1
|
Carson RG, Hayward KS. Using mechanistic knowledge to appraise contemporary approaches to the rehabilitation of upper limb function following stroke. J Physiol 2025; 603:635-650. [PMID: 39129269 DOI: 10.1113/jp285559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 07/12/2024] [Indexed: 08/13/2024] Open
Abstract
It is a paradox of neurological rehabilitation that, in an era in which preclinical models have produced significant advances in our mechanistic understanding of neural plasticity, there is inadequate support for many therapies recommended for use in clinical practice. When the goal is to estimate the probability that a specific form of therapy will have a positive clinical effect, the integration of mechanistic knowledge (concerning 'the structure or way of working of the parts in a natural system') may improve the quality of inference. This is illustrated by analysis of three contemporary approaches to the rehabilitation of lateralized dysfunction affecting people living with stroke: constraint-induced movement therapy; mental practice; and mirror therapy. Damage to 'cross-road' regions of the structural (white matter) brain connectome generates deficits that span multiple domains (motor, language, attention and verbal/spatial memory). The structural integrity of these regions determines not only the initial functional status, but also the response to therapy. As structural disconnection constrains the recovery of functional capability, 'disconnectome' modelling provides a basis for personalized prognosis and precision rehabilitation. It is now feasible to refer a lesion delineated using a standard clinical scan to a (dis)connectivity atlas derived from the brains of other stroke survivors. As the individual disconnection pattern thus obtained suggests the functional domains most likely be compromised, a therapeutic regimen can be tailored accordingly. Stroke is a complex disorder that burdens individuals with distinct constellations of brain damage. Mechanistic knowledge is indispensable when seeking to ameliorate the behavioural impairments to which such damage gives rise.
Collapse
Affiliation(s)
- Richard G Carson
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Dublin 2, Ireland
- School of Psychology, Queen's University Belfast, Belfast, UK
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Kathryn S Hayward
- Departments of Physiotherapy, University of Melbourne, Melbourne, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
- The Florey, University of Melbourne, Melbourne, Australia
| |
Collapse
|
2
|
Rubino C, Lakhani B, Larssen BC, Kraeutner SN, Andrushko JW, Borich MR, Boyd LA. Gamified Practice Improves Paretic Arm Motor Behavior in Individuals With Stroke. Neurorehabil Neural Repair 2024; 38:832-844. [PMID: 39342450 PMCID: PMC11566063 DOI: 10.1177/15459683241286449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
BACKGROUND Stroke is a heterogeneous condition, making choice of treatment, and determination of how to structure rehabilitation outcomes difficult. Individualized goal-directed and repetitive physical practice is an important determinant of motor learning. Yet, many investigations of motor learning after stroke deliver task practice without consideration of individual capability of the learner. OBJECTIVE We developed a gamified arm rehabilitation task for people with stroke that is personalized to individual capacity for paretic arm movement, provides a high dose of practice, progresses through increasingly difficulty levels that are dependent on the performance of the individual, and is practiced in an engaging environment. The objectives of the current study were to determine if 10 days of gamified, object intercept training using the paretic arm would improve arm movement speed and clinical outcome measures of impairment or function. METHODS Individuals with chronic stroke and age-matched controls engaged in 10 days of gamified, skilled motor practice of a semi-immersive virtual reality-based intercept and release task. The paretic arm was assessed using the Fugl-Meyer Assessment (motor impairment) and Wolf Motor Function Test (motor function) before and after training. RESULTS Both groups showed faster arm movement speed with practice; individuals with stroke demonstrated reduced paretic arm motor impairment and increased function after the intervention. Age and sex (for both groups), and time post-stroke were not related to changes in movement speed. CONCLUSIONS Findings indicate that gamified motor training positively affects paretic arm motor behavior in individuals with mild to severe chronic stroke.
Collapse
Affiliation(s)
- Cristina Rubino
- Graduate Program in Rehabilitation Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada
| | - Bimal Lakhani
- Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada
| | - Beverley C. Larssen
- Graduate Program in Rehabilitation Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada
| | - Sarah N. Kraeutner
- Department of Psychology, University of British Columbia, Okanagan, BC, Canada
| | - Justin W. Andrushko
- Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Michael R. Borich
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, GA, USA
| | - Lara A. Boyd
- Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
Hayes L, Taga M, Charalambous CC, Raju S, Lin J, Schambra HM. The distribution of transcallosal inhibition to upper extremity muscles is altered in chronic stroke. J Neurol Sci 2023; 450:120688. [PMID: 37224604 PMCID: PMC10330477 DOI: 10.1016/j.jns.2023.120688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/25/2023] [Accepted: 05/11/2023] [Indexed: 05/26/2023]
Abstract
OBJECTIVE To determine if the distribution of transcallosal inhibition (TI) acting on proximal and distal upper extremity muscles is altered in chronic stroke. METHODS We examined thirteen healthy controls and sixteen mildly to moderately impaired chronic stroke patients. We used transcranial magnetic stimulation (TMS) to probe TI from the contralesional onto ipsilesional hemisphere (assigned in controls). We recorded the ipsilateral silent period in the paretic biceps (BIC) and first dorsal interosseous (FDI). We measured TI strength, distribution gradient (TI difference between muscles), and motor impairment (Fugl-Meyer Assessment). RESULTS Both groups had stronger TI acting on their FDIs than BICs (p < 0.001). However, stroke patients also had stronger TI acting on their BICs than controls (p = 0.034), resulting in a flatter distribution of inhibition (p = 0.028). In patients, stronger FDI inhibition correlated with less hand impairment (p = 0.031); BIC inhibition was not correlated to impairment. CONCLUSION TI is more evenly distributed to the paretic FDI and BIC in chronic stroke. The relative increase in proximal inhibition does not relate to better function, as it does distally. SIGNIFICANCE The results expand our knowledge about segment-specific neurophysiology and its relevance to impairment after stroke.
Collapse
Affiliation(s)
- Leticia Hayes
- Department of Neurology, NYU Grossman School of Medicine, New York, United States.
| | - Myriam Taga
- Department of Neurology, NYU Grossman School of Medicine, New York, United States.
| | - Charalambos C Charalambous
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia, Cyprus; Center for Neuroscience and Integrative Brain Research (CENIBRE), University of Nicosia Medical School, Nicosia, Cyprus.
| | - Sharmila Raju
- Department of Neurology, NYU Grossman School of Medicine, New York, United States.
| | - Jing Lin
- Department of Rehabilitation Medicine, NYU Grossman School of Medicine, New York, United States.
| | - Heidi M Schambra
- Department of Neurology, NYU Grossman School of Medicine, New York, United States; Department of Rehabilitation Medicine, NYU Grossman School of Medicine, New York, United States.
| |
Collapse
|
4
|
Mirdamadi JL, Xu J, Arevalo-Alas KM, Kam LK, Borich MR. State-dependent interhemispheric inhibition reveals individual differences in motor behavior in chronic stroke. Clin Neurophysiol 2023; 149:157-167. [PMID: 36965468 PMCID: PMC10101934 DOI: 10.1016/j.clinph.2023.02.177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/05/2023] [Accepted: 02/26/2023] [Indexed: 03/11/2023]
Abstract
OBJECTIVE To investigate state-dependent interhemispheric inhibition (IHI) in chronic stroke survivors compared to neurotypical older adult controls, and test whether abnormal IHI modulation was associated with upper extremity motor behavior. METHODS Dual-coil transcranial magnetic stimulation (TMS) measured IHI bi-directionally, between non-lesioned and lesioned motor cortex (M1) in two activity states: (1) at rest and (2) during contralateral isometric hand muscle contraction. IHI was tested by delivering a conditioning stimulus 8-msec or 50-msec prior to a test stimulus over contralateral M1. Paretic motor behavior was assessed by clinical measures of impairment, strength, and dexterity, and mirroring activity in the non-paretic hand. RESULTS Stroke survivors demonstrated reduced IHI at rest, and less IHI modulation (active - rest) compared to controls. Individual differences in IHI modulation were related to motor behavior differences where greater IHI modulation was associated with greater motor impairment and more mirroring. In contrast, there were no relationships between IHI at rest and motor behavior. CONCLUSIONS Abnormal state-dependent interhemispheric circuit activity may be more sensitive to post-stroke motor deficits than when assessed in a single motor state. SIGNIFICANCE Characterizing state-dependent changes in neural circuitry may enhance models of stroke recovery and inform rehabilitation interventions.
Collapse
Affiliation(s)
- Jasmine L Mirdamadi
- Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Jing Xu
- Department of Kinesiology, University of Georgia, Athens, GA, USA
| | - Karla M Arevalo-Alas
- Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Liana K Kam
- Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Michael R Borich
- Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
5
|
Hayward KS, Ferris JK, Lohse KR, Borich MR, Borstad A, Cassidy JM, Cramer SC, Dukelow SP, Findlater SE, Hawe RL, Liew SL, Neva JL, Stewart JC, Boyd LA. Observational Study of Neuroimaging Biomarkers of Severe Upper Limb Impairment After Stroke. Neurology 2022; 99:e402-e413. [PMID: 35550551 PMCID: PMC9421772 DOI: 10.1212/wnl.0000000000200517] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/28/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES It is difficult to predict poststroke outcome for individuals with severe motor impairment because both clinical tests and corticospinal tract (CST) microstructure may not reliably indicate severe motor impairment. Here, we test whether imaging biomarkers beyond the CST relate to severe upper limb (UL) impairment poststroke by evaluating white matter microstructure in the corpus callosum (CC). In an international, multisite hypothesis-generating observational study, we determined if (1) CST asymmetry index (CST-AI) can differentiate between individuals with mild-moderate and severe UL impairment and (2) CC biomarkers relate to UL impairment within individuals with severe impairment poststroke. We hypothesized that CST-AI would differentiate between mild-moderate and severe impairment, but CC microstructure would relate to motor outcome for individuals with severe UL impairment. METHODS Seven cohorts with individual diffusion imaging and motor impairment (Fugl-Meyer Upper Limb) data were pooled. Hand-drawn regions-of-interest were used to seed probabilistic tractography for CST (ipsilesional/contralesional) and CC (prefrontal/premotor/motor/sensory/posterior) tracts. Our main imaging measure was mean fractional anisotropy. Linear mixed-effects regression explored relationships between candidate biomarkers and motor impairment, controlling for observations nested within cohorts, as well as age, sex, time poststroke, and lesion volume. RESULTS Data from 110 individuals (30 with mild-moderate and 80 with severe motor impairment) were included. In the full sample, greater CST-AI (i.e., lower fractional anisotropy in the ipsilesional hemisphere, p < 0.001) and larger lesion volume (p = 0.139) were negatively related to impairment. In the severe subgroup, CST-AI was not reliably associated with impairment across models. Instead, lesion volume and CC microstructure explained impairment in the severe group beyond CST-AI (p's < 0.010). DISCUSSION Within a large cohort of individuals with severe UL impairment, CC microstructure related to motor outcome poststroke. Our findings demonstrate that CST microstructure does relate to UL outcome across the full range of motor impairment but was not reliably associated within the severe subgroup. Therefore, CC microstructure may provide a promising biomarker for severe UL outcome poststroke, which may advance our ability to predict recovery in individuals with severe motor impairment after stroke.
Collapse
Affiliation(s)
- Kathryn S Hayward
- From the Departments of Physiotherapy (K.S.H.), Medicine and Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Heidelberg, Victoria, Australia; Rehabilitation Sciences Graduate Research Program (J.K.F., L.A.B.), University of British Columbia, Vancouver, British Columbia, Canada; Physical Therapy and Neurology (K.R.L.), Washington University School of Medicine in Saint Louis, MO; Division of Physical Therapy (M.R.B.), Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA; School of Health Sciences (A.B.), Department of Physical Therapy, College of St. Scholastica, Duluth, MN; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill, NC; Department of Neurology (S.C.C.), University of California Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles, California; Department of Clinical Neurosciences (S.P.D., S.E.F.), Cumming School of Medicine, University of Calgary, Alberta, Canada; School of Kinesiology (R.L.H.), University of Minnesota, Minneapolis; Chan Division of Occupational Science and Occupational Therapy (S.-L.L.), Biokinesiology and Physical Therapy, Biomedical Engineering, and Neurology, USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles; Université de Montréal (J.L.N.), École de Kinésiologie et des Sciences de l'activité Physique, Faculté de Médecine, and Centre de recherche de l'institut universitaire de gériatrie de Montréal, Quebec, Canada; and Physical Therapy Program (J.C.S.), Department of Exercise Science, University of South Carolina, Columbia.
| | - Jennifer K Ferris
- From the Departments of Physiotherapy (K.S.H.), Medicine and Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Heidelberg, Victoria, Australia; Rehabilitation Sciences Graduate Research Program (J.K.F., L.A.B.), University of British Columbia, Vancouver, British Columbia, Canada; Physical Therapy and Neurology (K.R.L.), Washington University School of Medicine in Saint Louis, MO; Division of Physical Therapy (M.R.B.), Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA; School of Health Sciences (A.B.), Department of Physical Therapy, College of St. Scholastica, Duluth, MN; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill, NC; Department of Neurology (S.C.C.), University of California Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles, California; Department of Clinical Neurosciences (S.P.D., S.E.F.), Cumming School of Medicine, University of Calgary, Alberta, Canada; School of Kinesiology (R.L.H.), University of Minnesota, Minneapolis; Chan Division of Occupational Science and Occupational Therapy (S.-L.L.), Biokinesiology and Physical Therapy, Biomedical Engineering, and Neurology, USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles; Université de Montréal (J.L.N.), École de Kinésiologie et des Sciences de l'activité Physique, Faculté de Médecine, and Centre de recherche de l'institut universitaire de gériatrie de Montréal, Quebec, Canada; and Physical Therapy Program (J.C.S.), Department of Exercise Science, University of South Carolina, Columbia
| | - Keith R Lohse
- From the Departments of Physiotherapy (K.S.H.), Medicine and Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Heidelberg, Victoria, Australia; Rehabilitation Sciences Graduate Research Program (J.K.F., L.A.B.), University of British Columbia, Vancouver, British Columbia, Canada; Physical Therapy and Neurology (K.R.L.), Washington University School of Medicine in Saint Louis, MO; Division of Physical Therapy (M.R.B.), Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA; School of Health Sciences (A.B.), Department of Physical Therapy, College of St. Scholastica, Duluth, MN; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill, NC; Department of Neurology (S.C.C.), University of California Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles, California; Department of Clinical Neurosciences (S.P.D., S.E.F.), Cumming School of Medicine, University of Calgary, Alberta, Canada; School of Kinesiology (R.L.H.), University of Minnesota, Minneapolis; Chan Division of Occupational Science and Occupational Therapy (S.-L.L.), Biokinesiology and Physical Therapy, Biomedical Engineering, and Neurology, USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles; Université de Montréal (J.L.N.), École de Kinésiologie et des Sciences de l'activité Physique, Faculté de Médecine, and Centre de recherche de l'institut universitaire de gériatrie de Montréal, Quebec, Canada; and Physical Therapy Program (J.C.S.), Department of Exercise Science, University of South Carolina, Columbia
| | - Michael R Borich
- From the Departments of Physiotherapy (K.S.H.), Medicine and Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Heidelberg, Victoria, Australia; Rehabilitation Sciences Graduate Research Program (J.K.F., L.A.B.), University of British Columbia, Vancouver, British Columbia, Canada; Physical Therapy and Neurology (K.R.L.), Washington University School of Medicine in Saint Louis, MO; Division of Physical Therapy (M.R.B.), Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA; School of Health Sciences (A.B.), Department of Physical Therapy, College of St. Scholastica, Duluth, MN; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill, NC; Department of Neurology (S.C.C.), University of California Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles, California; Department of Clinical Neurosciences (S.P.D., S.E.F.), Cumming School of Medicine, University of Calgary, Alberta, Canada; School of Kinesiology (R.L.H.), University of Minnesota, Minneapolis; Chan Division of Occupational Science and Occupational Therapy (S.-L.L.), Biokinesiology and Physical Therapy, Biomedical Engineering, and Neurology, USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles; Université de Montréal (J.L.N.), École de Kinésiologie et des Sciences de l'activité Physique, Faculté de Médecine, and Centre de recherche de l'institut universitaire de gériatrie de Montréal, Quebec, Canada; and Physical Therapy Program (J.C.S.), Department of Exercise Science, University of South Carolina, Columbia
| | - Alexandra Borstad
- From the Departments of Physiotherapy (K.S.H.), Medicine and Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Heidelberg, Victoria, Australia; Rehabilitation Sciences Graduate Research Program (J.K.F., L.A.B.), University of British Columbia, Vancouver, British Columbia, Canada; Physical Therapy and Neurology (K.R.L.), Washington University School of Medicine in Saint Louis, MO; Division of Physical Therapy (M.R.B.), Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA; School of Health Sciences (A.B.), Department of Physical Therapy, College of St. Scholastica, Duluth, MN; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill, NC; Department of Neurology (S.C.C.), University of California Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles, California; Department of Clinical Neurosciences (S.P.D., S.E.F.), Cumming School of Medicine, University of Calgary, Alberta, Canada; School of Kinesiology (R.L.H.), University of Minnesota, Minneapolis; Chan Division of Occupational Science and Occupational Therapy (S.-L.L.), Biokinesiology and Physical Therapy, Biomedical Engineering, and Neurology, USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles; Université de Montréal (J.L.N.), École de Kinésiologie et des Sciences de l'activité Physique, Faculté de Médecine, and Centre de recherche de l'institut universitaire de gériatrie de Montréal, Quebec, Canada; and Physical Therapy Program (J.C.S.), Department of Exercise Science, University of South Carolina, Columbia
| | - Jessica M Cassidy
- From the Departments of Physiotherapy (K.S.H.), Medicine and Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Heidelberg, Victoria, Australia; Rehabilitation Sciences Graduate Research Program (J.K.F., L.A.B.), University of British Columbia, Vancouver, British Columbia, Canada; Physical Therapy and Neurology (K.R.L.), Washington University School of Medicine in Saint Louis, MO; Division of Physical Therapy (M.R.B.), Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA; School of Health Sciences (A.B.), Department of Physical Therapy, College of St. Scholastica, Duluth, MN; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill, NC; Department of Neurology (S.C.C.), University of California Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles, California; Department of Clinical Neurosciences (S.P.D., S.E.F.), Cumming School of Medicine, University of Calgary, Alberta, Canada; School of Kinesiology (R.L.H.), University of Minnesota, Minneapolis; Chan Division of Occupational Science and Occupational Therapy (S.-L.L.), Biokinesiology and Physical Therapy, Biomedical Engineering, and Neurology, USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles; Université de Montréal (J.L.N.), École de Kinésiologie et des Sciences de l'activité Physique, Faculté de Médecine, and Centre de recherche de l'institut universitaire de gériatrie de Montréal, Quebec, Canada; and Physical Therapy Program (J.C.S.), Department of Exercise Science, University of South Carolina, Columbia
| | - Steven C Cramer
- From the Departments of Physiotherapy (K.S.H.), Medicine and Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Heidelberg, Victoria, Australia; Rehabilitation Sciences Graduate Research Program (J.K.F., L.A.B.), University of British Columbia, Vancouver, British Columbia, Canada; Physical Therapy and Neurology (K.R.L.), Washington University School of Medicine in Saint Louis, MO; Division of Physical Therapy (M.R.B.), Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA; School of Health Sciences (A.B.), Department of Physical Therapy, College of St. Scholastica, Duluth, MN; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill, NC; Department of Neurology (S.C.C.), University of California Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles, California; Department of Clinical Neurosciences (S.P.D., S.E.F.), Cumming School of Medicine, University of Calgary, Alberta, Canada; School of Kinesiology (R.L.H.), University of Minnesota, Minneapolis; Chan Division of Occupational Science and Occupational Therapy (S.-L.L.), Biokinesiology and Physical Therapy, Biomedical Engineering, and Neurology, USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles; Université de Montréal (J.L.N.), École de Kinésiologie et des Sciences de l'activité Physique, Faculté de Médecine, and Centre de recherche de l'institut universitaire de gériatrie de Montréal, Quebec, Canada; and Physical Therapy Program (J.C.S.), Department of Exercise Science, University of South Carolina, Columbia
| | - Sean P Dukelow
- From the Departments of Physiotherapy (K.S.H.), Medicine and Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Heidelberg, Victoria, Australia; Rehabilitation Sciences Graduate Research Program (J.K.F., L.A.B.), University of British Columbia, Vancouver, British Columbia, Canada; Physical Therapy and Neurology (K.R.L.), Washington University School of Medicine in Saint Louis, MO; Division of Physical Therapy (M.R.B.), Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA; School of Health Sciences (A.B.), Department of Physical Therapy, College of St. Scholastica, Duluth, MN; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill, NC; Department of Neurology (S.C.C.), University of California Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles, California; Department of Clinical Neurosciences (S.P.D., S.E.F.), Cumming School of Medicine, University of Calgary, Alberta, Canada; School of Kinesiology (R.L.H.), University of Minnesota, Minneapolis; Chan Division of Occupational Science and Occupational Therapy (S.-L.L.), Biokinesiology and Physical Therapy, Biomedical Engineering, and Neurology, USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles; Université de Montréal (J.L.N.), École de Kinésiologie et des Sciences de l'activité Physique, Faculté de Médecine, and Centre de recherche de l'institut universitaire de gériatrie de Montréal, Quebec, Canada; and Physical Therapy Program (J.C.S.), Department of Exercise Science, University of South Carolina, Columbia
| | - Sonja E Findlater
- From the Departments of Physiotherapy (K.S.H.), Medicine and Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Heidelberg, Victoria, Australia; Rehabilitation Sciences Graduate Research Program (J.K.F., L.A.B.), University of British Columbia, Vancouver, British Columbia, Canada; Physical Therapy and Neurology (K.R.L.), Washington University School of Medicine in Saint Louis, MO; Division of Physical Therapy (M.R.B.), Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA; School of Health Sciences (A.B.), Department of Physical Therapy, College of St. Scholastica, Duluth, MN; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill, NC; Department of Neurology (S.C.C.), University of California Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles, California; Department of Clinical Neurosciences (S.P.D., S.E.F.), Cumming School of Medicine, University of Calgary, Alberta, Canada; School of Kinesiology (R.L.H.), University of Minnesota, Minneapolis; Chan Division of Occupational Science and Occupational Therapy (S.-L.L.), Biokinesiology and Physical Therapy, Biomedical Engineering, and Neurology, USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles; Université de Montréal (J.L.N.), École de Kinésiologie et des Sciences de l'activité Physique, Faculté de Médecine, and Centre de recherche de l'institut universitaire de gériatrie de Montréal, Quebec, Canada; and Physical Therapy Program (J.C.S.), Department of Exercise Science, University of South Carolina, Columbia
| | - Rachel L Hawe
- From the Departments of Physiotherapy (K.S.H.), Medicine and Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Heidelberg, Victoria, Australia; Rehabilitation Sciences Graduate Research Program (J.K.F., L.A.B.), University of British Columbia, Vancouver, British Columbia, Canada; Physical Therapy and Neurology (K.R.L.), Washington University School of Medicine in Saint Louis, MO; Division of Physical Therapy (M.R.B.), Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA; School of Health Sciences (A.B.), Department of Physical Therapy, College of St. Scholastica, Duluth, MN; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill, NC; Department of Neurology (S.C.C.), University of California Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles, California; Department of Clinical Neurosciences (S.P.D., S.E.F.), Cumming School of Medicine, University of Calgary, Alberta, Canada; School of Kinesiology (R.L.H.), University of Minnesota, Minneapolis; Chan Division of Occupational Science and Occupational Therapy (S.-L.L.), Biokinesiology and Physical Therapy, Biomedical Engineering, and Neurology, USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles; Université de Montréal (J.L.N.), École de Kinésiologie et des Sciences de l'activité Physique, Faculté de Médecine, and Centre de recherche de l'institut universitaire de gériatrie de Montréal, Quebec, Canada; and Physical Therapy Program (J.C.S.), Department of Exercise Science, University of South Carolina, Columbia
| | - Sook-Lei Liew
- From the Departments of Physiotherapy (K.S.H.), Medicine and Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Heidelberg, Victoria, Australia; Rehabilitation Sciences Graduate Research Program (J.K.F., L.A.B.), University of British Columbia, Vancouver, British Columbia, Canada; Physical Therapy and Neurology (K.R.L.), Washington University School of Medicine in Saint Louis, MO; Division of Physical Therapy (M.R.B.), Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA; School of Health Sciences (A.B.), Department of Physical Therapy, College of St. Scholastica, Duluth, MN; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill, NC; Department of Neurology (S.C.C.), University of California Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles, California; Department of Clinical Neurosciences (S.P.D., S.E.F.), Cumming School of Medicine, University of Calgary, Alberta, Canada; School of Kinesiology (R.L.H.), University of Minnesota, Minneapolis; Chan Division of Occupational Science and Occupational Therapy (S.-L.L.), Biokinesiology and Physical Therapy, Biomedical Engineering, and Neurology, USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles; Université de Montréal (J.L.N.), École de Kinésiologie et des Sciences de l'activité Physique, Faculté de Médecine, and Centre de recherche de l'institut universitaire de gériatrie de Montréal, Quebec, Canada; and Physical Therapy Program (J.C.S.), Department of Exercise Science, University of South Carolina, Columbia
| | - Jason L Neva
- From the Departments of Physiotherapy (K.S.H.), Medicine and Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Heidelberg, Victoria, Australia; Rehabilitation Sciences Graduate Research Program (J.K.F., L.A.B.), University of British Columbia, Vancouver, British Columbia, Canada; Physical Therapy and Neurology (K.R.L.), Washington University School of Medicine in Saint Louis, MO; Division of Physical Therapy (M.R.B.), Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA; School of Health Sciences (A.B.), Department of Physical Therapy, College of St. Scholastica, Duluth, MN; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill, NC; Department of Neurology (S.C.C.), University of California Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles, California; Department of Clinical Neurosciences (S.P.D., S.E.F.), Cumming School of Medicine, University of Calgary, Alberta, Canada; School of Kinesiology (R.L.H.), University of Minnesota, Minneapolis; Chan Division of Occupational Science and Occupational Therapy (S.-L.L.), Biokinesiology and Physical Therapy, Biomedical Engineering, and Neurology, USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles; Université de Montréal (J.L.N.), École de Kinésiologie et des Sciences de l'activité Physique, Faculté de Médecine, and Centre de recherche de l'institut universitaire de gériatrie de Montréal, Quebec, Canada; and Physical Therapy Program (J.C.S.), Department of Exercise Science, University of South Carolina, Columbia
| | - Jill C Stewart
- From the Departments of Physiotherapy (K.S.H.), Medicine and Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Heidelberg, Victoria, Australia; Rehabilitation Sciences Graduate Research Program (J.K.F., L.A.B.), University of British Columbia, Vancouver, British Columbia, Canada; Physical Therapy and Neurology (K.R.L.), Washington University School of Medicine in Saint Louis, MO; Division of Physical Therapy (M.R.B.), Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA; School of Health Sciences (A.B.), Department of Physical Therapy, College of St. Scholastica, Duluth, MN; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill, NC; Department of Neurology (S.C.C.), University of California Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles, California; Department of Clinical Neurosciences (S.P.D., S.E.F.), Cumming School of Medicine, University of Calgary, Alberta, Canada; School of Kinesiology (R.L.H.), University of Minnesota, Minneapolis; Chan Division of Occupational Science and Occupational Therapy (S.-L.L.), Biokinesiology and Physical Therapy, Biomedical Engineering, and Neurology, USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles; Université de Montréal (J.L.N.), École de Kinésiologie et des Sciences de l'activité Physique, Faculté de Médecine, and Centre de recherche de l'institut universitaire de gériatrie de Montréal, Quebec, Canada; and Physical Therapy Program (J.C.S.), Department of Exercise Science, University of South Carolina, Columbia
| | - Lara A Boyd
- From the Departments of Physiotherapy (K.S.H.), Medicine and Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Heidelberg, Victoria, Australia; Rehabilitation Sciences Graduate Research Program (J.K.F., L.A.B.), University of British Columbia, Vancouver, British Columbia, Canada; Physical Therapy and Neurology (K.R.L.), Washington University School of Medicine in Saint Louis, MO; Division of Physical Therapy (M.R.B.), Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA; School of Health Sciences (A.B.), Department of Physical Therapy, College of St. Scholastica, Duluth, MN; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill, NC; Department of Neurology (S.C.C.), University of California Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles, California; Department of Clinical Neurosciences (S.P.D., S.E.F.), Cumming School of Medicine, University of Calgary, Alberta, Canada; School of Kinesiology (R.L.H.), University of Minnesota, Minneapolis; Chan Division of Occupational Science and Occupational Therapy (S.-L.L.), Biokinesiology and Physical Therapy, Biomedical Engineering, and Neurology, USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles; Université de Montréal (J.L.N.), École de Kinésiologie et des Sciences de l'activité Physique, Faculté de Médecine, and Centre de recherche de l'institut universitaire de gériatrie de Montréal, Quebec, Canada; and Physical Therapy Program (J.C.S.), Department of Exercise Science, University of South Carolina, Columbia
| |
Collapse
|
6
|
Comparison of transcallosal inhibition between hemispheres and its relationship with motor behavior in patients with severe upper extremity impairment after subacute stroke. J Stroke Cerebrovasc Dis 2022; 31:106469. [DOI: 10.1016/j.jstrokecerebrovasdis.2022.106469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 03/20/2022] [Indexed: 10/18/2022] Open
|
7
|
Chiou-Tan F, Ughwanogho U, Taber K. Special anatomy series: Updates in structural, functional, and clinical relevance of the corpus callosum: What new imaging techniques have revealed. THE JOURNAL OF THE INTERNATIONAL SOCIETY OF PHYSICAL AND REHABILITATION MEDICINE 2022. [DOI: 10.4103/jisprm.jisprm-000159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
8
|
Veldema J, Nowak DA, Gharabaghi A. Resting motor threshold in the course of hand motor recovery after stroke: a systematic review. J Neuroeng Rehabil 2021; 18:158. [PMID: 34732203 PMCID: PMC8564987 DOI: 10.1186/s12984-021-00947-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/13/2021] [Indexed: 12/24/2022] Open
Abstract
Background Resting motor threshold is an objective measure of cortical excitability. Numerous studies indicate that the success of motor recovery after stroke is significantly determined by the direction and extent of cortical excitability changes. A better understanding of this topic (particularly with regard to the level of motor impairment and the contribution of either cortical hemisphere) may contribute to the development of effective therapeutical strategies in this cohort. Objectives This systematic review collects and analyses the available evidence on resting motor threshold and hand motor recovery in stroke patients. Methods PubMed was searched from its inception through to 31/10/2020 on studies investigating resting motor threshold of the affected and/or the non-affected hemisphere and motor function of the affected hand in stroke cohorts. Results Overall, 92 appropriate studies (including 1978 stroke patients and 377 healthy controls) were identified. The analysis of the data indicates that severe hand impairment is associated with suppressed cortical excitability within both hemispheres and with great between-hemispheric imbalance of cortical excitability. Favorable motor recovery is associated with an increase of ipsilesional motor cortex excitability and reduction of between-hemispheric imbalance. The direction of change of contralesional motor cortex excitability depends on the amount of hand motor impairment. Severely disabled patients show an increase of contralesional motor cortex excitability during motor recovery. In contrast, recovery of moderate to mild hand motor impairment is associated with a decrease of contralesional motor cortex excitability. Conclusions This data encourages a differential use of rehabilitation strategies to modulate cortical excitability. Facilitation of the ipsilesional hemisphere may support recovery in general, whereas facilitation and inhibition of the contralesional hemisphere may enhance recovery in severe and less severely impaired patients, respectively.
Collapse
Affiliation(s)
- Jitka Veldema
- Institute for Neuromodulation and Neurotechnology, Department of Neurosurgery and Neurotechnology, University Hospital and University of Tübingen, Otfried-Mueller-Str.45, 72076, Tübingen, Germany.
| | - Dennis Alexander Nowak
- Department of Neurology, VAMED Hospital Kipfenberg, Konrad-Regler-Straße 1, 85110, Kipfenberg, Germany
| | - Alireza Gharabaghi
- Institute for Neuromodulation and Neurotechnology, Department of Neurosurgery and Neurotechnology, University Hospital and University of Tübingen, Otfried-Mueller-Str.45, 72076, Tübingen, Germany
| |
Collapse
|
9
|
Kim B, Schweighofer N, Haldar JP, Leahy RM, Winstein CJ. Corticospinal Tract Microstructure Predicts Distal Arm Motor Improvements in Chronic Stroke. J Neurol Phys Ther 2021; 45:273-281. [PMID: 34269747 PMCID: PMC8460613 DOI: 10.1097/npt.0000000000000363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND PURPOSE The corticospinal tract (CST) is a crucial brain pathway for distal arm and hand motor control. We aimed to determine whether a diffusion tensor imaging (DTI)-derived CST metric predicts distal upper extremity (UE) motor improvements in chronic stroke survivors. METHODS We analyzed clinical and neuroimaging data from a randomized controlled rehabilitation trial. Participants completed clinical assessments and neuroimaging at baseline and clinical assessments 4 months later, postintervention. Using univariate linear regression analysis, we determined the linear relationship between the DTI-derived CST fractional anisotropy asymmetry (FAasym) and the percentage of baseline change in log-transformed average Wolf Motor Function Test time for distal items (ΔlnWMFT-distal_%). The least absolute shrinkage and selection operator (LASSO) linear regressions with cross-validation and bootstrapping were used to determine the relative weighting of CST FAasym, other brain metrics, clinical outcomes, and demographics on distal motor improvement. Logistic regression analyses were performed to test whether the CST FAasym can predict clinically significant UE motor improvement. RESULTS lnWMFT-distal significantly improved at the group level. Baseline CST FAasym explained 26% of the variance in ΔlnWMFT-distal_%. A multivariate LASSO model including baseline CST FAasym, age, and UE Fugl-Meyer explained 39% of the variance in ΔlnWMFT-distal_%. Further, CST FAasym explained more variance in ΔlnWMFT-distal_% than the other significant predictors in the LASSO model. DISCUSSION AND CONCLUSIONS CST microstructure is a significant predictor of improvement in distal UE motor function in the context of an UE rehabilitation trial in chronic stroke survivors with mild-to-moderate motor impairment.Video Abstract available for more insight from the authors (see the Video, Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A350).
Collapse
Affiliation(s)
- Bokkyu Kim
- Department of Physical Therapy Education, SUNY Upstate Medical University, Syracuse, NY, United States
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, United States
| | - Nicolas Schweighofer
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, United States
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, United States
| | - Justin P. Haldar
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA, United States
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA, United States
| | - Richard M. Leahy
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA, United States
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA, United States
| | - Carolee J. Winstein
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, United States
- Department. of Neurology, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
10
|
Palmer JA, Kesar TM, Wolf SL, Borich MR. Motor Cortical Network Flexibility is Associated With Biomechanical Walking Impairment in Chronic Stroke. Neurorehabil Neural Repair 2021; 35:1065-1075. [PMID: 34570636 DOI: 10.1177/15459683211046272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: The inability to flexibly modulate motor behavior with changes in task demand or environmental context is a pervasive feature of motor impairment and dysfunctional mobility after stroke. Objective: The purpose of this study was to test the reactive and modulatory capacity of lower-limb primary motor cortical (M1) networks using electroencephalography (EEG) measures of cortical activity evoked by transcranial magnetic stimulation (TMS) and to evaluate their associations with clinical and biomechanical measures of walking function in chronic stroke. Methods: TMS assessments of motor cortex excitability were performed during rest and active ipsilateral plantarflexion in chronic stroke and age-matched controls. TMS-evoked motor cortical network interactions were quantified with simultaneous EEG as the post-TMS (0-300 ms) beta (15-30 Hz) coherence between electrodes overlying M1 bilaterally. We compared TMS-evoked coherence between groups during rest and active conditions and tested associations with poststroke motor impairment, paretic propulsive gait deficits, and the presence of paretic leg motor evoked potentials (MEPs). Results: Stroke (n = 14, 66 ± 9 years, F = 4) showed lower TMS-evoked cortical coherence and activity-dependent modulation compared to controls (n = 9, 68 ± 6 years, F = 3). Blunted reactivity and atypical modulation of TMS-evoked coherence were associated with lower paretic ankle moments for propulsive force generation during walking and absent paretic MEPs. Conclusions: Impaired flexibility of motor cortical networks to react to TMS and modulate during motor activity is distinctly associated with paretic limb biomechanical walking impairment, and may provide useful insight into the neuromechanistic underpinnings of chronic post-stroke mobility deficits.
Collapse
Affiliation(s)
- Jacqueline A Palmer
- Division of Physical Therapy, Department of Rehabilitation Medicine, 12239Emory University, Atlanta, GA, USA
| | - Trisha M Kesar
- Division of Physical Therapy, Department of Rehabilitation Medicine, 12239Emory University, Atlanta, GA, USA
| | - Steven L Wolf
- Division of Physical Therapy, Department of Rehabilitation Medicine, 12239Emory University, Atlanta, GA, USA.,Atlanta VA Visual and Neurocognitive Center of Excellence, Decatur, GA, USA
| | - Michael R Borich
- Division of Physical Therapy, Department of Rehabilitation Medicine, 12239Emory University, Atlanta, GA, USA
| |
Collapse
|
11
|
Multiple bouts of high-intensity interval exercise reverse age-related functional connectivity disruptions without affecting motor learning in older adults. Sci Rep 2021; 11:17108. [PMID: 34429472 PMCID: PMC8385059 DOI: 10.1038/s41598-021-96333-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/19/2021] [Indexed: 11/28/2022] Open
Abstract
Exercise has emerged as an intervention that may mitigate age-related resting state functional connectivity and sensorimotor decline. Here, 42 healthy older adults rested or completed 3 sets of high-intensity interval exercise for a total of 23 min, then immediately practiced an implicit motor task with their non-dominant hand across five separate sessions. Participants completed resting state functional MRI before the first and after the fifth day of practice; they also returned 24-h and 35-days later to assess short- and long-term retention. Independent component analysis of resting state functional MRI revealed increased connectivity in the frontoparietal, the dorsal attentional, and cerebellar networks in the exercise group relative to the rest group. Seed-based analysis showed strengthened connectivity between the limbic system and right cerebellum, and between the right cerebellum and bilateral middle temporal gyri in the exercise group. There was no motor learning advantage for the exercise group. Our data suggest that exercise paired with an implicit motor learning task in older adults can augment resting state functional connectivity without enhancing behaviour beyond that stimulated by skilled motor practice.
Collapse
|
12
|
Cleland BT, Madhavan S. Ipsilateral Motor Pathways and Transcallosal Inhibition During Lower Limb Movement After Stroke. Neurorehabil Neural Repair 2021; 35:367-378. [PMID: 33703951 DOI: 10.1177/1545968321999049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Stroke rehabilitation may be improved with a better understanding of the contribution of ipsilateral motor pathways to the paretic limb and alterations in transcallosal inhibition. Few studies have evaluated these factors during dynamic, bilateral lower limb movements, and it is unclear whether they relate to functional outcomes. OBJECTIVE Determine if lower limb ipsilateral excitability and transcallosal inhibition after stroke depend on target limb, task, or number of limbs involved, and whether these factors are related to clinical measures. METHODS In 29 individuals with stroke, ipsilateral and contralateral responses to transcranial magnetic stimulation were measured in the paretic and nonparetic tibialis anterior during dynamic (unilateral or bilateral ankle dorsiflexion/plantarflexion) and isometric (unilateral dorsiflexion) conditions. Relative ipsilateral excitability and transcallosal inhibition were assessed. Fugl-Meyer, ankle movement accuracy, and walking characteristics were assessed. RESULTS Relative ipsilateral excitability was greater during dynamic than isometric conditions in the paretic limb (P ≤ .02) and greater in the paretic than the nonparetic limb during dynamic conditions (P ≤ .004). Transcallosal inhibition was greater in the ipsilesional than contralesional hemisphere (P = .002) and during dynamic than isometric conditions (P = .03). Greater ipsilesional transcallosal inhibition was correlated with better ankle movement accuracy (R2 = 0.18, P = .04). Greater contralateral excitability to the nonparetic limb was correlated with improved walking symmetry (R2 = 0.19, P = .03). CONCLUSIONS Ipsilateral pathways have increased excitability to the paretic limb, particularly during dynamic tasks. Transcallosal inhibition is greater in the ipsilesional than contralesional hemisphere and during dynamic than isometric tasks. Ipsilateral pathways and transcallosal inhibition may influence walking asymmetry and ankle movement accuracy.
Collapse
|
13
|
Lin YL, Cunningham DA, Plow EB. Reply to "On the issue of measuring interhemispheric inhibition in unilateral stroke". Clin Neurophysiol 2021; 132:690-691. [PMID: 33288405 DOI: 10.1016/j.clinph.2020.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 10/23/2022]
Affiliation(s)
- Yin-Liang Lin
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei, Taiwan
| | - David A Cunningham
- Department of Physical Medicine and Rehabilitation, Case Western Reserve University, Cleveland, OH, USA; MetroHealth Rehabilitation Institute of Ohio, MetroHealth Medical Center, Cleveland, OH, USA; Cleveland Functional Electrical Stimulation Center, Louis Stokes Cleveland Department of Veteran's Affairs, Cleveland, OH, USA
| | - Ela B Plow
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Physical Medicine and Rehabilitation, Neurological Institute, Cleveland Clinic, OH, USA.
| |
Collapse
|
14
|
Nazarova M, Kulikova S, Piradov MA, Limonova AS, Dobrynina LA, Konovalov RN, Novikov PA, Sehm B, Villringer A, Saltykova A, Nikulin VV. Multimodal Assessment of the Motor System in Patients With Chronic Ischemic Stroke. Stroke 2020; 52:241-249. [PMID: 33317414 DOI: 10.1161/strokeaha.119.028832] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE Despite continuing efforts in the multimodal assessment of the motor system after stroke, conclusive findings on the complementarity of functional and structural metrics of the ipsilesional corticospinal tract integrity and the role of the contralesional hemisphere are still lacking. This research aimed to find the best combination of motor system metrics, allowing the classification of patients into 3 predefined groups of upper limb motor recovery. METHODS We enrolled 35 chronic ischemic stroke patients (mean 47 [26-66] years old, 29 [6-58] months poststroke) with a single supratentorial lesion and unilateral upper extremity weakness. Patients were divided into 3 groups, depending on upper limb motor recovery: good, moderate, and bad. Nonparametric statistical tests and regression analysis were used to investigate the relationships among microstructural (fractional anisotropy (FA) ratio of the corticospinal tracts at the internal capsule (IC) level (classic method) and along the length of the tracts (Fréchet distance), and of the corpus callosum) and functional (motor evoked potentials [MEPs] for 2 hand muscles) motor system metrics. Stratification rules were also tested using a decision tree classifier. RESULTS IC FA ratio in the IC and MEP absence were both equally discriminative of the bad motor outcome (96% accuracy). For the 3 recovery groups' classification, the best parameter combination was IC FA ratio and the Fréchet distance between the contralesional and ipsilesional corticospinal tract FA profiles (91% accuracy). No other metrics had any additional value for patients' classification. MEP presence differed for 2 investigated muscles. CONCLUSIONS This study demonstrates that better separation between 3 motor recovery groups may be achieved when considering the similarity between corticospinal tract FA profiles along its length in addition to region of interest-based assessment and lesion load calculation. Additionally, IC FA ratio and MEP absence are equally important markers for poor recovery, while for MEP probing it may be important to investigate more than one hand muscle.
Collapse
Affiliation(s)
- Maria Nazarova
- Centre for Cognition and Decision making, ICN, HSE University, Moscow, Russia (M.N., A.L., P.N., V.N.).,FSBI «Federal center of brain and neurotechnologies» of the Federal Medical Biological Agency, Moscow, Russia (M.N.)
| | | | | | - Alena S Limonova
- Laboratory of Clinomics, National Medical Research Center for Therapy & Preventive Medicine, Moscow, Russia (A.L.)
| | | | | | - Pavel A Novikov
- Centre for Cognition and Decision making, ICN, HSE University, Moscow, Russia (M.N., A.L., P.N., V.N.)
| | - Bernhard Sehm
- Department of Neurology, Martin Luther University of Halle-Wittenberg, Germany (B.S.).,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (B.S., A.V., V.N.)
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (B.S., A.V., V.N.).,Clinic for Cognitive Neurology, University Hospital Leipzig, Germany (A.V.)
| | | | - Vadim V Nikulin
- Centre for Cognition and Decision making, ICN, HSE University, Moscow, Russia (M.N., A.L., P.N., V.N.).,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (B.S., A.V., V.N.)
| |
Collapse
|
15
|
Lin YL, Potter-Baker KA, Cunningham DA, Li M, Sankarasubramanian V, Lee J, Jones S, Sakaie K, Wang X, Machado AG, Plow EB. Stratifying chronic stroke patients based on the influence of contralesional motor cortices: An inter-hemispheric inhibition study. Clin Neurophysiol 2020; 131:2516-2525. [PMID: 32712080 PMCID: PMC7487004 DOI: 10.1016/j.clinph.2020.06.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 01/27/2023]
Abstract
OBJECTIVE A recent "bimodal-balance recovery" model suggests that contralesional influence varies based on the amount of ipsilesional reserve: inhibitory when there is a large reserve, but supportive when there is a low reserve. Here, we investigated the relationships between contralesional influence (inter-hemispheric inhibition, IHI) and ipsilesional reserve (corticospinal damage/impairment), and also defined a criterion separating subgroups based on the relationships. METHODS Twenty-four patients underwent assessment of IHI using Transcranial Magnetic Stimulation (ipsilateral silent period method), motor impairment using Upper Extremity Fugl-Meyer (UEFM), and corticospinal damage using Diffusion Tensor Imaging and active motor threshold. Assessments of UEFM and IHI were repeated after 5-week rehabilitation (n = 21). RESULTS Relationship between IHI and baseline UEFM was quadratic with criterion at UEFM 43 (95%conference interval: 40-46). Patients less impaired than UEFM = 43 showed stronger IHI with more impairment, whereas patients more impaired than UEFM = 43 showed lower IHI with more impairment. Of those made clinically-meaningful functional gains in rehabilitation (n = 14), more-impaired patients showed further IHI reduction. CONCLUSIONS A criterion impairment-level can be derived to stratify patient-subgroups based on the bimodal influence of contralesional cortex. Contralesional influence also evolves differently across subgroups following rehabilitation. SIGNIFICANCE The criterion may be used to stratify patients to design targeted, precision treatments.
Collapse
Affiliation(s)
- Yin-Liang Lin
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei, Taiwan
| | - Kelsey A Potter-Baker
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veteran's Affairs, Cleveland, OH, USA; Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - David A Cunningham
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Physical Medicine and Rehabilitation, Case Western Reserve University, Cleveland, OH, USA; MetroHealth Rehabilitation Institute of Ohio, MetroHealth Medical Center, Cleveland, OH, USA; Cleveland Functional Electrical Stimulation Center, Louis Stokes Cleveland Department of Veteran's Affairs, Cleveland, OH, USA
| | - Manshi Li
- Respiratory Institute Biostatistics Core, Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Vishwanath Sankarasubramanian
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - John Lee
- Department of Physical Medicine and Rehabilitation, Neurological Institute, Cleveland Clinic, OH, USA
| | - Stephen Jones
- Department of Diagnostic Radiology, Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ken Sakaie
- Department of Diagnostic Radiology, Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Xiaofeng Wang
- Respiratory Institute Biostatistics Core, Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Ela B Plow
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Physical Medicine and Rehabilitation, Neurological Institute, Cleveland Clinic, OH, USA.
| |
Collapse
|
16
|
Carson RG. Inter‐hemispheric inhibition sculpts the output of neural circuits by co‐opting the two cerebral hemispheres. J Physiol 2020; 598:4781-4802. [DOI: 10.1113/jp279793] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/04/2020] [Indexed: 01/11/2023] Open
Affiliation(s)
- Richard G. Carson
- Trinity College Institute of Neuroscience and School of Psychology Trinity College Dublin Dublin 2 Ireland
- School of Psychology Queen's University Belfast Belfast BT7 1NN UK
- School of Human Movement and Nutrition Sciences University of Queensland St Lucia QLD 4072 Australia
| |
Collapse
|
17
|
Di Pino G, Di Lazzaro V. The balance recovery bimodal model in stroke patients between evidence and speculation: Do recent studies support it? Clin Neurophysiol 2020; 131:2488-2490. [PMID: 32747189 DOI: 10.1016/j.clinph.2020.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 10/23/2022]
Affiliation(s)
- Giovanni Di Pino
- Research Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction (NeXTlab), Università Campus Bio-Medico di Roma, Rome, Italy.
| | - Vincenzo Di Lazzaro
- Research Unit of Neurology, Neurophysiology, Neurobiology, Università Campus Bio-Medico di Roma, Rome, Italy.
| |
Collapse
|
18
|
Sotelo MR, Kalinosky BT, Goodfriend K, Hyngstrom AS, Schmit BD. Indirect Structural Connectivity Identifies Changes in Brain Networks After Stroke. Brain Connect 2020; 10:399-410. [PMID: 32731752 DOI: 10.1089/brain.2019.0725] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Background/Purpose: The purpose of this study was (1) to identify changes in structural connectivity after stroke and (2) to relate changes in indirect connectivity to post-stroke impairment. Methods: A novel measure of indirect connectivity was implemented to assess the impact of stroke on brain connectivity. Probabilistic tractography was performed on 13 chronic stroke and 16 control participants to estimate connectivity between gray matter (GM) regions. The Fugl-Meyer assessment of motor impairment was measured for stroke participants. Network measures of direct and indirect connectivity were calculated, and these measures were linearly combined with measures of white matter integrity to predict motor impairment. Results: We found significantly reduced indirect connectivity in the frontal and parietal lobes, ipsilesional subcortical regions, and bilateral cerebellum after stroke. When added to the regression analysis, the volume of GM with reduced indirect connectivity significantly improved the correlation between image parameters and upper extremity motor impairment (R2 = 0.71, p < 0.05). Conclusion: This study provides evidence of changes in indirect connectivity in regions remote from the lesion, particularly in the cerebellum and regions in the fronto-parietal cortices, and these changes correlate with upper extremity motor impairment. These results highlight the value of using measures of indirect connectivity to identify the effect of stroke on brain networks. Impact statement Changes in indirect structural connectivity occur in regions distant from a lesion after stroke, highlighting the impact that stroke has on brain functional networks. Specifically, losses in indirect structural connectivity occur in hubs with high centrality, including the fronto-parietal cortices and cerebellum. These losses in indirect connectivity more accurately reflect motor impairments than measures of direct structural connectivity. As a consequence, indirect structural connectivity appears to be important to recovery after stroke and imaging biomarkers that incorporate indirect structural connectivity might improve prognostication of stroke outcomes.
Collapse
Affiliation(s)
- Miguel R Sotelo
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Benjamin T Kalinosky
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Karin Goodfriend
- Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Allison S Hyngstrom
- Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin, USA
| | - Brian D Schmit
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
19
|
Pinter D, Gattringer T, Fandler-Höfler S, Kneihsl M, Eppinger S, Deutschmann H, Pichler A, Poltrum B, Reishofer G, Ropele S, Schmidt R, Enzinger C. Early Progressive Changes in White Matter Integrity Are Associated with Stroke Recovery. Transl Stroke Res 2020; 11:1264-1272. [PMID: 32130685 PMCID: PMC7575507 DOI: 10.1007/s12975-020-00797-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/12/2020] [Accepted: 02/24/2020] [Indexed: 11/26/2022]
Abstract
Information on microstructural white matter integrity has been shown to explain post-stroke recovery beyond clinical measures and focal brain damage. Especially, knowledge about early white matter changes might improve prediction of outcome. We investigated 42 acute reperfused ischemic stroke patients (mean age 66.5 years, 40% female, median admission NIHSS 9.5) with a symptomatic MRI-confirmed unilateral middle cerebral artery territory infarction 24-72 h post-stroke and after 3 months. All patients underwent neurological examination and brain MRI. Fifteen older healthy controls (mean age 57.3 years) were also scanned twice. We assessed fractional anisotropy (FA), mean diffusivity (MD), axial (AD), and radial diffusivity (RD). Patients showed significantly decreased white matter integrity in the hemisphere affected by the acute infarction 24-72 h post-stroke, which further decreased over 3 months compared with controls. Less decrease in FA of remote white matter tracts was associated with better stroke recovery even after correcting for infarct location and extent. A regression model including baseline information showed that the modified Rankin Scale and mean FA of the genu of the corpus callosum explained 53.5% of the variance of stroke recovery, without contribution of infarct volume. Furthermore, early dynamic FA changes of the corpus callosum within the first 3 months post-stroke independently predicted stroke recovery. Information from advanced MRI measures on white matter integrity at the acute stage, as well as early dynamic white matter degeneration beyond infarct location and extent, improve our understanding of post-stroke reorganization in the affected hemisphere and contribute to an improved prediction of recovery.
Collapse
Affiliation(s)
- Daniela Pinter
- Department of Neurology, Research Unit for Neuronal Plasticity and Repair, Medical University of Graz, Graz, Austria.
- Department of Neurology, Medical University of Graz, Graz, Austria.
| | - Thomas Gattringer
- Department of Neurology, Medical University of Graz, Graz, Austria
- Department of Radiology, Division of Neuroradiology, Vascular and Interventional Radiology, Medical University of Graz, Graz, Austria
| | | | - Markus Kneihsl
- Department of Neurology, Medical University of Graz, Graz, Austria
| | | | - Hannes Deutschmann
- Department of Radiology, Division of Neuroradiology, Vascular and Interventional Radiology, Medical University of Graz, Graz, Austria
| | | | - Birgit Poltrum
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Gernot Reishofer
- Department of Radiology, Division of Neuroradiology, Vascular and Interventional Radiology, Medical University of Graz, Graz, Austria
| | - Stefan Ropele
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Reinhold Schmidt
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Christian Enzinger
- Department of Neurology, Research Unit for Neuronal Plasticity and Repair, Medical University of Graz, Graz, Austria
- Department of Neurology, Medical University of Graz, Graz, Austria
- Department of Radiology, Division of Neuroradiology, Vascular and Interventional Radiology, Medical University of Graz, Graz, Austria
| |
Collapse
|
20
|
Snow NJ, Wadden KP, Chaves AR, Ploughman M. Transcranial Magnetic Stimulation as a Potential Biomarker in Multiple Sclerosis: A Systematic Review with Recommendations for Future Research. Neural Plast 2019; 2019:6430596. [PMID: 31636661 PMCID: PMC6766108 DOI: 10.1155/2019/6430596] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/31/2019] [Indexed: 12/23/2022] Open
Abstract
Multiple sclerosis (MS) is a demyelinating disorder of the central nervous system. Disease progression is variable and unpredictable, warranting the development of biomarkers of disease status. Transcranial magnetic stimulation (TMS) is a noninvasive method used to study the human motor system, which has shown potential in MS research. However, few reviews have summarized the use of TMS combined with clinical measures of MS and no work has comprehensively assessed study quality. This review explored the viability of TMS as a biomarker in studies of MS examining disease severity, cognitive impairment, motor impairment, or fatigue. Methodological quality and risk of bias were evaluated in studies meeting selection criteria. After screening 1603 records, 30 were included for review. All studies showed high risk of bias, attributed largely to issues surrounding sample size justification, experimenter blinding, and failure to account for key potential confounding variables. Central motor conduction time and motor-evoked potentials were the most commonly used TMS techniques and showed relationships with disease severity, motor impairment, and fatigue. Short-latency afferent inhibition was the only outcome related to cognitive impairment. Although there is insufficient evidence for TMS in clinical assessments of MS, this review serves as a template to inform future research.
Collapse
Affiliation(s)
- Nicholas J. Snow
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Katie P. Wadden
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Arthur R. Chaves
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Michelle Ploughman
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
21
|
Miller KJ, Gallina A, Neva JL, Ivanova TD, Snow NJ, Ledwell NM, Xiao ZG, Menon C, Boyd LA, Garland SJ. Effect of repetitive transcranial magnetic stimulation combined with robot-assisted training on wrist muscle activation post-stroke. Clin Neurophysiol 2019; 130:1271-1279. [DOI: 10.1016/j.clinph.2019.04.712] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 04/14/2019] [Accepted: 04/26/2019] [Indexed: 11/29/2022]
|
22
|
Palmer JA, Wheaton LA, Gray WA, Saltão da Silva MA, Wolf SL, Borich MR. Role of Interhemispheric Cortical Interactions in Poststroke Motor Function. Neurorehabil Neural Repair 2019; 33:762-774. [PMID: 31328638 DOI: 10.1177/1545968319862552] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background/Objective. We investigated interhemispheric interactions in stroke survivors by measuring transcranial magnetic stimulation (TMS)-evoked cortical coherence. We tested the effect of TMS on interhemispheric coherence during rest and active muscle contraction and compared coherence in stroke and older adults. We evaluated the relationships between interhemispheric coherence, paretic motor function, and the ipsilateral cortical silent period (iSP). Methods. Participants with (n = 19) and without (n = 14) chronic stroke either rested or maintained a contraction of the ipsilateral hand muscle during simultaneous recordings of evoked responses to TMS of the ipsilesional/nondominant (i/ndM1) and contralesional/dominant (c/dM1) primary motor cortex with EEG and in the hand muscle with EMG. We calculated pre- and post-TMS interhemispheric beta coherence (15-30 Hz) between motor areas in both conditions and the iSP duration during the active condition. Results. During active i/ndM1 TMS, interhemispheric coherence increased immediately following TMS in controls but not in stroke. Coherence during active cM1 TMS was greater than iM1 TMS in the stroke group. Coherence during active iM1 TMS was less in stroke participants and was negatively associated with measures of paretic arm motor function. Paretic iSP was longer compared with controls and negatively associated with clinical measures of manual dexterity. There was no relationship between coherence and. iSP for either group. No within- or between-group differences in coherence were observed at rest. Conclusions. TMS-evoked cortical coherence during hand muscle activation can index interhemispheric interactions associated with poststroke motor function and potentially offer new insights into neural mechanisms influencing functional recovery.
Collapse
Affiliation(s)
| | | | | | | | - Steven L Wolf
- 1 Emory University, Atlanta, GA, USA
- 2 Atlanta VA Visual and Neurocognitive Center of Excellence, Decatur, GA, USA
| | | |
Collapse
|
23
|
White Matter Biomarkers Associated with Motor Change in Individuals with Stroke: A Continuous Theta Burst Stimulation Study. Neural Plast 2019; 2019:7092496. [PMID: 30863437 PMCID: PMC6378804 DOI: 10.1155/2019/7092496] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/08/2018] [Indexed: 11/18/2022] Open
Abstract
Continuous theta burst stimulation (cTBS) is a form of noninvasive repetitive brain stimulation that, when delivered over the contralesional hemisphere, can influence the excitability of the ipsilesional hemisphere in individuals with stroke. cTBS applied prior to skilled motor practice interventions may augment motor learning; however, there is a high degree of variability in individual response to this intervention. The main objective of the present study was to assess white matter biomarkers of response to cTBS paired with skilled motor practice in individuals with chronic stroke. We tested the effects of stimulation of the contralesional hemisphere at the site of the primary motor cortex (M1c) or primary somatosensory cortex (S1c) and a third group who received sham stimulation. Within each stimulation group, individuals were categorized into responders or nonresponders based on their capacity for motor skill change. Baseline diffusion tensor imaging (DTI) indexed the underlying white matter microstructure of a previously known motor learning network, named the constrained motor connectome (CMC), as well as the corticospinal tract (CST) of lesioned and nonlesioned hemispheres. Across practice, there were no differential group effects. However, when categorized as responders vs. nonresponders using change in motor behaviour, we demonstrated a significant difference in CMC microstructural properties (as measured by fractional anisotropy (FA)) for individuals in M1c and S1c groups. There were no significant differences between responders and nonresponders in clinical baseline measures or microstructural properties (FA) in the CST. The present study identifies a white matter biomarker, which extends beyond the CST, advancing our understanding of the importance of white matter networks for motor after stroke.
Collapse
|
24
|
Neva J, Brown K, Wadden K, Mang C, Borich M, Meehan S, Boyd L. The effects of five sessions of continuous theta burst stimulation over contralesional sensorimotor cortex paired with paretic skilled motor practice in people with chronic stroke. Restor Neurol Neurosci 2019; 37:273-290. [PMID: 31227676 PMCID: PMC7886006 DOI: 10.3233/rnn-190916] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND In individuals with chronic stroke, impairment of the paretic arm may be exacerbated by increased contralesional transcallosal inhibition (TCI). Continuous theta burst stimulation (cTBS) can decrease primary motor cortex (M1) excitability and TCI. However, contralesional cTBS shows inconsistent effects after stroke. Variable effects of cTBS could stem from failure to pair stimulation with skilled motor practice or a focus of applying cTBS over M1. OBJECTIVE Here, we investigated the effects of pairing cTBS with skilled practice on motor learning and arm function. We considered the differential effects of stimulation over two different brain regions: contralesional M1 (M1c) or contralesional primary somatosensory cortex (S1c). METHODS 37 individuals with chronic stroke participated in five sessions of cTBS and paretic arm skilled practice of a serial targeting task (STT); participants received either cTBS over M1c or S1c or sham before STT practice. Changes in STT performance and Wolf Motor Function Test (WMFT) were assessed as primary outcomes. Assessment of bilateral corticospinal, intracortical excitability and TCI were secondary outcomes. RESULTS cTBS over sensorimotor cortex did not improve STT performance and paretic WMFT-rate beyond sham cTBS. TCI was reduced bi-directionally following the intervention, regardless of stimulation group. In addition, we observed an association between STT performance change and paretic WMFT-rate change in the M1c stimulation group only. CONCLUSIONS Multiple sessions of STT practice can improve paretic arm function and decrease TCI bilaterally, with no additional benefit of prior cTBS. Our results suggest that improvement in STT practice following M1c cTBS scaled with change in paretic arm function in some individuals. Our results highlight the need for a better understanding of the mechanisms of cTBS to effectively identify who may benefit from this form of brain stimulation.
Collapse
Affiliation(s)
- J.L. Neva
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - K.E. Brown
- Graduate Studies in Rehabilitation Sciences, University of British Columbia, Vancouver Canada
| | - K.P. Wadden
- Graduate Studies in Rehabilitation Sciences, University of British Columbia, Vancouver Canada
| | - C.S. Mang
- Graduate Studies in Rehabilitation Sciences, University of British Columbia, Vancouver Canada
- Division of Physical Medicine and Rehabilitation, Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - M.R. Borich
- Department of Rehabilitation Medicine, Division of Physical Therapy, School of Medicine, Emory University, Atlanta, GA, USA
| | - S.K. Meehan
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - L.A. Boyd
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
25
|
Agarwal S, Koch G, Hillis AE, Huynh W, Ward NS, Vucic S, Kiernan MC. Interrogating cortical function with transcranial magnetic stimulation: insights from neurodegenerative disease and stroke. J Neurol Neurosurg Psychiatry 2019; 90:47-57. [PMID: 29866706 DOI: 10.1136/jnnp-2017-317371] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 05/07/2018] [Accepted: 05/07/2018] [Indexed: 12/11/2022]
Abstract
Transcranial magnetic stimulation (TMS) is an accessible, non-invasive technique to study cortical function in vivo. TMS studies have provided important pathophysiological insights across a range of neurodegenerative disorders and enhanced our understanding of brain reorganisation after stroke. In neurodegenerative disease, TMS has provided novel insights into the function of cortical output cells and the related intracortical interneuronal networks. Characterisation of cortical hyperexcitability in amyotrophic lateral sclerosis and altered motor cortical function in frontotemporal dementia, demonstration of cholinergic deficits in Alzheimer's disease and Parkinson's disease are key examples where TMS has led to advances in understanding of disease pathophysiology and potential mechanisms of propagation, with the potential for diagnostic applications. In stroke, TMS methodology has facilitated the understanding of cortical reorganisation that underlie functional recovery. These insights are critical to the development of effective and targeted rehabilitation strategies in stroke. The present review will provide an overview of cortical function measures obtained using TMS and how such measures may provide insight into brain function. Through an improved understanding of cortical function across a range of neurodegenerative disorders, and identification of changes in neural structure and function associated with stroke that underlie clinical recovery, more targeted therapeutic approaches may now be developed in an evolving era of precision medicine.
Collapse
Affiliation(s)
- Smriti Agarwal
- Brain and Mind Centre, University of Sydney, and Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Giacomo Koch
- Non-Invasive Brain Stimulation Unit, Neurologia Clinica e Comportamentale, Fondazione Santa Lucia IRCCS, Rome, Italy.,Stroke Unit, Department of Neuroscience, Policlinico Tor Vergata, Rome, Italy
| | - Argye E Hillis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Cognitive Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - William Huynh
- Brain and Mind Centre, University of Sydney, and Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Nick S Ward
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, University College London, London, UK.,UCL Partners Centre for Neurorehabilitation, UCL Institute of Neurology, University College London, London, UK.,The National Hospital for Neurology and Neurosurgery, London, UK
| | - Steve Vucic
- Westmead Clinical School, University of Sydney, Sydney, Australia
| | - Matthew C Kiernan
- Brain and Mind Centre, University of Sydney, and Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
26
|
Hayward KS, Lohse KR, Bernhardt J, Lang CE, Boyd LA. Characterising Arm Recovery in People with Severe Stroke (CARPSS): protocol for a 12-month observational study of clinical, neuroimaging and neurophysiological biomarkers. BMJ Open 2018; 8:e026435. [PMID: 30478130 PMCID: PMC6254492 DOI: 10.1136/bmjopen-2018-026435] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
INTRODUCTION In individuals with early (indexed ≤7 days poststroke) and severe upper limb paresis (shoulder abduction and finger extension score of <5 out of 10), our objectives are to: (1) determine if biomarkers of brain structure and function collected at <1 month poststroke explain who will experience clinically important recovery over the first 12 months poststroke; (2) compare stroke survivors' perceptions of personally meaningful recovery to clinically important recovery; and (3) characterise the trajectory of change in measures of motor function, brain structure and function. METHODS AND ANALYSIS Prospective observational study with an inception cohort of 78 first-time stroke survivors. Participants will be recruited from a single, large tertiary stroke referral centre. Clinical and biomarker assessments will be completed at four follow-up time points: 2 to 4 weeks and 3, 6 and 12 months poststroke. Our primary outcome is achievement of clinically important improvement on two out of three measures that span impairment (Fugl-Meyer Upper Limb, change ≥10 points), activity (Motor Assessment Scale item 6, change ≥1 point) and participation (Rating of Everyday Arm-use in the Community and Home, change ≥1 point). Brain biomarkers of structure and function will be indexed using transcranial magnetic stimulation and MRI. Multilevel modelling will be performed to examine the relationship between clinically important recovery achieved (yes/no) and a priori defined brain biomarkers related to the corticospinal tract and corpus callosum. Secondary analyses will compare stroke survivor's perception of recovery, as well as real-world arm use via accelerometry, to the proposed metric of clinically meaningful recovery; and model trajectory of recovery across clinical, a priori defined biomarkers and exploratory variables related to functional connectivity. ETHICS AND DISSEMINATION Approved by the hospital and university ethics review boards. Results will be disseminated through peer-reviewed publications and conference presentations. TRIAL REGISTRATION NUMBER NCT02464085.
Collapse
Affiliation(s)
- Kathryn S Hayward
- Brain Behaviour Laboratory, Physical Therapy, University of British Columbia, Vancouver, BC, Canada
- AVERT Early Rehabilitation Research Group, Stroke Theme, Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
- NHMRC Centre of Research Excellence in Stroke Rehabilitation and Brain Recovery, Melbourne, Victoria, Australia
| | - Keith R Lohse
- Department of Health, Kinesiology, Recreation; Department of Physical Therapy and Athletic Training, University of Utah, Utah, Salt Lake City, USA
| | - Julie Bernhardt
- AVERT Early Rehabilitation Research Group, Stroke Theme, Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
- NHMRC Centre of Research Excellence in Stroke Rehabilitation and Brain Recovery, Melbourne, Victoria, Australia
| | - Catherine E Lang
- Physical Therapy, Occupational Therapy, and Neurology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Lara A Boyd
- Brain Behaviour Laboratory, Physical Therapy, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
27
|
Bertolucci F, Chisari C, Fregni F. The potential dual role of transcallosal inhibition in post-stroke motor recovery. Restor Neurol Neurosci 2018; 36:83-97. [PMID: 29439366 DOI: 10.3233/rnn-170778] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Up to now, the mechanism of motor impairment and recovery after stroke has been thought to be based on the interhemispheric competition model. According to this model, which assumes that suppressing the excitability of contralesional hemisphere will enhance recovery by reducing transcallosal inhibition (TCI) of the stroke hemisphere, many clinical trials used non-invasive brain stimulation to improve motor function. Despite some positive findings, meta-analysis shows an important source of variability in the results, questioning whether the interhemispheric competition model would be exhaustive enough to explain the positive results or whether other mechanisms could explain the motor effects of inhibitory stimulation in the contralesional hemisphere. The goal of this study was to review the relationship between increased TCI and motor impairment after stroke.A systematic review of clinical studies investigating TCI through transcranial magnetic stimulation (TMS) in stroke patients and the relationship of this metric with motor recovery was then performed. After a literary search in PubMed eleven articles were included. The potential role of several covariates was examined and discussed.Overall, the importance of TCI as a putative mechanism for stimulation of the contralesional hemisphere seems to depend on the baseline motor function. In other words, from evidence coming mostly from chronic patients, modulation of abnormal TCI seems to be useful for patients with good motor function and less important in patients with poor motor function. TCI seems to be negatively correlated with mirror movements of the paretic hand. It can be inferred that suppressing the activity of the contralesional hemisphere could be beneficial for patients with good residual motor function and strong TCI, but not for those with poor motor function and weak TCI. Baseline motor function and measure of TCI should be taken into account for stratification of patients in clinical trials and for the design of customized treatment.
Collapse
Affiliation(s)
- Federica Bertolucci
- Department of Neuroscience, Unit of Neurorehabilitation, University Hospital of Pisa, Italy.,Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, USA
| | - Carmelo Chisari
- Department of Neuroscience, Unit of Neurorehabilitation, University Hospital of Pisa, Italy
| | - Felipe Fregni
- Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, USA
| |
Collapse
|
28
|
Abstract
BACKGROUND AND PURPOSE The IV STEP conference challenged presenters and participants to consider the state of science in rehabilitation, highlighting key area of progress since the previous STEP conference related to prediction, prevention, plasticity, and participation in rehabilitation. KEY POINTS Emerging from the thought-provoking discussions was recognition of the progress we have made as a profession and a call for future growth. In this summary article, we present a recap of the key points and call for action. We review the information presented and the field at large as it relates to the 4 Ps: prediction, prevention, plasticity, and participation. RECOMMENDATIONS FOR PRACTICE Given that personalized medicine is an increasingly important approach that was clearly woven throughout the IV STEP presentations, we took the liberty of adding a fifth "P," Personalized, in our discussion of the future direction of the profession.
Collapse
|
29
|
The Role of Physical Activity in Recovery From Concussion in Youth: A Neuroscience Perspective. J Neurol Phys Ther 2018; 42:155-162. [PMID: 29864097 DOI: 10.1097/npt.0000000000000226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND PURPOSE Concussion is a major public health concern and one of the least understood neurological injuries. Children and youth are disproportionally affected by concussion, and once injured, take longer to recover. Current guidelines recommend a period of physical and cognitive rest with a gradual progressive return to activity. Although there is limited high-quality evidence (eg, randomized controlled trials) on the benefit of physical activity and exercise after concussion, most studies report a positive impact of exercise in facilitating recovery after concussion. In this article we characterize the complex and dynamic changes in the brain following concussion by reviewing recent results from neuroimaging studies and to inform physical activity participation guidelines for the management of a younger population (eg, 14-25 years of age) after concussion. SUMMARY OF KEY POINTS Novel imaging methods and tools are providing a picture of the changes in the structure and function of the brain following concussion. These emerging results will, in the future, assist in creating objective, evidence-based pathways for clinical decision-making. Until such time, physical therapists should be aware that current neuroimaging evidence supports participation in physical activity after an initial and brief period of rest, and consider how best to incorporate exercise into rehabilitation to enhance recovery following concussion. RECOMMENDATIONS FOR CLINICAL PRACTICE It is important that physical therapists understand the neurobiological impact of concussion injury and recovery, and be informed of the scientific rationale for the recommendations and guidelines for engagement in physical activity.Video Abstract available for more insights from the authors (see Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A205).
Collapse
|
30
|
Unilateral wrist extension training after stroke improves strength and neural plasticity in both arms. Exp Brain Res 2018; 236:2009-2021. [DOI: 10.1007/s00221-018-5275-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 04/24/2018] [Indexed: 01/13/2023]
|
31
|
Boyd LA, Hayward KS, Ward NS, Stinear CM, Rosso C, Fisher RJ, Carter AR, Leff AP, Copland DA, Carey LM, Cohen LG, Basso DM, Maguire JM, Cramer SC. Biomarkers of stroke recovery: Consensus-based core recommendations from the Stroke Recovery and Rehabilitation Roundtable. Int J Stroke 2018; 12:480-493. [PMID: 28697711 DOI: 10.1177/1747493017714176] [Citation(s) in RCA: 242] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The most difficult clinical questions in stroke rehabilitation are "What is this patient's potential for recovery?" and "What is the best rehabilitation strategy for this person, given her/his clinical profile?" Without answers to these questions, clinicians struggle to make decisions regarding the content and focus of therapy, and researchers design studies that inadvertently mix participants who have a high likelihood of responding with those who do not. Developing and implementing biomarkers that distinguish patient subgroups will help address these issues and unravel the factors important to the recovery process. The goal of the present paper is to provide a consensus statement regarding the current state of the evidence for stroke recovery biomarkers. Biomarkers of motor, somatosensory, cognitive and language domains across the recovery timeline post-stroke are considered; with focus on brain structure and function, and exclusion of blood markers and genetics. We provide evidence for biomarkers that are considered ready to be included in clinical trials, as well as others that are promising but not ready and so represent a developmental priority. We conclude with an example that illustrates the utility of biomarkers in recovery and rehabilitation research, demonstrating how the inclusion of a biomarker may enhance future clinical trials. In this way, we propose a way forward for when and where we can include biomarkers to advance the efficacy of the practice of, and research into, rehabilitation and recovery after stroke.
Collapse
Affiliation(s)
- Lara A Boyd
- 1 Department of Physical Therapy & the Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Kathryn S Hayward
- 2 Department of Physical Therapy, University of British Columbia, Vancouver, Canada; Stroke Division, The Florey Institute of Neuroscience and Mental Health, Heidelberg, Australia
| | - Nick S Ward
- 3 Sobell Department of Motor Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - Cathy M Stinear
- 4 Department of Medicine and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Charlotte Rosso
- 5 Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France.,6 AP-HP, Urgences Cérébro-Vasculaires, Hôpital Pitié-Salpêtrière, Paris, France
| | - Rebecca J Fisher
- 7 Division of Rehabilitation & Ageing, University of Nottingham, Nottingham, UK
| | - Alexandre R Carter
- 8 Department of Neurology, Washington University in Saint Louis, St Louis, MO, USA
| | - Alex P Leff
- 9 Department of Brain Repair and Rehabilitation, Institute of Neurology & Institute of Cognitive Neuroscience, University College London, Queens Square, London, UK
| | - David A Copland
- 10 School of Health & Rehabilitation Sciences, University of Queensland, Brisbane, Australia; and University of Queensland Centre for Clinical Research, Brisbane, Australia
| | - Leeanne M Carey
- 11 School of Allied Health, College of Science, Health and Engineering, La Trobe, University, Bundoora, Australia; and Neurorehabilitation and Recovery, Stroke Division, The Florey Institute of Neuroscience and Mental Health, Heidelberg, Australia
| | - Leonardo G Cohen
- 12 Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA
| | - D Michele Basso
- 13 School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, USA
| | - Jane M Maguire
- 14 Faculty of Health, University of Technology, Ultimo, Sydney, Australia
| | - Steven C Cramer
- 15 University of California, Irvine, CA, USA; Depts. Neurology, Anatomy & Neurobiology, and Physical Medicine & Rehabilitation, Irvine, CA, USA
| |
Collapse
|
32
|
Zhao N, Zhang J, Qiu M, Wang C, Xiang Y, Wang H, Xie J, Liu S, Wu J. Scalp acupuncture plus low-frequency rTMS promotes repair of brain white matter tracts in stroke patients: A DTI study. J Integr Neurosci 2018. [DOI: 10.3233/jin-170043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Ning Zhao
- Department of Rehabilitation Medicine, Shenzhen Nanshan Hospital, Shenzhen University, Shenzhen, 518052, China
- Department of Rehabilitation Medicine, Shenzhen Nanshan District People’s Hospital, Shenzhen, 518052, China
| | - Jingna Zhang
- College of Biomedical Engineering, Third Military Medical University, Chongqing, 400038, China
| | - Mingguo Qiu
- College of Biomedical Engineering, Third Military Medical University, Chongqing, 400038, China
| | - Chunrong Wang
- Department of Radiology, Shenzhen Nanshan District People’s Hospital, Shenzhen, 518052, China
| | - Yun Xiang
- Department of Rehabilitation Medicine, Shenzhen Nanshan Hospital, Shenzhen University, Shenzhen, 518052, China
- Department of Rehabilitation Medicine, Shenzhen Nanshan District People’s Hospital, Shenzhen, 518052, China
| | - Hui Wang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jingwen Xie
- Department of Radiology, Shenzhen Nanshan District People’s Hospital, Shenzhen, 518052, China
| | - Shu Liu
- Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Jing Wu
- Hunan University of Chinese Medicine, Changsha, 410007, China
| |
Collapse
|
33
|
Jones PW, Borich MR, Vavsour I, Mackay A, Boyd LA. Cortical thickness and metabolite concentration in chronic stroke and the relationship with motor function. Restor Neurol Neurosci 2018; 34:733-46. [PMID: 27258945 DOI: 10.3233/rnn-150623] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Hemiparesis is one of the most prevalent chronic disabilities after stroke. Biochemical and structural magnetic resonance imaging approaches may be employed to study the neural substrates underpinning upper-extremity (UE) recovery after chronic stroke. OBJECTIVE The purposes of this study were to 1) quantify anatomical and metabolic differences in the precentral gyrus, and 2) test the relationships between anatomical and metabolic differences, and hemiparetic arm function in individuals in the chronic stage of stroke recovery. Our hypotheses were: 1) the Stroke group would exhibit reduced precentral gyrus cortical thickness and lower concentrations of total N-acetylaspartate (tNAA) and glutamate+glutamine (Glx) in the ipsilesional motor cortex; and 2) that each of these measures would be associated with UE motor function after stroke. METHODS Seventeen individuals with chronic (>6 months) subcortical ischemic stroke and eleven neurologically healthy controls were recruited. Single voxel proton magnetic resonance spectroscopy (H1MRS) was performed to measure metabolite concentrations of tNAA and Glx in the precentral gyrus in both ipsilesional and contralesional hemispheres. Surface-based cortical morphometry was used to quantify precentral gyral thickness. Upper-extremity motor function was assessed using the Wolf Motor Function Test (WMFT). RESULTS Results demonstrated significantly lower ipsilesional tNAA and Glx concentrations and precentral gyrus thickness in the Stroke group. Ipsilesional tNAA and Glx concentration and precentral gyrus thickness was significantly lower in the ipsilesional hemisphere in the Stroke group. Parametric correlation analyses revealed a significant positive relationship between precentral gyrus thickness and tNAA concentration bilaterally. Multivariate regression analyses revealed that ipsilesional concentrations of tNAA and Glx predicted the largest amount of variance in WMFT scores. Cortical thickness measures alone did not predict a significant amount of variance in WMFT scores. CONCLUSION While stroke impairs both structure and biochemistry in the ipsilesional hemisphere our data suggest that tNAA has the strongest relationship with motor function.
Collapse
Affiliation(s)
- Paul W Jones
- Graduate Program in Neuroscience, University of British Columbia, Wesbrook Mall, Vancouver, Canada
| | - Michael R Borich
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University School of Medicine, Clifton Road NE, Atlanta, Georgia, USA
| | - Irene Vavsour
- Department of Radiology, University of British Columbia, Vancouver, Canada
| | - Alex Mackay
- Department of Physics, University of British Columbia, Agricultural Road, Vancouver, Canada
| | - Lara A Boyd
- Department of Physical Therapy, University of British Columbia, Wesbrook Mall, Vancouver, Canada.,Centre for Brain Health, University of British Columbia, Wesbrook Mall, Vancouver, Canada
| |
Collapse
|
34
|
Eng D, Zewdie E, Ciechanski P, Damji O, Kirton A. Interhemispheric motor interactions in hemiparetic children with perinatal stroke: Clinical correlates and effects of neuromodulation therapy. Clin Neurophysiol 2017; 129:397-405. [PMID: 29289841 DOI: 10.1016/j.clinph.2017.11.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 11/10/2017] [Accepted: 11/17/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Brain stimulation and constraint therapy may enhance function after perinatal stroke but mechanisms are unknown. We characterized interhemispheric interactions (IHI) in hemiparetic children and explored their relationship to motor function and neuromodulation. METHODS Forty-five hemiparetic perinatal stroke subjects aged 6-19 years completed a clinical trial of repetitive-transcranial magnetic stimulation (rTMS) and constraint therapy. Paired-pulse TMS measured IHI in cases and normal controls. Suprathreshold conditioning stimuli preceded contralateral test stimuli bidirectionally: stroke to non-stroke (SNS) and non-stroke to stroke (NSS). Primary outcome was the interhemispheric ratio (IHR) between conditioned and test only MEP amplitudes X100 (<100 implied inhibition). Motor outcomes at baseline and post-intervention were compared to IHR. RESULTS Procedures were well tolerated. IHI occurred bidirectionally in controls. Eighteen stroke participants had complete data. IHR were increased in stroke participants in both directions. SNS IHR was >100 (facilitation) in 39% of measurements and correlated with better motor function. NSS IHR correlated with poorer motor function. Intervention-induced clinical change was not associated with IHR. CONCLUSIONS Interhemispheric interactions are altered and related to clinical function, but not necessarily neuromodulation, in children with perinatal stroke. SIGNIFICANCE Adding interhemispheric interactions to evolving models of developmental plasticity following early injury may advance neuromodulation strategies.
Collapse
Affiliation(s)
- Derek Eng
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, Alberta T3B6A8, Canada; Department of Neurosciences, University of Calgary, Calgary, Alberta T2N1N4, Canada
| | - Ephrem Zewdie
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, Alberta T3B6A8, Canada
| | - Patrick Ciechanski
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, Alberta T3B6A8, Canada; Department of Neurosciences, University of Calgary, Calgary, Alberta T2N1N4, Canada
| | - Omar Damji
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, Alberta T3B6A8, Canada; Department of Neurosciences, University of Calgary, Calgary, Alberta T2N1N4, Canada
| | - Adam Kirton
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, Alberta T3B6A8, Canada; Departments of Pediatrics and Clinical Neurosciences, Alberta Children's Hospital, Calgary, Alberta T3B6A8, Canada; Department of Neurosciences, University of Calgary, Calgary, Alberta T2N1N4, Canada; Alberta Children's Hospital Research Institute, Calgary, Alberta T3B6A8, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N1N4, Canada; Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N1N4, Canada.
| |
Collapse
|
35
|
Interhemispheric Pathways Are Important for Motor Outcome in Individuals with Chronic and Severe Upper Limb Impairment Post Stroke. Neural Plast 2017; 2017:4281532. [PMID: 29348943 PMCID: PMC5733869 DOI: 10.1155/2017/4281532] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/27/2017] [Accepted: 08/08/2017] [Indexed: 11/17/2022] Open
Abstract
Background Severity of arm impairment alone does not explain motor outcomes in people with severe impairment post stroke. Objective Define the contribution of brain biomarkers to upper limb motor outcomes in people with severe arm impairment post stroke. Methods Paretic arm impairment (Fugl-Meyer upper limb, FM-UL) and function (Wolf Motor Function Test rate, WMFT-rate) were measured in 15 individuals with severe (FM-UL ≤ 30/66) and 14 with mild–moderate (FM-UL > 40/66) impairment. Transcranial magnetic stimulation and diffusion weight imaging indexed structure and function of the corticospinal tract and corpus callosum. Separate models of the relationship between possible biomarkers and motor outcomes at a single chronic (≥6 months) time point post stroke were performed. Results Age (ΔR20.365, p = 0.017) and ipsilesional-transcallosal inhibition (ΔR20.182, p = 0.048) explained a 54.7% (p = 0.009) variance in paretic WMFT-rate. Prefrontal corpus callous fractional anisotropy (PF-CC FA) alone explained 49.3% (p = 0.007) variance in FM-UL outcome. The same models did not explain significant variance in mild–moderate stroke. In the severe group, k-means cluster analysis of PF-CC FA distinguished two subgroups, separated by a clinically meaningful and significant difference in motor impairment (p = 0.049) and function (p = 0.006) outcomes. Conclusion Corpus callosum function and structure were identified as possible biomarkers of motor outcome in people with chronic and severe arm impairment.
Collapse
|
36
|
Ferris JK, Edwards JD, Ma JA, Boyd LA. Changes to white matter microstructure in transient ischemic attack: A longitudinal diffusion tensor imaging study. Hum Brain Mapp 2017; 38:5795-5803. [PMID: 28815853 DOI: 10.1002/hbm.23768] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/13/2017] [Accepted: 08/07/2017] [Indexed: 12/20/2022] Open
Abstract
Transient ischemic attack (TIA) is associated with localized ischemic changes, identifiable by diffusion-weighted imaging. Past research has not considered whether TIA is also associated with diffuse changes to white matter microstructure; further past work has not tracked changes longitudinally. Here we examine whole-brain changes in fractional anisotropy (FA) in individuals with TIA presenting with sensorimotor symptoms. Twenty individuals with a recent (within 30 days) TIA and 12 healthy older adults were recruited. Participants underwent 3.0 T diffusion MRI at baseline; scans were repeated for the TIA group 90 days post-TIA. Track-based spatial statistics (TBSS) was used to conduct a voxel-wise analysis of FA between groups. FA was significantly lower in the TIA group relative to healthy controls, primarily in anterior white matter tracts including: forceps minor, anterior thalamic radiations, cingulum, inferior fronto-occipital fasciculus, and corticospinal tract. TBSS results informed an ROI-based longitudinal examination of FA in the TIA group. There were no changes to TBSS-identified clusters, forceps minor, or the corticospinal tract over time. There was lower FA in the anterior thalamic radiations in the TIA-affected hemisphere at baseline, but no difference between hemispheres at 90 days. In summary, individuals with TIA presenting with sensorimotor symptoms have decreased FA in tracts that are also implicated in sensorimotor function, which outlast the clinical symptoms associated with TIA. This suggests a more profound type of brain damage associated with TIA than has been typically described in past work. Diffusion tensor imaging may have utility as a marker of TIA-associated changes to white matter pathways. Hum Brain Mapp 38:5795-5803, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jennifer K Ferris
- Brain Behaviour Laboratory, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jodi D Edwards
- L.C. Campbell Cognitive Neurology Research Unit, Toronto, Ontario, Canada.,Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Jennifer A Ma
- Brain Behaviour Laboratory, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lara A Boyd
- Brain Behaviour Laboratory, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
37
|
Bernhardt J, Borschmann K, Boyd L, Carmichael ST, Corbett D, Cramer SC, Hoffmann T, Kwakkel G, Savitz S, Saposnik G, Walker M, Ward N. Moving Rehabilitation Research Forward: Developing Consensus Statements for Rehabilitation and Recovery Research. Neurorehabil Neural Repair 2017; 31:694-698. [DOI: 10.1177/1545968317724290] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Stroke recovery is the next frontier in stroke medicine. While growth in rehabilitation and recovery research is exponential, a number of barriers hamper our ability to rapidly progress the field. Standardized terminology is absent in both animal and human research, methods are poorly described, recovery biomarkers are not well defined, and we lack consistent timeframes or measures to examine outcomes. Agreed methods and conventions for developing, monitoring, evaluating and reporting interventions directed at improving recovery are lacking, and current approaches are often not underpinned by biology. We urgently need to better understand the biology of recovery and its time course in both animals and humans to translate evidence from basic science into clinical trials. A new international partnership of stroke recovery and rehabilitation experts has committed to advancing the research agenda. In May 2016, the first Stroke Recovery and Rehabilitation Roundtable will be held, with the aim of achieving an agreed approach to the development, conduct and reporting of research. A range of methods will be used to achieve consensus in four priority areas: pre-clinical recovery research; biomarkers of recovery; intervention development, monitoring and reporting; and measurement in clinical trials. We hope to foster a global network of researchers committed to advancing this exciting field. Recovery from stroke is challenging for many survivors. They deserve effective treatments underpinned by our evolving understanding of brain recovery and human behaviour. Working together, we can develop game-changing interventions to improve recovery and quality of life in those living with stroke.
Collapse
Affiliation(s)
- Julie Bernhardt
- NHMRC Centre for Research Excellence in Stroke Rehabilitation and Recovery, Victoria, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Australia
| | - Karen Borschmann
- NHMRC Centre for Research Excellence in Stroke Rehabilitation and Recovery, Victoria, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Australia
| | - Lara Boyd
- Department of Physical Therapy and the Djavad Mowafaghian Centre for Brain Health, University of British Columbia, BC, Canada
| | - S. Thomas Carmichael
- Departments of Neurology and Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Dale Corbett
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, University of Ottawa, Ottawa, Canada
| | - Steven C. Cramer
- Departments of Neurology, Anatomy & Neurobiology, and Physical Medicine & Rehabilitation, University of California, Irvine, USA
| | - Tammy Hoffmann
- Centre for Research in Evidence-Based Practice, Bond University, Gold Coast, Queensland, Australia
| | - Gert Kwakkel
- Department of Rehabilitation Medicine, Neuroscience Campus Amsterdam, VU University Medical Centre, Amsterdam, The Netherlands
| | - Sean Savitz
- Stroke Program, McGovern Medical School, UT Health, Houston, Texas, USA
| | | | - Marion Walker
- Division of Rehabilitation and Ageing, University of Nottingham, Nottingham, UK
| | - Nick Ward
- Sobell Department of Motor Neuroscience UCL Institute of Neurology, Queen Square, London, UK
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| |
Collapse
|
38
|
McDonnell MN, Stinear CM. TMS measures of motor cortex function after stroke: A meta-analysis. Brain Stimul 2017; 10:721-734. [DOI: 10.1016/j.brs.2017.03.008] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/27/2017] [Accepted: 03/20/2017] [Indexed: 01/05/2023] Open
|
39
|
Kimberley TJ, Novak I, Boyd L, Fowler E, Larsen D. Stepping Up to Rethink the Future of Rehabilitation: IV STEP Considerations and Inspirations. Pediatr Phys Ther 2017; 29 Suppl 3:S76-S85. [PMID: 28654481 PMCID: PMC6013833 DOI: 10.1097/pep.0000000000000435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND PURPOSE The IV STEP conference challenged presenters and participants to consider the state of science in rehabilitation, highlighting key area of progress since the previous STEP conference related to prediction, prevention, plasticity, and participation in rehabilitation. KEY POINTS Emerging from the thought-provoking discussions was recognition of the progress we have made as a profession and a call for future growth. In this summary article, we present a recap of the key points and call for action. We review the information presented and the field at large as it relates to the 4 Ps: prediction, prevention, plasticity, and participation. RECOMMENDATIONS FOR PRACTICE Given that personalized medicine is an increasingly important approach that was clearly woven throughout the IV STEP presentations, we took the liberty of adding a fifth "P," Personalized, in our discussion of the future direction of the profession.
Collapse
Affiliation(s)
- Teresa Jacobson Kimberley
- Department of Physical Medicine, Division of Physical Therapy and Rehabilitation Science, University of Minnesota, Minneapolis (T.J.K.); Cerebral Palsy Alliance, Discipline of Child and Adolescent Health, The University of Sydney, Camperdown, Australia (I.N.); Department of Physical Therapy and Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, British Columbia (L.B.); Department of Orthopaedic Surgery, Center for Cerebral Palsy, University of California, Los Angeles (E.F.); and School of Health and Rehabilitation Sciences, The Ohio State University, Columbus (D.L.)
| | | | | | | | | |
Collapse
|
40
|
Gray WA, Palmer JA, Wolf SL, Borich MR. Abnormal EEG Responses to TMS During the Cortical Silent Period Are Associated With Hand Function in Chronic Stroke. Neurorehabil Neural Repair 2017; 31:666-676. [PMID: 28604171 DOI: 10.1177/1545968317712470] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Abnormal brain excitability influences recovery after stroke at which time a prolonged transcranial magnetic stimulation (TMS)-induced electromyographic silent period is thought to reflect abnormal inhibitory interneuron excitability. Cortical excitability can be probed directly during the silent period using concurrent electroencephalography (EEG) of TMS-evoked responses. OBJECTIVE The primary study objectives were to characterize TMS-evoked cortical potentials (TEPs) using EEG and to investigate associations with persistent hand and arm motor dysfunction in individuals with chronic stroke. METHODS Thirteen participants with chronic stroke-related mild-moderate arm motor impairment and 12 matched controls completed a single TMS-EEG cortical excitability assessment. TEPs recorded from the vertex during cortical silent period (CSP) assessment and while at rest were used to evaluate differences in cortical excitability between stroke and control participants. Associations between TEPs and CSP duration with measures of upper extremity motor behavior were investigated. RESULTS Significantly increased TEP component peak amplitudes and delayed latencies were observed for stroke participants compared with controls during CSP assessment and while at rest. Delayed early TEP component (P30) peak latencies during CSP assessment were associated with less manual dexterity. CSP duration was prolonged in stroke participants, and correlated with P30 peak latency and paretic arm dysfunction. CONCLUSIONS Abnormal cortical excitability directly measured by early TMS-evoked EEG responses during CSP assessment suggests abnormal cortical inhibition is associated with hand dysfunction in chronic stroke. Further investigation of abnormal cortical inhibition in specific brain networks is necessary to characterize the salient neurophysiologic mechanisms contributing to persistent motor dysfunction after stroke.
Collapse
Affiliation(s)
- Whitney A Gray
- 1 Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Jacqueline A Palmer
- 1 Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Steven L Wolf
- 1 Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA, USA.,2 Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Decatur, GA, USA
| | - Michael R Borich
- 1 Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
41
|
Stewart JC, O'Donnell M, Handlery K, Winstein CJ. Skilled Reach Performance Correlates With Corpus Callosum Structural Integrity in Individuals With Mild Motor Impairment After Stroke: A Preliminary Investigation. Neurorehabil Neural Repair 2017; 31:657-665. [PMID: 28587545 DOI: 10.1177/1545968317712467] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Recovery of arm function after stroke is often incomplete. An improved understanding of brain structure-motor behavior relationships is needed for the development of novel and targeted rehabilitation interventions. OBJECTIVE To examine the relationship between skilled reach performance and the integrity of two putative white matter motor pathways, corticospinal tract and corpus callosum, after stroke. METHODS Eleven individuals with chronic stroke (poststroke duration, mean 62.5 ± 42.4 months) and mild motor impairment (upper extremity Fugl-Meyer score, mean 54.2 ± 7.6) reached to six targets presented at three distances and two directions. Fractional anisotropy (FA) obtained from diffusion tensor imaging was used to determine the structural integrity of the corticospinal tract and the corpus callosum. RESULTS Overall reach performance was decreased in the paretic arm compared with the nonparetic arm. While FA was decreased in the ipsilesional corticospinal tract, FA in the corticospinal tract did not correlate with variability in reach performance between individuals. Instead, FA in the premotor section of the corpus callosum correlated with reach performance; individuals with higher FA in premotor corpus callosum tended to reach faster with both the paretic and nonparetic arms. CONCLUSIONS The structural connections between the two premotor and supplemental cortices that traverse the premotor corpus callosum may play an important role in supporting motor control and could become a target for interventions aimed at improved arm function in this population.
Collapse
|
42
|
Neva JL, Brown KE, Mang CS, Francisco BA, Boyd LA. An acute bout of exercise modulates both intracortical and interhemispheric excitability. Eur J Neurosci 2017; 45:1343-1355. [PMID: 28370664 DOI: 10.1111/ejn.13569] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 11/28/2022]
Abstract
Primary motor cortex (M1) excitability is modulated following a single session of cycling exercise. Specifically, short-interval intracortical inhibition and intracortical facilitation are altered following a session of cycling, suggesting that exercise affects the excitability of varied cortical circuits. Yet we do not know whether a session of exercise also impacts the excitability of interhemispheric circuits between, and other intracortical circuits within, M1. Here we present two experiments designed to address this gap in knowledge. In experiment 1, single and paired pulse transcranial magnetic stimulation (TMS) were used to measure intracortical circuits including, short-interval intracortical facilitation (SICF) tested at 1.1, 1.5, 2.7, 3.1 and 4.5 ms interstimulus intervals (ISIs), contralateral silent period (CSP) and interhemispheric interactions by measuring transcallosal inhibition (TCI) recorded from the abductor pollicus brevis muscles. All circuits were assessed bilaterally pre and two time points post (immediately, 30 min) moderate intensity lower limb cycling. SICF was enhanced in the left hemisphere after exercise at the 1.5 ms ISI. Also, CSP was shortened and TCI decreased bilaterally after exercise. In Experiment 2, corticospinal and spinal excitability were tested before and after exercise to investigate the locus of the effects found in Experiment 1. Exercise did not impact motor-evoked potential recruitment curves, Hoffman reflex or V-wave amplitudes. These results suggest that a session of exercise decreases intracortical and interhemispheric inhibition and increases facilitation in multiple circuits within M1, without concurrently altering spinal excitability. These findings have implications for developing exercise strategies designed to potentiate M1 plasticity and skill learning in healthy and clinical populations.
Collapse
Affiliation(s)
- J L Neva
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, 212-2177 Westbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - K E Brown
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, 212-2177 Westbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - C S Mang
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, 212-2177 Westbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - B A Francisco
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, 212-2177 Westbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - L A Boyd
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, 212-2177 Westbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
43
|
Role of corpus callosum integrity in arm function differs based on motor severity after stroke. NEUROIMAGE-CLINICAL 2017; 14:641-647. [PMID: 28348955 PMCID: PMC5357692 DOI: 10.1016/j.nicl.2017.02.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/03/2017] [Accepted: 02/28/2017] [Indexed: 12/15/2022]
Abstract
While the corpus callosum (CC) is important to normal sensorimotor function, its role in motor function after stroke is less well understood. This study examined the relationship between structural integrity of the motor and sensory sections of the CC, as reflected by fractional anisotropy (FA), and motor function in individuals with a range of motor impairment level due to stroke. Fifty-five individuals with chronic stroke (Fugl-Meyer motor score range 14 to 61) and 18 healthy controls underwent diffusion tensor imaging and a set of motor behavior tests. Mean FA from the motor and sensory regions of the CC and from corticospinal tract (CST) were extracted and relationships with behavioral measures evaluated. Across all participants, FA in both CC regions was significantly decreased after stroke (p < 0.001) and showed a significant, positive correlation with level of motor function. However, these relationships varied based on degree of motor impairment: in individuals with relatively less motor impairment (Fugl-Meyer motor score > 39), motor status correlated with FA in the CC but not the CST, while in individuals with relatively greater motor impairment (Fugl-Meyer motor score ≤ 39), motor status correlated with FA in the CST but not the CC. The role interhemispheric motor connections play in motor function after stroke may differ based on level of motor impairment. These findings emphasize the heterogeneity of stroke, and suggest that biomarkers and treatment approaches targeting separate subgroups may be warranted. Corpus callosum structural integrity could impact motor function after stroke. Corpus callosum integrity was decreased and correlated with motor function. Correlation was strongest in the subgroup with relatively greater motor capacity. In subgroup with less motor capacity, only CST integrity correlated with motor function.
Collapse
|
44
|
Targeting interhemispheric inhibition with neuromodulation to enhance stroke rehabilitation. Brain Stimul 2017; 10:214-222. [DOI: 10.1016/j.brs.2017.01.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 12/10/2016] [Accepted: 01/10/2017] [Indexed: 12/13/2022] Open
|
45
|
Are we armed with the right data? Pooled individual data review of biomarkers in people with severe upper limb impairment after stroke. NEUROIMAGE-CLINICAL 2016; 13:310-319. [PMID: 28053857 PMCID: PMC5198729 DOI: 10.1016/j.nicl.2016.09.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 01/11/2023]
Abstract
To build an understanding of the neurobiology underpinning arm recovery in people with severe arm impairment due to stroke, we conducted a pooled individual data systematic review to: 1) characterize brain biomarkers; 2) determine relationship(s) between biomarkers and motor outcome; and 3) establish relationship(s) between biomarkers and motor recovery. Three electronic databases were searched up to October 2, 2015. Eligible studies included adults with severe arm impairment after stroke. Descriptive statistics were calculated to characterize brain biomarkers, and pooling of individual patient data was performed using mixed-effects linear regression to examine relationships between brain biomarkers and motor outcome and recovery. Thirty-eight articles including individual data from 372 people with severe arm impairment were analysed. The majority of individuals were in the chronic (> 6 months) phase post stroke (51%) and had a subcortical stroke (49%). The presence of a motor evoked potential (indexed by transcranial magnetic stimulation) was the only biomarker related to better motor outcome (p = 0.02). There was no relationship between motor outcome and stroke volume (cm3), location (cortical, subcortical, mixed) or side (left vs. right), and corticospinal tract asymmetry index (extracted from diffusion weighted imaging). Only one study had longitudinal data, thus no data pooling was possible to address change over time (preventing our third objective). Based on the available evidence, motor evoked potentials at rest were the only biomarker that predicted motor outcome in individuals with severe arm impairment following stroke. Given that few biomarkers emerged, this review highlights the need to move beyond currently known biomarkers and identify new indices with sufficient variability and sensitivity to guide recovery models in individuals with severe motor impairments following stroke. PROSPERO CRD42015026107.
Collapse
|
46
|
Bernhardt J, Borschmann K, Boyd L, Thomas Carmichael S, Corbett D, Cramer SC, Hoffmann T, Kwakkel G, Savitz SI, Saposnik G, Walker M, Ward N. Moving rehabilitation research forward: Developing consensus statements for rehabilitation and recovery research. Int J Stroke 2016; 11:454-8. [PMID: 27073187 DOI: 10.1177/1747493016643851] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 03/15/2016] [Indexed: 12/18/2022]
Abstract
Stroke recovery is the next frontier in stroke medicine. While growth in rehabilitation and recovery research is exponential, a number of barriers hamper our ability to rapidly progress the field. Standardized terminology is absent in both animal and human research, methods are poorly described, recovery biomarkers are not well defined, and we lack consistent timeframes or measures to examine outcomes. Agreed methods and conventions for developing, monitoring, evaluating and reporting interventions directed at improving recovery are lacking, and current approaches are often not underpinned by biology. We urgently need to better understand the biology of recovery and its time course in both animals and humans to translate evidence from basic science into clinical trials. A new international partnership of stroke recovery and rehabilitation experts has committed to advancing the research agenda. In May 2016, the first Stroke Recovery and Rehabilitation Roundtable will be held, with the aim of achieving an agreed approach to the development, conduct and reporting of research. A range of methods will be used to achieve consensus in four priority areas: pre-clinical recovery research; biomarkers of recovery; intervention development, monitoring and reporting; and measurement in clinical trials. We hope to foster a global network of researchers committed to advancing this exciting field. Recovery from stroke is challenging for many survivors. They deserve effective treatments underpinned by our evolving understanding of brain recovery and human behaviour. Working together, we can develop game-changing interventions to improve recovery and quality of life in those living with stroke.
Collapse
Affiliation(s)
- Julie Bernhardt
- NHMRC Centre for Research Excellence in Stroke Rehabilitation and Recovery, Victoria, Australia The Florey Institute of Neuroscience and Mental Health, Heidelberg, Australia
| | - Karen Borschmann
- NHMRC Centre for Research Excellence in Stroke Rehabilitation and Recovery, Victoria, Australia The Florey Institute of Neuroscience and Mental Health, Heidelberg, Australia
| | - Lara Boyd
- Department of Physical Therapy and the Djavad Mowafaghian Centre for Brain Health, University of British Columbia, BC, Canada
| | - S Thomas Carmichael
- Departments of Neurology and Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Dale Corbett
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, University of Ottawa, Ottawa, Canada
| | - Steven C Cramer
- Departments of Neurology, Anatomy & Neurobiology, and Physical Medicine & Rehabilitation, University of California, Irvine, USA
| | - Tammy Hoffmann
- Centre for Research in Evidence-Based Practice, Bond University, Gold Coast, Queensland, Australia
| | - Gert Kwakkel
- Department of Rehabilitation Medicine, Neuroscience Campus Amsterdam, VU University Medical Centre, Amsterdam, The Netherlands
| | - Sean I Savitz
- Stroke Program, McGovern Medical School, UTHealth, Houston, Texas, USA
| | - Gustavo Saposnik
- Department of Medicine, University of Toronto, Toronto, Canada Stroke Outcomes Research Center, Li Ka Shing Knowledge Institute, Toronto, Canada
| | - Marion Walker
- Division of Rehabilitation and Ageing, University of Nottingham, Nottingham, UK
| | - Nick Ward
- Sobell Department of Motor Neuroscience UCL Institute of Neurology, Queen Square, London, UK National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| |
Collapse
|
47
|
Borich MR, Wheaton LA, Brodie SM, Lakhani B, Boyd LA. Evaluating interhemispheric cortical responses to transcranial magnetic stimulation in chronic stroke: A TMS-EEG investigation. Neurosci Lett 2016; 618:25-30. [PMID: 26940237 DOI: 10.1016/j.neulet.2016.02.047] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 02/15/2016] [Accepted: 02/25/2016] [Indexed: 01/22/2023]
Abstract
TMS-evoked cortical responses can be measured using simultaneous electroencephalography (TMS-EEG) to directly quantify cortical connectivity in the human brain. The purpose of this study was to evaluate interhemispheric cortical connectivity between the primary motor cortices (M1s) in participants with chronic stroke and controls using TMS-EEG. Ten participants with chronic stroke and four controls were tested. TMS-evoked responses were recorded at rest and during a typical TMS assessment of transcallosal inhibition (TCI). EEG recordings from peri-central gyral electrodes (C3 and C4) were evaluated using imaginary phase coherence (IPC) analyses to quantify levels of effective interhemispheric connectivity. Significantly increased TMS-evoked beta (15-30Hz frequency range) IPC was observed in the stroke group during ipsilesional M1 stimulation compared to controls during TCI assessment but not at rest. TMS-evoked beta IPC values were associated with TMS measures of transcallosal inhibition across groups. These results suggest TMS-evoked EEG responses can index abnormal effective interhemispheric connectivity in chronic stroke.
Collapse
Affiliation(s)
- Michael R Borich
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University School of Medicine, 1441 Clifton Rd NE, R228, Atlanta, GA 30322 USA.
| | - Lewis A Wheaton
- School of Applied Physiology, Georgia Institute of Technology, 555 14th St., Room 1309E, Atlanta, GA 30332, USA
| | - Sonia M Brodie
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada
| | - Bimal Lakhani
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada
| | - Lara A Boyd
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada
| |
Collapse
|
48
|
Neva JL, Lakhani B, Brown KE, Wadden KP, Mang CS, Ledwell NHM, Borich MR, Vavasour IM, Laule C, Traboulsee AL, MacKay AL, Boyd LA. Multiple measures of corticospinal excitability are associated with clinical features of multiple sclerosis. Behav Brain Res 2016; 297:187-95. [PMID: 26467603 PMCID: PMC4904787 DOI: 10.1016/j.bbr.2015.10.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/04/2015] [Accepted: 10/05/2015] [Indexed: 10/22/2022]
Abstract
In individuals with multiple sclerosis (MS), transcranial magnetic stimulation (TMS) may be employed to assess the integrity of corticospinal system and provides a potential surrogate biomarker of disability. The purpose of this study was to provide a comprehensive examination of the relationship between multiple measures corticospinal excitability and clinical disability in MS (expanded disability status scale (EDSS)). Bilateral corticospinal excitability was assessed using motor evoked potential (MEP) input-output (IO) curves, cortical silent period (CSP), short-interval intracortical inhibition (SICI), intracortical facilitation (ICF) and transcallosal inhibition (TCI) in 26 individuals with MS and 11 healthy controls. Measures of corticospinal excitability were compared between individuals with MS and controls. We evaluated the relationship(s) between age and clinical demographics such as age at MS onset (AO), disease duration (DD) and clinical disability (EDSS) with measures of corticospinal excitability. Corticospinal excitability thresholds were higher, MEP latency and CSP onset delayed and MEP durations prolonged in individuals with MS compared to controls. Age, DD and EDSS correlated with corticospinal excitability thresholds. Also, TCI duration and the linear slope of the MEP amplitude IO curve correlated with EDSS. Hierarchical regression modeling demonstrated that combining multiple TMS-based measures of corticospinal excitability accounted for unique variance in clinical disability (EDSS) beyond that of clinical demographics (AO, DD). Our results indicate that multiple TMS-based measures of corticospinal and interhemispheric excitability provide insights into the potential neural mechanisms associated with clinical disability in MS. These findings may aid in the clinical evaluation, disease monitoring and prediction of disability in MS.
Collapse
Affiliation(s)
- J L Neva
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
| | - B Lakhani
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - K E Brown
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - K P Wadden
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - C S Mang
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - N H M Ledwell
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - M R Borich
- Division of Physical Therapy, Department of Rehabilitation Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - I M Vavasour
- Department of Radiology, The University of British Columbia, Vancouver, BC, Canada
| | - C Laule
- Department of Radiology, The University of British Columbia, Vancouver, BC, Canada; Department of Pathology & Laboratory Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - A L Traboulsee
- Division of Neurology, Department of Medicine, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - A L MacKay
- Department of Radiology, The University of British Columbia, Vancouver, BC, Canada; Department of Physics & Astronomy, The University of British Columbia, Vancouver, BC, Canada
| | - L A Boyd
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
49
|
Snow NJ, Peters S, Borich MR, Shirzad N, Auriat AM, Hayward KS, Boyd LA. A reliability assessment of constrained spherical deconvolution-based diffusion-weighted magnetic resonance imaging in individuals with chronic stroke. J Neurosci Methods 2016; 257:109-20. [DOI: 10.1016/j.jneumeth.2015.09.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/12/2015] [Accepted: 09/16/2015] [Indexed: 11/26/2022]
|
50
|
Auriat AM, Neva JL, Peters S, Ferris JK, Boyd LA. A Review of Transcranial Magnetic Stimulation and Multimodal Neuroimaging to Characterize Post-Stroke Neuroplasticity. Front Neurol 2015; 6:226. [PMID: 26579069 PMCID: PMC4625082 DOI: 10.3389/fneur.2015.00226] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 10/12/2015] [Indexed: 01/09/2023] Open
Abstract
Following stroke, the brain undergoes various stages of recovery where the central nervous system can reorganize neural circuitry (neuroplasticity) both spontaneously and with the aid of behavioral rehabilitation and non-invasive brain stimulation. Multiple neuroimaging techniques can characterize common structural and functional stroke-related deficits, and importantly, help predict recovery of function. Diffusion tensor imaging (DTI) typically reveals increased overall diffusivity throughout the brain following stroke, and is capable of indexing the extent of white matter damage. Magnetic resonance spectroscopy (MRS) provides an index of metabolic changes in surviving neural tissue after stroke, serving as a marker of brain function. The neural correlates of altered brain activity after stroke have been demonstrated by abnormal activation of sensorimotor cortices during task performance, and at rest, using functional magnetic resonance imaging (fMRI). Electroencephalography (EEG) has been used to characterize motor dysfunction in terms of increased cortical amplitude in the sensorimotor regions when performing upper limb movement, indicating abnormally increased cognitive effort and planning in individuals with stroke. Transcranial magnetic stimulation (TMS) work reveals changes in ipsilesional and contralesional cortical excitability in the sensorimotor cortices. The severity of motor deficits indexed using TMS has been linked to the magnitude of activity imbalance between the sensorimotor cortices. In this paper, we will provide a narrative review of data from studies utilizing DTI, MRS, fMRI, EEG, and brain stimulation techniques focusing on TMS and its combination with uni- and multimodal neuroimaging methods to assess recovery after stroke. Approaches that delineate the best measures with which to predict or positively alter outcomes will be highlighted.
Collapse
Affiliation(s)
- Angela M Auriat
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia , Vancouver, BC , Canada
| | - Jason L Neva
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia , Vancouver, BC , Canada
| | - Sue Peters
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia , Vancouver, BC , Canada
| | - Jennifer K Ferris
- Graduate Program in Neuroscience, Faculty of Medicine, University of British Columbia , Vancouver, BC , Canada
| | - Lara A Boyd
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia , Vancouver, BC , Canada ; Graduate Program in Neuroscience, Faculty of Medicine, University of British Columbia , Vancouver, BC , Canada
| |
Collapse
|