1
|
Zangeneh Soroush M, Zeng Y. EEG-based study of design creativity: a review on research design, experiments, and analysis. Front Behav Neurosci 2024; 18:1331396. [PMID: 39148896 PMCID: PMC11325867 DOI: 10.3389/fnbeh.2024.1331396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/07/2024] [Indexed: 08/17/2024] Open
Abstract
Brain dynamics associated with design creativity tasks are largely unexplored. Despite significant strides, there is a limited understanding of the brain-behavior during design creation tasks. The objective of this paper is to review the concepts of creativity and design creativity as well as their differences, and to explore the brain dynamics associated with design creativity tasks using electroencephalography (EEG) as a neuroimaging tool. The paper aims to provide essential insights for future researchers in the field of design creativity neurocognition. It seeks to examine fundamental studies, present key findings, and initiate a discussion on associated brain dynamics. The review employs thematic analysis and a forward and backward snowball search methodology with specific inclusion and exclusion criteria to select relevant studies. This search strategy ensured a comprehensive review focused on EEG-based creativity and design creativity experiments. Different components of those experiments such as participants, psychometrics, experiment design, and creativity tasks, are reviewed and then discussed. The review identifies that while some studies have converged on specific findings regarding EEG alpha band activity in creativity experiments, there remain inconsistencies in the literature. The paper underscores the need for further research to unravel the interplays between these cognitive processes. This comprehensive review serves as a valuable resource for readers seeking an understanding of current literature, principal discoveries, and areas where knowledge remains incomplete. It highlights both positive and foundational aspects, identifies gaps, and poses lingering questions to guide future research endeavors.
Collapse
Affiliation(s)
- Morteza Zangeneh Soroush
- Concordia Institute for Information Systems Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montreal, QC, Canada
| | - Yong Zeng
- Concordia Institute for Information Systems Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montreal, QC, Canada
| |
Collapse
|
2
|
Watson B, Das A, Maguire S, Fleet G, Punamiya A. The little intervention that could: creative aging implies healthy aging among Canadian seniors. Aging Ment Health 2024; 28:307-318. [PMID: 37602435 DOI: 10.1080/13607863.2023.2246416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 02/20/2023] [Indexed: 08/22/2023]
Abstract
OBJECTIVES Through a process of 'creative ageing', there is increased interest in how active participation in the arts can help promote health and well-being among seniors. However, few studies have quantitatively examined the benefits of a foray into artistic expression, and even fewer employ rigorous identification strategies. Addressing this knowledge gap, we use a series of quantitative techniques (ordinary least squares and quantile regression) to analyze the impact of an arts-based intervention targeting the elderly. METHODS Recruited from Saint John, New Brunswick (a city of about 125,000 people in Eastern Canada), 130 seniors were randomly assigned to the programme, with the remaining 122 serving as the control. This intervention consisted of weekly 2-h art sessions (i.e. drawing, painting, collage, clay-work, performance, sculpting, and mixed media), taking place from January 2020 until April 2021. RESULTS Relative to the control group, the intervention tended to reduce participant loneliness and depression, and improve their mental health. Outcomes were more evident toward the latter part of the programme, were increasing in attendance, and most efficacious among those with initially low levels of well-being. CONCLUSION These findings imply that creative ageing promotes healthy ageing, which is especially noteworthy given COVID-19 likely attenuated our results.
Collapse
Affiliation(s)
| | - Alekhya Das
- University of New Brunswick, Saint John, Canada
| | | | | | | |
Collapse
|
3
|
Thiele JA, Richter A, Hilger K. Multimodal Brain Signal Complexity Predicts Human Intelligence. eNeuro 2023; 10:ENEURO.0345-22.2022. [PMID: 36657966 PMCID: PMC9910576 DOI: 10.1523/eneuro.0345-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/01/2022] [Accepted: 12/13/2022] [Indexed: 01/20/2023] Open
Abstract
Spontaneous brain activity builds the foundation for human cognitive processing during external demands. Neuroimaging studies based on functional magnetic resonance imaging (fMRI) identified specific characteristics of spontaneous (intrinsic) brain dynamics to be associated with individual differences in general cognitive ability, i.e., intelligence. However, fMRI research is inherently limited by low temporal resolution, thus, preventing conclusions about neural fluctuations within the range of milliseconds. Here, we used resting-state electroencephalographical (EEG) recordings from 144 healthy adults to test whether individual differences in intelligence (Raven's Advanced Progressive Matrices scores) can be predicted from the complexity of temporally highly resolved intrinsic brain signals. We compared different operationalizations of brain signal complexity (multiscale entropy, Shannon entropy, Fuzzy entropy, and specific characteristics of microstates) regarding their relation to intelligence. The results indicate that associations between brain signal complexity measures and intelligence are of small effect sizes (r ∼ 0.20) and vary across different spatial and temporal scales. Specifically, higher intelligence scores were associated with lower complexity in local aspects of neural processing, and less activity in task-negative brain regions belonging to the default-mode network. Finally, we combined multiple measures of brain signal complexity to show that individual intelligence scores can be significantly predicted with a multimodal model within the sample (10-fold cross-validation) as well as in an independent sample (external replication, N = 57). In sum, our results highlight the temporal and spatial dependency of associations between intelligence and intrinsic brain dynamics, proposing multimodal approaches as promising means for future neuroscientific research on complex human traits.
Collapse
Affiliation(s)
- Jonas A Thiele
- Department of Psychology I, University of Würzburg, Würzburg 97070, Germany
| | - Aylin Richter
- Department of Biology, University of Würzburg, Würzburg 97074, Germany
| | - Kirsten Hilger
- Department of Psychology I, University of Würzburg, Würzburg 97070, Germany
- Department of Psychology, Frankfurt University, Frankfurt am Main 60629, Germany
| |
Collapse
|
4
|
Iinuma Y, Nobukawa S, Mizukami K, Kawaguchi M, Higashima M, Tanaka Y, Yamanishi T, Takahashi T. Enhanced temporal complexity of EEG signals in older individuals with high cognitive functions. Front Neurosci 2022; 16:878495. [PMID: 36213750 PMCID: PMC9533123 DOI: 10.3389/fnins.2022.878495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Recent studies suggest that the maintenance of cognitive function in the later life of older people is an essential factor contributing to mental wellbeing and physical health. Particularly, the risk of depression, sleep disorders, and Alzheimer's disease significantly increases in patients with mild cognitive impairment. To develop early treatment and prevention strategies for cognitive decline, it is necessary to individually identify the current state of cognitive function since the progression of cognitive decline varies among individuals. Therefore, the development of biomarkers that allow easier measurement of cognitive function in older individuals is relevant for hyperaged societies. One of the methods used to estimate cognitive function focuses on the temporal complexity of electroencephalography (EEG) signals. The characteristics of temporal complexity depend on the time scale, which reflects the range of neuron functional interactions. To capture the dynamics, composed of multiple time scales, multiscale entropy (MSE) analysis is effective for comprehensively assessing the neural activity underlying cognitive function in the brain. Thus, we hypothesized that EEG complexity analysis could serve to assess a wide range of cognitive functions in older adults. To validate our hypothesis, we divided older participants into two groups based on their cognitive function test scores: a high cognitive function group and a low cognitive function group, and applied MSE analysis to the measured EEG data of all participants. The results of the repeated-measures analysis of covariance using age and sex as a covariate in the MSE profile showed a significant difference between the high and low cognitive function groups (F = 10.18, p = 0.003) and the interaction of the group × electrodes (F = 3.93, p = 0.002). Subsequently, the results of the post-hoct-test showed high complexity on a slower time scale in the frontal, parietal, and temporal lobes in the high cognitive function group. This high complexity on a slow time scale reflects the activation of long-distance neural interactions among various brain regions to achieve high cognitive functions. This finding could facilitate the development of a tool for diagnosis of cognitive decline in older individuals.
Collapse
Affiliation(s)
- Yuta Iinuma
- Graduate School of Information and Computer Science, Chiba Institute of Technology, Narashino, Japan
| | - Sou Nobukawa
- Graduate School of Information and Computer Science, Chiba Institute of Technology, Narashino, Japan
- Department of Preventive Intervention for Psychiatric Disorders, National Center of Neurology and Psychiatry, National Institute of Mental Health, Tokyo, Japan
- *Correspondence: Sou Nobukawa
| | - Kimiko Mizukami
- Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Megumi Kawaguchi
- Department of Nursing, Faculty of Medical Sciences, University of Fukui, Yoshida, Japan
| | | | | | | | - Tetsuya Takahashi
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, Yoshida, Japan
- Uozu Shinkei Sanatorium, Uozu, Japan
| |
Collapse
|
5
|
|
6
|
Exploring Neural Signal Complexity as a Potential Link between Creative Thinking, Intelligence, and Cognitive Control. J Intell 2021; 9:jintelligence9040059. [PMID: 34940381 PMCID: PMC8706335 DOI: 10.3390/jintelligence9040059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/31/2022] Open
Abstract
Functional connectivity studies have demonstrated that creative thinking builds upon an interplay of multiple neural networks involving the cognitive control system. Theoretically, cognitive control has generally been discussed as the common basis underlying the positive relationship between creative thinking and intelligence. However, the literature still lacks a detailed investigation of the association patterns between cognitive control, the factors of creative thinking as measured by divergent thinking (DT) tasks, i.e., fluency and originality, and intelligence, both fluid and crystallized. In the present study, we explored these relationships at the behavioral and the neural level, based on N = 77 young adults. We focused on brain-signal complexity (BSC), parameterized by multi-scale entropy (MSE), as measured during a verbal DT and a cognitive control task. We demonstrated that MSE is a sensitive neural indicator of originality as well as inhibition. Then, we explore the relationships between MSE and factor scores indicating DT and intelligence. In a series of across-scalp analyses, we show that the overall MSE measured during a DT task, as well as MSE measured in cognitive control states, are associated with fluency and originality at specific scalp locations, but not with fluid and crystallized intelligence. The present explorative study broadens our understanding of the relationship between creative thinking, intelligence, and cognitive control from the perspective of BSC and has the potential to inspire future BSC-related theories of creative thinking.
Collapse
|
7
|
Zhang S, Spoletini LJ, Gold BP, Morgan VL, Rogers BP, Chang C. Interindividual Signatures of fMRI Temporal Fluctuations. Cereb Cortex 2021; 31:4450-4463. [PMID: 33903915 PMCID: PMC8408464 DOI: 10.1093/cercor/bhab099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/28/2021] [Accepted: 03/26/2021] [Indexed: 11/13/2022] Open
Abstract
The complexity and variability of human brain activity, such as quantified from Functional Magnetic Resonance Imaging (fMRI) time series, have been widely studied as potential markers of healthy and pathological states. However, the extent to which fMRI temporal features exhibit stable markers of inter-individual differences in brain function across healthy young adults is currently an open question. In this study, we draw upon two widely used time-series measures-a nonlinear complexity measure (sample entropy; SampEn) and a spectral measure of low-frequency content (fALFF)-to capture dynamic properties of resting-state fMRI in a large sample of young adults from the Human Connectome Project. We observe that these two measures are closely related, and that both generate reproducible patterns across brain regions over four different fMRI runs, with intra-class correlations of up to 0.8. Moreover, we find that both metrics can uniquely differentiate subjects with high identification rates (ca. 89%). Canonical correlation analysis revealed a significant relationship between multivariate brain temporal features and behavioral measures. Overall, these findings suggest that regional profiles of fMRI temporal characteristics may provide stable markers of individual differences, and motivate future studies to further probe relationships between fMRI time series metrics and behavior.
Collapse
Affiliation(s)
- Shengchao Zhang
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37212, USA
| | - Liam J Spoletini
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA
| | - Benjamin P Gold
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37212, USA
- Vanderbilt University, Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Victoria L Morgan
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA
- Vanderbilt University, Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37212, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Baxter P Rogers
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA
- Vanderbilt University, Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37212, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37212, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Catie Chang
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37212, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA
- Vanderbilt University, Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| |
Collapse
|
8
|
Nobukawa S, Yamanishi T, Ueno K, Mizukami K, Nishimura H, Takahashi T. High Phase Synchronization in Alpha Band Activity in Older Subjects With High Creativity. Front Hum Neurosci 2020; 14:583049. [PMID: 33192416 PMCID: PMC7642763 DOI: 10.3389/fnhum.2020.583049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022] Open
Abstract
Despite growing evidence that high creativity leads to mental well-being in older individuals, the neurophysiological bases of creativity remain elusive. Creativity reportedly involves multiple brain areas and their functional interconnections. In particular, functional magnetic resonance imaging (fMRI) is used to investigate the role of patterns of functional connectivity between the default network and other networks in creative activity. These interactions among networks play the role of integrating various neural processes to support creative activity and involve attention, cognitive control, and memory. The electroencephalogram (EEG) enables researchers to capture a pattern of band-specific functional connectivity, as well as moment-to-moment dynamics of brain activity; this can be accomplished even in the resting-state by exploiting the excellent temporal resolution of the EEG. Furthermore, the recent advent of functional connectivity analysis in EEG studies has focused on the phase-difference variable because of its fine spatio-temporal resolution. Therefore, we hypothesized that the combining method of EEG signals having high-temporal resolution and the phase synchronization analysis having high-spatio-temporal resolutions brings a new insight of functional connectivity regarding high creative activity of older participants. In this study, we examined the resting-state EEG signal in 20 healthy older participants and estimated functional connectivities using the phase lag index (PLI), which evaluates the phase synchronization of EEG signals. Individual creativity was assessed using the S-A creativity test in a separate session before the EEG recording. In the analysis of associations of EEG measures with the S-A test scores, the covariate effect of the intelligence quotient was evaluated. As a result, higher individual S-A scores were significantly associated with higher node degrees, defined as the average PLI of a node (electrode) across all links with the remaining nodes, across all nodes at the alpha band. A conventional power spectrum analysis revealed no significant association with S-A scores in any frequency band. Older participants with high creativity exhibited high functional connectivity even in the resting-state, irrespective of intelligence quotient, which supports the theory that creativity entails widespread brain connectivity. Thus, PLIs derived from EEG data may provide new insights into the relationship between functional connectivity and creativity in healthy older people.
Collapse
Affiliation(s)
- Sou Nobukawa
- Department of Computer Science, Chiba Institute of Technology, Narashino, Japan
| | - Teruya Yamanishi
- AI & IoT Center, Department of Management and Information Sciences, Fukui University of Technology, Fukui, Japan
| | - Kanji Ueno
- Department of Neuropsychiatry, University of Fukui, Fukui, Japan
| | - Kimiko Mizukami
- Faculty of Medicine, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Haruhiko Nishimura
- Graduate School of Applied Informatics, University of Hyogo, Kobe, Japan
| | - Tetsuya Takahashi
- Department of Neuropsychiatry, University of Fukui, Fukui, Japan
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- Uozu Shinkei Sanatorium, Uozu, Japan
| |
Collapse
|
9
|
Kaur Y, Ouyang G, Sommer W, Weiss S, Zhou C, Hildebrandt A. What Does Temporal Brain Signal Complexity Reveal About Verbal Creativity? Front Behav Neurosci 2020; 14:146. [PMID: 33192356 PMCID: PMC7481454 DOI: 10.3389/fnbeh.2020.00146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/28/2020] [Indexed: 11/20/2022] Open
Abstract
Recent empirical evidence reveals that creative idea generation builds upon an interplay of multiple neural networks. Measures of temporal complexity yield important information about the underlying mechanisms of these co-activated neural networks. A few neurophysiological studies investigated brain signal complexity (BSC) during the production of creative verbal associations and resting states, aiming to relate it with creative task performance. However, it is unknown whether the complexity of brain signals can distinguish between productions of typical and original verbal associations. In the present study, we investigated verbal creativity with multiscale entropy (MSE) of electroencephalography (EEG) signals, which quantifies complexity over multiple timescales, capturing unique dynamic features of neural networks. MSE was measured in verbal divergent thinking (DT) states while emphasizing on producing either typical verbal associations or original verbal associations. We hypothesized that MSE differentiates between brain states characterizing the production of typical and original associations and is a sensitive neural marker of individual differences in producing original associations. Results from a sample of N = 92 young adults revealed slightly higher average MSE for original as compared with typical association production in small and medium timescales at frontal electrodes and slightly higher average MSE for typical association production in higher timescales at parietal electrodes. However, measurement models failed to uncover specificity of individual differences as MSE in typical vs. original associations was perfectly correlated. Hence, individuals with higher MSE in original association condition also exhibit higher MSE during the production of typical associations. The difference between typical and original association MSE was not significantly associated with human-rated originality of the verbal associations. In sum, we conclude that MSE is a potential marker of creative verbal association states, but replications and extensions are needed, especially with respect to the brain-behavior relationships.
Collapse
Affiliation(s)
- Yadwinder Kaur
- Department of Psychology, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- *Correspondence: Yadwinder Kaur,
| | - Guang Ouyang
- The Laboratory of Neuroscience for Education, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Werner Sommer
- Institut für Psychologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Selina Weiss
- Department of Individual Differences and Psychological Assessment, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Changsong Zhou
- Department of Physics and Centre for Nonlinear Studies, Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Andrea Hildebrandt
- Department of Psychology, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
10
|
Liu M, Liu X, Hildebrandt A, Zhou C. Individual Cortical Entropy Profile: Test-Retest Reliability, Predictive Power for Cognitive Ability, and Neuroanatomical Foundation. Cereb Cortex Commun 2020; 1:tgaa015. [PMID: 34296093 PMCID: PMC8153045 DOI: 10.1093/texcom/tgaa015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 04/24/2020] [Accepted: 05/01/2020] [Indexed: 12/19/2022] Open
Abstract
The entropy profiles of cortical activity have become novel perspectives to investigate individual differences in behavior. However, previous studies have neglected foundational aspects of individual entropy profiles, that is, the test-retest reliability, the predictive power for cognitive ability in out-of-sample data, and the underlying neuroanatomical basis. We explored these issues in a large young healthy adult dataset (Human Connectome Project, N = 998). We showed the whole cortical entropy profile from resting-state functional magnetic resonance imaging is a robust personalized measure, while subsystem profiles exhibited heterogeneous reliabilities. The limbic network exhibited lowest reliability. We tested the out-of-sample predictive power for general and specific cognitive abilities based on reliable cortical entropy profiles. The default mode and visual networks are most crucial when predicting general cognitive ability. We investigated the anatomical features underlying cross-region and cross-individual variations in cortical entropy profiles. Cortical thickness and structural connectivity explained spatial variations in the group-averaged entropy profile. Cortical folding and myelination in the attention and frontoparietal networks determined predominantly individual cortical entropy profile. This study lays foundations for brain-entropy-based studies on individual differences to understand cognitive ability and related pathologies. These findings broaden our understanding of the associations between neural structures, functional dynamics, and cognitive ability.
Collapse
Affiliation(s)
- Mianxin Liu
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Xinyang Liu
- Department of Psychology, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| | - Andrea Hildebrandt
- Department of Psychology, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| | - Changsong Zhou
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong
- Department of Physics, Zhejiang University, 310000 Hangzhou, China
| |
Collapse
|
11
|
Kosciessa JQ, Kloosterman NA, Garrett DD. Standard multiscale entropy reflects neural dynamics at mismatched temporal scales: What's signal irregularity got to do with it? PLoS Comput Biol 2020; 16:e1007885. [PMID: 32392250 PMCID: PMC7241858 DOI: 10.1371/journal.pcbi.1007885] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/21/2020] [Accepted: 04/18/2020] [Indexed: 01/10/2023] Open
Abstract
Multiscale Entropy (MSE) is used to characterize the temporal irregularity of neural time series patterns. Due to its' presumed sensitivity to non-linear signal characteristics, MSE is typically considered a complementary measure of brain dynamics to signal variance and spectral power. However, the divergence between these measures is often unclear in application. Furthermore, it is commonly assumed (yet sparingly verified) that entropy estimated at specific time scales reflects signal irregularity at those precise time scales of brain function. We argue that such assumptions are not tenable. Using simulated and empirical electroencephalogram (EEG) data from 47 younger and 52 older adults, we indicate strong and previously underappreciated associations between MSE and spectral power, and highlight how these links preclude traditional interpretations of MSE time scales. Specifically, we show that the typical definition of temporal patterns via "similarity bounds" biases coarse MSE scales-that are thought to reflect slow dynamics-by high-frequency dynamics. Moreover, we demonstrate that entropy at fine time scales-presumed to indicate fast dynamics-is highly sensitive to broadband spectral power, a measure dominated by low-frequency contributions. Jointly, these issues produce counterintuitive reflections of frequency-specific content on MSE time scales. We emphasize the resulting inferential problems in a conceptual replication of cross-sectional age differences at rest, in which scale-specific entropy age effects could be explained by spectral power differences at mismatched temporal scales. Furthermore, we demonstrate how such problems may be alleviated, resulting in the indication of scale-specific age differences in rhythmic irregularity. By controlling for narrowband contributions, we indicate that spontaneous alpha rhythms during eyes open rest transiently reduce broadband signal irregularity. Finally, we recommend best practices that may better permit a valid estimation and interpretation of neural signal irregularity at time scales of interest.
Collapse
Affiliation(s)
- Julian Q. Kosciessa
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Niels A. Kloosterman
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Douglas D. Garrett
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| |
Collapse
|
12
|
Brown CJ, Chirino AFC, Cortez CM, Gearhart C, Urizar GG. Conceptual Art for the Aging Brain: Piloting an Art-Based Cognitive Health Intervention. ACTIVITIES, ADAPTATION & AGING 2020. [DOI: 10.1080/01924788.2020.1719584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Colette J. Brown
- Department of Psychology, California State University, Long Beach, CA, USA
- School of Art, California State University, Long Beach, CA, USA
| | | | | | - Cassandra Gearhart
- Department of Psychology, California State University, Long Beach, CA, USA
| | - Guido G. Urizar
- Department of Psychology, California State University, Long Beach, CA, USA
| |
Collapse
|
13
|
Wang CH, Liang WK, Moreau D. Differential Modulation of Brain Signal Variability During Cognitive Control in Athletes with Different Domains of Expertise. Neuroscience 2020; 425:267-279. [DOI: 10.1016/j.neuroscience.2019.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 10/30/2019] [Accepted: 11/02/2019] [Indexed: 01/06/2023]
|
14
|
Kaur Y, Ouyang G, Junge M, Sommer W, Liu M, Zhou C, Hildebrandt A. The reliability and psychometric structure of Multi-Scale Entropy measured from EEG signals at rest and during face and object recognition tasks. J Neurosci Methods 2019; 326:108343. [PMID: 31276692 DOI: 10.1016/j.jneumeth.2019.108343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/29/2019] [Accepted: 07/01/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND Multi-Scale Entropy (MSE) is a widely used marker of Brain Signal Complexity (BSC) at multiple temporal scales. METHODOLOGICAL IMPROVEMENT There is no systematic research addressing the psychometric quality and reliability of MSE. It is unknown how recording conditions of EEG signals affect individual differences in MSE. These gaps can be addressed by means of Structural Equation Modeling (SEM). RESULTS Based on a large sample of 210 young adults, we estimated measurement models for MSE derived from multiple epochs of EEG signal measured during resting state conditions with closed and open eyes, and during a visual task with multiple experimental manipulations. Factor reliability estimates, quantified by the McDonald's ω coefficient, are high at lower and acceptable at higher time scales. Above individual differences in signal entropy observed across all recording conditions, persons specifically differ with respect to their BSC in open eyes resting state condition as compared with closed eyes state, and in task processing state MSE as compared with resting state. COMPARISON WITH EXISTING METHODS By means of SEM, we decomposed individual differences in BSC into different factors depending on the recording condition of EEG signals. This goes beyond existing methods that aim at estimating average MSE differences across recording conditions, but do not address whether individual differences are additionally affected by the type of EEG recording condition. CONCLUSION Eyes closed and open and task conditions strongly influence individual differences in MSE. We provide recommendations for future studies aiming to address BSC using MSE as a neural marker of cognitive abilities.
Collapse
Affiliation(s)
- Yadwinder Kaur
- Department of Psychology, University of Greifswald, Germany; Department of Psychology, Carl von Ossietzky Universität Oldenburg, Germany.
| | - Guang Ouyang
- Department of Psychology, University of Greifswald, Germany; The Laboratory of Neuroscience for Education, The University of Hong Kong, Hong Kong
| | - Martin Junge
- Department of Psychology, University of Greifswald, Germany
| | - Werner Sommer
- Department of Psychology, Humboldt-Universität zu Berlin, Germany
| | - Mianxin Liu
- Department of Physics and Centre for Nonlinear Studies, Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Changsong Zhou
- Department of Physics and Centre for Nonlinear Studies, Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong.
| | - Andrea Hildebrandt
- Department of Psychology, Carl von Ossietzky Universität Oldenburg, Germany.
| |
Collapse
|
15
|
Nori R, Signore S, Bonifacci P. Creativity Style and Achievements: An Investigation on the Role of Emotional Competence, Individual Differences, and Psychometric Intelligence. Front Psychol 2018; 9:1826. [PMID: 30364111 PMCID: PMC6191484 DOI: 10.3389/fpsyg.2018.01826] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 09/07/2018] [Indexed: 11/13/2022] Open
Abstract
Psychometric and emotional intelligence are considered as two separate theoretical constructs, although each one has been found to correlate to a certain degree with measures of creativity. The aim of the present study was to analyze whether individual differences such as age and gender, together with psychometric intelligence and emotional competence (EC) predicted creativity. We selected a sample of 376 participants aged 12-88 (mean age = 30.28 years, SD = 19.09 years; 224 females) to evaluate relationships between these constructs across lifespan. Participants were administered the Kaufman Brief Intelligence Test-2, the Short Profile of EC, the Creativity Style Questionnaire Revised (CSQ-R) and the Creative Achievement Questionnaire (CAQ). T-test on gender differences evidenced that males had higher creativity achievements compared to females. A path analysis was applied to examine the relationships between the CAQ and CSQ-R scores as dependent variables and the potential predictors assessed. Results showed that CSQ-R was significantly predicted by interpersonal emotional competence and marginally by educational level (p = 0.058) and intrapersonal emotional competence (p = 0.051). On the other hand, the CAQ score was significantly predicted by gender, age, and composite IQ. Discussion is focused on possible theoretical implications.
Collapse
Affiliation(s)
- Raffaella Nori
- Department of Psychology, University of Bologna, Bologna, Italy
| | | | | |
Collapse
|
16
|
Wang H, Pexman PM, Turner G, Cortese F, Protzner AB. The relation between Scrabble expertise and brain aging as measured with EEG brain signal variability. Neurobiol Aging 2018; 69:249-260. [PMID: 29920434 DOI: 10.1016/j.neurobiolaging.2018.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 04/06/2018] [Accepted: 05/11/2018] [Indexed: 11/26/2022]
Abstract
Recent empirical work suggests that the dynamics of brain function, as measured by brain signal variability, differs between younger and older adults. We extended this work by examining how the relationship between brain signal variability and age is altered in the context of expertise. We recorded electroencephalography from Scrabble experts and controls during a visual word recognition task. To measure variability, we used multiscale entropy, which emphasizes the way brain signals behave over a range of timescales and can differentiate the variability of a complex system (the brain) from a purely random system. We replicated previously identified shifts from long-range interactions among neural populations to more local processing in late adulthood. In addition, we demonstrated an age-related increase in midrange neural interactions for experts, suggesting greater maintenance of network integration into late adulthood. Our results indicate that expertise-related differences in the context of age and brain dynamics occur across different timescales and that these differences are linked to task performance.
Collapse
Affiliation(s)
- Hongye Wang
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada.
| | - Penny M Pexman
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Gary Turner
- Department of Psychology, York University, Toronto, Ontario, Canada
| | - Filomeno Cortese
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Seaman Family MR Centre, Foothills Medical Centre, University of Calgary, Calgary, Alberta, Canada
| | - Andrea B Protzner
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
17
|
Jaworska N, Wang H, Smith DM, Blier P, Knott V, Protzner AB. Pre-treatment EEG signal variability is associated with treatment success in depression. NEUROIMAGE-CLINICAL 2017; 17:368-377. [PMID: 29159049 PMCID: PMC5683802 DOI: 10.1016/j.nicl.2017.10.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 11/20/2022]
Abstract
Background Previous work suggests that major depressive disorder (MDD) is associated with disturbances in global connectivity among brain regions, as well as local connectivity within regions. However, the relative importance of these global versus local changes for successful antidepressant treatment is unknown. We used multiscale entropy (MSE), a measure of brain signal variability, to examine how the propensity for local (fine scale MSE) versus global (coarse scale MSE) neural processing measured prior to antidepressant treatment is related to subsequent treatment response. Methods We collected resting-state EEG activity during eyes-open and closed conditions from unmedicated individuals with MDD prior to antidepressant pharmacotherapy (N = 36) as well as from non-depressed controls (N = 36). Treatment response was assessed after 12 weeks of treatment using the Montgomery-Åsberg Depression Rating Scale (MADRS), at which time participants with MDD were characterized as either responders (≥ 50% MADRS decrease) or non-responders. MSE was calculated from baseline EEG, and compared between controls, future treatment responders and non-responders. Putative interactions with the well-documented age effect on signal variability (increased reliance on local neural communication with increasing age, indexed by greater finer-scale variability) were assessed. Results Only in responders, we found that reduced MSE at fine temporal scales (especially fronto-centrally) and increased MSE diffusely at coarser temporal scales was related to the magnitude of the antidepressant response. In controls and MDD non-responders, but not MDD responders, there was an increase in MSE with age at fine temporal scales and a decrease in MSE with age at coarse temporal scales. Conclusion Our results suggest that an increased propensity toward global processing, indexed by greater MSE at coarser timescales, at baseline appears to facilitate eventual antidepressant treatment response. We measured resting-state EEG prior to antidepressant pharmacotherapy. We examined global vs. local processing in relation to antidepressant response. Greater response was linked with increased global processing. Age-related decreases in global communication were absent in future responders. Baseline brain dynamics in those who are/are not responsive to antidepressants differ.
Collapse
Affiliation(s)
- Natalia Jaworska
- Institute of Mental Health Research, Affiliated With the University of Ottawa, ON, Canada
| | - Hongye Wang
- Department of Psychology, University of Calgary, AB, Canada
| | - Dylan M Smith
- Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, QC, Canada
| | - Pierre Blier
- Institute of Mental Health Research, Affiliated With the University of Ottawa, ON, Canada
| | - Verner Knott
- Institute of Mental Health Research, Affiliated With the University of Ottawa, ON, Canada
| | - Andrea B Protzner
- Department of Psychology, University of Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, AB, Canada.
| |
Collapse
|
18
|
Kuo CY, Yeh YY. Sensorimotor-Conceptual Integration in Free Walking Enhances Divergent Thinking for Young and Older Adults. Front Psychol 2016; 7:1580. [PMID: 27790178 PMCID: PMC5061809 DOI: 10.3389/fpsyg.2016.01580] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/29/2016] [Indexed: 11/13/2022] Open
Abstract
Prior research has shown that free walking can enhance creative thinking. Nevertheless, it remains unclear whether bidirectional body-mind links are essential for the positive effect of free walking on creative thinking. Moreover, it is unknown whether the positive effect can be generalized to older adults. In Experiment 1, we replicated previous findings with two additional groups of young participants. Participants in the rectangular-walking condition walked along a rectangular path while generating unusual uses for chopsticks. Participants in the free-walking group walked freely as they wished, and participants in the free-generation condition generated unconstrained free paths while the participants in the random-experienced condition walked those paths. Only the free-walking group showed better performance in fluency, flexibility, and originality. In Experiment 2, two groups of older adults were randomly assigned to the free-walking and rectangular-walking conditions. The free-walking group showed better performance than the rectangular-walking group. Moreover, older adults in the free-walking group outperformed young adults in the rectangular-walking group in originality and performed comparably in fluency and flexibility. Bidirectional links between proprioceptive-motor kinematics and metaphorical abstract concepts can enhance divergent thinking for both young and older adults.
Collapse
Affiliation(s)
- Chun-Yu Kuo
- Department of Educational Psychology and Counseling, National Pingtung UniversityPingtung, Taiwan; Department of Psychology, National Taiwan UniversityTaipei, Taiwan
| | - Yei-Yu Yeh
- Department of Psychology, National Taiwan University Taipei, Taiwan
| |
Collapse
|
19
|
Courtiol J, Perdikis D, Petkoski S, Müller V, Huys R, Sleimen-Malkoun R, Jirsa VK. The multiscale entropy: Guidelines for use and interpretation in brain signal analysis. J Neurosci Methods 2016; 273:175-190. [PMID: 27639660 DOI: 10.1016/j.jneumeth.2016.09.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 09/08/2016] [Accepted: 09/13/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND Multiscale entropy (MSE) estimates the predictability of a signal over multiple temporal scales. It has been recently applied to study brain signal variability, notably during aging. The grounds of its application and interpretation remain unclear and subject to debate. METHOD We used both simulated and experimental data to provide an intuitive explanation of MSE and to explore how it relates to the frequency content of the signal, depending on the amount of (non)linearity and stochasticity in the underlying dynamics. RESULTS The scaling and peak-structure of MSE curves relate to the scaling and peaks of the power spectrum in the presence of linear autocorrelations. MSE also captures nonlinear autocorrelations and their interactions with stochastic dynamical components. The previously reported crossing of young and old adults' MSE curves for EEG data appears to be mainly due to linear stochastic processes, and relates to young adults' EEG dynamics exhibiting a slower time constant. COMPARISON WITH EXISTING METHODS We make the relationship between MSE curve and power spectrum as well as with a linear autocorrelation measure, namely multiscale root-mean-square-successive-difference, more explicit. MSE allows gaining insight into the time-structure of brain activity fluctuations. Its combined use with other metrics could prevent any misleading interpretations with regard to underlying stochastic processes. CONCLUSIONS Although not straightforward, when applied to brain signals, the features of MSE curves can be linked to their power content and provide information about both linear and nonlinear autocorrelations that are present therein.
Collapse
Affiliation(s)
- Julie Courtiol
- Aix Marseille Univ, Inserm, INS, Inst Neurosci Syst, 27 Bd Jean Moulin, 13385 Marseille, France
| | - Dionysios Perdikis
- Aix Marseille Univ, Inserm, INS, Inst Neurosci Syst, 27 Bd Jean Moulin, 13385 Marseille, France
| | - Spase Petkoski
- Aix Marseille Univ, Inserm, INS, Inst Neurosci Syst, 27 Bd Jean Moulin, 13385 Marseille, France; Aix Marseille Univ, CNRS, ISM, Institut des Sciences du Mouvement, 163 Av de Luminy, 13288 Marseille, France
| | - Viktor Müller
- Max Planck Institute for Human Development, Center for Lifespan Psychology, Lentzeallee 94, 14195 Berlin, Germany
| | - Raoul Huys
- Aix Marseille Univ, Inserm, INS, Inst Neurosci Syst, 27 Bd Jean Moulin, 13385 Marseille, France; Université Toulouse III, CNRS, Centre de Recherche Cerveau et Cognition, Pavillon Baudot CHU Purpan, 31052 Toulouse, France; CNRS, Chemin Joseph Aiguier, 13402 Marseille, France
| | - Rita Sleimen-Malkoun
- Aix Marseille Univ, Inserm, INS, Inst Neurosci Syst, 27 Bd Jean Moulin, 13385 Marseille, France; Aix Marseille Univ, CNRS, ISM, Institut des Sciences du Mouvement, 163 Av de Luminy, 13288 Marseille, France
| | - Viktor K Jirsa
- Aix Marseille Univ, Inserm, INS, Inst Neurosci Syst, 27 Bd Jean Moulin, 13385 Marseille, France; CNRS, Chemin Joseph Aiguier, 13402 Marseille, France.
| |
Collapse
|
20
|
Takahashi T, Yoshimura Y, Hiraishi H, Hasegawa C, Munesue T, Higashida H, Minabe Y, Kikuchi M. Enhanced brain signal variability in children with autism spectrum disorder during early childhood. Hum Brain Mapp 2015; 37:1038-50. [PMID: 26859309 PMCID: PMC5064657 DOI: 10.1002/hbm.23089] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 11/17/2015] [Accepted: 12/01/2015] [Indexed: 12/19/2022] Open
Abstract
Extensive evidence shows that a core neurobiological mechanism of autism spectrum disorder (ASD) involves aberrant neural connectivity. Recent advances in the investigation of brain signal variability have yielded important information about neural network mechanisms. That information has been applied fruitfully to the assessment of aging and mental disorders. Multiscale entropy (MSE) analysis can characterize the complexity inherent in brain signal dynamics over multiple temporal scales in the dynamics of neural networks. For this investigation, we sought to characterize the magnetoencephalography (MEG) signal variability during free watching of videos without sound using MSE in 43 children with ASD and 72 typically developing controls (TD), emphasizing early childhood to older childhood: a critical period of neural network maturation. Results revealed an age‐related increase of brain signal variability in a specific timescale in TD children, whereas atypical age‐related alteration was observed in the ASD group. Additionally, enhanced brain signal variability was observed in children with ASD, and was confirmed particularly for younger children. In the ASD group, symptom severity was associated region‐specifically and timescale‐specifically with reduced brain signal variability. These results agree well with a recently reported theory of increased brain signal variability during development and aberrant neural connectivity in ASD, especially during early childhood. Results of this study suggest that MSE analytic method might serve as a useful approach for characterizing neurophysiological mechanisms of typical‐developing and its alterations in ASD through the detection of MEG signal variability at multiple timescales. Hum Brain Mapp 37:1038–1050, 2016. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tetsuya Takahashi
- Research Center for Child Mental Development, Kanazawa University, Japan
| | - Yuko Yoshimura
- Research Center for Child Mental Development, Kanazawa University, Japan
| | - Hirotoshi Hiraishi
- Research Center for Child Mental Development, Kanazawa University, Japan
| | - Chiaki Hasegawa
- Research Center for Child Mental Development, Kanazawa University, Japan
| | - Toshio Munesue
- Research Center for Child Mental Development, Kanazawa University, Japan.,Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Haruhiro Higashida
- Research Center for Child Mental Development, Kanazawa University, Japan
| | - Yoshio Minabe
- Research Center for Child Mental Development, Kanazawa University, Japan.,Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Mitsuru Kikuchi
- Research Center for Child Mental Development, Kanazawa University, Japan.,Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
21
|
Okazaki R, Takahashi T, Ueno K, Takahashi K, Ishitobi M, Kikuchi M, Higashima M, Wada Y. Changes in EEG complexity with electroconvulsive therapy in a patient with autism spectrum disorders: a multiscale entropy approach. Front Hum Neurosci 2015; 9:106. [PMID: 25767444 PMCID: PMC4341548 DOI: 10.3389/fnhum.2015.00106] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 02/12/2015] [Indexed: 11/22/2022] Open
Abstract
Autism spectrum disorders (ASD) are heterogeneous neurodevelopmental disorders that are reportedly characterized by aberrant neural networks. Recently developed multiscale entropy analysis (MSE) can characterize the complexity inherent in electroencephalography (EEG) dynamics over multiple temporal scales in the dynamics of neural networks. We encountered an 18-year-old man with ASD whose refractory catatonic obsessive–compulsive symptoms were improved dramatically after electroconvulsive therapy (ECT). In this clinical case study, we strove to clarify the neurophysiological mechanism of ECT in ASD by assessing EEG complexity using MSE. Along with ECT, the frontocentral region showed decreased EEG complexity at higher temporal scales, whereas the occipital region expressed an increase at lower temporal scales. Furthermore, these changes were associated with clinical improvement associated with the elevation of brain-derived neurotrophic factor, which is a molecular hypothesis of ECT, playing key roles in ASD pathogenesis. Changes in EEG complexity in a region-specific and temporal scale-specific manner that we found might reflect atypical EEG dynamics in ASD. Although MSE is not a direct approach to measuring neural connectivity and the results are from only a single case, they might reflect specific aberrant neural network activity and the therapeutic neurophysiological mechanism of ECT in ASD.
Collapse
Affiliation(s)
- Ryoko Okazaki
- Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui , Fukui , Japan
| | - Tetsuya Takahashi
- Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui , Fukui , Japan
| | - Kanji Ueno
- Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui , Fukui , Japan
| | - Koichi Takahashi
- Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui , Fukui , Japan
| | - Makoto Ishitobi
- Department of Child and Adolescent Mental Health, National Center of Neurology and Psychiatry, National Institute of Mental Health , Tokyo , Japan
| | - Mitsuru Kikuchi
- Research Center for Child Mental Development, Kanazawa University , Kanazawa , Japan
| | - Masato Higashima
- Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui , Fukui , Japan
| | - Yuji Wada
- Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui , Fukui , Japan
| |
Collapse
|
22
|
The association of physical activity to neural adaptability during visuo-spatial processing in healthy elderly adults: A multiscale entropy analysis. Brain Cogn 2014; 92C:73-83. [PMID: 25463141 DOI: 10.1016/j.bandc.2014.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 09/26/2014] [Accepted: 10/07/2014] [Indexed: 01/09/2023]
Abstract
Physical activity has been shown to benefit brain and cognition in late adulthood. However, this effect is still unexplored in terms of brain signal complexity, which reflects the level of neural adaptability and efficiency during cognitive processing that cannot be acquired via averaged neuroelectric signals. Here we employed multiscale entropy analysis (MSE) of electroencephalography (EEG), a new approach that conveys important information related to the temporal dynamics of brain signal complexity across multiple time scales, to reveal the association of physical activity with neural adaptability and efficiency in elderly adults. A between-subjects design that included 24 participants (aged 66.63±1.31years; female=12) with high physical activity and 24 age- and gender-matched low physical activity participants (aged 67.29±1.20years) was conducted to examine differences related to physical activity in performance and MSE of EEG signals during a visuo-spatial cognition task. We observed that physically active elderly adults had better accuracy on both visuo-spatial attention and working memory conditions relative to their sedentary counterparts. Additionally, these physically active elderly adults displayed greater MSE values at larger time scales at the Fz electrode in both attention and memory conditions. The results suggest that physical activity may be beneficial for adaptability of brain systems in tasks involving visuo-spatial information. MSE thus might be a promising approach to test the effects of the benefits of exercise on cognition.
Collapse
|