1
|
McMackin R, Tadjine Y, Fasano A, Mitchell M, Heverin M, Awiszus F, Nasseroleslami B, Carson RG, Hardiman O. Examining short interval intracortical inhibition with different transcranial magnetic stimulation-induced current directions in ALS. Clin Neurophysiol Pract 2024; 9:120-129. [PMID: 38595691 PMCID: PMC11002888 DOI: 10.1016/j.cnp.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/21/2024] [Accepted: 03/03/2024] [Indexed: 04/11/2024] Open
Abstract
Objective To establish if induced current direction across the motor cortex alters the sensitivity of transcranial magnetic stimulation (TMS)-evoked short-interval intracortical inhibition (SICI) as an ALS biomarker. Methods Threshold tracking-TMS was undertaken in 35 people with ALS and 39 controls. Using a coil orientation which induces posterior-anterior (PA)-directed current across the motor cortex, SICI (1 ms and 3 ms interstimulus intervals) and intracortical facilitation (ICF, 10 ms interstimulus interval) were recorded. SICI3ms was also recorded using a coil orientation which induces anterior-posterior (AP)-directed current across the motor cortex. Results At group level, SICI3ms-PA (AUROC = 0.7), SICI3ms-AP (AUROC = 0.8) and SICI1ms (AUROC = 0.66) were substantially lower in those with ALS, although there was considerable interindividual heterogeneity. Averaging across interstimulus intervals (ISIs) marginally improved SICIPA sensitivity (AUROC = 0.76). Averaging SICI values across ISIs and orientations into a single SICI measure did not substantially improve sensitivity (AUROC = 0.81) compared to SICI3ms-AP alone. SICI3ms-AP and SICI3ms-PA did not significantly correlate (rho = 0.19, p = 0.313), while SICI1ms-PA and SICI3ms-PA did (rho = 0.37, p = 0.006). Further, those with ALS with the lowest SICI3ms-PA were not those with the lowest SICI3ms-AP. ICF was similar between groups (AUROC = 0.50). Conclusions SICIPA and SICIAP are uncorrelated measures of motor cortical inhibitory functions which are useful as distinct, unequally affected, measures of disinhibition in ALS. Significance Examining both SICIPA and SICIAP may facilitate more comprehensive characterisation of motor cortical disinhibition in ALS.
Collapse
Affiliation(s)
- Roisin McMackin
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Ireland
- Academic Unit of Neurology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Ireland
| | - Yasmine Tadjine
- Academic Unit of Neurology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Ireland
| | - Antonio Fasano
- Academic Unit of Neurology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Ireland
| | - Matthew Mitchell
- Academic Unit of Neurology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Ireland
| | - Mark Heverin
- Academic Unit of Neurology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Ireland
| | - Friedemann Awiszus
- Department of Orthopaedic Surgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Bahman Nasseroleslami
- Academic Unit of Neurology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Ireland
| | - Richard G Carson
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, University of Dublin, Ireland
- School of Psychology, Queen's University Belfast
| | - Orla Hardiman
- Academic Unit of Neurology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Ireland
- Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
2
|
Desmons M, Theberge M, Mercier C, Massé-Alarie H. Contribution of neural circuits tested by transcranial magnetic stimulation in corticomotor control of low back muscle: a systematic review. Front Neurosci 2023; 17:1180816. [PMID: 37304019 PMCID: PMC10247989 DOI: 10.3389/fnins.2023.1180816] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Transcranial magnetic stimulation (TMS) is widely used to investigate central nervous system mechanisms underlying motor control. Despite thousands of TMS studies on neurophysiological underpinnings of corticomotor control, a large majority of studies have focused on distal muscles, and little is known about axial muscles (e.g., low back muscles). Yet, differences between corticomotor control of low back and distal muscles (e.g., gross vs. fine motor control) suggest differences in the neural circuits involved. This systematic review of the literature aims at detailing the organisation and neural circuitry underlying corticomotor control of low back muscles tested with TMS in healthy humans. Methods The literature search was performed in four databases (CINAHL, Embase, Medline (Ovid) and Web of science) up to May 2022. Included studies had to use TMS in combination with EMG recording of paraspinal muscles (between T12 and L5) in healthy participants. Weighted average was used to synthesise quantitative study results. Results Forty-four articles met the selection criteria. TMS studies of low back muscles provided consistent evidence of contralateral and ipsilateral motor evoked potentials (with longer ipsilateral latencies) as well as of short intracortical inhibition/facilitation. However, few or no studies using other paired pulse protocols were found (e.g., long intracortical inhibition, interhemispheric inhibition). In addition, no study explored the interaction between different cortical areas using dual TMS coil protocol (e.g., between primary motor cortex and supplementary motor area). Discussion Corticomotor control of low back muscles are distinct from hand muscles. Our main findings suggest: (i) bilateral projections from each single primary motor cortex, for which contralateral and ipsilateral tracts are probably of different nature (contra: monosynaptic; ipsi: oligo/polysynaptic) and (ii) the presence of intracortical inhibitory and excitatory circuits in M1 influencing the excitability of the contralateral corticospinal cells projecting to low back muscles. Understanding of these mechanisms are important for improving the understanding of neuromuscular function of low back muscles and to improve the management of clinical populations (e.g., low back pain, stroke).
Collapse
Affiliation(s)
- Mikaël Desmons
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), CIUSSS de la Capitale-Nationale, Quebec, QC, Canada
- Rehabilitation Department, Université Laval, Quebec, QC, Canada
| | - Michael Theberge
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), CIUSSS de la Capitale-Nationale, Quebec, QC, Canada
| | - Catherine Mercier
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), CIUSSS de la Capitale-Nationale, Quebec, QC, Canada
- Rehabilitation Department, Université Laval, Quebec, QC, Canada
| | - Hugo Massé-Alarie
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), CIUSSS de la Capitale-Nationale, Quebec, QC, Canada
- Rehabilitation Department, Université Laval, Quebec, QC, Canada
| |
Collapse
|
3
|
Schoisswohl S, Langguth B, Weber FC, Abdelnaim MA, Hebel T, Mack W, Schecklmann M. One way or another: Treatment effects of 1 Hz rTMS using different current directions in a small sample of tinnitus patients. Neurosci Lett 2023; 797:137026. [PMID: 36535466 DOI: 10.1016/j.neulet.2022.137026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
INTRODUCTION So far studies on the efficacy of repetitive transcranial magnetic stimulation (rTMS) as a treatment for tinnitus are inconclusive. Two large scale placebo-controlled randomized clinical trials (RCT) examined the efficacy of low frequency temporal cortex rTMS and report different findings. As the used TMS devices differ in their used primary current direction by default, this technical parameter was speculated as a potential reason for the observed incongruences in tinnitus-related outcomes. The aim of the present pilot study was to investigate the treatment effect of 1 Hz rTMS using two different current flows. MATERIALS AND METHODS Nine tinnitus patients were treated in two different groups each comprised of 10 treatment sessions á 3000 biphasic pulses of 1 Hz rTMS applied over the left temporo-parietal cortex using either an anterior-posterior to posterior-anterior (AP-PA) or posterior-anterior to anterior-posterior (PA-AP) induced current flow. RESULTS 1 Hz rTMS with a primary posterior-anterior to anterior-posterior (PA-AP) current flow caused a superior reduction in tinnitus-related symptoms, particularly tinnitus unpleasantness, loudness and tinnitus-related distress. CONCLUSIONS The present pilot study demonstrated that the technical TMS parameter current direction might be essential for the efficacy of rTMS as a treatment for tinnitus. Systematic investigations of technical TMS parameters like current direction in larger samples of tinnitus patients are highly needed.
Collapse
Affiliation(s)
- Stefan Schoisswohl
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany; Department of Psychology, Universität der Bundeswehr München, Neubiberg, Germany.
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Franziska C Weber
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Mohamed A Abdelnaim
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Tobias Hebel
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Wolfgang Mack
- Department of Psychology, Universität der Bundeswehr München, Neubiberg, Germany
| | - Martin Schecklmann
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| |
Collapse
|
4
|
Ma W, Nemdharry S, Elgueta Cancino E, Chiou SY. Influence of coil orientation on corticospinal excitability of trunk muscles during postural and volitional tasks in healthy adults. Front Hum Neurosci 2023; 17:1108169. [PMID: 36816500 PMCID: PMC9929149 DOI: 10.3389/fnhum.2023.1108169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
Introduction Trunk muscles play a role in maintaining postural stability and performing goal-directed voluntary movements in activities of daily living. Evidence has shown that the primary motor cortex (M1) is involved in modulation of postural control and voluntary movements of the trunk. However, it remains unknown whether the neural circuits within the M1 were recruited to the same extent between a postural task and a goal-directed voluntary task. Methods To address this, we examined latencies and amplitudes of motor evoked potentials (MEPs) of the erector spinae (ES) with transcranial magnetic stimulation (TMS) figure-of-eight coil oriented to induce latero-medial (LM), posterior-anterior (PA), and anterior-posterior (AP) currents in the M1 in twenty healthy participants during a dynamic shoulder flexion (DSF) task, a postural task requiring anticipatory postural adjustments (APAs), and during a static trunk extension (STE) task, a voluntary task without involvement of APAs. Results We found that differences in the AP-LM latency of ES MEP were longer compared with the PA-LM latency in both tasks. Corticospinal excitability was overall greater during the DSF task than during the STE task irrespective of the coil orientation. Discussion Our findings suggest that while the same neural circuits in the M1 were recruited to modulate both postural and voluntary control of the trunk, the contribution was greater to the postural task than the voluntary task, possibly due to the requirement of APAs in the task.
Collapse
Affiliation(s)
- Wesley Ma
- School of Sport, Exercise and Rehabilitation Science, University of Birmingham, Birmingham, United Kingdom
| | - Sheanil Nemdharry
- School of Sport, Exercise and Rehabilitation Science, University of Birmingham, Birmingham, United Kingdom
| | - Edith Elgueta Cancino
- School of Sport, Exercise and Rehabilitation Science, University of Birmingham, Birmingham, United Kingdom,Exercise and Rehabilitation Sciences Institute, School of Physical Therapy, Faculty of Rehabilitation Science, Universidad Andrés Bello, Santiago, Chile
| | - Shin-Yi Chiou
- School of Sport, Exercise and Rehabilitation Science, University of Birmingham, Birmingham, United Kingdom,*Correspondence: Shin-Yi Chiou ✉
| |
Collapse
|
5
|
Sasaki R, Semmler JG, Opie GM. Threshold Tracked Short-Interval Intracortical Inhibition More Closely Predicts the Cortical Response to Transcranial Magnetic Stimulation. Neuromodulation 2022; 25:614-623. [DOI: 10.1016/j.neurom.2021.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 01/14/2023]
|
6
|
Neva JL, Brown KE, Peters S, Feldman SJ, Mahendran N, Boisgontier MP, Boyd LA. Acute Exercise Modulates the Excitability of Specific Interneurons in Human Motor Cortex. Neuroscience 2021; 475:103-116. [PMID: 34487820 DOI: 10.1016/j.neuroscience.2021.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
Acute exercise can modulate the excitability of the non-exercised upper-limb representation in the primary motor cortex (M1). Accumulating evidence demonstrates acute exercise affects measures of M1 intracortical excitability, with some studies also showing altered corticospinal excitability. However, the influence of distinct M1 interneuron populations on the modulation of intracortical and corticospinal excitability following acute exercise is currently unknown. We assessed the impact of an acute bout of leg cycling exercise on unique M1 interneuron excitability of a non-exercised intrinsic hand muscle using transcranial magnetic stimulation (TMS) in young adults. Specifically, posterior-to-anterior (PA) and anterior-to-posterior (AP) TMS current directions were used to measure the excitability of distinct populations of interneurons before and after an acute bout of exercise or rest. Motor evoked potentials (MEPs) and short-interval intracortical inhibition (SICI) were measured in the PA and AP current directions in M1 at two time points separated by 25 min of rest, as well as immediately and 30 min after a 25-minute bout of moderate-intensity cycling exercise. Thirty minutes after exercise, MEP amplitudes were significantly larger than other timepoints when measured with AP current, whereas MEP amplitudes derived from PA current did not show this effect. Similarly, SICI was significantly decreased immediately following acute exercise measured with AP but not PA current. Our findings suggest that the excitability of unique M1 interneurons are differentially modulated by acute exercise. These results indicate that M1 interneurons preferentially activated by AP current may play an important role in the exercise-induced modulation of intracortical and corticospinal excitability.
Collapse
Affiliation(s)
- Jason L Neva
- Université de Montréal, École de kinésiologie et des sciences de l'activité physique, Faculté de médecine, Montréal, QC, Canada; Centre de recherche de l'institut universitaire de gériatrie de Montréal, Montréal, QC, Canada.
| | - Katlyn E Brown
- University of Waterloo, Department of Kinesiology, Applied Health Sciences, Waterloo, ON, Canada
| | - Sue Peters
- Rehabilitation Research Program, GF Strong Rehabilitation Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada; University of British Columbia, Department of Physical Therapy, Faculty of Medicine, Vancouver, BC, Canada
| | - Samantha J Feldman
- Graduate Program in Clinical Developmental Neuropsychology, Department of Psychology, York University, Toronto, ON, Canada
| | - Niruthikha Mahendran
- University of Queensland, Discipline of Physiotherapy, School of Health and Rehabilitation Sciences, Brisbane, Australia
| | - Matthieu P Boisgontier
- School of Rehabilitation Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa ON, Canada; Bruyère Research Institute, Ottawa, ON, Canada
| | - Lara A Boyd
- University of British Columbia, Department of Physical Therapy, Faculty of Medicine, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Desmons M, Rohel A, Desgagnés A, Mercier C, Massé-Alarie H. Influence of different transcranial magnetic stimulation current directions on the corticomotor control of lumbar erector spinae muscles during a static task. J Neurophysiol 2021; 126:1276-1288. [PMID: 34550037 DOI: 10.1152/jn.00137.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Different directions of transcranial magnetic stimulation (TMS) can activate different neuronal circuits. Whereas posteroanterior current (PA-TMS) depolarizes mainly interneurons in primary motor cortex (M1), an anteroposterior current (AP-TMS) has been suggested to activate different M1 circuits and perhaps axons from the premotor regions. Although M1 is also involved in the control of axial muscles, no study has explored whether different current directions activate different M1 circuits that may have distinct functional roles. The aim of the study was to compare the effect of different current directions (PA- and AP-TMS) on the corticomotor control and spatial cortical organization of the lumbar erector spinae muscle (LES). Thirty-four healthy participants were recruited for two independent experiments, and LES motor-evoked potentials (MEPs) were recorded. In experiment 1 (n = 17), active motor threshold (AMT), MEP latencies, recruitment curve (90% to 160% AMT), and excitatory and inhibitory intracortical mechanisms by paired-pulse TMS (80% followed by 120% AMT stimuli at 2-, 3-, 10-, and 15-ms interstimulus intervals) were tested with a double-cone (n = 12) and a figure-of-eight (n = 5) coil. In experiment 2 (n = 17), LES cortical representations were tested with PA- and AP-TMS. AMT was higher for AP- compared with PA-TMS (P = 0.002). Longer latencies with AP-TMS were present compared with PA-TMS (P = 0.017). AP-TMS produced more inhibition compared with PA-TMS at 2 ms and 3 ms (P = 0.010), but no difference was observed for longer intervals. No difference was found for recruitment curve and mapping. These findings suggest that PA- and AP-TMS may activate different cortical circuits controlling low back muscles, as proposed for hand muscles.NEW & NOTEWORTHY For the first time, anteroposterior and posteroanterior induced electric currents in the brain were compared when targeting back muscle representation with transcranial magnetic stimulation. The use of the anteroposterior current resulted in later response latency, larger inhibition probed by paired-pulse stimulation, and higher motor threshold. These important differences between current directions suggest that each of the current directions may recruit specific cortical circuits involved in the control of back muscles, similar to that for hand muscles.
Collapse
Affiliation(s)
- Mikaël Desmons
- CIRRIS Research Centre, Université Laval, Quebec City, Quebec, Canada
| | - Antoine Rohel
- CIRRIS Research Centre, Université Laval, Quebec City, Quebec, Canada
| | - Amélie Desgagnés
- CIRRIS Research Centre, Université Laval, Quebec City, Quebec, Canada
| | - Catherine Mercier
- CIRRIS Research Centre, Université Laval, Quebec City, Quebec, Canada.,Rehabilitation Unit, Université Laval, Quebec City, Quebec, Canada
| | - Hugo Massé-Alarie
- CIRRIS Research Centre, Université Laval, Quebec City, Quebec, Canada.,Rehabilitation Unit, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
8
|
Tugin S, Souza VH, Nazarova MA, Novikov PA, Tervo AE, Nieminen JO, Lioumis P, Ziemann U, Nikulin VV, Ilmoniemi RJ. Effect of stimulus orientation and intensity on short-interval intracortical inhibition (SICI) and facilitation (SICF): A multi-channel transcranial magnetic stimulation study. PLoS One 2021; 16:e0257554. [PMID: 34550997 PMCID: PMC8457500 DOI: 10.1371/journal.pone.0257554] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/03/2021] [Indexed: 11/18/2022] Open
Abstract
Besides stimulus intensities and interstimulus intervals (ISI), the electric field (E-field) orientation is known to affect both short-interval intracortical inhibition (SICI) and facilitation (SICF) in paired-pulse transcranial magnetic stimulation (TMS). However, it has yet to be established how distinct orientations of the conditioning (CS) and test stimuli (TS) affect the SICI and SICF generation. With the use of a multi-channel TMS transducer that provides electronic control of the stimulus orientation and intensity, we aimed to investigate how changes in the CS and TS orientation affect the strength of SICI and SICF. We hypothesized that the CS orientation would play a major role for SICF than for SICI, whereas the CS intensity would be more critical for SICI than for SICF. In eight healthy subjects, we tested two ISIs (1.5 and 2.7 ms), two CS and TS orientations (anteromedial (AM) and posteromedial (PM)), and four CS intensities (50, 70, 90, and 110% of the resting motor threshold (RMT)). The TS intensity was fixed at 110% RMT. The intensities were adjusted to the corresponding RMT in the AM and PM orientations. SICI and SICF were observed in all tested CS and TS orientations. SICI depended on the CS intensity in a U-shaped manner in any combination of the CS and TS orientations. With 70% and 90% RMT CS intensities, stronger PM-oriented CS induced stronger inhibition than weaker AM-oriented CS. Similar SICF was observed for any CS orientation. Neither SICI nor SICF depended on the TS orientation. We demonstrated that SICI and SICF could be elicited by the CS perpendicular to the TS, which indicates that these stimuli affected either overlapping or strongly connected neuronal populations. We concluded that SICI is primarily sensitive to the CS intensity and that CS intensity adjustment resulted in similar SICF for different CS orientations.
Collapse
Affiliation(s)
- Sergei Tugin
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
- BioMag Laboratory, University of Helsinki and Helsinki University Hospital, HUS Medical Imaging Centre, Helsinki, Finland
- * E-mail:
| | - Victor H. Souza
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
- BioMag Laboratory, University of Helsinki and Helsinki University Hospital, HUS Medical Imaging Centre, Helsinki, Finland
- School of Physiotherapy, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Maria A. Nazarova
- Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia
- Federal State Budgetary Institution “Federal Center of Brain Research and Neurotechnologies” of the Federal Medical Biological Agency, Moscow, Russia
| | - Pavel A. Novikov
- Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia
| | - Aino E. Tervo
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
- BioMag Laboratory, University of Helsinki and Helsinki University Hospital, HUS Medical Imaging Centre, Helsinki, Finland
| | - Jaakko O. Nieminen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
- BioMag Laboratory, University of Helsinki and Helsinki University Hospital, HUS Medical Imaging Centre, Helsinki, Finland
| | - Pantelis Lioumis
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
- BioMag Laboratory, University of Helsinki and Helsinki University Hospital, HUS Medical Imaging Centre, Helsinki, Finland
| | - Ulf Ziemann
- Department of Neurology and Stroke, Eberhard Karls University, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Eberhard Karls University, Tübingen, Germany
| | - Vadim V. Nikulin
- Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Risto J. Ilmoniemi
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
- BioMag Laboratory, University of Helsinki and Helsinki University Hospital, HUS Medical Imaging Centre, Helsinki, Finland
| |
Collapse
|
9
|
Fong PY, Spampinato D, Rocchi L, Hannah R, Teng Y, Di Santo A, Shoura M, Bhatia K, Rothwell JC. Two forms of short-interval intracortical inhibition in human motor cortex. Brain Stimul 2021; 14:1340-1352. [PMID: 34481097 PMCID: PMC8460995 DOI: 10.1016/j.brs.2021.08.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/21/2021] [Accepted: 08/31/2021] [Indexed: 11/24/2022] Open
Abstract
Background Pulses of transcranial magnetic stimulation (TMS) with a predominantly anterior-posterior (AP) or posterior-anterior (PA) current direction over the primary motor cortex appear to activate distinct excitatory inputs to corticospinal neurons. In contrast, very few reports have examined whether the inhibitory neurons responsible for short-interval intracortical inhibition (SICI) are sensitive to TMS current direction. Objectives To investigate whether SICI evaluated with AP and PA conditioning stimuli (CSPA and CSAP) activate different inhibitory pathways. SICI was always assessed using a PA-oriented test stimulus (TSPA). Methods Using two superimposed TMS coils, CSPA and CSAP were applied at interstimulus intervals (ISI) of 1–5 ms before a TSPA, and at a range of different intensities. Using a triple stimulation design, we then tested whether SICI at ISI of 3 ms using opposite directions of CS (SICICSPA3 and SICICSAP3) interacted differently with three other forms of inhibition, including SICI at ISI of 2 ms (SICICSPA2), cerebellum-motor cortex inhibition (CBI 5 ms) and short-latency afferent inhibition (SAI 22 ms). Finally, we compared the effect of tonic and phasic voluntary contraction on SICICSPA3 and SICICSAP3. Results CSAP produced little SICI at ISIs = 1 and 2 ms. However, at ISI = 3 ms, both CSAP and CSPA were equally effective at the same percent of maximum stimulator output. Despite this apparent similarity, combining SICICSPA3 or SICICSAP3 with other forms of inhibition led to quite different results: SICICSPA3 interacted in complex ways with CBI, SAI and SICICSPA2, whereas the effect of SICICSAP3 appeared to be quite independent of them. Although SICICSPA and SICICSAP were both reduced by the same amount during voluntary tonic contraction compared with rest, in a simple reaction time task SICICSAP was disinhibited much earlier following the imperative signal than SICICSPA. Conclusions SICICSPA appears to activate a different inhibitory pathway to that activated by SICICSAP. The difference is behaviourally relevant since the pathways are controlled differently during volitional contraction. The results may explain some previous pathological data and open the possibility of testing whether these pathways are differentially recruited in a range of tasks. Opposite directions of conditioning stimulus (CS) used to suppress MEPs evoked by a conventional test stimulus. Different directions of CS have different time courses of short-interval intracortical inhibition (SICI). They also interact differently with short-latency afferent inhibition and with cerebellar inhibition. They are differently affected in a reaction time task. We suggest there are two forms of SICI in motor cortex.
Collapse
Affiliation(s)
- Po-Yu Fong
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK; Division of Movement Disorders, Department of Neurology and Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan City, Taiwan; Medical School, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Danny Spampinato
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK; Non-invasive Brain Stimulation Unit, IRCCS Santa Lucia Foundation, Via Ardeatina 306/354, 00142, Rome, Italy
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK; Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Ricci Hannah
- Department of Psychology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Yinghui Teng
- Division of Biosciences, University College London, London, UK
| | - Alessandro Di Santo
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK; Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Mohamed Shoura
- Department of Neurology, Heliopolis and Al Azhar University Hospitals, Cairo, Egypt
| | - Kailash Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
10
|
Turco CV, Nelson AJ. Transcranial Magnetic Stimulation to Assess Exercise-Induced Neuroplasticity. FRONTIERS IN NEUROERGONOMICS 2021; 2:679033. [PMID: 38235229 PMCID: PMC10790852 DOI: 10.3389/fnrgo.2021.679033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/06/2021] [Indexed: 01/19/2024]
Abstract
Aerobic exercise facilitates neuroplasticity and has been linked to improvements in cognitive and motor function. Transcranial magnetic stimulation (TMS) is a non-invasive technique that can be used to quantify changes in neurophysiology induced by exercise. The present review summarizes the single- and paired-pulse TMS paradigms that can be used to probe exercise-induced neuroplasticity, the optimal stimulation parameters and the current understanding of the neurophysiology underlying each paradigm. Further, this review amalgamates previous research exploring the modulation of these paradigms with exercise-induced neuroplasticity in healthy and clinical populations and highlights important considerations for future TMS-exercise research.
Collapse
Affiliation(s)
| | - Aimee J. Nelson
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
11
|
Andrews SC, Curtin D, Hawi Z, Wongtrakun J, Stout JC, Coxon JP. Intensity Matters: High-intensity Interval Exercise Enhances Motor Cortex Plasticity More Than Moderate Exercise. Cereb Cortex 2021; 30:101-112. [PMID: 31041988 DOI: 10.1093/cercor/bhz075] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/15/2022] Open
Abstract
A single bout of cardiovascular exercise can enhance plasticity in human cortex; however, the intensity required for optimal enhancement is debated. We investigated the effect of exercise intensity on motor cortex synaptic plasticity, using transcranial magnetic stimulation. Twenty healthy adults (Mage = 35.10 ± 13.25 years) completed three sessions. Measures of cortico-motor excitability (CME) and inhibition were obtained before and after a 20-min bout of either high-intensity interval exercise, moderate-intensity continuous exercise, or rest, and again after intermittent theta burst stimulation (iTBS). Results showed that high-intensity interval exercise enhanced iTBS plasticity more than rest, evidenced by increased CME and intracortical facilitation, and reduced intracortical inhibition. In comparison, the effect of moderate-intensity exercise was intermediate between high-intensity exercise and rest. Importantly, analysis of each participant's plasticity response profile indicated that high-intensity exercise increased the likelihood of a facilitatory response to iTBS. We also established that the brain-derived neurotrophic factor Val66Met polymorphism attenuated plasticity responses following high-intensity exercise. These findings suggest that high-intensity interval exercise should be considered not only when planning exercise interventions designed to enhance neuroplasticity, but also to maximize the therapeutic potential of non-invasive brain stimulation. Additionally, genetic profiling may enhance efficacy of exercise interventions for brain health.
Collapse
Affiliation(s)
- Sophie C Andrews
- Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, Australia
- Neuroscience Research Australia, Sydney, Australia
- University of New South Wales, School of Psychology, Sydney, Australia
| | - Dylan Curtin
- Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Ziarih Hawi
- Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Jaeger Wongtrakun
- Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Julie C Stout
- Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - James P Coxon
- Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
12
|
Guerra A, Rocchi L, Grego A, Berardi F, Luisi C, Ferreri F. Contribution of TMS and TMS-EEG to the Understanding of Mechanisms Underlying Physiological Brain Aging. Brain Sci 2021; 11:405. [PMID: 33810206 PMCID: PMC8004753 DOI: 10.3390/brainsci11030405] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 12/21/2022] Open
Abstract
In the human brain, aging is characterized by progressive neuronal loss, leading to disruption of synapses and to a degree of failure in neurotransmission. However, there is increasing evidence to support the notion that the aged brain has a remarkable ability to reorganize itself, with the aim of preserving its physiological activity. It is important to develop objective markers able to characterize the biological processes underlying brain aging in the intact human, and to distinguish them from brain degeneration associated with many neurological diseases. Transcranial magnetic stimulation (TMS), coupled with electromyography or electroencephalography (EEG), is particularly suited to this aim, due to the functional nature of the information provided, and thanks to the ease with which it can be integrated with behavioral manipulation. In this review, we aimed to provide up to date information about the role of TMS and TMS-EEG in the investigation of brain aging. In particular, we focused on data about cortical excitability, connectivity and plasticity, obtained by using readouts such as motor evoked potentials and transcranial evoked potentials. Overall, findings in the literature support an important potential contribution of TMS to the understanding of the mechanisms underlying normal brain aging. Further studies are needed to expand the current body of information and to assess the applicability of TMS findings in the clinical setting.
Collapse
Affiliation(s)
| | - Lorenzo Rocchi
- Department of Clinical and Movements Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK;
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| | - Alberto Grego
- Department of Neuroscience, University of Padua, 35122 Padua, Italy; (A.G.); (F.B.); (C.L.)
| | - Francesca Berardi
- Department of Neuroscience, University of Padua, 35122 Padua, Italy; (A.G.); (F.B.); (C.L.)
| | - Concetta Luisi
- Department of Neuroscience, University of Padua, 35122 Padua, Italy; (A.G.); (F.B.); (C.L.)
| | - Florinda Ferreri
- Department of Neuroscience, University of Padua, 35122 Padua, Italy; (A.G.); (F.B.); (C.L.)
- Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, 70210 Kuopio, Finland
| |
Collapse
|
13
|
The Effect of Sub-Concussive Impacts during a Rugby Tackling Drill on Brain Function. Brain Sci 2020; 10:brainsci10120960. [PMID: 33321843 PMCID: PMC7764819 DOI: 10.3390/brainsci10120960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 11/17/2022] Open
Abstract
Concussion is known to detrimentally affect brain health. Rugby tackles commonly occur with high collision force between tackler and ball carrier, and low impact head contact is not uncommon. Cognitive deficits following a bout of soccer ball heading has been attributed to the impact and termed sub-concussion. Although soccer ball heading studies provide evidence for acute effects of sub-concussion, it is unknown whether this phenomenon occurs following rugby tackles. This study investigates the acute effects of rugby tackles on brain function and balance in rugby players. Twenty-six volunteers were assigned to either the ball carrier (9), tackler (9) or control (8) group. Controls performed running without the tackle. Outcome measures included corticomotor function using transcranial magnetic brain stimulation (TMS) and balance was assessed by a series of tasks performed on a NeuroCom Balance Master before and immediately after a tackle training drill. Following the tackling bout, the cortical silent period (cSP) increased for the tacklers with no change for ball carrier and control groups, and no differences between groups for balance measures were observed. Lengthening of cSP observed in the tacklers following the bout has been reported in studies of concussion and may indicate long term detrimental effects.
Collapse
|
14
|
Opie GM, Semmler JG. Preferential Activation of Unique Motor Cortical Networks With Transcranial Magnetic Stimulation: A Review of the Physiological, Functional, and Clinical Evidence. Neuromodulation 2020; 24:813-828. [PMID: 33295685 DOI: 10.1111/ner.13314] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/30/2020] [Accepted: 10/19/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVES The corticospinal volley produced by application of transcranial magnetic stimulation (TMS) over primary motor cortex consists of a number of waves generated by trans-synaptic input from interneuronal circuits. These indirect (I)-waves mediate the sensitivity of TMS to cortical plasticity and intracortical excitability and can be assessed by altering the direction of cortical current induced by TMS. While this methodological approach has been conventionally viewed as preferentially recruiting early or late I-wave inputs from a given populations of neurons, growing evidence suggests recruitment of different neuronal populations, and this would strongly influence interpretation and application of these measures. The aim of this review is therefore to consider the physiological, functional, and clinical evidence for the independence of the neuronal circuits activated by different current directions. MATERIALS AND METHODS To provide the relevant context, we begin with an overview of TMS methodology, focusing on the different techniques used to quantify I-waves. We then comprehensively review the literature that has used variations in coil orientation to investigate the I-wave circuits, grouping studies based on the neurophysiological, functional, and clinical relevance of their outcomes. RESULTS Review of the existing literature reveals significant evidence supporting the idea that varying current direction can recruit different neuronal populations having unique functionally and clinically relevant characteristics. CONCLUSIONS Further research providing greater characterization of the I-wave circuits activated with different current directions is required. This will facilitate the development of interventions that are able to modulate specific intracortical circuits, which will be an important application of TMS.
Collapse
Affiliation(s)
- George M Opie
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - John G Semmler
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
15
|
Giboin LS, Reunis T, Gruber M. Corticospinal properties are associated with sensorimotor performance in action video game players. Neuroimage 2020; 226:117576. [PMID: 33221450 DOI: 10.1016/j.neuroimage.2020.117576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/10/2020] [Accepted: 11/10/2020] [Indexed: 10/23/2022] Open
Abstract
Notwithstanding the apparent demands regarding fine motor skills that are required to perform in action video games, the motor nervous system of players has not been studied systematically. In the present study, we hypothesized to find differences in sensorimotor performance and corticospinal characteristics between action video game players (Players) and Controls. We tested sensorimotor performance in video games tasks and used transcranial magnetic stimulation (TMS) to measure motor map, input-output (IO) and short intra-cortical inhibition (SICI) curves in the first dorsal interosseous (FDI) muscle of Players (n = 18) and Control (n = 18). Players scored higher in performance tests and had stronger SICI and higher motor evoked potential (MEP) amplitudes. Multiple linear regressions showed that Players and Control differed with respect to their relation between reaction time and corticospinal excitability. However, we did not find different motor map topography or different IO curves for Players when compared to Controls. Action video game players showed an increased efficiency of motor cortical inhibitory and excitatory neural networks. Players also showed a different relation of MEPs with reaction time. The present study demonstrates the potential of action video game players as an ideal population to study the mechanisms underlying visuomotor performance and sensorimotor learning.
Collapse
Affiliation(s)
- Louis-Solal Giboin
- Sensorimotor Performance Lab, Human Performance Research Centre, Department of Sport Science, University of Konstanz, Germany.
| | - Tom Reunis
- Sensorimotor Performance Lab, Human Performance Research Centre, Department of Sport Science, University of Konstanz, Germany
| | - Markus Gruber
- Sensorimotor Performance Lab, Human Performance Research Centre, Department of Sport Science, University of Konstanz, Germany
| |
Collapse
|
16
|
Tankisi H, Cengiz B, Howells J, Samusyte G, Koltzenburg M, Bostock H. Short-interval intracortical inhibition as a function of inter-stimulus interval: Three methods compared. Brain Stimul 2020; 14:22-32. [PMID: 33166726 DOI: 10.1016/j.brs.2020.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/28/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Short-interval intracortical inhibition (SICI), as measured by threshold-tracking as a function of inter-stimulus interval (ISI), has been proposed as a useful biomarker for amyotrophic lateral sclerosis (ALS), but its relationship to conventional amplitude measurements has not been established. METHODS Serial tracking of SICI at increasing ISIs from 1 to 7 ms (T-SICIs) was compared in 50 healthy control subjects with the same ISIs tracked in parallel (T-SICIp), and with conventional amplitude measurements (A-SICI). For T-SICIp and A-SICI, pairs of conditioning and test stimuli with different ISIs were pseudo-randomised and interspersed with test-alone stimuli given at regular intervals. Thresholds were estimated by regression of log peak-to-peak amplitude on stimulus. RESULTS T-SICIp and A-SICI were closely related: a ten-fold reduction in amplitude corresponding to an approximately 18% increase in threshold. Threshold increases were greater for T-SICIs than for T-SICIp at 3.5-5 ms (P < 0.001). This divergence depended on the initial settings and whether ISIs were progressively increased or decreased, and was attributed to the limitations of the serial tracking protocol. SICI variability between subjects was greatest for T-SICIs estimates and least for A-SICI, and only A-SICI estimates revealed a significant decline in inhibition with age. CONCLUSIONS The serial tracking protocol did not accurately show the dependence of inhibition on ISI. Randomising ISIs gives corresponding SICI measures, whether tracking thresholds or measuring amplitude measurements. SICI variability suggested that A-SICI measurements may be the most sensitive to loss of inhibition.
Collapse
Affiliation(s)
- Hatice Tankisi
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
| | - Bülent Cengiz
- Department of Neurology, Gazi University Faculty of Medicine, Beşevler, 06500, Ankara, Turkey
| | - James Howells
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Gintaute Samusyte
- Department of Neurology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Martin Koltzenburg
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, Queen Square, WC1N 3BG, London, United Kingdom; Department of Clinical Neurophysiology, National Hospital for Neurology and Neurosurgery, Queen Square, WC1N 3BG, London, United Kingdom
| | - Hugh Bostock
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, WC1N 3BG, London, United Kingdom.
| |
Collapse
|
17
|
Hand BJ, Opie GM, Sidhu SK, Semmler JG. TMS coil orientation and muscle activation influence lower limb intracortical excitability. Brain Res 2020; 1746:147027. [PMID: 32717277 DOI: 10.1016/j.brainres.2020.147027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/26/2020] [Accepted: 07/19/2020] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Previous research with transcranial magnetic stimulation (TMS) indicates that coil orientation (TMS current direction) and muscle activation state (rest or active) modify corticospinal and intracortical excitability of upper limb muscles. However, the extent to which these factors influence corticospinal and intracortical excitability of lower limb muscles is unknown. This study aimed to examine how variations in coil orientation and muscle activation affect corticospinal and intracortical excitability of tibialis anterior (TA), a lower leg muscle. METHODS In 21 young (21.6 ± 3.3 years, 11 female) adults, TMS was administered to the motor cortical representation of TA in posterior-anterior (PA) and mediolateral (ML) orientations at rest and during muscle activation. Single-pulse TMS measures of motor evoked potential amplitude, in addition to resting and active motor thresholds, were used to index corticospinal excitability, whereas paired-pulse TMS measures of short-interval intracortical inhibition (SICI) and facilitation (SICF), and long-interval intracortical inhibition (LICI), were used to assess excitability of intracortical circuits. RESULTS For single-pulse TMS, motor thresholds and test TMS intensity were lower for ML stimulation (all P < 0.05). In a resting muscle, ML TMS produced greater SICI (P < 0.001) and less SICF (both P < 0.05) when compared with PA TMS. In contrast, ML TMS in an active muscle resulted in reduced SICI but increased SICF (both P ≤ 0.001) when compared with PA TMS. CONCLUSION TMS coil orientation and muscle activation influence measurements of intracortical excitability recorded in the tibialis anterior, and are therefore important considerations in TMS studies of lower limb muscles.
Collapse
Affiliation(s)
- Brodie J Hand
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - George M Opie
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - Simranjit K Sidhu
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - John G Semmler
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, Australia.
| |
Collapse
|
18
|
Spampinato D. Dissecting two distinct interneuronal networks in M1 with transcranial magnetic stimulation. Exp Brain Res 2020; 238:1693-1700. [PMID: 32661650 PMCID: PMC7413864 DOI: 10.1007/s00221-020-05875-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/06/2020] [Indexed: 11/27/2022]
Abstract
Interactions from both inhibitory and excitatory interneurons are necessary components of cortical processing that contribute to the vast amount of motor actions executed by humans daily. As transcranial magnetic stimulation (TMS) over primary motor cortex is capable of activating corticospinal neurons trans-synaptically, studies over the past 30 years have provided how subtle changes in stimulation parameters (i.e., current direction, pulse width, and paired-pulse) can elucidate evidence for two distinct neuronal networks that can be probed with this technique. This article provides a brief review of some fundamental studies demonstrating how these networks have separable excitatory inputs to corticospinal neurons. Furthermore, the findings of recent investigations will be discussed in detail, illustrating how each network's sensitivity to different brain states (i.e., rest, movement preparation, and motor learning) is dissociable. Understanding the physiological characteristics of each network can help to explain why interindividual responses to TMS exist, while also providing insights into the role of these networks in various human motor behaviors.
Collapse
Affiliation(s)
- Danny Spampinato
- Department for Clinical and Movement Neurosciences, Institute of Neurology, University College of London, London, UK.
| |
Collapse
|
19
|
Primary motor cortex function and motor skill acquisition: insights from threshold-hunting TMS. Exp Brain Res 2020; 238:1745-1757. [DOI: 10.1007/s00221-020-05791-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/18/2020] [Indexed: 12/11/2022]
|
20
|
Schoisswohl S, Agrawal K, Simoes J, Neff P, Schlee W, Langguth B, Schecklmann M. RTMS parameters in tinnitus trials: a systematic review. Sci Rep 2019; 9:12190. [PMID: 31434985 PMCID: PMC6704094 DOI: 10.1038/s41598-019-48750-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022] Open
Abstract
Over the past few years extensive body of research was produced investigating the effects of repetitive transcranial magnetic stimulation (rTMS) for the treatment of chronic tinnitus with heterogeneous results. This heterogeneity is exemplified by two recently published large-scale clinical trials reporting different outcomes. Technical aspects of rTMS were suspected as a potential source for this incongruency. The aim of this systematic review is to examine the overall efficacy as well as to identify possible technical factors relevant for the effectiveness of rTMS tinnitus trials. Via a literature search appropriate original research papers were identified and rTMS parameters were extracted from each study arm for subsequent statistical analysis with respect to observed effects (significant vs. not significant pre-post rTMS effects). Our findings indicate that verum rTMS is superior to sham rTMS as demonstrated by the proportion of significant pre-post contrasts. Some relevant rTMS parameters (e.g., pulse waveform) are not reported. Lower rTMS stimulation intensity was associated with significant effects in verum rTMS arms. An additional stimulation of the DLPFC to the temporal cortex was not found to promote efficacy. Future research should consider differential effects of rTMS induced by technical parameters and strive for an exhaustive reporting of relevant rTMS parameters.
Collapse
Affiliation(s)
- Stefan Schoisswohl
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany.
- European School for Interdisciplinary Tinnitus Research (ESIT), Regensburg, Germany.
| | - Kushal Agrawal
- Institute of Databases and Information Systems, University of Ulm, Ulm, Germany
- European School for Interdisciplinary Tinnitus Research (ESIT), Regensburg, Germany
| | - Jorge Simoes
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
- European School for Interdisciplinary Tinnitus Research (ESIT), Regensburg, Germany
| | - Patrick Neff
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
- University Research Priority Program "Dynamics of Healthy Aging", University of Zurich, Zurich, Switzerland
| | - Winfried Schlee
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
- European School for Interdisciplinary Tinnitus Research (ESIT), Regensburg, Germany
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
- European School for Interdisciplinary Tinnitus Research (ESIT), Regensburg, Germany
| | - Martin Schecklmann
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
- European School for Interdisciplinary Tinnitus Research (ESIT), Regensburg, Germany
| |
Collapse
|
21
|
Wessel MJ, Draaisma LR, Morishita T, Hummel FC. The Effects of Stimulator, Waveform, and Current Direction on Intracortical Inhibition and Facilitation: A TMS Comparison Study. Front Neurosci 2019; 13:703. [PMID: 31338018 PMCID: PMC6629772 DOI: 10.3389/fnins.2019.00703] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/21/2019] [Indexed: 01/10/2023] Open
Abstract
Background: Cortical function is dependent on the balance between excitatory and inhibitory influences. In the human motor cortex, surrogates of these interactions can be measured in vivo, non-invasively with double-pulse transcranial magnetic stimulation (TMS). To compare results from data acquired with different available setups and bring data together, it is inevitable to determine whether different TMS setups lead to comparable or differential results. Objective: We assessed and compared short intracortical inhibition (SICI) and intracortical facilitation (ICF) testing four different experimental conditions. Methods: SICI and ICF were studied with different stimulators (Magstim BiStim2 or MagVenture MagPro X100), waveforms (monophasic or biphasic), current directions (anterior-posterior or posterior-anterior) at interstimulus intervals (ISIs) of 1, 3, 10, 15 ms. Results: We were not able to detect differences for SICI and ICF, when comparing the tested conditions, except for 3 ms SICI in which the anterior-posterior current direction led to stronger modulation. Correlation analysis suggested comparability for 3 ms SICI for the Magstim monophasic posterior-anterior condition with both tested MagVenture conditions. Conclusions: 3 ms SICI data sets obtained with two different, commonly used stimulators (Magstim BiStim2 or MagVenture MagPro X100) with conventionally used stimulation parameters are largely comparable. This may allow the combination of data sets in an open science view.
Collapse
Affiliation(s)
- Maximilian J Wessel
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland.,Defitech Chair of Clinical Neuroengineering, Clinique Romande de Réadaptation, Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL Valais), Sion, Switzerland
| | - Laurijn R Draaisma
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland.,Defitech Chair of Clinical Neuroengineering, Clinique Romande de Réadaptation, Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL Valais), Sion, Switzerland
| | - Takuya Morishita
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland.,Defitech Chair of Clinical Neuroengineering, Clinique Romande de Réadaptation, Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL Valais), Sion, Switzerland
| | - Friedhelm C Hummel
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland.,Defitech Chair of Clinical Neuroengineering, Clinique Romande de Réadaptation, Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL Valais), Sion, Switzerland.,Department of Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
22
|
Mooney RA, Cirillo J, Byblow WD. Neurophysiological mechanisms underlying motor skill learning in young and older adults. Exp Brain Res 2019; 237:2331-2344. [DOI: 10.1007/s00221-019-05599-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/04/2019] [Indexed: 01/03/2023]
|
23
|
Conventional or threshold-hunting TMS? A tale of two SICIs. Brain Stimul 2018; 11:1296-1305. [DOI: 10.1016/j.brs.2018.07.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 07/11/2018] [Accepted: 07/15/2018] [Indexed: 12/14/2022] Open
|
24
|
Mooney RA, Cirillo J, Byblow WD. Adaptive threshold hunting reveals differences in interhemispheric inhibition between young and older adults. Eur J Neurosci 2018; 48:2247-2258. [DOI: 10.1111/ejn.14097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/26/2018] [Accepted: 07/31/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Ronan A. Mooney
- Department of Exercise Sciences; Movement Neuroscience Laboratory; The University of Auckland; Auckland New Zealand
- Centre for Brain Research; The University of Auckland; Auckland New Zealand
| | - John Cirillo
- Department of Exercise Sciences; Movement Neuroscience Laboratory; The University of Auckland; Auckland New Zealand
- Centre for Brain Research; The University of Auckland; Auckland New Zealand
| | - Winston D. Byblow
- Department of Exercise Sciences; Movement Neuroscience Laboratory; The University of Auckland; Auckland New Zealand
- Centre for Brain Research; The University of Auckland; Auckland New Zealand
| |
Collapse
|
25
|
Mooney RA, Cirillo J, Byblow WD. Adaptive threshold hunting for the effects of transcranial direct current stimulation on primary motor cortex inhibition. Exp Brain Res 2018; 236:1651-1663. [DOI: 10.1007/s00221-018-5250-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 03/30/2018] [Indexed: 11/25/2022]
|
26
|
Cirillo J, Cowie MJ, MacDonald HJ, Byblow WD. Response inhibition activates distinct motor cortical inhibitory processes. J Neurophysiol 2018; 119:877-886. [DOI: 10.1152/jn.00784.2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We routinely cancel preplanned movements that are no longer required. If stopping is forewarned, proactive processes are engaged to selectively decrease motor cortex excitability. However, without advance information there is a nonselective reduction in motor cortical excitability. In this study we examined modulation of human primary motor cortex inhibitory networks during response inhibition tasks with informative and uninformative cues using paired-pulse transcranial magnetic stimulation. Long- (LICI) and short-interval intracortical inhibition (SICI), indicative of GABAB- and GABAA-receptor mediated inhibition, respectively, were examined from motor evoked potentials obtained in task-relevant and task-irrelevant hand muscles when response inhibition was preceded by informative and uninformative cues. When the participants (10 men and 8 women) were cued to stop only a subcomponent of the bimanual response, the remaining response was delayed, and the extent of delay was greatest in the more reactive context, when cues were uninformative. For LICI, inhibition was reduced in both muscles during all types of response inhibition trials compared with the pre-task resting baseline. When cues were uninformative and left-hand responses were suddenly canceled, task-relevant LICI positively correlated with response times of the responding right hand. In trials where left-hand responding was highly probable or known (informative cues), task-relevant SICI was reduced compared with that when cued to rest, revealing a motor set indicative of responding. These novel findings indicate that the GABAB-receptor-mediated pathway may set a default inhibitory tone according to task context, whereas the GABAA-receptor-mediated pathways are recruited proactively with response certainty. NEW & NOTEWORTHY We examined how informative and uninformative cues that trigger both proactive and reactive processes modulate GABAergic inhibitory networks within human primary motor cortex. We show that GABAB inhibition was released during the task regardless of cue type, whereas GABAA inhibition was reduced when responding was highly probable or known compared with rest. GABAB-receptor-mediated inhibition may set a default inhibitory tone, whereas GABAA circuits may be modulated proactively according to response certainty.
Collapse
Affiliation(s)
- John Cirillo
- Movement Neuroscience Laboratory, Department of Exercise Sciences, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Matthew J. Cowie
- Movement Neuroscience Laboratory, Department of Exercise Sciences, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Hayley J. MacDonald
- Sport, Exercise and Rehabilitation Sciences, The University of Birmingham, Birmingham, United Kingdom
| | - Winston D. Byblow
- Movement Neuroscience Laboratory, Department of Exercise Sciences, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
27
|
Siddiqi A, Poosapadi Arjunan S, Kumar DK. Computational model to investigate the relative contributions of different neuromuscular properties of tibialis anterior on force generated during ankle dorsiflexion. Med Biol Eng Comput 2018; 56:1413-1423. [PMID: 29335929 DOI: 10.1007/s11517-018-1788-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 01/06/2018] [Indexed: 10/18/2022]
Abstract
This study describes a new model of the force generated by tibialis anterior muscle with three new features: single-fiber action potential, twitch force, and pennation angle. This model was used to investigate the relative effects and interaction of ten age-associated neuromuscular parameters. Regression analysis (significance level of 0.05) between the neuromuscular properties and corresponding simulated force produced at the footplate was performed. Standardized slope coefficients were computed to rank the effect of the parameters. The results show that reduction in the average firing rate is the reason for the sharp decline in the force and other factors, such as number of muscle fibers, specific force, pennation angle, and innervation ratio. The fast fiber ratio affects the simulated force through two significant interactions. This study has ranked the individual contributions of the neuromuscular factors to muscle strength decline of the TA and identified firing rate decline as the biggest cause followed by decrease in muscle fiber number and specific force. The strategy for strength preservation for the elderly should focus on improving firing rate. Graphical abstract Neuromuscular properties of Tibialis Anterior on force generated during ankle dorsiflexion.
Collapse
Affiliation(s)
- Ariba Siddiqi
- Biosignals Laboratory, School of Engineering, RMIT University, GPO Box 2476, Melbourne, VIC, Australia
| | - Sridhar Poosapadi Arjunan
- Biosignals Laboratory, School of Engineering, RMIT University, GPO Box 2476, Melbourne, VIC, Australia.
| | - Dinesh Kant Kumar
- Biosignals Laboratory, School of Engineering, RMIT University, GPO Box 2476, Melbourne, VIC, Australia
| |
Collapse
|
28
|
Mooney RA, Cirillo J, Byblow WD. GABA and primary motor cortex inhibition in young and older adults: a multimodal reliability study. J Neurophysiol 2017; 118:425-433. [PMID: 28424294 DOI: 10.1152/jn.00199.2017] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/19/2017] [Accepted: 04/19/2017] [Indexed: 12/14/2022] Open
Abstract
The effects of healthy aging on γ-aminobutyric acid (GABA) within primary motor cortex (M1) remain poorly understood. Studies have reported contrasting results, potentially due to limitations with the common assessment technique. The aim of the present study was to investigate the effect of healthy aging on M1 GABA concentration and neurotransmission using a multimodal approach. Fifteen young and sixteen older adults participated in this study. Magnetic resonance spectroscopy (MRS) was used to measure M1 GABA concentration. Single-pulse and threshold-tracking paired-pulse transcranial magnetic stimulation (TMS) protocols were used to examine cortical silent period duration, short- and long-interval intracortical inhibition (SICI and LICI), and late cortical disinhibition (LCD). The reliability of TMS measures was examined with intraclass correlation coefficient analyses. SICI at 1 ms was reduced in older adults (15.13 ± 2.59%) compared with young (25.66 ± 1.44%; P = 0.002). However, there was no age-related effect for cortical silent period duration, SICI at 3 ms, LICI, or LCD (all P > 0.66). The intersession reliability of threshold-tracking measures was good to excellent for both young (range 0.75-0.96) and older adults (range 0.88-0.93). Our findings indicate that extrasynaptic inhibition may be reduced with advancing age, whereas GABA concentration and synaptic inhibition are maintained. Furthermore, MRS and threshold-tracking TMS provide valid and reliable assessment of M1 GABA concentration and neurotransmission, respectively, in young and older adults.NEW & NOTEWORTHY γ-Aminobutyric acid (GABA) in primary motor cortex was assessed in young and older adults using magnetic resonance spectroscopy and threshold-tracking paired-pulse transcranial magnetic stimulation. Older adults exhibited reduced extrasynaptic inhibition (short-interval intracortical inhibition at 1 ms) compared with young, whereas GABA concentration and synaptic inhibition were similar between age groups. We demonstrate that magnetic resonance spectroscopy and threshold-tracking provide valid and reliable assessments of primary motor cortex GABA concentration and neurotransmission, respectively.
Collapse
Affiliation(s)
- Ronan A Mooney
- Movement Neuroscience Laboratory, Department of Exercise Sciences, The University of Auckland, New Zealand; and.,Centre for Brain Research, The University of Auckland, New Zealand
| | - John Cirillo
- Movement Neuroscience Laboratory, Department of Exercise Sciences, The University of Auckland, New Zealand; and.,Centre for Brain Research, The University of Auckland, New Zealand
| | - Winston D Byblow
- Movement Neuroscience Laboratory, Department of Exercise Sciences, The University of Auckland, New Zealand; and .,Centre for Brain Research, The University of Auckland, New Zealand
| |
Collapse
|
29
|
Cirillo J, Byblow WD. Threshold tracking primary motor cortex inhibition: the influence of current direction. Eur J Neurosci 2016; 44:2614-2621. [DOI: 10.1111/ejn.13369] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/25/2016] [Accepted: 08/05/2016] [Indexed: 01/09/2023]
Affiliation(s)
- John Cirillo
- Movement Neuroscience Laboratory; Department of Exercise Sciences and Centre for Brain Research; University of Auckland; Private Bag 92019 Auckland 1142 New Zealand
| | - Winston D. Byblow
- Movement Neuroscience Laboratory; Department of Exercise Sciences and Centre for Brain Research; University of Auckland; Private Bag 92019 Auckland 1142 New Zealand
| |
Collapse
|
30
|
Shibuya K, Park SB, Geevasinga N, Huynh W, Simon NG, Menon P, Howells J, Vucic S, Kiernan MC. Threshold tracking transcranial magnetic stimulation: Effects of age and gender on motor cortical function. Clin Neurophysiol 2016; 127:2355-61. [DOI: 10.1016/j.clinph.2016.03.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 03/05/2016] [Accepted: 03/07/2016] [Indexed: 10/22/2022]
|