1
|
Kuhn L, Choy O, Keller L, Habel U, Wagels L. Prefrontal tDCS modulates risk-taking in male violent offenders. Sci Rep 2024; 14:10087. [PMID: 38698192 PMCID: PMC11066090 DOI: 10.1038/s41598-024-60795-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/26/2024] [Indexed: 05/05/2024] Open
Abstract
Detrimental decision-making is a major problem among violent offenders. Non-invasive brain stimulation offers a promising method to directly influence decision-making and has already been shown to modulate risk-taking in non-violent controls. We hypothesize that anodal transcranial direct current stimulation (tDCS) over the right dorsolateral prefrontal cortex beneficially modulates the neural and behavioral correlates of risk-taking in a sample of violent offenders. We expect offenders to show more risky decision-making than non-violent controls and that prefrontal tDCS will induce stronger changes in the offender group. In the current study, 22 male violent offenders and 24 male non-violent controls took part in a randomized double-blind sham-controlled cross-over study applying tDCS over the right dorsolateral prefrontal cortex. Subsequently, participants performed the Balloon Analogue Risk Task (BART) during functional magnetic resonance imaging (fMRI). Violent offenders showed significantly less optimal decision-making compared to non-violent controls. Active tDCS increased prefrontal activity and improved decision-making only in violent offenders but not in the control group. Also, in offenders only, prefrontal tDCS influenced functional connectivity between the stimulated area and other brain regions such as the thalamus. These results suggest baseline dependent effects of tDCS and pave the way for treatment options of disadvantageous decision-making behavior in this population.
Collapse
Affiliation(s)
- Leandra Kuhn
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany.
| | - Olivia Choy
- Department of Psychology, Nanyang Technological University, Singapore, Singapore
| | - Lara Keller
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH, Aachen, Germany
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
- Institute of Neuroscience and Medicine: JARA-Institute Brain Structure Function Relationship (INM 10), Research Center Jülich, Jülich, Germany
| | - Lisa Wagels
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| |
Collapse
|
2
|
Cai B, Tang J, Sang H, Zhang Z, Wang A. Differential effects of high-definition transcranial direct current stimulation (HD-tDCS) on attentional guidance by working memory in males with substance use disorder according to memory modality. Brain Cogn 2024; 177:106149. [PMID: 38579372 DOI: 10.1016/j.bandc.2024.106149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/23/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024]
Abstract
Information stored in working memory can guide perception selection, and this process is modulated by cognitive control. Although previous studies have demonstrated that neurostimulation over the left dorsolateral prefrontal cortex (lDLPFC) contributes to restore cognitive control among individuals with substance use disorder (SUD), there remains an open question about the potential stimulation effects on memory-driven attention. To address this issue, the present study adopted a combined working memory/attention paradigm while employing high-definition transcranial direct current stimulation (HD-tDCS) to stimulate the lDLPFC. Observers were asked to maintain visual or audiovisual information in memory while executing a search task, while the validity of the memory contents for the subsequent search task could be either invalid or neutral. The results showed a faint memory-driven attentional suppression effect in sham stimulation only under the audiovisual condition. Moreover, anodal HD-tDCS facilitated attentional suppression effect in both the strength and temporal dynamics under the visual-only condition, whereas the effect was impaired or unchanged under the audiovisual condition. Surprisingly, cathodal HD-tDCS selectively improved temporal dynamics of the attentional suppression effect under the audiovisual condition. The present study revealed the differential enhancement of HD-tDCS on cognitive control over visual and audiovisual memory-driven attention among individuals with SUD.
Collapse
Affiliation(s)
- Biye Cai
- Department of Psychology, Research Center for Psychology and Behavioral Sciences, Soochow University, Suzhou, China; School of Physical Education and Sports Science, Soochow University, Suzhou, China
| | - Junjie Tang
- Taihu Compulsory Isolated Detoxification Center in Jiangsu Province, Suzhou, China
| | - Hanbin Sang
- Key Laboratory of Child Cognition & Behavior Development of Hainan Province, Haikou, China; School of Teacher Education, Qiongtai Normal University, Haikou, China.
| | - Zonghao Zhang
- School of Physical Education and Sports Science, Soochow University, Suzhou, China.
| | - Aijun Wang
- Department of Psychology, Research Center for Psychology and Behavioral Sciences, Soochow University, Suzhou, China.
| |
Collapse
|
3
|
Shiga K, Miyaguchi S, Inukai Y, Otsuru N, Onishi H. Transcranial alternating current stimulation does not affect microscale learning. Behav Brain Res 2024; 459:114770. [PMID: 37984522 DOI: 10.1016/j.bbr.2023.114770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
A theory has been posited that microscale learning, which involves short intervals of a few seconds during explicit motor skill learning, considerably enhances performance. This phenomenon correlates with diminished beta-band activity in the frontal and parietal regions. However, there is a lack of neurophysiological studies regarding the relationship between microscale learning and implicit motor skill learning. In the present study, we aimed to determine the effects of transcranial alternating current stimulation (tACS) during short rest periods on microscale learning in an implicit motor task. We investigated the effects of 20-Hz β-tACS delivered during short rest periods while participants performed an implicit motor task. In Experiments 1 and 2, β-tACS targeted the right dorsolateral prefrontal cortex and the right frontoparietal network, respectively. The participants performed a finger-tapping task using their nondominant left hand, and microscale learning was separately analyzed for micro-online gains (MOnGs) and micro-offline gains (MOffGs). Contrary to our expectations, β-tACS exhibited no statistically significant effects on MOnGs or MOffGs in either Experiment 1 or Experiment 2. In addition, microscale learning during the performance of the implicit motor task was improved by MOffGs in the early learning phase and by MOnGs in the late learning phase. These results revealed that the stimulation protocol employed in this study did not affect microscale learning, indicating a novel aspect of microscale learning in implicit motor tasks. This is the first study to examine microscale learning in implicit motor tasks and may provide baseline information that will be useful in future studies.
Collapse
Affiliation(s)
- Kyosuke Shiga
- Graduate School, Niigata University of Health and Welfare, Niigata 950-3198, Japan.
| | - Shota Miyaguchi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata 950-3198, Japan
| | - Yasuto Inukai
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata 950-3198, Japan
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata 950-3198, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata 950-3198, Japan
| |
Collapse
|
4
|
Narmashiri A, Akbari F. The Effects of Transcranial Direct Current Stimulation (tDCS) on the Cognitive Functions: A Systematic Review and Meta-analysis. Neuropsychol Rev 2023:10.1007/s11065-023-09627-x. [PMID: 38060075 DOI: 10.1007/s11065-023-09627-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 10/24/2023] [Indexed: 12/08/2023]
Abstract
Previous studies have investigated the effect of transcranial direct current stimulation (tDCS) on cognitive functions. However, these studies reported inconsistent results due to differences in experiment design, measurements, and stimulation parameters. Nonetheless, there is a lack of meta-analyses and review studies on tDCS and its impact on cognitive functions, including working memory, inhibition, flexibility, and theory of mind. We performed a systematic review and meta-analysis of tDCS studies published from the earliest available data up to October 2021, including studies reporting the effects of tDCS on cognitive functions in human populations. Therefore, these systematic review and meta-analysis aim to comprehensively analyze the effects of anodal and cathodal tDCS on cognitive functions by investigating 69 articles with a total of 5545 participants. Our study reveals significant anodal tDCS effects on various cognitive functions. Specifically, we observed improvements in working memory reaction time (RT), inhibition RT, flexibility RT, theory of mind RT, working memory accuracy, theory of mind accuracy and flexibility accuracy. Furthermore, our findings demonstrate noteworthy cathodal tDCS effects, enhancing working memory accuracy, inhibition accuracy, flexibility RT, flexibility accuracy, theory of mind RT, and theory of mind accuracy. Notably, regarding the influence of stimulation parameters of tDCS on cognitive functions, the results indicated significant differences across various aspects, including the timing of stimulation (online vs. offline studies), population type (clinical vs. healthy studies), stimulation duration (< 15 min vs. > 15 min), electrical current intensities (1-1.5 m.A vs. > 1.5 m.A), stimulation sites (right frontal vs. left frontal studies), age groups (young vs. older studies), and different cognitive tasks in each cognitive functioning aspect. In conclusion, our results demonstrate that tDCS can effectively enhance cognitive task performance, offering valuable insights into the potential benefits of this method for cognitive improvement.
Collapse
Affiliation(s)
- Abdolvahed Narmashiri
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
- Electrical Engineering Department, Bio-Intelligence Research Unit, Sharif Brain Center, Sharif University of Technology, Tehran, Iran.
| | | |
Collapse
|
5
|
Anselmo A, Lucifora C, Rusconi P, Martino G, Craparo G, Salehinejad MA, Vicario CM. Can we rewire criminal mind via non-invasive brain stimulation of prefrontal cortex? Insights from clinical, forensic and social cognition studies. CURRENT PSYCHOLOGY 2022; 42:1-11. [PMID: 35600259 PMCID: PMC9107958 DOI: 10.1007/s12144-022-03210-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2022] [Indexed: 11/28/2022]
Abstract
Non-compliance with social and legal norms and regulations represents a high burden for society. Social cognition deficits are frequently called into question to explain criminal violence and rule violations in individuals diagnosed with antisocial personality disorder (APD), borderline personality disorder (BPD), and psychopathy. In this article, we proposed to consider the potential benefits of non-invasive brain stimulation (NIBS) to rehabilitate forensic population. We focused on the effects of NIBS of the prefrontal cortex, which is central in social cognition, in modulating aggression and impulsivity in clinical disorders, as well as in forensic population. We also addressed the effect of NIBS on empathy, and theory of mind in non-clinical and/or prison population. The reviewed data provide promising evidence on the beneficial effect of NIBS on aggression/impulsivity dyscontrol and social cognitive functions, suggesting its relevance in promoting reintegration of criminals into society.
Collapse
Affiliation(s)
- Anna Anselmo
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e Degli Studi Culturali, Università di Messina, via Concezione 6-8, 98121 Messina, Italy
| | - Chiara Lucifora
- Institute of Cognitive Sciences and Technologies, National Research Council (ISTC-CNR), Roma, RM Italy
| | - Patrice Rusconi
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e Degli Studi Culturali, Università di Messina, via Concezione 6-8, 98121 Messina, Italy
| | - Gabriella Martino
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Giuseppe Craparo
- Faculty of Human and Social Sciences, UKE-Kore University of Enna, Cittadella Universitaria, 94100 Enna, Italy
| | - Mohammad A. Salehinejad
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Carmelo M. Vicario
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e Degli Studi Culturali, Università di Messina, via Concezione 6-8, 98121 Messina, Italy
| |
Collapse
|
6
|
Initial performance modulates the effects of cathodal transcranial direct current stimulation (tDCS) over the right dorsolateral prefrontal cortex on inhibitory control. Brain Res 2022; 1774:147722. [PMID: 34774867 DOI: 10.1016/j.brainres.2021.147722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/22/2021] [Accepted: 11/06/2021] [Indexed: 11/27/2022]
Abstract
Transcranial direct current stimulation (tDCS) has received considerable attention as a new option to facilitate cognitive ability or rehabilitation in healthy populations or in individuals with neuropsychiatric disorders. However, the tDCS effect varies widely, possibly because individual differences in initial performance have frequently been ignored in previous research. Here, we aimed to examine the influence of initial performance on inhibitory control after tDCS. Fifty-six participants were randomly divided into three groups: anodal, cathodal and sham stimulation. The go/no-go task, stop-signal task and Stroop task were performed to measure inhibitory control before and immediately after tDCS. tDCS was applied to the F4 site (international 10-20 system), corresponding to the right dorsolateral prefrontal cortex (rDLPFC), for 20 min with an intensity of 1.5 mA. Neither anodal nor cathodal stimulation had significant effects on the performance of these three tasks at the group level in comparison with sham stimulation. However, the analyses at the individual level only showed a negative relationship between baseline performance and the magnitude of change in go/no-go task performance following cathodal tDCS, indicating the dependence of the change amount on initial performance, with greater gains (or losses) observed in individuals with poorer (or better) initial performance. Together, the initial performance modulates the proactive inhibitory effect of cathodal tDCS of the rDLPFC. Additionally, the rDLPFC plays a crucial role in proactive inhibition.
Collapse
|
7
|
Wu D, Zhang P, Liu N, Sun K, Xiao W. Effects of High-Definition Transcranial Direct Current Stimulation Over the Left Fusiform Face Area on Face View Discrimination Depend on the Individual Baseline Performance. Front Neurosci 2021; 15:704880. [PMID: 34867146 PMCID: PMC8639859 DOI: 10.3389/fnins.2021.704880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/27/2021] [Indexed: 11/13/2022] Open
Abstract
A basic human visual function is to identify objects from different viewpoints. Typically, the ability to discriminate face views based on in-depth orientation is necessary in daily life. Early neuroimaging studies have identified the involvement of the left fusiform face area (FFA) and the left superior temporal sulcus (STS) in face view discrimination. However, many studies have documented the important role of the right FFA in face processing. Thus, there remains controversy over whether one specific region or all of them are involved in discriminating face views. Thus, this research examined the influence of high-definition transcranial direct current stimulation (HD-tDCS) over the left FFA, left STS or right FFA on face view discrimination in three experiments. In experiment 1, eighteen subjects performed a face view discrimination task before and immediately, 10 min and 20 min after anodal, cathodal and sham HD-tDCS (20 min, 1.5 mA) over the left FFA in three sessions. Compared with sham stimulation, anodal and cathodal stimulation had no effects that were detected at the group level. However, the analyses at the individual level showed that the baseline performance negatively correlated with the degree of change after anodal tDCS, suggesting a dependence of the change amount on the initial performance. Specifically, tDCS decreased performance in the subjects with better baseline performance but increased performance in those with poorer baseline performance. In experiments 2 and 3, the same experimental protocol was used except that the stimulation site was the left STS or right FFA, respectively. Neither anodal nor cathodal tDCS over the left STS or right FFA influenced face view discrimination in group- or individual-level analyses. These results not only indicated the importance of the left FFA in face view discrimination but also demonstrated that individual initial performance should be taken into consideration in future research and practical applications.
Collapse
Affiliation(s)
- Di Wu
- Department of Medical Psychology, Air Force Medical University, Xi'an, China
| | - Pan Zhang
- Department of Psychology, Hebei Normal University, Shijiazhuang, China
| | - Na Liu
- Department of Nursing, Air Force Medical University, Xi'an, China
| | - Kewei Sun
- Department of Medical Psychology, Air Force Medical University, Xi'an, China
| | - Wei Xiao
- Department of Medical Psychology, Air Force Medical University, Xi'an, China
| |
Collapse
|
8
|
Wu D, Zhou Y, Lv H, Liu N, Zhang P. The initial visual performance modulates the effects of anodal transcranial direct current stimulation over the primary visual cortex on the contrast sensitivity function. Neuropsychologia 2021; 156:107854. [PMID: 33823163 DOI: 10.1016/j.neuropsychologia.2021.107854] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/09/2021] [Accepted: 03/31/2021] [Indexed: 10/21/2022]
Abstract
Transcranial direct current stimulation (tDCS) has great potential to modulate cortical excitability and further facilitate visual function or rehabilitation. However, tDCS modulation effects are largely variable, possibly because of the individual differences in initial performance. The present study investigated the influence of the initial performance on contrast sensitivity function (CSF) following tDCS. Fifty healthy participants were randomly assigned to three groups: anodal, cathodal and sham stimulation. The CSF was measured through a grating detection task before and immediately after tDCS. Active and reference electrodes were applied to the primary occipital cortex (Oz) and the middle of the head (Cz) for 20 min with an intensity of 1.5 mA, respectively. Compared with sham stimulation, anodal or cathodal stimulation had no effect on the area under the log CSF (AULCSF) or contrast sensitivity (CS) of various spatial frequencies at the group level. However, a negative relationship was found between initial performance and the AULCSF change (or CS change at a spatial of frequency 8 c/°) after the application of anodal tDCS, indicating that the degree of change was dependent on initial performance, with greater gains observed for those with poorer initial performance. Initial performance modulated the effect of anodal tDCS over the Oz on the CSF, indicating that the Oz plays a crucial role in visual function. These results contribute to a deep understanding of the mechanisms of tDCS and to the design of more precise and efficient personalized simulation approaches based on individual differences.
Collapse
Affiliation(s)
- Di Wu
- Department of Medical Psychology, Air Force Medical University, Xi'an, China
| | - YingJie Zhou
- Basic Medical School, Air Force Medical University, Xi'an, China
| | - Haixu Lv
- Basic Medical School, Air Force Medical University, Xi'an, China
| | - Na Liu
- Department of Nursing, Air Force Medical University, Xi'an, China
| | - Pan Zhang
- Department of Psychology, Hebei Normal University, Shijiazhuang, China.
| |
Collapse
|
9
|
Chen T, Wang H, Wang X, Zhu C, Zhang L, Wang K, Yu F. Transcranial direct current stimulation of the right dorsolateral prefrontal cortex improves response inhibition. Int J Psychophysiol 2021. [DOI: 10.1016/j.ijpsycho.2021.01.014
expr 874926689 + 897791409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
10
|
Chen T, Wang H, Wang X, Zhu C, Zhang L, Wang K, Yu F. Transcranial direct current stimulation of the right dorsolateral prefrontal cortex improves response inhibition. Int J Psychophysiol 2021; 162:34-39. [PMID: 33497765 DOI: 10.1016/j.ijpsycho.2021.01.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND A number of functional magnetic resonance imaging studies have shown that the dorsolateral prefrontal cortex (dlPFC) is a critical brain region for response inhibition. However, how it exerts this function remains unclear. This study investigated whether stimulating the right dlPFC by transcranial direct current stimulation (tDCS) affects performance on stop signal task. METHODS A total of 92 healthy subjects were enrolled in the study and randomly divided into three groups. The anode group received anodal stimulation over the right dlPFC and cathodal stimulation over the left supraorbital; the cathode group received cathodal stimulation over the right dlPFC and anodal stimulation over the left supraorbital; and the sham group received sham tDCS. All subjects performed a computer-based stop-signal task before and after tDCS. RESULT Performance on the response inhibition task after tDCS was improved in groups with both anodal and cathodal stimulation. Specifically, there was a decrease in the stop-signal reaction time in these subjects, whereas no difference was observed in the sham group. Consistent with signal detection theory, discrimination and decision bias was improved by anode tDCS relative to the sham group, while discrimination was also improved in the cathode group. CONCLUSION Anode and cathode tDCS of the right dlPFC improves response inhibition, with the right dlPFC may playing a key role in this process.
Collapse
Affiliation(s)
- Tingting Chen
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China; Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Anhui Province, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Anhui Mental Health Center, Hefei, China
| | - Huihui Wang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Xin Wang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China; Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Anhui Province, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Anhui Mental Health Center, Hefei, China
| | - Chunyan Zhu
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China; Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Anhui Province, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Anhui Mental Health Center, Hefei, China
| | - Lei Zhang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China; Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Anhui Province, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Anhui Mental Health Center, Hefei, China
| | - Kai Wang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China; Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Anhui Province, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Anhui Mental Health Center, Hefei, China.
| | - Fengqiong Yu
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China; Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Anhui Province, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Anhui Mental Health Center, Hefei, China.
| |
Collapse
|
11
|
Solomons CD, Shanmugasundaram V. Transcranial direct current stimulation: A review of electrode characteristics and materials. Med Eng Phys 2020; 85:63-74. [PMID: 33081965 DOI: 10.1016/j.medengphy.2020.09.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/10/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022]
Abstract
Electrode characteristics are crucial in transcranial direct current stimulation (tDCS) since electrode design and placement determine the cortical area being modulated, current density and spatial resolution of stimulation. Early research on tDCS sought to determine optimal parameters for stimulation by specifying maximum current, duration and sizes of electrodes. Further research focused on determining efficient ways to deliver stimulation to targeted regions on the cortex with minimal discomfort to the user by altering electrode size, placement, shape and material. This review aims to give an insight on the main characteristics of electrodes used in tDCS and on the variability found in electrode parameters and placements from tDCS to high definition tDCS (HD-tDCS) applications and beyond.
Collapse
Affiliation(s)
- Cassandra D Solomons
- School of Electrical Engineering, Vellore Institute of Technology, Vellore 632014, India
| | | |
Collapse
|
12
|
Galli G, Miniussi C, Pellicciari MC. Transcranial electric stimulation as a neural interface to gain insight on human brain functions: current knowledge and future perspective. Soc Cogn Affect Neurosci 2020; 17:4-14. [PMID: 32756871 DOI: 10.1093/scan/nsaa099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/12/2020] [Accepted: 07/11/2020] [Indexed: 11/12/2022] Open
Abstract
The use of brain-stimulation approaches in social and affective science has greatly increased over the last two decades. The interest in social factors has grown along with technological advances in brain research. Transcranial electric stimulation (tES) is a research tool that allows scientists to establish contributory causality between brain functioning and social behaviour, therefore deepening our understanding of the social mind. Preliminary evidence is also starting to demonstrate that tES, either alone or in combination with pharmacological or behavioural interventions, can alleviate the symptomatology of individuals with affective or social cognition disorders. This review offers an overview of the application of tES in the field of social and affective neuroscience. We discuss issues and challenges related to this application and suggest avenue for future basic and translational research.
Collapse
Affiliation(s)
- Giulia Galli
- Department of Psychology, Kingston University, Penrhyn Road, Kingston Upon Thames, KT1 2EE, United Kingdom
| | - Carlo Miniussi
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Corso Bettini, 31, 38068 Rovereto, TN Italy
| | - Maria Concetta Pellicciari
- UniCamillus - Saint Camillus International University of Health Sciences, via di Sant'Alessandro 8, 00131, Rome, Italy
| |
Collapse
|
13
|
Abnormal Cortical Activation in Visual Attention Processing in Sub-Clinical Psychopathic Traits and Traumatic Brain Injury: Evidence from an fNIRS Study. JOURNAL OF PSYCHOPATHOLOGY AND BEHAVIORAL ASSESSMENT 2020. [DOI: 10.1007/s10862-020-09808-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
14
|
Teti Mayer J, Chopard G, Nicolier M, Gabriel D, Masse C, Giustiniani J, Vandel P, Haffen E, Bennabi D. Can transcranial direct current stimulation (tDCS) improve impulsivity in healthy and psychiatric adult populations? A systematic review. Prog Neuropsychopharmacol Biol Psychiatry 2020; 98:109814. [PMID: 31715284 DOI: 10.1016/j.pnpbp.2019.109814] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/25/2019] [Accepted: 11/08/2019] [Indexed: 12/16/2022]
Abstract
Impulsivity is a multidimensional phenomenon that remains hard to define. It compounds the core pathological construct of many neuropsychiatric illnesses, and despite its close relation to suicide risk, it currently has no specific treatment. Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique whose application results in cognitive function improvement, both in healthy and psychiatric populations. Following PRISMA recommendations, a systematic review of the literature concerning tDCS's effects on impulsive behaviour was performed using the PubMed database. The research was based on the combination of the keyword 'tDCS' with 'impulsivity', 'response inhibition', 'risk-taking', 'planning', 'delay discounting' or 'craving'. The initial search yielded 309 articles, 92 of which were included. Seventy-four papers demonstrated improvement in task performance related to impulsivity in both healthy and clinical adult populations. However, results were often inconsistent. The conditions associated with improvement, such as tDCS parameters and other aspects that may influence tDCS's outcomes, are discussed. The overall effects of tDCS on impulsivity are promising. Yet further research is required to develop a more comprehensive understanding of impulsivity, allowing for a more accurate assessment of its behavioural outcomes as well as a definition of tDCS therapeutic protocols for impulsive disorders.
Collapse
Affiliation(s)
- Juliana Teti Mayer
- Service de Psychiatrie de l'Adulte, Centre Hospitalier Universitaire de Besançon, 25030 Besançon Cedex, France; Laboratoire de Neurosciences Intégratives et Cliniques EA 481, Université de Bourgogne Franche-Comté, 19 rue Ambroise Paré, 25000 Besançon, France.
| | - Gilles Chopard
- Service de Psychiatrie de l'Adulte, Centre Hospitalier Universitaire de Besançon, 25030 Besançon Cedex, France; Laboratoire de Neurosciences Intégratives et Cliniques EA 481, Université de Bourgogne Franche-Comté, 19 rue Ambroise Paré, 25000 Besançon, France; Centre Mémoire Ressources et Recherche, Centre Hospitalier Universitaire de Besançon, 25030 Besançon Cedex, France
| | - Magali Nicolier
- Service de Psychiatrie de l'Adulte, Centre Hospitalier Universitaire de Besançon, 25030 Besançon Cedex, France; Centre d'Investigation Clinique, INSERM CIC 1431, Centre Hospitalier Universitaire de Besançon, 25030 Besançon Cedex, France; Laboratoire de Neurosciences Intégratives et Cliniques EA 481, Université de Bourgogne Franche-Comté, 19 rue Ambroise Paré, 25000 Besançon, France
| | - Damien Gabriel
- Centre d'Investigation Clinique, INSERM CIC 1431, Centre Hospitalier Universitaire de Besançon, 25030 Besançon Cedex, France; Laboratoire de Neurosciences Intégratives et Cliniques EA 481, Université de Bourgogne Franche-Comté, 19 rue Ambroise Paré, 25000 Besançon, France
| | - Caroline Masse
- Service de Psychiatrie de l'Adulte, Centre Hospitalier Universitaire de Besançon, 25030 Besançon Cedex, France; Laboratoire de Neurosciences Intégratives et Cliniques EA 481, Université de Bourgogne Franche-Comté, 19 rue Ambroise Paré, 25000 Besançon, France
| | - Julie Giustiniani
- Service de Psychiatrie de l'Adulte, Centre Hospitalier Universitaire de Besançon, 25030 Besançon Cedex, France; Centre d'Investigation Clinique, INSERM CIC 1431, Centre Hospitalier Universitaire de Besançon, 25030 Besançon Cedex, France; Laboratoire de Neurosciences Intégratives et Cliniques EA 481, Université de Bourgogne Franche-Comté, 19 rue Ambroise Paré, 25000 Besançon, France
| | - Pierre Vandel
- Service de Psychiatrie de l'Adulte, Centre Hospitalier Universitaire de Besançon, 25030 Besançon Cedex, France; Laboratoire de Neurosciences Intégratives et Cliniques EA 481, Université de Bourgogne Franche-Comté, 19 rue Ambroise Paré, 25000 Besançon, France; Centre Mémoire Ressources et Recherche, Centre Hospitalier Universitaire de Besançon, 25030 Besançon Cedex, France
| | - Emmanuel Haffen
- Service de Psychiatrie de l'Adulte, Centre Hospitalier Universitaire de Besançon, 25030 Besançon Cedex, France; Centre d'Investigation Clinique, INSERM CIC 1431, Centre Hospitalier Universitaire de Besançon, 25030 Besançon Cedex, France; Laboratoire de Neurosciences Intégratives et Cliniques EA 481, Université de Bourgogne Franche-Comté, 19 rue Ambroise Paré, 25000 Besançon, France; Centre Expert Dépression Résistante FondaMental, Centre Hospitalier Universitaire de Besançon, 25030 Besançon Cedex, France
| | - Djamila Bennabi
- Service de Psychiatrie de l'Adulte, Centre Hospitalier Universitaire de Besançon, 25030 Besançon Cedex, France; Centre d'Investigation Clinique, INSERM CIC 1431, Centre Hospitalier Universitaire de Besançon, 25030 Besançon Cedex, France; Laboratoire de Neurosciences Intégratives et Cliniques EA 481, Université de Bourgogne Franche-Comté, 19 rue Ambroise Paré, 25000 Besançon, France; Centre Expert Dépression Résistante FondaMental, Centre Hospitalier Universitaire de Besançon, 25030 Besançon Cedex, France
| |
Collapse
|
15
|
Rodrigues de Almeida L, Pope PA, Hansen PC. Task load modulates tDCS effects on language performance. J Neurosci Res 2019; 97:1430-1454. [DOI: 10.1002/jnr.24490] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/29/2019] [Accepted: 06/14/2019] [Indexed: 12/22/2022]
Affiliation(s)
| | - Paul A. Pope
- School of Psychology University of Birmingham Birmingham UK
| | | |
Collapse
|
16
|
Poeppl TB, Donges MR, Mokros A, Rupprecht R, Fox PT, Laird AR, Bzdok D, Langguth B, Eickhoff SB. A view behind the mask of sanity: meta-analysis of aberrant brain activity in psychopaths. Mol Psychiatry 2019; 24:463-470. [PMID: 30038232 PMCID: PMC6344321 DOI: 10.1038/s41380-018-0122-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/24/2018] [Accepted: 05/14/2018] [Indexed: 02/07/2023]
Abstract
Psychopathy is a disorder of high public concern because it predicts violence and offense recidivism. Recent brain imaging studies suggest abnormal brain activity underlying psychopathic behavior. No reliable pattern of altered neural activity has been disclosed so far. This study sought to identify consistent changes of brain activity in psychopaths and to investigate whether these could explain known psychopathology. First, we used activation likelihood estimation (p < 0.05, corrected) to meta-analyze brain activation changes associated with psychopathy across 28 functional magnetic resonance imaging studies reporting 753 foci from 155 experiments. Second, we characterized the ensuing regions functionally by employing metadata of a large-scale neuroimaging database (p < 0.05, corrected). Psychopathy was consistently associated with decreased brain activity in the right laterobasal amygdala, the dorsomedial prefrontal cortex, and bilaterally in the lateral prefrontal cortex. A robust increase of activity was observed in the fronto-insular cortex on both hemispheres. Data-driven functional characterization revealed associations with semantic language processing (left lateral prefrontal and fronto-insular cortex), action execution and pain processing (right lateral prefrontal and left fronto-insular), social cognition (dorsomedial prefrontal cortex), and emotional as well as cognitive reward processing (right amygdala and fronto-insular cortex). Aberrant brain activity related to psychopathy is located in prefrontal, insular, and limbic regions. Physiological mental functions fulfilled by these brain regions correspond to disturbed behavioral patterns pathognomonic for psychopathy. Hence, aberrant brain activity may not just be an epiphenomenon of psychopathy but directly related to the psychopathology of this disorder.
Collapse
Affiliation(s)
- Timm B Poeppl
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany.
| | - Maximilian R Donges
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Andreas Mokros
- Department of Forensic Psychiatry, University Hospital of Psychiatry, Zurich, Switzerland
- Department of Psychology, FernUniversität in Hagen (University of Hagen), Hagen, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, TX, USA
- South Texas Veterans Healthcare System, San Antonio, TX, USA
| | - Angela R Laird
- Department of Physics, Florida International University, Miami, FL, USA
| | - Danilo Bzdok
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- JARA Brain, Jülich Aachen Research Alliance, Jülich, Germany
- Parietal team, INRIA, Neurospin, Gif-sur-Yvette, France
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Simon B Eickhoff
- Research Centre Jülich, Institute of Neuroscience and Medicine (INM-7), Jülich, Germany
- Institute for Systems Neuroscience, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
17
|
WANG HH, LUO YD, SHI B, YU FQ, WANG K. 经颅直流电刺激对健康大学生反应抑制的影响 <sup>*</sup>. ACTA PSYCHOLOGICA SINICA 2018. [DOI: 10.3724/sp.j.1041.2018.00647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Wiegand A, Nieratschker V, Plewnia C. Genetic Modulation of Transcranial Direct Current Stimulation Effects on Cognition. Front Hum Neurosci 2016; 10:651. [PMID: 28066217 PMCID: PMC5177633 DOI: 10.3389/fnhum.2016.00651] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/08/2016] [Indexed: 01/06/2023] Open
Abstract
High inter-individual variability substantially challenges the explanatory power of studies on the modulation of cognitive functions with transcranial direct current stimulation (tDCS). These differences in responsivity have been linked with a critical state-dependency of stimulation effects. In general, genetic diversity is a decisive biological basis of variations in neuronal network functioning. Therefore, it is most likely that inter-individual variability of tDCS-induced changes in cognitive functions is due to specific interactions between genetically determined network properties and the specific type of stimulation. In this context, predominantly the brain-derived neurotrophic factor (BDNF) Val66Met and the catechol-O-methyltransferase (COMT) Val108/158Met polymorphisms have been investigated. The studies on the interaction between the BDNF Val66Met polymorphism and the effect of brain stimulation indicate a critical but yet heterogeneous interaction. But up to now, data on the interplay between this polymorphism and tDCS on cognitive functioning are not available. However, recently, the functional Val(108/158)Met polymorphism in the COMT gene, that is particularly involved in the regulation of executive functions by means of the dopaminergic tone in frontal brain areas, has been demonstrated to specifically predict the effect of tDCS on cognitive control. Following an inverted U-shaped function, the high dopaminergic activity in Met allele homozygous individuals has been shown to be associated with a reduction of executive functioning by anodal tDCS to the prefrontal cortex. Consistently, Val homozygous individuals with lower dopaminergic tone show a clear reduction of response inhibition with cathodal tDCS. These findings exemplify the notion of a complex but neurophysiologically consistent interaction between genetically determined variations of neuronal activity and tDCS, particularly in the cognitive domain. Consequently, a systematic analysis and consideration of genetic modulators of tDCS effects will be helpful to improve the efficacy of brain stimulation and particularly tDCS in the investigation and treatment of cognitive functions.
Collapse
Affiliation(s)
- Ariane Wiegand
- Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Tübingen Tübingen, Germany
| | - Vanessa Nieratschker
- Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Tübingen Tübingen, Germany
| | - Christian Plewnia
- Neurophysiology and Interventional Neuropsychiatry, Department of Psychiatry and Psychotherapy, University of Tübingen Tübingen, Germany
| |
Collapse
|
19
|
Schroeder PA, Plewnia C. Beneficial Effects of Cathodal Transcranial Direct Current Stimulation (tDCS) on Cognitive Performance. JOURNAL OF COGNITIVE ENHANCEMENT 2016. [DOI: 10.1007/s41465-016-0005-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|