP) are one of the most important responses to brain stimulation, such as supra-threshold transcranial magnetic stimulation (TMS) and electrical stimulation. The understanding of the neurophysiology and the determination of the lowest stimulation strength that evokes responses requires the detection of even smallest responses, e.g., from single motor units, but available detection and quantization methods are rather simple and suffer from a large noise floor. The paper introduces a more sophisticated matched-filter detection method that increases the detection sensitivity and shows that activation occurs well below the conventional detection level. In consequence, also conventional threshold definitions, e.g., as 50 μV median response amplitude, turn out to be substantially higher than the point at which first detectable responses occur. The presented method uses a matched-filter approach for improved sensitivity and generates the filter through iterative learning from the presented data. In contrast to conventional peak-to-peak measures, the presented method has a higher signal-to-noise ratio (≥14 dB). For responses that are reliably detected by conventional detection, the new approach is fully compatible and provides the same results but extends the dynamic range below the conventional noise floor. The underlying method is applicable to a wide range of well-timed biosignals and evoked potentials, such as in electroencephalography.
Collapse
|