1
|
Modiano YA, Woods SP. Prospective memory is associated with aspects of disability and quality of life in people with epilepsy. J Clin Exp Neuropsychol 2024; 46:316-328. [PMID: 38695312 DOI: 10.1080/13803395.2024.2348213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/21/2024] [Indexed: 08/09/2024]
Abstract
INTRODUCTION Episodic memory disruptions in epilepsy stem from shared neurocircuitry. While prior research has focused on retrospective memory (RM), prospective memory (PM; i.e. remembering to remember) also deserves consideration given its critical role in the management of daily activities. The current investigation assessed whether PM is associated with disability and quality of life in people with epilepsy. METHODS This cross-sectional, correlational study included a consecutive series of 50 people with epilepsy presenting for neuropsychological evaluation who completed the Royal Prince Alfred Prospective Memory Test (RPA) and Prospective and Retrospective Memory Questionnaire (PRMQ) and 63 demographically comparable healthy adults. The participants with epilepsy also completed clinical measures of neuropsychological ability and questionnaires assessing disability and quality of life. RESULTS People with epilepsy had significantly more frequent memory symptoms as compared to healthy adults at a very large effect size. Worse mood was associated with lower PM ability at a medium effect size and more frequent PM symptoms at a large effect size. A hierarchical linear regression indicated that PM explained 52% of the variance in disability and 43% of the variance in quality of life after accounting for RM ability. CONCLUSIONS PM is associated with poorer everyday functioning among people with epilepsy and shows evidence of incremental value beyond RM ability in that regard. Future studies are needed to understand the complex pathways from PM to functional limitations to inform clinical intervention.
Collapse
Affiliation(s)
- Yosefa A Modiano
- Vivian L. Smith Department of Neurosurgery and Texas Institute for Restorative Neurotechnologies, UTHealth Houston, Houston, TX, USA
| | | |
Collapse
|
2
|
Audrain S, Barnett A, Mouseli P, McAndrews MP. Leveraging the resting brain to predict memory decline after temporal lobectomy. Epilepsia 2023; 64:3061-3072. [PMID: 37643922 DOI: 10.1111/epi.17767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023]
Abstract
OBJECTIVE Predicting memory morbidity after temporal lobectomy in patients with temporal lobe epilepsy (TLE) relies on indices of preoperative temporal lobe structural and functional integrity. However, epilepsy is increasingly considered a network disorder, and memory a network phenomenon. We assessed the utility of functional network measures to predict postoperative memory changes. METHODS Seventy-two adults with TLE (37 left/35 right) underwent preoperative resting-state functional magnetic resonance imaging and pre- and postoperative neuropsychological assessment. We compared functional connectivity throughout the memory network of each patient to a healthy control template (n = 19) to identify differences in global organization. A second metric indicated the degree of integration of the to-be-resected temporal lobe with the rest of the memory network. We included these measures in a linear regression model alongside standard clinical variables as predictors of memory change after surgery. RESULTS Left TLE patients with more atypical memory networks, and with greater functional integration of the to-be-resected region with the rest of the memory network preoperatively, experienced the greatest decline in verbal memory after surgery. Together, these two measures explained 44% of variance in verbal memory change, outperforming standard clinical and demographic variables. None of the variables examined was associated with visuospatial memory change in patients with right TLE. SIGNIFICANCE Resting-state connectivity provides valuable information concerning both the integrity of to-be-resected tissue and functional reserve across memory-relevant regions outside of the to-be-resected tissue. Intrinsic functional connectivity has the potential to be useful for clinical decision-making regarding memory outcomes in left TLE, and more work is needed to identify the factors responsible for differences seen in right TLE.
Collapse
Affiliation(s)
- Sam Audrain
- Division of Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Alexander Barnett
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Pedram Mouseli
- Division of Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Centre for Multimodal Sensorimotor and Pain Research, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Mary Pat McAndrews
- Division of Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Fleury M, Buck S, Binding LP, Caciagli L, Vos SB, Winston GP, Thompson P, Koepp MJ, Duncan JS, Sidhu MK. Episodic memory network connectivity in temporal lobe epilepsy. Epilepsia 2022; 63:2597-2622. [PMID: 35848050 PMCID: PMC9804196 DOI: 10.1111/epi.17370] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Temporal lobe epilepsy (TLE) affects brain networks and is associated with impairment of episodic memory. Temporal and extratemporal reorganization of memory functions is described in functional magnetic resonance imaging (fMRI) studies. Functional reorganizations have been shown at the local activation level, but network-level alterations have been underinvestigated. We aim to investigate the functional anatomy of memory networks using memory fMRI and determine how this relates to memory function in TLE. METHODS Ninety patients with unilateral TLE (43 left) and 29 controls performed a memory-encoding fMRI paradigm of faces and words with subsequent out-of-scanner recognition test. Subsequent memory event-related contrasts of words and faces remembered were generated. Psychophysiological interaction analysis investigated task-associated changes in functional connectivity seeding from the mesial temporal lobes (MTLs). Correlations between changes in functional connectivity and clinical memory scores, epilepsy duration, age at epilepsy onset, and seizure frequency were investigated, and between connectivity supportive of better memory and disease burden. Connectivity differences between controls and TLE, and between TLE with and without hippocampal sclerosis, were explored using these confounds as regressors of no interest. RESULTS Compared to controls, TLE patients showed widespread decreased connectivity between bilateral MTLs and frontal lobes, and increased local connectivity between the anterior MTLs bilaterally. Increased intrinsic connectivity within the bilateral MTLs correlated with better out-of-scanner memory performance in both left and right TLE. Longer epilepsy duration and higher seizure frequency were associated with decreased connectivity between bilateral MTLs and left/right orbitofrontal cortex (OFC) and insula, connections supportive of memory functions. TLE due to hippocampal sclerosis was associated with greater connectivity disruption within the MTL and extratemporally. SIGNIFICANCE Connectivity analyses showed that TLE is associated with temporal and extratemporal memory network reorganization. Increased bilateral functional connectivity within the MTL and connectivity to OFC and insula are efficient, and are disrupted by greater disease burden.
Collapse
Affiliation(s)
- Marine Fleury
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyBuckinghamshireUK
| | - Sarah Buck
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyBuckinghamshireUK
| | - Lawrence P. Binding
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyBuckinghamshireUK
- Department of Computer Science, Centre for Medical Image ComputingUniversity College LondonLondonUK
| | - Lorenzo Caciagli
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyBuckinghamshireUK
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Sjoerd B. Vos
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyBuckinghamshireUK
- Neuroradiological Academic Unit, University College London Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Gavin P. Winston
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyBuckinghamshireUK
- Division of Neurology, Department of MedicineQueen's UniversityKingstonOntarioCanada
| | - Pamela J. Thompson
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyBuckinghamshireUK
| | - Matthias J. Koepp
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyBuckinghamshireUK
| | - John S. Duncan
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyBuckinghamshireUK
| | - Meneka K. Sidhu
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyBuckinghamshireUK
| |
Collapse
|
4
|
Conde-Blanco E, Pariente JC, Carreño M, Boget T, Pascual-Díaz S, Centeno M, Manzanares I, Donaire A, Pintor L, Rumià J, Roldán P, Setoain X, Bargalló N. Testing an Adapted Auditory Verbal Learning Test Paradigm for fMRI to Lateralize Verbal Memory in Patients with Epilepsy. AJNR Am J Neuroradiol 2022; 43:1445-1452. [PMID: 36137657 PMCID: PMC9575519 DOI: 10.3174/ajnr.a7622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/01/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND AND PURPOSE fMRI is a noninvasive tool for predicting postsurgical deficits in candidates with pharmacoresistant temporal lobe epilepsy. We aimed to test an adapted paradigm of the Rey Auditory Verbal Learning Test to evaluate differences in memory laterality indexes between patients and healthy controls and its association with neuropsychological scores. MATERIALS AND METHODS We performed a prospective study of 50 patients with temporal lobe epilepsy and 22 healthy controls. Participants underwent a block design language and memory fMRI. Laterality indexes and the hippocampal anterior-posterior index were calculated. Language and memory lateralization was organized into typical and atypical on the basis of laterality indexes. A neuropsychological assessment was performed with a median time from fMRI of 8 months and was compared with fMRI performance. RESULTS We studied 40 patients with left temporal lobe epilepsy and 10 with right temporal lobe epilepsy. Typical language occurred in 65.3% of patients and 90.9% of healthy controls (P = .04). The memory fMRI laterality index was obtained in all healthy controls and 92% of patients. The verbal memory laterality index was bilateral (24.3%) more frequently than the language laterality index (7.69%) in patients with left temporal lobe epilepsy. Atypical verbal memory was greater in patients with left temporal lobe epilepsy (56.8%) than in healthy controls (36.4%), and the proportion of bilateral laterality indexes (53.3%) was larger than right laterality indexes (46.7%). Atypical verbal memory might be associated with higher cognitive scores in patients. No relevant differences were seen in the hippocampal anterior-posterior index according to memory impairment. CONCLUSIONS The adapted Rey Auditory Verbal Learning Test paradigm fMRI might support verbal memory lateralization. Temporal lobe epilepsy laterality influences hippocampal memory laterality indexes. Left temporal lobe epilepsy has shown a higher proportion of atypical verbal memory compared with language, potentially to memory functional reorganization.
Collapse
Affiliation(s)
- E Conde-Blanco
- From the Departments of Neurology (E.C.-B., M. Carreño, M. Centeno, I.M., A.D.)
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (E.C.-B., M. Carreño, M. Centeno, A.D., T.B., L.P., J.R., P.R., X.S., N.B.), Barcelona, Spain
- EpiCARE: European Reference Network for Epilepsy (E.C.-B., M. Carreño, M. Centeno, A.D.), Dublin, Ireland
| | - J C Pariente
- Magnetic Resonance Imaging Core Facility (J.C.P., S.P.-D.), Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - M Carreño
- From the Departments of Neurology (E.C.-B., M. Carreño, M. Centeno, I.M., A.D.)
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (E.C.-B., M. Carreño, M. Centeno, A.D., T.B., L.P., J.R., P.R., X.S., N.B.), Barcelona, Spain
- EpiCARE: European Reference Network for Epilepsy (E.C.-B., M. Carreño, M. Centeno, A.D.), Dublin, Ireland
| | - T Boget
- Neuropsychology (T.B.)
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (E.C.-B., M. Carreño, M. Centeno, A.D., T.B., L.P., J.R., P.R., X.S., N.B.), Barcelona, Spain
| | - S Pascual-Díaz
- Magnetic Resonance Imaging Core Facility (J.C.P., S.P.-D.), Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - M Centeno
- From the Departments of Neurology (E.C.-B., M. Carreño, M. Centeno, I.M., A.D.)
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (E.C.-B., M. Carreño, M. Centeno, A.D., T.B., L.P., J.R., P.R., X.S., N.B.), Barcelona, Spain
- EpiCARE: European Reference Network for Epilepsy (E.C.-B., M. Carreño, M. Centeno, A.D.), Dublin, Ireland
| | - I Manzanares
- From the Departments of Neurology (E.C.-B., M. Carreño, M. Centeno, I.M., A.D.)
| | - A Donaire
- From the Departments of Neurology (E.C.-B., M. Carreño, M. Centeno, I.M., A.D.)
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (E.C.-B., M. Carreño, M. Centeno, A.D., T.B., L.P., J.R., P.R., X.S., N.B.), Barcelona, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (A.D., X.S.), Barcelona, Spain
- EpiCARE: European Reference Network for Epilepsy (E.C.-B., M. Carreño, M. Centeno, A.D.), Dublin, Ireland
| | - L Pintor
- Psychiatry (L.P.)
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (E.C.-B., M. Carreño, M. Centeno, A.D., T.B., L.P., J.R., P.R., X.S., N.B.), Barcelona, Spain
| | - J Rumià
- Neurosurgery (J.R., P.R.)
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (E.C.-B., M. Carreño, M. Centeno, A.D., T.B., L.P., J.R., P.R., X.S., N.B.), Barcelona, Spain
| | - P Roldán
- Neurosurgery (J.R., P.R.)
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (E.C.-B., M. Carreño, M. Centeno, A.D., T.B., L.P., J.R., P.R., X.S., N.B.), Barcelona, Spain
| | - X Setoain
- Nuclear Medicine (X.S.), Epilepsy Program, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (E.C.-B., M. Carreño, M. Centeno, A.D., T.B., L.P., J.R., P.R., X.S., N.B.), Barcelona, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (A.D., X.S.), Barcelona, Spain
| | - N Bargalló
- Radiology (N.B.)
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (E.C.-B., M. Carreño, M. Centeno, A.D., T.B., L.P., J.R., P.R., X.S., N.B.), Barcelona, Spain
| |
Collapse
|
5
|
Li H, Ding F, Chen C, Huang P, Xu J, Chen Z, Wang S, Zhang M. Dynamic functional connectivity in modular organization of the hippocampal network marks memory phenotypes in temporal lobe epilepsy. Hum Brain Mapp 2022; 43:1917-1929. [PMID: 34967488 PMCID: PMC8933317 DOI: 10.1002/hbm.25763] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/22/2021] [Accepted: 12/16/2021] [Indexed: 11/20/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is a network disorder with a high incidence of memory impairment. Memory processing ability highly depends on the dynamic coordination between distinct modules within the hippocampal network. Here, we investigate the relationship between memory phenotypes and modular alterations of dynamic functional connectivity (FC) in the hippocampal network in TLE patients. Then, 31 healthy controls and 66 TLE patients with hippocampal sclerosis were recruited. The patients were classified into memory-intact (MI, 35 cases) group and memory-deficit (MD, 31 cases) group, each based on individual's Wechsler Memory Scale-Revised score. The sliding-windows approach and graph theory analysis were used to analyze the hippocampal network based on resting state functional magnetic resonance imaging. Temporal properties and modular metrics were calculated. Two discrete and switchable states were revealed: a high modularized state (State I) and a low modularized state (State II), which corresponded to either anterior or posterior hippocampal network dominated pattern. TLE was prone to drive less State I but more State II, and the tendency was more obvious in TLE-MD. Additionally, TLE-MD showed more widespread alterations of modular properties compared with TLE-MI across two states. Furthermore, the dynamic modularity features had unique superiority in discriminating TLE-MD from TLE-MI. These findings demonstrated that state transitions and modular function of dissociable hippocampal networks were altered in TLE and more importantly, they could reflect different memory phenotypes. The trend revealed potential values of dynamic FC in elucidating the mechanism underlying memory impairments in TLE.
Collapse
Affiliation(s)
- Hong Li
- Department of Radiology, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Fang Ding
- Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Cong Chen
- Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Peiyu Huang
- Department of Radiology, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Jingjing Xu
- Department of Radiology, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Zhong Chen
- Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China and Zhejiang Province Key Laboratory of Neurobiology, College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Shuang Wang
- Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Minming Zhang
- Department of Radiology, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| |
Collapse
|
6
|
Hou J, Zhu H, Xiao L, Zhao CW, Liao G, Tang Y, Feng L. Alterations in Cortical-Subcortical Metabolism in Temporal Lobe Epilepsy With Impaired Awareness Seizures. Front Aging Neurosci 2022; 14:849774. [PMID: 35360210 PMCID: PMC8961434 DOI: 10.3389/fnagi.2022.849774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveThe features of cerebral metabolism associated with loss of consciousness in patients with temporal lobe epilepsy (TLE) have not been fully elucidated. We aim to investigate the alterations in cortical-subcortical metabolism in temporal lobe epilepsy with impaired awareness seizures (IAS).MethodsRegional cerebral metabolism was measured using fluorine-18-fluorodeoxyglucose positron emission tomography (18F-FDG PET) in patients with TLE-IAS and healthy controls. All patients had a comprehensive evaluation to confirm their seizure origin and lateralization. Videos of all seizures were viewed and rated by at least two epileptologists to identify the state of consciousness when a seizure occurred. By synthesizing the seizure history, semeiology, and video EEG of all patients, as long as the patients had one seizure with impaired awareness, she/he will be included. 76 patients with TLE-IAS and 60 age-matched healthy controls were enrolled in this study. Regional cerebral metabolic patterns were analyzed for TLE-IAS and healthy control groups using statistical parametric mapping. Besides, we compared the MRI-negative patients and MRI-positive patients with healthy controls, respectively.ResultsThere were no significant differences in the age and sex of TLE-IAS patients and healthy control. TLE-IAS patients showed extensive bilateral hypermetabolism in the frontoparietal regions, cingulate gyrus, corpus callosum, occipital lobes, basal ganglia, thalamus, brainstem, and cerebellum. The region of metabolic change was more extensive in right TLE-IAS than that of the left, including extensive hypometabolism in the ipsilateral temporal, frontal, parietal, and insular lobes. And contralateral temporal lobe, bilateral frontoparietal regions, occipital lobes, the anterior and posterior regions of the cingulate gyrus, bilateral thalamus, bilateral basal ganglia, brainstem, and bilateral cerebellum showed hypermetabolism. The TLE patients with impaired awareness seizure showed hypermetabolism in the cortical-subcortical network including the arousal system. Additionally, 48 MRI-positive and 28 MRI-negative TLE-IAS patients were included in our study. TLE-IAS patients with MRI-negative and MRI-positive were both showed hypermetabolism in the cingulate gyrus. Hypometabolism in the bilateral temporal lobe was showed in the TLE-IAS with MRI-positive.ConclusionThese findings suggested that the repetitive consciousness impairing ictal events may have an accumulative effect on brain metabolism, resulting in abnormal interictal cortical-subcortical metabolic disturbance in TLE patients with impaired awareness seizure. Understanding these metabolic mechanisms may guide future clinical treatments to prevent seizure-related awareness deficits and improve quality of life in people with TLE.
Collapse
Affiliation(s)
- Jiale Hou
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Haoyue Zhu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Ling Xiao
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, China
| | | | - Guang Liao
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yongxiang Tang
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yongxiang Tang,
| | - Li Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders (XIANGYA), Xiangya Hospital, Central South University, Changsha, China
- Li Feng,
| |
Collapse
|
7
|
Cho KH, Park KM, Lee HJ, Cho H, Lee DA, Heo K, Kim SE. Metabolic network is related to surgical outcome in temporal lobe epilepsy with hippocampal sclerosis: A brain FDG-PET study. J Neuroimaging 2021; 32:300-313. [PMID: 34679233 DOI: 10.1111/jon.12941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/15/2021] [Accepted: 10/03/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE The aim of this study was to investigate differences in metabolic networks based on preoperative fluorodeoxyglucose (FDG)-positron emission tomography (PET) in temporal lobe epilepsy (TLE) with hippocampal sclerosis (HS) between patients with complete seizure-free (SF) and those with noncomplete seizure-free (non-SF) after anterior temporal lobectomy. METHODS This study was retrospectively performed at a tertiary hospital. We recruited pathologically confirmed 75 TLE patients with HS who underwent preoperative FDG-PET. All patients underwent a standard anterior temporal lobectomy. The surgical outcome was evaluated at least 12 months after surgery, and we divided the subjects into patients with SF (International League Against Epilepsy [ILAE] class I) and those with non-SF (ILAE class II-VI). We evaluated the metabolic network using graph theoretical analysis based on FDG-PET. We investigated the differences in network measures between the two groups. RESULTS Of the 75 TLE patients with HS, 32 patients (42.6%) had SF, whereas 43 patients (57.3%) had non-SF. There were significant differences in global metabolic networks according to surgical outcomes. The patients with SF had a lower assortative coefficient than those with non-SF (-0.020 vs. -0.009, p = .044). We also found widespread regional differences in local metabolic networks according to surgical outcomes. CONCLUSION Our study demonstrates significant differences in preoperative metabolic networks based on FDG-PET in TLE patients with HS according to surgical outcomes. This work introduces a metabolic network based on FDG-PET and can be used as a potential tool for predicting surgical outcome in TLE patients with HS.
Collapse
Affiliation(s)
- Kyoo Ho Cho
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea.,Department of Neurology, Seoul Hospital, Ewha Womans University College of Medicine, Seoul, Korea
| | - Kang Min Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Ho-Joon Lee
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Hojin Cho
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Dong Ah Lee
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Kyoung Heo
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Eun Kim
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| |
Collapse
|
8
|
Li X, Jiang Y, Li W, Qin Y, Li Z, Chen Y, Tong X, Xiao F, Zuo X, Gong Q, Zhou D, Yao D, An D, Luo C. Disrupted functional connectivity in white matter resting-state networks in unilateral temporal lobe epilepsy. Brain Imaging Behav 2021; 16:324-335. [PMID: 34478055 DOI: 10.1007/s11682-021-00506-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2021] [Indexed: 02/08/2023]
Abstract
Unilateral temporal lobe epilepsy (TLE) is the most common type of focal epilepsy characterized by foci in the unilateral temporal lobe grey matters of regions such as the hippocampus. However, it remains unclear how the functional features of white matter are altered in TLE. In the current study, resting-state functional magnetic resonance imaging (fMRI) was performed on 71 left TLE (LTLE) patients, 79 right TLE (RTLE) patients and 47 healthy controls (HC). Clustering analysis was used to identify fourteen white matter networks (WMN). The functional connectivity (FC) was calculated among WMNs and between WMNs and grey matter. Furthermore, the FC laterality of hemispheric WMNs was assessed. First, both patient groups showed decreased FCs among WMNs. Specifically, cerebellar white matter illustrated decreased FCs with the cerebral superficial WMNs, implying a dysfunctional interaction between the cerebellum and the cerebral cortex in TLE. Second, the FCs between WMNs and the ipsilateral hippocampus (grey matter foci) were also reduced in patient groups, which may suggest insufficient functional integration in unilateral TLE. Interestingly, RTLE showed more severe abnormalities of white matter FCs, including links to the bilateral hippocampi and temporal white matter, than LTLE. Taken together, these findings provide functional evidence of white matter abnormalities, extending the understanding of the pathological mechanism of white matter impairments in unilateral TLE.
Collapse
Affiliation(s)
- Xuan Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Second North Jianshe Road, Chengdu, 610054, People's Republic of China
| | - Yuchao Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Second North Jianshe Road, Chengdu, 610054, People's Republic of China
| | - Wei Li
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610054, People's Republic of China
| | - Yingjie Qin
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610054, People's Republic of China
| | - Zhiliang Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Second North Jianshe Road, Chengdu, 610054, People's Republic of China
| | - Yan Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Second North Jianshe Road, Chengdu, 610054, People's Republic of China
| | - Xin Tong
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610054, People's Republic of China
| | - Fenglai Xiao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610054, People's Republic of China
| | - Xiaojun Zuo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Second North Jianshe Road, Chengdu, 610054, People's Republic of China
| | - Qiyong Gong
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610054, People's Republic of China
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610054, People's Republic of China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Second North Jianshe Road, Chengdu, 610054, People's Republic of China
| | - Dongmei An
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610054, People's Republic of China
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Second North Jianshe Road, Chengdu, 610054, People's Republic of China.
| |
Collapse
|
9
|
Tung H, Lin WH, Lan TH, Hsieh PF, Chiang MC, Lin YY, Peng SJ. Network reorganization during verbal fluency task in fronto-temporal epilepsy: A functional near-infrared spectroscopy study. J Psychiatr Res 2021; 138:541-549. [PMID: 33990025 DOI: 10.1016/j.jpsychires.2021.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/25/2021] [Accepted: 05/01/2021] [Indexed: 10/21/2022]
Abstract
This is the first study to use functional near-infrared spectroscopy (fNIRS) to investigate how the lateralization of the epileptogenic zone affects the reconfiguration of task-related network patterns. Eleven left fronto-temporal epilepsy (L-FTE) and 11 right fronto-temporal epilepsy (R-FTE), as well as 22 age- and gender-matched controls, were enrolled. Signals from 52-channel fNIRS were recorded while the subject was undertaking verbal fluency tasks (VFTs), which included categorical (CFT) and letter (LFT) fluency tasks. Three analytic methods were used to study the network topology: network-based analysis, hub identification, and proportional threshold to select the top 20% strongest connections for both graph theory parameters and clinical correlation. Performance of CFT is accomplished primarily using the ventral pathway, and bilateral ventral pathways are augmented in fronto-temporal epilepsy patients by strengthening the inter-hemispheric connections, especially for R-FTE. LFT mainly employed the dorsal pathway, and further prioritized the left dorsal pathway in strengthening intra-hemispheric connections in fronto-temporal epilepsy, especially L-FTE. The top 20% of the strongest connections only present differences in CFT network compared with the controls. R-FTE increased inter-hemispheric network density, while L-FTE decreased inter-hemispheric average characteristic path length. Accumulative seizure burden only affects L-FTE network. Better LFT performance and longer educational years seem to promote left fronto-temporal networks, and decreased the demand from RR intra-hemispheric connectivity in L-FTE. LFT scores in R-FTE are maintained by preserved RR intra-hemispheric networks. However, CFT scores and educational years seem to have no effect on the CFT network topology in both FTE.
Collapse
Affiliation(s)
- Hsin Tung
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taiwan; Center of Faculty Development, Taichung Veterans General Hospital, Taiwan; Division of Epilepsy, Neurological Institute, Taichung Veterans General Hospital, Taiwan
| | - Wei-Hao Lin
- Department of Psychiatry, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tsuo-Hung Lan
- Department of Psychiatry, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Peiyuan F Hsieh
- Division of Epilepsy, Neurological Institute, Taichung Veterans General Hospital, Taiwan
| | - Ming-Chang Chiang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yung-Yang Lin
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taiwan; Department of Critical Care Medicine, Taipei Veterans General Hospital, Taiwan; Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Syu-Jyun Peng
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
10
|
Banjac S, Roger E, Pichat C, Cousin E, Mosca C, Lamalle L, Krainik A, Kahane P, Baciu M. Reconfiguration dynamics of a language-and-memory network in healthy participants and patients with temporal lobe epilepsy. Neuroimage Clin 2021; 31:102702. [PMID: 34090125 PMCID: PMC8186554 DOI: 10.1016/j.nicl.2021.102702] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/21/2021] [Accepted: 05/14/2021] [Indexed: 12/03/2022]
Abstract
Current theoretical frameworks suggest that human behaviors are based on strong and complex interactions between cognitive processes such as those underlying language and memory functions in normal and neurological populations. We were interested in assessing the dynamic cerebral substrate of such interaction between language and declarative memory, as the composite function, in healthy controls (HC, N = 19) and patients with temporal lobe epilepsy (TLE, N = 16). Our assumption was that the language and declarative memory integration is based on a language-and-memory network (LMN) that is dynamic and reconfigures according to task demands and brain status. Therefore, we explored two types of LMN dynamics, a state reconfiguration (intrinsic resting-state compared to extrinsic state assessed with a sentence recall task) and a reorganization of state reconfiguration (TLE compared to HC). The dynamics was evaluated in terms of segregation (community or module detection) and integration (connector hubs). In HC, the level of segregation was the same in both states and the mechanism of LMN state reconfiguration was shown through module change of key language and declarative memory regions with integrative roles. In TLE patients, the reorganization of LMN state reconfiguration was reflected in segregation increase and extrinsic modules that were based on shorter-distance connections. While lateral and mesial temporal regions enabled state reconfiguration in HC, these regions showed reduced flexibility in TLE. We discuss our results in a connectomic perspective and propose a dynamic model of language and declarative memory functioning. We claim that complex and interactive cognitive functions, such as language and declarative memory, should be investigated dynamically, considering the interaction between cognitive networks.
Collapse
Affiliation(s)
- Sonja Banjac
- Univ. Grenoble Alpes, CNRS LPNC UMR 5105, 38000 Grenoble, France
| | - Elise Roger
- Univ. Grenoble Alpes, CNRS LPNC UMR 5105, 38000 Grenoble, France
| | - Cédric Pichat
- Univ. Grenoble Alpes, CNRS LPNC UMR 5105, 38000 Grenoble, France
| | - Emilie Cousin
- Univ. Grenoble Alpes, CNRS LPNC UMR 5105, 38000 Grenoble, France; Univ. Grenoble Alpes, UMS IRMaGe CHU Grenoble, 38000 Grenoble, France
| | - Chrystèle Mosca
- Neurology Department, Grenoble Hospital, Univ. Grenoble Alpes, 38000 Grenoble, France
| | - Laurent Lamalle
- Univ. Grenoble Alpes, UMS IRMaGe CHU Grenoble, 38000 Grenoble, France
| | - Alexandre Krainik
- Univ. Grenoble Alpes, UMS IRMaGe CHU Grenoble, 38000 Grenoble, France
| | - Philippe Kahane
- Neurology Department, Grenoble Hospital, Univ. Grenoble Alpes, 38000 Grenoble, France
| | - Monica Baciu
- Univ. Grenoble Alpes, CNRS LPNC UMR 5105, 38000 Grenoble, France.
| |
Collapse
|
11
|
Chen S, Zhang J, Ruan X, Deng K, Zhang J, Zou D, He X, Li F, Bin G, Zeng H, Huang B. Voxel-based morphometry analysis and machine learning based classification in pediatric mesial temporal lobe epilepsy with hippocampal sclerosis. Brain Imaging Behav 2021; 14:1945-1954. [PMID: 31250266 DOI: 10.1007/s11682-019-00138-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) is a common type of pediatric epilepsy. We sought to evaluate whether the combination of voxel-based morphometry (VBM) and support vector machine (SVM), a machine learning method, was feasible for the classification of MTLE-HS. Three-dimensional T1-weighted MRI was acquired in 37 participants including 22 with MTLE-HS (16 left, 6 right) and 15 healthy controls (HCs). VBM was used to detect the regions of gray matter volume (GMV) abnormalities. The volumes of these regions were then calculated for each participant and used as the features in SVM. The SVM model was trained and tested with leave-one-out cross validation (LOOCV). We performed VBM-based comparison and SVM-based classification between left HS (LHS) and HC as well as between right HS (RHS) and HC. Both GMV increase and reduction were found in the group comparisons with VBM. Using SVM, we reached an area under the receiver operating characteristic curve (AUC) of 0.870, 0.976 and 0.902 for the classification between LHS and HC, between RHS and HC and between HS and HC respectively. The VBM findings were concordant with the clinical findings. Thus, our proposed method combining VBM findings with SVM, were applicable in the classification of padiatric MTLE-HS with high accuracy.
Collapse
Affiliation(s)
- Shihui Chen
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
| | - Jian Zhang
- Health Science Centre, Shenzhen University, Shenzhen, Guangdong, People's Republic of China.,Shenzhen University Clinical Research Center for Neurological Diseases, Shenzhen, Guangdong, People's Republic of China
| | - Xiaolei Ruan
- Jiuquan Satellite Launch Center, Lanzhou, Gansu, People's Republic of China
| | - Kan Deng
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, People's Republic of China.,Shenzhen University Clinical Research Center for Neurological Diseases, Shenzhen, Guangdong, People's Republic of China
| | - Jianing Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, People's Republic of China.,Shenzhen University Clinical Research Center for Neurological Diseases, Shenzhen, Guangdong, People's Republic of China
| | - Dongfang Zou
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Xiaoming He
- Xiangyang Central Hospital/Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, People's Republic of China
| | - Feng Li
- Xiangyang Central Hospital/Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, People's Republic of China
| | - Guo Bin
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, People's Republic of China.,Shenzhen University Clinical Research Center for Neurological Diseases, Shenzhen, Guangdong, People's Republic of China
| | - Hongwu Zeng
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, Guangdong, People's Republic of China.
| | - Bingsheng Huang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, People's Republic of China. .,Shenzhen University Clinical Research Center for Neurological Diseases, Shenzhen, Guangdong, People's Republic of China.
| |
Collapse
|
12
|
Jiang S, Li H, Liu L, Yao D, Luo C. Voxel-wise functional connectivity of the default mode network in epilepsies: a systematic review and meta-analysis. Curr Neuropharmacol 2021; 20:254-266. [PMID: 33823767 PMCID: PMC9199542 DOI: 10.2174/1570159x19666210325130624] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/24/2021] [Accepted: 03/18/2021] [Indexed: 11/22/2022] Open
Abstract
Background: Default Mode Network (DMN) is recognized to be involved in the generation and propagation of epileptic activities in various epilepsies. Converging evidence has suggested disturbed Functional Connectivity (FC) in epilepsies, which was inferred to be related to underlying pathological mechanisms. However, abnormal changes of FC in DMN revealed by different studies are controversial, which obscures the role of DMN in distinct epilepsies. Objective: The present work aims to investigate the voxel-wise FC in DMN across epilepsies. Methods: A systematic review was conducted on 22 published articles before October 2020, indexed in PubMed and Web of Science. A meta-analysis with a random-effect model was performed using the effect-size signed differential mapping approach. Subgroup analyses were performed in three groups: Idiopathic Generalized Epilepsy (IGE), mixed Temporal Lobe Epilepsy (TLE), and mixed Focal Epilepsy (FE) with different foci. Results: The meta-analysis suggested commonly decreased FC in mesial prefrontal cortices across different epilepsies. Additionally decreased FC in posterior DMN was observed in IGE. The TLE showed decreased FC in temporal lobe regions and increased FC in the dorsal posterior cingulate cortex. Interestingly, an opposite finding in the ventral and dorsal middle frontal gyrus was observed in TLE. The FE demonstrated increased FC in the cuneus.
Collapse
Affiliation(s)
- Sisi Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731. China
| | - Hechun Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731. China
| | - Linli Liu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731. China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731. China
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731. China
| |
Collapse
|
13
|
Ives-Deliperi V, Butler JT. Mechanisms of cognitive impairment in temporal lobe epilepsy: A systematic review of resting-state functional connectivity studies. Epilepsy Behav 2021; 115:107686. [PMID: 33360743 DOI: 10.1016/j.yebeh.2020.107686] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/16/2020] [Accepted: 11/30/2020] [Indexed: 12/22/2022]
Abstract
Temporal lobe epilepsy is the most common form of focal epilepsy and related cognitive dysfunction impacts significantly on quality of life in patients. Identifying the mechanisms of such impairment would assist in the management and treatment of patients. The study of perturbations in resting-state networks could shed light on this subject. The aim of this systematic review was to synthesize findings on the relationship between aberrant resting-state functional connectivity and cognitive performance in patients with TLE. Literature searches were conducted on Scopus and PubMed electronic databases and 17 relevant articles were extracted, all of which studied the association between resting-state functional connectivity (RSFC) and cognition in adults with TLE. Study findings were synthesized according to methods used to analyze resting-state data, cognitive domains tested, and neuropsychology tasks administered. Results show that increased RSFC in the primary epileptogenic hippocampus, and reduced intra-hemispheric RSFC, are associated with weaker memory performance. In left TLE, memory impairment may be compensated for by bilateral hippocampal connectivity, which is also predictive of better postoperative memory outcomes. In right TLE, memory loss may be compensated for by increased connectivity between the contralateral hippocampus and inferior frontal gyrus. There is also tentative evidence that working memory dysfunction is related to reduced RSFC between the medial frontal-insular parietal network and the medial temporal network, executive dysfunction is related to reduced RSFC between frontal and parietal lobes, and between the frontal lobe and subcortical regions and that language dysfunction is related to reduced RSFC within the left fronto-temporal language network. Multicenter studies could refute or support these findings by enrolling large samples of patients and employing multivariate regression analysis to control for the effects of anatomical disruption, interictal discharges, seizure frequency, medication, and mood. Systematic review registration: PROSPERO: 191323.
Collapse
Affiliation(s)
- Victoria Ives-Deliperi
- Neuroscience Institute, Division of Neurosurgery, University of Cape Town, South Africa.
| | - James T Butler
- Division of Neurology, Department of Medicine, University of Cape Town, South Africa
| |
Collapse
|
14
|
Liu D, Chen J, Hu X, Hu G, Liu Y, Yang K, Xiao C, Zou Y, Liu H. Contralesional homotopic functional plasticity in patients with temporal glioma. J Neurosurg 2021; 134:417-425. [PMID: 31923896 DOI: 10.3171/2019.11.jns191982] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/05/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE This study aimed to explore the contralesional homotopic functional plasticity in the brain of patients with unilateral temporal glioma. METHODS Demographic, neurocognitive, and resting-state functional MRI data were collected from 17 patients with temporal glioma (10 in the right lobe and 7 in the left lobe), along with 14 age- and sex-matched healthy controls. The amplitude of low-frequency fluctuation (ALFF) of the contralesional homotopic region and 2 control regions was examined. The region-of-interest-based analysis was used to determine the altered functional connectivity (FC) of the contralesional homotopic region, showing significantly different intrinsic regional brain activity between patients and controls. Partial correlation analysis was conducted to determine the association between the altered neural activity and behavioral characteristics. RESULTS Compared with controls, patients with right temporal glioma exhibited significantly increased ALFF in the contralesional homotopic hippocampus and parahippocampal region. In addition, the intrinsic regional activity in these regions was negatively correlated with the visuospatial score (r = -0.718, p = 0.045). Whole-brain FC analysis revealed significantly increased FC between the left hippocampus and parahippocampal regions and the left inferior temporal gyrus, and decreased FC between the left hippocampus and parahippocampal regions and the left inferior frontal gyrus. No significant changes were found in the 2 control regions. CONCLUSIONS Contralesional homotopic regions are instrumental in the process of neural plasticity and functional compensation observed in patients with unilateral temporal glioma. The observed findings might be used to help preoperative evaluation or rehabilitation of postsurgical patients.
Collapse
Affiliation(s)
- Dongming Liu
- 1Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu
| | - Jiu Chen
- 2Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, Jiangsu
- 3Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, Jiangsu; and
| | - Xinhua Hu
- 1Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu
- 3Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, Jiangsu; and
| | - Guanjie Hu
- 1Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu
| | - Yong Liu
- 1Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu
| | - Kun Yang
- 1Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu
| | - Chaoyong Xiao
- 3Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, Jiangsu; and
- 4Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuanjie Zou
- 1Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu
- 3Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, Jiangsu; and
| | - Hongyi Liu
- 1Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu
- 3Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, Jiangsu; and
| |
Collapse
|
15
|
Xu J, Guan X, Li H, Zhang M, Xu X. The Effect of Early Life Stress on Memory is Mediated by Anterior Hippocampal Network. Neuroscience 2020; 451:137-148. [PMID: 33141033 DOI: 10.1016/j.neuroscience.2020.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 12/17/2022]
Abstract
The experience of early life stress (ELS) is a risk factor for memory dysfunction, but the impact at the neural level is less clear. The aim of this study is to investigate whether healthy people with a higher ELS display more structural and functional changes of hippocampus than people with a lower ELS, and to investigate whether hippocampus changes in turn affects memory. The Childhood Trauma Questionnaire (CTQ) was used to assess ELS in 100 young health participants. They were divided into two groups: "low" CTQ group (limitation of none/minimal ELS) and "high" CTQ group (low to moderate ELS). Verbal memory was assessed by California Verbal Learning Test II and visual memory by Rey-Osterrieth Complex Figure. Resting state fMRI data were acquired and voxel-wise correlation analysis was performed to functionally divide the hippocampus. Gray matter volumes and memory circuits of the anterior and posterior hippocampus were analyzed. We also tested whether changes in hippocampus mediated the relationship between ELS and memory. Compared with participants with a lower ELS, healthy participants with a relatively higher ELS had reduced anterior hippocampal functional connectivity, which positively correlated with visual memory. Among all participants, anterior hippocampal functional connectivity mediated the relationship of ELS on visual memory. These findings suggest that ELS decreased anterior hippocampal-cortical functional connectivity, which, in turn, drives memory decline and highlight a potential pathway in which ELS affects memory by degrading anterior hippocampal functional connectivity changes directly.
Collapse
Affiliation(s)
- Jingjing Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 31000, China
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 31000, China
| | - Hong Li
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 31000, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 31000, China
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 31000, China.
| |
Collapse
|
16
|
Shim HK, Lee HJ, Kim SE, Lee BI, Park S, Park KM. Alterations in the metabolic networks of temporal lobe epilepsy patients: A graph theoretical analysis using FDG-PET. Neuroimage Clin 2020; 27:102349. [PMID: 32702626 PMCID: PMC7374556 DOI: 10.1016/j.nicl.2020.102349] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVE The aim of this study is to investigate changes in metabolic networks based on fluorodeoxyglucose positron emission tomography (FDG-PET) in patients with drug-resistant temporal lobe epilepsy (TLE) (with and without hippocampal sclerosis [HS]) when compared with healthy controls. METHODS We retrospectively enrolled 30 patients with drug-resistant temporal lobe epilepsy (17 patients with HS and 13 patients without HS) and 39 healthy controls. All subjects underwent interictal FDG-PET scans, which were analyzed to obtain metabolic connectivity using graph theoretical analysis. We investigated the differences in metabolic connectivity between patients with drug-resistant TLE (with and without HS) and healthy controls. RESULTS When compared with healthy controls, TLE patients with HS showed alterations of global and local metabolic connectivity. When considering global connectivity, TLE patients with HS had a decreased average degree with increased modularity. When considering local connectivity, TLE patients with HS displayed alterations of betweeness centrality in widespread regions. However, there were no alterations of global metabolic connectivity in TLE patients without HS when compared with healthy controls. In addition, when compared to TLE patients without HS, TLE patients with HS had increased modularity. SIGNIFICANCE Our study demonstrates more severe alterations in metabolic networks based on FDG-PET in TLE patients with HS than in those without HS and healthy controls. This may represent distinct epileptic networks in TLE patients with HS versus those without HS, although both are drug-resistant focal epilepsy.
Collapse
Affiliation(s)
- Hye-Kyung Shim
- Department of Nuclear Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Ho-Joon Lee
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Sung Eun Kim
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Byung In Lee
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Seongho Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Kang Min Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea.
| |
Collapse
|
17
|
Comparing the Wada Test and Functional MRI for the Presurgical Evaluation of Memory in Temporal Lobe Epilepsy. Curr Neurol Neurosci Rep 2019; 19:31. [PMID: 31044310 DOI: 10.1007/s11910-019-0945-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW The usefulness of the Wada test (WT) predicting memory impairment from temporal lobe epilepsy (TLE) surgery has been debated, and it has progressively been replaced by functional MRI (fMRI). We review the current role of WT and fMRI in the presurgical assessment of TLE, and how novel surgical techniques might improve cognitive outcomes. RECENT FINDINGS fMRI's ability to predict global amnesia has not been assessed. Although WT can produce false-positive results, it is still indicated in patients at risk for developing global amnesia: those with significant bilateral or contralateral memory deficits. In the current review, WT exhibited no added value, beyond preclinical data, for predicting material-specific memory impairment, whereas fMRI was reliable for either verbal or non-verbal memory decline. Abnormal functional connectivity on resting state fMRI (rs-fMRI) between the posterior cingulate and the hippocampus may be a predictor of postsurgical memory outcomes. Restricted resections to the pathogenic tissue, stereotactic laser, radiosurgery, and SEEG-guided thermos-coagulation were associated with better cognitive outcome. fMRI should be used routinely in the presurgical workup of TLE to predict verbal and/or non-verbal memory decline, whereas WT may be indicated when there is a high risk of postsurgical global amnesia. Rs-fMRI is a promising tool for the presurgical workup of TLE, and more restricted resections are recommended to enhance cognitive outcomes.
Collapse
|
18
|
Xu J, Guan X, Li H, Xu X, Zhang M. Integration and segregation of functional segmented anterior and posterior hippocampal networks in memory performance. Behav Brain Res 2019; 364:256-263. [PMID: 30768997 DOI: 10.1016/j.bbr.2019.02.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/23/2019] [Accepted: 02/12/2019] [Indexed: 01/13/2023]
Abstract
PURPOSE To determine the association between functional connectivity (FC) of functional-segmented anterior and posterior portions of the hippocampus and performance on verbal and visual memory tests in a young, healthy population. METHODS We recruited 100 healthy participants in the age of 19-29. Resting state fMRI data were acquired and voxel-wise correlation analysis was performed to functionally divide the hippocampus. We investigated the inter-hemispheric hippocampal-cortical functional connectivity after the participants took the assessment of episodic memory using verbal (California Verbal Learning Test II, CVLT-II) and visual subtests (Rey-Osterrieth Complex Figure, ROCF). The partial correlations were used to identify the association between the intra-hemispheric hippocampal-cortical mean resting correlation and memory performance. RESULTS The results showed that the anterior and posterior hippocampal networks involved differently in verbal and visual memory. Intra-hemispheric FC between left posterior hippocampus and posterior parahippocampal gyrus (PPHG) was positively correlated with CVLT-II Trail 2 Immediate Free Recall (r = 0.223, p = 0.029). Intra-hemispheric FC between left posterior hippocampus and posterior cingulate (PCC) was negatively correlated with ROCF Immediate Recall (r = -0.217 p = 0.034). Intra-hemispheric FC between left anterior hippocampus and temporal pole (TP) negatively correlated with ROCF Delayed Recall (r = -0.228, p = 0.025). Split half resampling procedure results showed some repeatability in our subjects. CONCLUSION The present results demonstrated that, the anterior hippocampus was specifically involved in the visual memory processing, whereas the posterior hippocampus contributed to both the verbal and visual memories, which may have implications for a functionally synergetic and dissociable role of the hippocampus in different kinds of memory.
Collapse
|
19
|
|
20
|
Sideman N, Chaitanya G, He X, Doucet G, Kim NY, Sperling MR, Sharan AD, Tracy JI. Task activation and functional connectivity show concordant memory laterality in temporal lobe epilepsy. Epilepsy Behav 2018; 81:70-78. [PMID: 29499551 DOI: 10.1016/j.yebeh.2018.01.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/12/2018] [Accepted: 01/23/2018] [Indexed: 01/21/2023]
Abstract
OBJECTIVE In epilepsy, asymmetries in the organization of mesial temporal lobe (MTL) functions help determine the cognitive risk associated with procedures such as anterior temporal lobectomy. Past studies have investigated the change/shift in a visual episodic memory laterality index (LI) in mesial temporal lobe structures through functional magnetic resonance imaging (fMRI) task activations. Here, we examine whether underlying task-related functional connectivity (FC) is concordant with such standard fMRI laterality measures. METHODS A total of 56 patients with temporal lobe epilepsy (TLE) (Left TLE [LTLE]: 31; Right TLE [RTLE]: 25) and 34 matched healthy controls (HC) underwent fMRI scanning during performance of a scene encoding task (SET). We assessed an activation-based LI of the hippocampal gyrus (HG) and parahippocampal gyrus (PHG) during the SET and its correspondence with task-related FC measures. RESULTS Analyses involving the HG and PHG showed that the patients with LTLE had a consistently higher LI (right-lateralized) than that of the HC and group with RTLE, indicating functional reorganization. The patients with RTLE did not display a reliable contralateral shift away from the pathology, with the mesial structures showing quite distinct laterality patterns (HG, no laterality bias; PHG, no evidence of LI shift). The FC data for the group with LTLE provided confirmation of reorganization effects, revealing that a rightward task LI may be based on underlying connections between several left-sided regions (middle/superior occipital and left medial frontal gyri) and the right PHG. The FCs between the right HG and left anterior cingulate/medial frontal gyri were also observed in LTLE. Importantly, the data demonstrate that the areas involved in the LTLE task activation shift to the right hemisphere showed a corresponding increase in task-related FCs between the hemispheres. SIGNIFICANCE Altered laterality patterns based on mesial temporal lobe epilepsy (MTLE) pathology manifest as several different phenotypes, varying according to side of seizure onset and the specific mesial structures involved. There is good correspondence between task LI activation and FC patterns in the setting of LTLE, suggesting that reliable visual episodic memory reorganization may require both a shift in nodal activation and a change in nodal connectivity with mesial temporal structures involved in memory.
Collapse
Affiliation(s)
- Noah Sideman
- Thomas Jefferson University, Department of Neurology, United States
| | - Ganne Chaitanya
- Thomas Jefferson University, Department of Neurology, United States
| | - Xiaosong He
- Thomas Jefferson University, Department of Neurology, United States
| | - Gaelle Doucet
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, United States
| | - Na Young Kim
- Thomas Jefferson University, Department of Neurology, United States
| | | | - Ashwini D Sharan
- Thomas Jefferson University, Department of Neurosurgery, United States
| | - Joseph I Tracy
- Thomas Jefferson University, Department of Neurology, United States.
| |
Collapse
|
21
|
Volumetric Changes in Hippocampal Subregions and Memory Performance in Mesial Temporal Lobe Epilepsy with Hippocampal Sclerosis. Neurosci Bull 2017; 34:389-396. [PMID: 29094314 DOI: 10.1007/s12264-017-0186-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/03/2017] [Indexed: 10/18/2022] Open
Abstract
In the present study we explored the different patterns of volumetric atrophy in hippocampal subregions of patients with left and right mesial temporal lobe epilepsy with hippocampal sclerosis (TLE-HS). Meanwhile, the memory impairment patterns in Chinese-speaking TLE-HS patients and potential influencing factors were also determined. TLE-HS patients (21 left and 17 right) and 21 healthy controls were recruited to complete T2-weighted imaging and verbal/nonverbal memory assessment. The results showed that both left and right TLE-HS patients had overall reduced hippocampal subregion volumes on the sclerotic side, and cornu ammonis sectors (CA1) exhibited maximum atrophy. The verbal memory of left TLE-HS patients was significantly impaired (P < 0.001) and was not associated with the volumes of the left hippocampal subregions. Verbal or nonverbal memory impairment was not found in the patients with right TLE-HS. These results suggested that the atrophy of hippocampal subregion volumes cannot account for the verbal memory impairment, which might be related to the functional network.
Collapse
|