1
|
Elbasiouny SM. The neurophysiology of sensorimotor prosthetic control. BMC Biomed Eng 2024; 6:9. [PMID: 39350271 PMCID: PMC11443900 DOI: 10.1186/s42490-024-00084-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 07/31/2024] [Indexed: 10/04/2024] Open
Abstract
Movement is a central behavior of daily living; thus lost or compromised movement due to disease, injury, or amputation causes enormous loss of productivity and quality of life. While prosthetics have evolved enormously over the years, restoring natural sensorimotor (SM) control via a prosthesis is a difficult problem which neuroengineering has yet to solve. With a focus on upper limb prosthetics, this perspective article discusses the neurophysiology of motor control under healthy conditions and after amputation, the development of upper limb prostheses from early generations to current state-of-the art sensorimotor neuroprostheses, and how postinjury changes could complicate prosthetic control. Current challenges and future development of smart sensorimotor neuroprostheses are also discussed.
Collapse
Affiliation(s)
- Sherif M Elbasiouny
- Department of Biomedical, Industrial and Human Factors Engineering, College of Engineering and Computer Science, Wright State University, Dayton, OH, USA.
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, College of Science and Mathematics, Wright State University, Dayton, OH, USA.
| |
Collapse
|
2
|
Alterman BL, Ali S, Keeton E, Binkley K, Hendrix W, Lee PJ, Johnson JT, Wang S, Kling J, Gale MK, Wheaton LA. Grasp Posture Variability Leads to Greater Ipsilateral Sensorimotor Beta Activation During Simulated Prosthesis Use. J Mot Behav 2024; 56:579-591. [PMID: 39041372 PMCID: PMC11343659 DOI: 10.1080/00222895.2024.2364657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 03/28/2024] [Accepted: 05/30/2024] [Indexed: 07/24/2024]
Abstract
Motor behaviour using upper-extremity prostheses of different levels is greatly variable, leading to challenges interpreting ideal rehabilitation strategies. Elucidating the underlying neural control mechanisms driving variability benefits our understanding of adaptation after limb loss. In this follow-up study, non-amputated participants completed simple and complex reach-to-grasp motor tasks using a body-powered transradial or partial-hand prosthesis simulator. We hypothesised that under complex task constraints, individuals employing variable grasp postures will show greater sensorimotor beta activation compared to individuals relying on uniform grasping, and activation will occur later in variable compared to uniform graspers. In the simple task, partial-hand variable and transradial users showed increased neural activation from the early to late phase of the reach, predominantly in the hemisphere ipsilateral to device use. In the complex task, only partial-hand variable graspers showed a significant increase in neural activation of the sensorimotor cortex from the early to the late phase of the reach. These results suggest that grasp variability may be a crucial component in the mechanism of neural adaptation to prosthesis use, and may be mediated by device level and task complexity, with implications for rehabilitation after amputation.
Collapse
Affiliation(s)
- Bennett L Alterman
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Saif Ali
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Emily Keeton
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Katrina Binkley
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - William Hendrix
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Perry J Lee
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - John T Johnson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Shuo Wang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - James Kling
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Mary Kate Gale
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Lewis A Wheaton
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
3
|
Sparling T, Iyer L, Pasquina P, Petrus E. Cortical Reorganization after Limb Loss: Bridging the Gap between Basic Science and Clinical Recovery. J Neurosci 2024; 44:e1051232024. [PMID: 38171645 PMCID: PMC10851691 DOI: 10.1523/jneurosci.1051-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/28/2023] [Accepted: 09/29/2023] [Indexed: 01/05/2024] Open
Abstract
Despite the increasing incidence and prevalence of amputation across the globe, individuals with acquired limb loss continue to struggle with functional recovery and chronic pain. A more complete understanding of the motor and sensory remodeling of the peripheral and central nervous system that occurs postamputation may help advance clinical interventions to improve the quality of life for individuals with acquired limb loss. The purpose of this article is to first provide background clinical context on individuals with acquired limb loss and then to provide a comprehensive review of the known motor and sensory neural adaptations from both animal models and human clinical trials. Finally, the article bridges the gap between basic science researchers and clinicians that treat individuals with limb loss by explaining how current clinical treatments may restore function and modulate phantom limb pain using the underlying neural adaptations described above. This review should encourage the further development of novel treatments with known neurological targets to improve the recovery of individuals postamputation.Significance Statement In the United States, 1.6 million people live with limb loss; this number is expected to more than double by 2050. Improved surgical procedures enhance recovery, and new prosthetics and neural interfaces can replace missing limbs with those that communicate bidirectionally with the brain. These advances have been fairly successful, but still most patients experience persistent problems like phantom limb pain, and others discontinue prostheses instead of learning to use them daily. These problematic patient outcomes may be due in part to the lack of consensus among basic and clinical researchers regarding the plasticity mechanisms that occur in the brain after amputation injuries. Here we review results from clinical and animal model studies to bridge this clinical-basic science gap.
Collapse
Affiliation(s)
- Tawnee Sparling
- Department of Physical Medicine and Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Laxmi Iyer
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland 20817
| | - Paul Pasquina
- Department of Physical Medicine and Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Emily Petrus
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, Maryland 20814
| |
Collapse
|
4
|
Musumeci G, D'Alonzo M, Ranieri F, Falato E, Capone F, Motolese F, Di Pino G, Di Lazzaro V, Pilato F. Intracortical and interhemispheric excitability changes in arm amputees: A TMS study. Clin Neurophysiol 2023; 156:98-105. [PMID: 37918223 DOI: 10.1016/j.clinph.2023.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 09/05/2023] [Accepted: 09/21/2023] [Indexed: 11/04/2023]
Abstract
OBJECTIVE To evaluate cortical circuits and excitability of the motor cortex in the hemisphere contralateral to the affected (AH) and to the unaffected arm (UH), in upper limb amputees. METHODS Motor evoked potentials (MEP) were recorded in 17 subjects who had upper limb amputation: 11 trans-radial (TR) and 6 trans-humeral (TH). Motor thresholds (MT), short interval intracortical inhibition (SICI), and interhemispheric inhibition (IHI) in the available arm muscles of the stump were evaluated. RESULTS There was no significant difference in MT between hemispheres. SICI was preserved in TR but not in TH group. Additionally, in the TR group, the MEP amplitudes in AH were higher than in UH. A significant IHI was observed in the whole sample but not in each hemisphere or patient group. CONCLUSIONS In our population of TR amputees, we found increased corticospinal excitability in the AH with preserved intracortical inhibition. This finding was not observed in the TH population. SIGNIFICANCE Understanding the changes in intracortical excitability in amputees may enhance knowledge of the functional reorganization of the brain in the post-amputation phase, bringing useful information for prosthetic rehabilitation.
Collapse
Affiliation(s)
- Gabriella Musumeci
- Research Unit of Neurology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy; NeXT: Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Campus Bio-Medico University of Rome, via Alvaro del Portillo, 5, Rome 00128, Italy
| | - Marco D'Alonzo
- NeXT: Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Campus Bio-Medico University of Rome, via Alvaro del Portillo, 5, Rome 00128, Italy
| | - Federico Ranieri
- Unit of Neurology, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, P.le L.A. Scuro, 10, 37134 Verona, Italy
| | - Emma Falato
- Research Unit of Neurology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| | - Fioravante Capone
- Research Unit of Neurology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| | - Francesco Motolese
- Research Unit of Neurology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| | - Giovanni Di Pino
- Research Unit of Neurology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy; NeXT: Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Campus Bio-Medico University of Rome, via Alvaro del Portillo, 5, Rome 00128, Italy
| | - Vincenzo Di Lazzaro
- Research Unit of Neurology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| | - Fabio Pilato
- Research Unit of Neurology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy.
| |
Collapse
|
5
|
Temporal and spatial goal-directed reaching in upper limb prosthesis users. Exp Brain Res 2022; 240:3011-3021. [PMID: 36222884 DOI: 10.1007/s00221-022-06476-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/30/2022] [Indexed: 11/04/2022]
Abstract
Understanding the fundamental characteristics of prosthetic movement control is imperative in improving prosthesis design and training. This study quantified how using an upper limb prosthesis affected performance during goal-directed reaching tasks. Nine prosthesis users with unilateral transradial limb absence and nine healthy controls completed a series of goal-directed reaching movements with different goals: one spatial and three temporal with different goal frequencies. We quantified end-point accuracy, smoothness, and peak speed for the spatial task and temporal accuracy, horizontal distance, and speed for the temporal task. For the temporal task, we also used a goal-equivalent manifold (GEM) approach to decompose variability in movement distance and speed into those perpendicular and tangential to the GEM. Detrended fluctuation analysis (DFA) quantified the temporal persistence of each time series. For the spatial task, movements made with prostheses were less smooth, had larger end-point errors, and had slower peak speed compared to those with control limbs (p < 0.041). For the temporal task, movements made with prostheses and intact limbs of prosthesis users and control limbs were similar in distance and speed and had similar timing errors (p > 0.138). Timing errors, distance, speed, and GEM deviations were corrected similarly between prosthetic limbs and control limbs (p > 0.091). The mean and variability of distance, speed, and perpendicular deviations decreased with increased goal frequency (p < 0.001). Our results suggest that prosthesis users have a sufficient internal model to successfully complete ballistic movements but are unable to accurately complete movements requiring substantial feedback.
Collapse
|
6
|
Shan X, Li J, Zeng L, Wang H, Yang T, Shao Y, Yu M. Motor Imagery-Related Changes of Neural Oscillation in Unilateral Lower Limb Amputation. Front Neurosci 2022; 16:799995. [PMID: 35663556 PMCID: PMC9160601 DOI: 10.3389/fnins.2022.799995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 05/02/2022] [Indexed: 12/02/2022] Open
Abstract
An amputation is known to seriously affect patient quality of life. This study aimed to investigate changes in neural activity in amputees during the postoperative period using neural electrophysiological techniques. In total, 14 patients with left lower limb amputation and 18 healthy participants were included in our study. All participants were required to perform motor imagery paradigm tasks while electroencephalogram (EEG) data were recorded. Data analysis results indicated that the beta frequency band showed significantly decreased oscillatory activity in motor imaging-related brain regions such as the frontal lobe and the precentral and postcentral gyri in amputees. Furthermore, the functional independent component analysis (fICA) value of neural oscillation negatively correlated with the C4 electrode power value of the motor imagery task in amputees (p < 0.05). Therefore, changes in neural oscillations and beta frequency band in motor imagery regions may be related to brain remodeling in amputees.
Collapse
Affiliation(s)
- Xinying Shan
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Jialu Li
- School of Psychology, University of Leeds, Leeds, United Kingdom
| | - Lingjing Zeng
- School of Psychology, University of Leeds, Leeds, United Kingdom
| | - Haiteng Wang
- School of Psychology, Beijing Sport University, Beijing, China
| | - Tianyi Yang
- School of Psychology, Beijing Sport University, Beijing, China
| | - Yongcong Shao
- School of Psychology, Beijing Sport University, Beijing, China
- *Correspondence: Yongcong Shao,
| | - Mengsun Yu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Mengsun Yu,
| |
Collapse
|
7
|
Alterman BL, Keeton E, Ali S, Binkley K, Hendrix W, Lee PJ, Wang S, Kling J, Johnson JT, Wheaton LA. Partial-Hand Prosthesis Users Show Improved Reach-to-Grasp Behaviour Compared to Transradial Prosthesis Users with Increased Task Complexity. J Mot Behav 2022; 54:706-718. [PMID: 35485303 PMCID: PMC9627513 DOI: 10.1080/00222895.2022.2070122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Approaches to improve outcomes after upper-extremity amputation remain poorly understood. Examining prosthesis-use at different levels of loss elucidates motor control challenges. Non-amputated participants completed simple and complex reach-to-grasp actions using a body-powered transradial or partial-hand prosthesis simulator. We hypothesised that increased task complexity and participants using a partial-hand device would show greater functional adaptation compared to participants using a transradial device. Partial-hand users demonstrated variable grasp postures and higher reach peak velocities in the complex, but not simple, task. All groups showed decreases in movement duration in the complex task, but only partial-hand users improved in the simple task. These behavioural changes suggest how device level and task may influence prosthesis-use, with relevance to amputation rehabilitation.
Collapse
Affiliation(s)
- Bennett L Alterman
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Emily Keeton
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Saif Ali
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Katrina Binkley
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - William Hendrix
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Perry J Lee
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Shuo Wang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - James Kling
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - John T Johnson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Lewis A Wheaton
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
8
|
Rydland J, Spiegel S, Wolfe O, Alterman B, Johnson JT, Wheaton LA. Neurorehabilitation in Adults With Traumatic Upper Extremity Amputation: A Scoping Review. Neurorehabil Neural Repair 2021; 36:208-216. [PMID: 34967259 DOI: 10.1177/15459683211070277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Most of the current literature around amputation focuses on lower extremity amputation or engineering aspects of prosthetic devices. There is a need to more clearly understand neurobehavioral mechanisms related to upper extremity amputation and how such mechanisms might influence recovery and utilization of prostheses. OBJECTIVE This scoping review aims to identify and summarize the current literature on adult traumatic upper limb amputation in regard to recovery and functional outcomes and how neuroplasticity might influence these findings. METHODS We identified appropriate articles using Academic Search Complete EBSCO, OVID Medline, and Cochrane databases. The resulting articles were then exported, screened, and reviewed based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses for Scoping Reviews (PRISMA-ScR) guidelines. RESULTS Eleven (11) studies met the study criteria. Of these studies, 7 focused on sensory involvement, 3 focused on neuroplastic changes post-amputation related to functional impact, and 1 study focused on motor control and learning post-amputation. Overall, these studies revealed an incomplete understanding of the neural mechanisms involved in motor rehabilitation in the central and peripheral nervous systems, while also demonstrating the value of an individualized approach to neurorehabilitation in upper limb loss. CONCLUSIONS There is a gap in our understanding of the role of neurorehabilitation following amputation. Overall, focused rehabilitation parameters, demographic information, and clarity around central and peripheral neural mechanisms are needed in future research to address neurobehavioral mechanisms to promote functional recovery following traumatic upper extremity amputation.
Collapse
Affiliation(s)
- Jake Rydland
- Division of Physical Therapy, Emory University School of Medicine, Atlanta, GA, USA
| | - Stephanie Spiegel
- Division of Physical Therapy, Emory University School of Medicine, Atlanta, GA, USA
| | - Olivia Wolfe
- Division of Physical Therapy, Emory University School of Medicine, Atlanta, GA, USA
| | | | - John T Johnson
- School of Biological Sciences, Georgia Tech, Atlanta, GA, USA
| | - Lewis A Wheaton
- School of Biological Sciences, Georgia Tech, Atlanta, GA, USA
| |
Collapse
|
9
|
Bahrami Moqadam S, Saleh Asheghabadi A, Norouzi F, Jafarzadeh H, Khosroabadi A, Alagheband A, Bangash G, Morovatdar N, Xu J. Conceptual Method of Temperature Sensation in Bionic Hand by Extraordinary Perceptual Phenomenon. JOURNAL OF BIONIC ENGINEERING 2021; 18:1344-1357. [PMID: 34868280 PMCID: PMC8628055 DOI: 10.1007/s42235-021-00112-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Lack of temperature sensation of myoelectric prosthetic hand limits the daily activities of amputees. To this end, a non-invasive temperature sensation method is proposed to train amputees to sense temperature with psychophysical sensory substitution. In this study, 22 healthy participants took part besides 5 amputee participants. The duration time of the study was 31 days with five test steps according to the Leitner technique. An adjustable temperature mug and a Peltier were used to change the temperature of the water/phantom digits to induce temperature to participants. Also, to isolate the surroundings and show colors, a Virtual Reality (VR) glass was employed. The statistical results conducted are based on the response of participants with questionnaire method. Using Chi-square tests, it is concluded that participants answer the experiment significantly correctly using the Leitner technique (P value < 0.05). Also, by applying the "Repeated Measures ANOVA", it is noticed that the time of numbness felt by participants had significant (P value < 0.001) difference. Participants could remember lowest and highest temperatures significantly better than other temperatures (P value < 0.001); furthermore, the well-trained amputee participant practically using the prosthesis with 72.58% could identify object's temperature with only once time experimenting the color temperature.
Collapse
Affiliation(s)
- Saeed Bahrami Moqadam
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 China
| | - Ahamd Saleh Asheghabadi
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 China
| | | | - Hamed Jafarzadeh
- Center for Computational and Data Intensive Science and Engineering (CDISE), Skolkovo Institute of Science and Technology (Skoltech), Moscow, 121205 Russia
| | - Ali Khosroabadi
- Department of Mechanical Engineering, Ferdowsi University, Mashhad, 9177948974 Iran
| | - Afshin Alagheband
- Department of Electrical Engineering, Ferdowsi University, Mashhad, 9177948974 Iran
| | - Ghazal Bangash
- Department of Computer Engineering, Ferdowsi University, Mashhad, 9177948974 Iran
| | - Negar Morovatdar
- Clinical Research Unit, Imam Reza Hospital, Mashhad University of Medical Sciences, 13131–99137 Mashhad, Iran
| | - Jing Xu
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 China
| |
Collapse
|
10
|
Bahia CP, Vianna-Barbosa RJ, Tovar-Moll F, Lent R. Terminal Arbors of Callosal Axons Undergo Plastic Changes in Early-Amputated Rats. Cereb Cortex 2020; 29:1460-1472. [PMID: 30873555 DOI: 10.1093/cercor/bhy043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/04/2018] [Accepted: 02/07/2018] [Indexed: 12/26/2022] Open
Abstract
Sensory information is processed in specific brain regions, and shared between the cerebral hemispheres by axons that cross the midline through the corpus callosum. However, sensory deprivation usually causes sensory losses and/or functional changes. This is the case of people who suffered limb amputation and show changes of body map organization within the somatosensory cortex (S1) of the deafferented cerebral hemisphere (contralateral to the amputated limb), as well as in the afferented hemisphere (ipsilateral to the amputated limb). Although several studies have approached these functional changes, the possible finer morphological alterations, such as those occurring in callosal axons, still remain unknown. The present work combined histochemistry, single-axon tracing and 3D microscopy to analyze the fine morphological changes that occur in callosal axons of the forepaw representation in early amputated rats. We showed that the forepaw representation in S1 was reduced in the deafferented hemisphere and expanded in the afferented side. Accordingly, after amputation, callosal axons originating from the deafferented cortex undergo an expansion of their terminal arbors with increased number of terminal boutons within the homotopic representation at the afferented cerebral hemisphere. Similar microscale structural changes may underpin the macroscale morphological and functional phenomena that characterize limb amputation in humans.
Collapse
Affiliation(s)
- Carlomagno Pacheco Bahia
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, CEP 21941-902 Rio de Janeiro (RJ), Brazil.,Institute of Health Sciences, Federal University of Pará, CEP 66075-110 Belém (PA), Brazil
| | - Rodrigo Jorge Vianna-Barbosa
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, CEP 21941-902 Rio de Janeiro (RJ), Brazil
| | - Fernanda Tovar-Moll
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, CEP 21941-902 Rio de Janeiro (RJ), Brazil.,D'Or Institute of Research and Education, CEP 22281-100 Rio de Janeiro (RJ), Brazil
| | - Roberto Lent
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, CEP 21941-902 Rio de Janeiro (RJ), Brazil
| |
Collapse
|
11
|
Molina-Rueda F, Navarro-Fernández C, Cuesta-Gómez A, Alguacil-Diego IM, Molero-Sánchez A, Carratalá-Tejada M. Neuroplasticity Modifications Following a Lower-Limb Amputation: A Systematic Review. PM R 2019; 11:1326-1334. [PMID: 30989836 DOI: 10.1002/pmrj.12167] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/07/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Although there are studies that have examined brain functional reorganization following upper-limb amputation, understanding of the brain changes that occur in people with lower-limb amputation is limited. OBJECTIVE To investigate modifications in the brain following lower-limb amputation. METHODS We included case-control studies that evaluate neuroplasticity in the central nervous system using neuroimaging techniques. A literature search was conducted using MEDLINE, CINAHL, Web of Science, Scopus, and Cochrane. RESULTS Eleven articles were included (total n = 204 people with unilateral lower-limb amputation). These studies showed an increase in cerebellar gray matter volume in prosthesis users, as well as a decrease in thickness of the premotor cortex, orbitofrontal cortex, temporo-occipital junction, precentral gyrus, visual areas, and somatosensory cortex. Regarding white matter, the trials observed a decrease in the integrity at the corona radiata, the connections between the premotor areas, the fronto-occipital fasciculus and the corpus callosum. In addition, a decreased functional connectivity between cortical and subcortical areas has been described. CONCLUSIONS Lower-limb amputation causes changes in several brain structures that may occur in the absence of pain and regardless of prosthesis use. The modifications observed include thinning or loss of gray matter volume, decrease in the integrity of the white matter connections between brain structures and changes in the functional connectivity between cortical and subcortical areas. LEVEL OF EVIDENCE I.
Collapse
Affiliation(s)
- Francisco Molina-Rueda
- Departamento de Fisioterapia, Terapia Ocupacional, Rehabilitación y Medicina Física, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Spain
| | - Cristian Navarro-Fernández
- Departamento de Fisioterapia, Terapia Ocupacional, Rehabilitación y Medicina Física, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Spain
| | - Alicia Cuesta-Gómez
- Departamento de Fisioterapia, Terapia Ocupacional, Rehabilitación y Medicina Física, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Spain
| | - Isabel M Alguacil-Diego
- Departamento de Fisioterapia, Terapia Ocupacional, Rehabilitación y Medicina Física, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Spain
| | - Alberto Molero-Sánchez
- Departamento de Fisioterapia, Terapia Ocupacional, Rehabilitación y Medicina Física, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Spain
| | - María Carratalá-Tejada
- Departamento de Fisioterapia, Terapia Ocupacional, Rehabilitación y Medicina Física, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Spain
| |
Collapse
|
12
|
Wheaton LA. Neurorehabilitation in upper limb amputation: understanding how neurophysiological changes can affect functional rehabilitation. J Neuroeng Rehabil 2017; 14:41. [PMID: 28532464 PMCID: PMC5441064 DOI: 10.1186/s12984-017-0256-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 05/15/2017] [Indexed: 11/19/2022] Open
Abstract
Background Significant advances have been made in developing new prosthetic technologies with the goal of restoring function to persons that suffer partial or complete loss of the upper limb. Despite these technological advances, many challenges remain in understanding barriers in patient adoption of technology, and what critical factors should be of focus in prosthetics development from a motor control perspective. This points to a potential opportunity to improve our understanding of amputation using neurophysiology and plasticity, and integrate this knowledge into the development of prosthetics technology in novel ways. Here, argument will be made to include a stronger focus on the neural and behavioral changes that result from amputation, and a better appreciation of the time-scale of changes which may significantly affect device adaptation, functional device utility, and motor learning implemented in rehabilitation environments. Conclusion By strengthening our understanding of the neuroscience of amputation, we may improve the ability to couple neurorehabilitation with neuroengineering to support clinician needs in yielding improved outcomes in patients.
Collapse
Affiliation(s)
- Lewis A Wheaton
- School of Biological Sciences, Georgia Institute of Technology, 555 14th Street, Atlanta, GA, 30332-0356, USA.
| |
Collapse
|