1
|
Yin Q, Johnson EL, Ofen N. Neurophysiological mechanisms of cognition in the developing brain: Insights from intracranial EEG studies. Dev Cogn Neurosci 2023; 64:101312. [PMID: 37837918 PMCID: PMC10589793 DOI: 10.1016/j.dcn.2023.101312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/26/2023] [Accepted: 10/08/2023] [Indexed: 10/16/2023] Open
Abstract
The quest to understand how the development of the brain supports the development of complex cognitive functions is fueled by advances in cognitive neuroscience methods. Intracranial EEG (iEEG) recorded directly from the developing human brain provides unprecedented spatial and temporal resolution for mapping the neurophysiological mechanisms supporting cognitive development. In this paper, we focus on episodic memory, the ability to remember detailed information about past experiences, which improves from childhood into adulthood. We review memory effects based on broadband spectral power and emphasize the importance of isolating narrowband oscillations from broadband activity to determine mechanisms of neural coordination within and between brain regions. We then review evidence of developmental variability in neural oscillations and present emerging evidence linking the development of neural oscillations to the development of memory. We conclude by proposing that the development of oscillations increases the precision of neural coordination and may be an essential factor underlying memory development. More broadly, we demonstrate how recording neural activity directly from the developing brain holds immense potential to advance our understanding of cognitive development.
Collapse
Affiliation(s)
- Qin Yin
- Department of Psychology, Wayne State University, Detroit, MI, USA; Life-span Cognitive Neuroscience Program, Institute of Gerontology and Merrill Palmer Skillman Institute, Wayne State University, Detroit, MI, USA
| | - Elizabeth L Johnson
- Departments of Medical Social Sciences and Pediatrics, Northwestern University, Chicago, IL, USA; Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Noa Ofen
- Department of Psychology, Wayne State University, Detroit, MI, USA; Life-span Cognitive Neuroscience Program, Institute of Gerontology and Merrill Palmer Skillman Institute, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
2
|
Ando M, Kambara T. Japanese written pseudowords can be conditioned to Japanese spoken words with positive, negative, and active emotions. Cogn Process 2023; 24:387-413. [PMID: 37450232 PMCID: PMC10787689 DOI: 10.1007/s10339-023-01138-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/12/2023] [Indexed: 07/18/2023]
Abstract
This study aimed to examine whether Japanese participants condition spoken words' meanings to written pseudowords. In Survey 1, we selected spoken words associated with negative (α = .91) and positive (α = .79) features for Experiment 1 and passive (α = .90) and active (α = .80) features for Experiment 2. In Experiment 1, participants evaluated four written pseudowords' emotional valence using a 7-point semantic differential scale (1: negative; 7: positive) before and after conditioning spoken words with negative, neutral, or positive features to each pseudoword. In the conditioning phase, participants read each pseudoword, listened to a spoken word, and verbally repeated each spoken word. The results showed that a pseudoword was conditioned to spoken words with positive and negative features. In Experiment 2, participants evaluated four pseudowords' activeness using a 7-point semantic differential scale (1: passive; 7: active) before and after conditioning spoken words of passive, neutral, and active features to each written pseudoword. In the conditioning phase, the participants read each written pseudoword, listened to a spoken word, and repeated the spoken word. The results showed that the activeness evaluations were more increased for pseudowords conditioned to spoken words of active and neutral features after conditioning than before conditioning but were unchanged for a pseudoword conditioned to those with passive features before and after conditioning. Additonally, Survey 2's results showed that although the positiveness and activeness responses of the words used in Experiments 1 and 2 were controlled well, the lack of significant differences among positiveness responses of words may influence the evaluative conditioning in Experiment 2. That is, when participants condition passive (low arousal) words' activeness (arousal) ratings to those of pseudowords, words' positiveness (valence) ratings would be important in the evaluative conditioning. Our findings suggest that participants can condition spoken word meanings of preference and activeness to those of written pseudowords. It also indicates that linguistically evaluative conditioning's effects are robust in a non-alphabetic language.
Collapse
Affiliation(s)
- Misa Ando
- Department of Psychology, Graduate School of Humanities and Social Sciences, Hiroshima University, Higashihiroshima, Japan
| | - Toshimune Kambara
- Department of Psychology, Graduate School of Humanities and Social Sciences, Hiroshima University, Higashihiroshima, Japan.
| |
Collapse
|
3
|
Rezayat E, Clark K, Dehaqani MRA, Noudoost B. Dependence of Working Memory on Coordinated Activity Across Brain Areas. Front Syst Neurosci 2022; 15:787316. [PMID: 35095433 PMCID: PMC8792503 DOI: 10.3389/fnsys.2021.787316] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/06/2021] [Indexed: 11/15/2022] Open
Abstract
Neural signatures of working memory (WM) have been reported in numerous brain areas, suggesting a distributed neural substrate for memory maintenance. In the current manuscript we provide an updated review of the literature focusing on intracranial neurophysiological recordings during WM in primates. Such signatures of WM include changes in firing rate or local oscillatory power within an area, along with measures of coordinated activity between areas based on synchronization between oscillations. In comparing the ability of various neural signatures in any brain area to predict behavioral performance, we observe that synchrony between areas is more frequently and robustly correlated with WM performance than any of the within-area neural signatures. We further review the evidence for alteration of inter-areal synchrony in brain disorders, consistent with an important role for such synchrony during behavior. Additionally, results of causal studies indicate that manipulating synchrony across areas is especially effective at influencing WM task performance. Each of these lines of research supports the critical role of inter-areal synchrony in WM. Finally, we propose a framework for interactions between prefrontal and sensory areas during WM, incorporating a range of experimental findings and offering an explanation for the observed link between intra-areal measures and WM performance.
Collapse
Affiliation(s)
- Ehsan Rezayat
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Kelsey Clark
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, United States
| | - Mohammad-Reza A. Dehaqani
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- Cognitive Systems Laboratory, Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Behrad Noudoost
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, United States
- *Correspondence: Behrad Noudoost,
| |
Collapse
|
4
|
Sonoda M, Silverstein BH, Jeong JW, Sugiura A, Nakai Y, Mitsuhashi T, Rothermel R, Luat AF, Sood S, Asano E. Six-dimensional dynamic tractography atlas of language connectivity in the developing brain. Brain 2021; 144:3340-3354. [PMID: 34849596 PMCID: PMC8677551 DOI: 10.1093/brain/awab225] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/23/2021] [Accepted: 06/05/2021] [Indexed: 11/12/2022] Open
Abstract
During a verbal conversation, our brain moves through a series of complex linguistic processing stages: sound decoding, semantic comprehension, retrieval of semantically coherent words, and overt production of speech outputs. Each process is thought to be supported by a network consisting of local and long-range connections bridging between major cortical areas. Both temporal and extratemporal lobe regions have functional compartments responsible for distinct language domains, including the perception and production of phonological and semantic components. This study provides quantitative evidence of how directly connected inter-lobar neocortical networks support distinct stages of linguistic processing across brain development. Novel six-dimensional tractography was used to intuitively visualize the strength and temporal dynamics of direct inter-lobar effective connectivity between cortical areas activated during each linguistic processing stage. We analysed 3401 non-epileptic intracranial electrode sites from 37 children with focal epilepsy (aged 5-20 years) who underwent extra-operative electrocorticography recording. Principal component analysis of auditory naming-related high-gamma modulations determined the relative involvement of each cortical area during each linguistic processing stage. To quantify direct effective connectivity, we delivered single-pulse electrical stimulation to 488 temporal and 1581 extratemporal lobe sites and measured the early cortico-cortical spectral responses at distant electrodes. Mixed model analyses determined the effects of naming-related high-gamma co-augmentation between connecting regions, age, and cerebral hemisphere on the strength of effective connectivity independent of epilepsy-related factors. Direct effective connectivity was strongest between extratemporal and temporal lobe site pairs, which were simultaneously activated between sentence offset and verbal response onset (i.e. response preparation period); this connectivity was approximately twice more robust than that with temporal lobe sites activated during stimulus listening or overt response. Conversely, extratemporal lobe sites activated during overt response were equally connected with temporal lobe language sites. Older age was associated with increased strength of inter-lobar effective connectivity especially between those activated during response preparation. The arcuate fasciculus supported approximately two-thirds of the direct effective connectivity pathways from temporal to extratemporal auditory language-related areas but only up to half of those in the opposite direction. The uncinate fasciculus consisted of <2% of those in the temporal-to-extratemporal direction and up to 6% of those in the opposite direction. We, for the first time, provided an atlas which quantifies and animates the strength, dynamics, and direction specificity of inter-lobar neural communications between language areas via the white matter pathways. Language-related effective connectivity may be strengthened in an age-dependent manner even after the age of 5.
Collapse
Affiliation(s)
- Masaki Sonoda
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
- Department of Neurosurgery, Yokohama City University, Yokohama, Kanagawa 2360004, Japan
| | - Brian H Silverstein
- Translational Neuroscience Program, Wayne State University, Detroit, MI 48201, USA
| | - Jeong-Won Jeong
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
- Translational Neuroscience Program, Wayne State University, Detroit, MI 48201, USA
- Department of Neurology, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Ayaka Sugiura
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Yasuo Nakai
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
- Department of Neurological Surgery, Wakayama Medical University, Wakayama, Wakayama 6418509, Japan
| | - Takumi Mitsuhashi
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
- Department of Neurosurgery, Juntendo University, School of Medicine, Tokyo, 1138421, Japan
| | - Robert Rothermel
- Department of Psychiatry, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Aimee F Luat
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
- Department of Neurology, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
- Department of Pediatrics, Central Michigan University, Mount Pleasant, MI 48858, USA
| | - Sandeep Sood
- Department of Neurosurgery, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Eishi Asano
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
- Translational Neuroscience Program, Wayne State University, Detroit, MI 48201, USA
- Department of Neurology, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
5
|
Yan Y, Yang Y, Ando M, Liu X, Kambara T. Multisensory Connections of Novel Linguistic Stimuli in Japanese as a Native Language and Referential Tastes. Eur J Investig Health Psychol Educ 2021; 11:999-1010. [PMID: 34563087 PMCID: PMC8544189 DOI: 10.3390/ejihpe11030074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 11/23/2022] Open
Abstract
Previous findings have shown essential connections between linguistic and gustatory stimuli for people with autism or lexical gustatory synesthesia. We examined the associative learning of novel linguistic forms in Japanese as a native language and tastes (candies and chocolates) for healthy people. Healthy subjects performed four phases: (a) evaluation phase of gustatory features; (b) learning phases of novel linguistic form and gustatory stimulus pairs (G) or novel word forms (W); (c) recognition memory phases linked with G and W; and (d) free recall phase for G and W. In the recognition memory phases, the performance scores of W were higher than those of G, while there was no significant difference between response times of G and W. Additionally, no difference between recall performances in G and W was also shown. A subjective evaluation of gustatory features (sweetness) negatively correlated with the recall score for linguistic forms connected to the gustatory feature, whereas the accuracy rates of the recognition memory phase in G positively correlated with those of the free recall phase in G. Although learning of novel linguistic forms is more efficient than learning of the relationships between novel linguistic forms and tastes, gustatory features influence the free recall performances of linguistic forms linked with the tastes. These results may contribute to future applications to word learning not just for patients, but also healthy people.
Collapse
Affiliation(s)
- Yan Yan
- Department of Psychology, Graduate School of Education, Hiroshima University, 1-1-1 Kagamiyama, Hiroshima 7398524, Japan; (Y.Y.); (Y.Y.); (X.L.)
| | - Yutao Yang
- Department of Psychology, Graduate School of Education, Hiroshima University, 1-1-1 Kagamiyama, Hiroshima 7398524, Japan; (Y.Y.); (Y.Y.); (X.L.)
| | - Misa Ando
- Program in Psychology, School of Education, Hiroshima University, 1-1-1 Kagamiyama, Hiroshima 7398524, Japan;
| | - Xinyi Liu
- Department of Psychology, Graduate School of Education, Hiroshima University, 1-1-1 Kagamiyama, Hiroshima 7398524, Japan; (Y.Y.); (Y.Y.); (X.L.)
| | - Toshimune Kambara
- Department of Psychology, Graduate School of Education, Hiroshima University, 1-1-1 Kagamiyama, Hiroshima 7398524, Japan; (Y.Y.); (Y.Y.); (X.L.)
| |
Collapse
|
6
|
Nowak K, Costa-Faidella J, Dacewicz A, Escera C, Szelag E. Altered event-related potentials and theta oscillations index auditory working memory deficits in healthy aging. Neurobiol Aging 2021; 108:1-15. [PMID: 34464912 DOI: 10.1016/j.neurobiolaging.2021.07.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 11/28/2022]
Abstract
Speech comprehension deficits constitute a major issue for an increasingly aged population, as they may lead older individuals to social isolation. Since conversation requires constant monitoring, updating and selecting information, auditory working memory decline, rather than impoverished hearing acuity, has been suggested a core factor. However, in stark contrast to the visual domain, the neurophysiological mechanisms underlying auditory working memory deficits in healthy aging remain poorly understood, especially those related to on-the-fly information processing under increasing load. Therefore, we investigated the behavioral costs and electrophysiological differences associated with healthy aging and working memory load during continuous auditory processing. We recorded EEG activity from 27 younger (∼25 years) and 29 older (∼70 years) participants during their performance on an auditory version of the n-back task with speech syllables and 2 workload levels (1-back; 2-back). Behavioral measures were analyzed as indices of function; event-related potentials as proxies for sensory and cognitive processes; and theta oscillatory power as a reflection of memory and central executive function. Our results show age-related differences in auditory information processing within a latency range that is consistent with a series of impaired functions, from sensory gating to cognitive resource allocation during constant information updating, especially under high load.
Collapse
Affiliation(s)
- Kamila Nowak
- Laboratory of Neuropsychology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Jordi Costa-Faidella
- Brainlab - Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Catalonia, Spain; Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Catalonia, Spain.
| | - Anna Dacewicz
- Laboratory of Neuropsychology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Carles Escera
- Brainlab - Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Catalonia, Spain; Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Catalonia, Spain
| | - Elzbieta Szelag
- Laboratory of Neuropsychology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
7
|
Yang Y, Yan Y, Ando M, Liu X, Kambara T. Associative Learning of New Word Forms in a First Language (L1) and Haptic Referents in a Single-Day Experiment. Eur J Investig Health Psychol Educ 2021; 11:616-626. [PMID: 34708820 PMCID: PMC8314365 DOI: 10.3390/ejihpe11020044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 11/30/2022] Open
Abstract
This study focused on the associative learning of new word forms in the first language and haptic stimuli. In this study, healthy Japanese participants performed three-step tasks. First, participants made nine subjective evaluations of haptic stimuli using five-point semantic differential scales (e.g., regarding stickiness, scored from 1 (not sticky) to 5 (sticky)). Second, the participants carried out learning and recognition tasks for associative pairs of new (meaningless) word forms in their first language (Japanese) and haptic stimulus (H condition), and performed learning and recognition tasks for new (meaningless) word forms only (W condition). The order of conditions was counterbalanced among participants. Third, participants performed free recall tasks. The results of the recognition tasks showed that the proportions and response times of the W condition were better and faster, respectively, than those of the H condition. Furthermore, preference of haptic features negatively correlated with free recall scores of the H condition; however, there was no significant difference between the free recall scores of the H and W conditions. Our results suggest that new word forms were learned better than associative pairs of new word forms and haptic stimuli in a single day of learning. Furthermore, the free recall performance of word forms associated with haptic features could also be affected by their subjective evaluation (preference).
Collapse
Affiliation(s)
- Yutao Yang
- Department of Psychology, Graduate School of Education, Hiroshima University, 1-1-1 Kagamiyama, Hiroshima 7398524, Japan; (Y.Y.); (Y.Y.); (X.L.)
| | - Yan Yan
- Department of Psychology, Graduate School of Education, Hiroshima University, 1-1-1 Kagamiyama, Hiroshima 7398524, Japan; (Y.Y.); (Y.Y.); (X.L.)
| | - Misa Ando
- Program in Psychology, School of Education, Hiroshima University, 1-1-1 Kagamiyama, Hiroshima 7398524, Japan;
| | - Xinyi Liu
- Department of Psychology, Graduate School of Education, Hiroshima University, 1-1-1 Kagamiyama, Hiroshima 7398524, Japan; (Y.Y.); (Y.Y.); (X.L.)
| | - Toshimune Kambara
- Department of Psychology, Graduate School of Education, Hiroshima University, 1-1-1 Kagamiyama, Hiroshima 7398524, Japan; (Y.Y.); (Y.Y.); (X.L.)
| |
Collapse
|
8
|
Pavlov YG, Kotchoubey B. Oscillatory brain activity and maintenance of verbal and visual working memory: A systematic review. Psychophysiology 2020; 59:e13735. [PMID: 33278030 DOI: 10.1111/psyp.13735] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/04/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022]
Abstract
Brain oscillations likely play a significant role in the storage of information in working memory (WM). Despite the wide popularity of the topic, current attempts to summarize the research in the field are narrative reviews. We address this gap by providing a descriptive systematic review, in which we investigated oscillatory correlates of maintenance of verbal and visual information in WM. The systematic approach enabled us to challenge some common views popularized by previous research. The identified literature (100 EEG/MEG studies) highlighted the importance of theta oscillations in verbal WM: frontal midline theta enhanced with load in most verbal studies, while more equivocal results have been obtained in visual studies. Increasing WM load affected alpha activity in most studies, but the direction of the effect was inconsistent: the ratio of studies that found alpha increase versus decrease with increasing load was 80/20% in the verbal WM domain and close to 60/40% in the visual domain. Alpha asymmetry (left < right) was a common finding in both verbal and visual WM studies. Beta and gamma activity studies yielded the least convincing data: a diversity in the spatial and frequency distribution of beta activity prevented us from making a coherent conclusion; gamma rhythm was virtually neglected in verbal WM studies with no systematic support for sustained gamma changes during the delay in EEG studies in general.
Collapse
Affiliation(s)
- Yuri G Pavlov
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany.,Department of Psychology, Ural Federal University, Ekaterinburg, Russian Federation
| | - Boris Kotchoubey
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
9
|
Behfar Q, Behfar SK, von Reutern B, Richter N, Dronse J, Fassbender R, Fink GR, Onur OA. Graph Theory Analysis Reveals Resting-State Compensatory Mechanisms in Healthy Aging and Prodromal Alzheimer's Disease. Front Aging Neurosci 2020; 12:576627. [PMID: 33192468 PMCID: PMC7642892 DOI: 10.3389/fnagi.2020.576627] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/29/2020] [Indexed: 01/20/2023] Open
Abstract
Several theories of cognitive compensation have been suggested to explain sustained cognitive abilities in healthy brain aging and early neurodegenerative processes. The growing number of studies investigating various aspects of task-based compensation in these conditions is contrasted by the shortage of data about resting-state compensatory mechanisms. Using our proposed criterion-based framework for compensation, we investigated 45 participants in three groups: (i) patients with mild cognitive impairment (MCI) and positive biomarkers indicative of Alzheimer's disease (AD); (ii) cognitively normal young adults; (iii) cognitively normal older adults. To increase reliability, three sessions of resting-state functional magnetic resonance imaging for each participant were performed on different days (135 scans in total). To elucidate the dimensions and dynamics of resting-state compensatory mechanisms, we used graph theory analysis along with volumetric analysis. Graph theory analysis was applied based on the Brainnetome atlas, which provides a connectivity-based parcellation framework. Comprehensive neuropsychological examinations including the Rey Auditory Verbal Learning Test (RAVLT) and the Trail Making Test (TMT) were performed, to relate graph measures of compensatory nodes to cognition. To avoid false-positive findings, results were corrected for multiple comparisons. First, we observed an increase of degree centrality in cognition related brain regions of the middle frontal gyrus, precentral gyrus and superior parietal lobe despite local atrophy in MCI and healthy aging, indicating a resting-state connectivity increase with positive biomarkers. When relating the degree centrality measures to cognitive performance, we observed that greater connectivity led to better RAVLT and TMT scores in MCI and, hence, might constitute a compensatory mechanism. The detection and improved understanding of the compensatory dynamics in healthy aging and prodromal AD is mandatory for implementing and tailoring preventive interventions aiming at preserved overall cognitive functioning and delayed clinical onset of dementia.
Collapse
Affiliation(s)
- Qumars Behfar
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Cognitive Neuroscience, Research Centre Jülich, Institute of Neuroscience and Medicine (INM-3), Jülich, Germany
| | - Stefan Kambiz Behfar
- Laboratory for Innovation Science at Harvard (LISH), Harvard University, Cambridge, MA, United States
| | - Boris von Reutern
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Nils Richter
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Cognitive Neuroscience, Research Centre Jülich, Institute of Neuroscience and Medicine (INM-3), Jülich, Germany
| | - Julian Dronse
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Cognitive Neuroscience, Research Centre Jülich, Institute of Neuroscience and Medicine (INM-3), Jülich, Germany
| | - Ronja Fassbender
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Gereon R Fink
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Cognitive Neuroscience, Research Centre Jülich, Institute of Neuroscience and Medicine (INM-3), Jülich, Germany
| | - Oezguer A Onur
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Cognitive Neuroscience, Research Centre Jülich, Institute of Neuroscience and Medicine (INM-3), Jülich, Germany
| |
Collapse
|
10
|
Johnson EL, Kam JWY, Tzovara A, Knight RT. Insights into human cognition from intracranial EEG: A review of audition, memory, internal cognition, and causality. J Neural Eng 2020; 17:051001. [PMID: 32916678 PMCID: PMC7731730 DOI: 10.1088/1741-2552/abb7a5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
By recording neural activity directly from the human brain, researchers gain unprecedented insight into how neurocognitive processes unfold in real time. We first briefly discuss how intracranial electroencephalography (iEEG) recordings, performed for clinical practice, are used to study human cognition with the spatiotemporal and single-trial precision traditionally limited to non-human animal research. We then delineate how studies using iEEG have informed our understanding of issues fundamental to human cognition: auditory prediction, working and episodic memory, and internal cognition. We also discuss the potential of iEEG to infer causality through the manipulation or 'engineering' of neurocognitive processes via spatiotemporally precise electrical stimulation. We close by highlighting limitations of iEEG, potential of burgeoning techniques to further increase spatiotemporal precision, and implications for future research using intracranial approaches to understand, restore, and enhance human cognition.
Collapse
Affiliation(s)
- Elizabeth L Johnson
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
- Life-Span Cognitive Neuroscience Program, Institute of Gerontology, Wayne State University, United States of America
| | - Julia W Y Kam
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
- Department of Psychology, University of Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Canada
| | - Athina Tzovara
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
- Institute for Computer Science, University of Bern, Switzerland
- Sleep Wake Epilepsy Center | NeuroTec, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Robert T Knight
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
- Department of Psychology, University of California, Berkeley, United States of America
| |
Collapse
|
11
|
Abstract
People occasionally use filler phrases or pauses, such as “uh”, “um”, or “y’know,” that interrupt the flow of a sentence and fill silent moments between ordinary (non-filler) phrases. It remains unknown which brain networks are engaged during the utterance of fillers. We addressed this question by quantifying event-related cortical high gamma activity at 70–110 Hz. During extraoperative electrocorticography recordings performed as part of the presurgical evaluation, patients with drug-resistant focal epilepsy were instructed to overtly explain, in a sentence, ‘what is in the image (subject)’, ‘doing what (verb)’, ‘where (location)’, and ‘when (time)’. Time–frequency analysis revealed that the utterance of fillers, compared to that of ordinary words, was associated with a greater magnitude of high gamma augmentation in association and visual cortex of either hemisphere. Our preliminary results raise the hypothesis that filler utterance would often occur when large-scale networks across the association and visual cortex are engaged in cognitive processing, including lexical retrieval as well as verbal working memory and visual scene scanning.
Collapse
|
12
|
Ofen N, Tang L, Yu Q, Johnson EL. Memory and the developing brain: From description to explanation with innovation in methods. Dev Cogn Neurosci 2019; 36:100613. [PMID: 30630777 PMCID: PMC6529263 DOI: 10.1016/j.dcn.2018.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 12/13/2018] [Accepted: 12/26/2018] [Indexed: 11/12/2022] Open
Abstract
Recent advances in human cognitive neuroscience show great promise in extending our understanding of the neural basis of memory development. We briefly review the current state of knowledge, highlighting that most work has focused on describing the neural correlates of memory in cross-sectional studies. We then delineate three examples of the application of innovative methods in addressing questions that go beyond description, towards a mechanistic understanding of memory development. First, structural brain imaging and the harmonization of measurements across laboratories may uncover ways in which the maturation of the brain constrains the development of specific aspects of memory. Second, longitudinal designs and sophisticated modeling of the data may identify age-driven changes and the factors that determine individual developmental trajectories. Third, recording memory-related activity directly from the developing brain presents an unprecedented opportunity to examine how distinct brain structures support memory in real time. Finally, the growing prevalence of data sharing offers additional means to tackle questions that demand large-scale datasets, ambitious designs, and access to rare samples. We propose that the use of such innovative methods will move our understanding of memory development from a focus on describing trends to explaining the causal factors that shape behavior.
Collapse
Affiliation(s)
- Noa Ofen
- Life-Span Cognitive Neuroscience Program, Institute of Gerontology, Wayne State University, Detroit, Michigan, United States; Department of Psychology, Wayne State University, Detroit, Michigan, United States; Merrill Palmer Skillman Institute for Child & Family Development, Wayne State University, Detroit, Michigan, United States; Neurobiology Department, Weizmann Institute of Science, Rehovot, Israel.
| | - Lingfei Tang
- Life-Span Cognitive Neuroscience Program, Institute of Gerontology, Wayne State University, Detroit, Michigan, United States; Department of Psychology, Wayne State University, Detroit, Michigan, United States
| | - Qijing Yu
- Life-Span Cognitive Neuroscience Program, Institute of Gerontology, Wayne State University, Detroit, Michigan, United States; Department of Psychology, Wayne State University, Detroit, Michigan, United States
| | - Elizabeth L Johnson
- Life-Span Cognitive Neuroscience Program, Institute of Gerontology, Wayne State University, Detroit, Michigan, United States; Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States
| |
Collapse
|
13
|
Nakai Y, Sugiura A, Brown EC, Sonoda M, Jeong JW, Rothermel R, Luat AF, Sood S, Asano E. Four-dimensional functional cortical maps of visual and auditory language: Intracranial recording. Epilepsia 2019; 60:255-267. [PMID: 30710356 DOI: 10.1111/epi.14648] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/21/2018] [Accepted: 12/27/2018] [Indexed: 01/26/2023]
Abstract
OBJECTIVE The strength of presurgical language mapping using electrocorticography (ECoG) is its outstanding signal fidelity and temporal resolution, but the weakness includes limited spatial sampling at an individual patient level. By averaging naming-related high-gamma activity at nonepileptic regions across a large number of patients, we provided the functional cortical atlases animating the neural dynamics supporting visual-object and auditory-description naming at the whole brain level. METHODS We studied 79 patients who underwent extraoperative ECoG recording as epilepsy presurgical evaluation, and generated time-frequency plots and animation videos delineating the dynamics of naming-related high-gamma activity at 70-110 Hz. RESULTS Naming task performance elicited high-gamma augmentation in domain-specific lower-order sensory areas and inferior-precentral gyri immediately after stimulus onset. High-gamma augmentation subsequently involved widespread neocortical networks with left hemisphere dominance. Left posterior temporal high-gamma augmentation at several hundred milliseconds before response onset exhibited a double dissociation; picture naming elicited high-gamma augmentation preferentially in regions medial to the inferior-temporal gyrus, whereas auditory naming elicited high-gamma augmentation more laterally. The left lateral prefrontal regions including Broca's area initially exhibited high-gamma suppression subsequently followed by high-gamma augmentation at several hundred milliseconds before response onset during both naming tasks. Early high-gamma suppression within Broca's area was more intense during picture compared to auditory naming. Subsequent lateral-prefrontal high-gamma augmentation was more intense during auditory compared to picture naming. SIGNIFICANCE This study revealed contrasting characteristics in the spatiotemporal dynamics of naming-related neural modulations between tasks. The dynamic atlases of visual and auditory language might be useful for planning of epilepsy surgery. Differential neural activation well explains some of the previously reported observations of domain-specific language impairments following resective epilepsy surgery. Video materials might be beneficial for the education of lay people about how the brain functions differentially during visual and auditory naming.
Collapse
Affiliation(s)
- Yasuo Nakai
- Department of Pediatrics, Detroit Medical Center, Children's Hospital of Michigan, Wayne State University, Detroit, Michigan.,Department of Neurological Surgery, Wakayama Medical University, Wakayama-shi, Japan
| | - Ayaka Sugiura
- Department of Pediatrics, Detroit Medical Center, Children's Hospital of Michigan, Wayne State University, Detroit, Michigan
| | - Erik C Brown
- Department of Neurological Surgery, Oregon Health and Science University, Portland, Oregon
| | - Masaki Sonoda
- Department of Pediatrics, Detroit Medical Center, Children's Hospital of Michigan, Wayne State University, Detroit, Michigan
| | - Jeong-Won Jeong
- Department of Pediatrics, Detroit Medical Center, Children's Hospital of Michigan, Wayne State University, Detroit, Michigan.,Department of Neurology, Detroit Medical Center, Children's Hospital of Michigan, Wayne State University, Detroit, Michigan
| | - Robert Rothermel
- Department of Psychiatry, Detroit Medical Center, Children's Hospital of Michigan, Wayne State University, Detroit, Michigan
| | - Aimee F Luat
- Department of Pediatrics, Detroit Medical Center, Children's Hospital of Michigan, Wayne State University, Detroit, Michigan.,Department of Neurology, Detroit Medical Center, Children's Hospital of Michigan, Wayne State University, Detroit, Michigan
| | - Sandeep Sood
- Department of Neurosurgery, Detroit Medical Center, Children's Hospital of Michigan, Wayne State University, Detroit, Michigan
| | - Eishi Asano
- Department of Pediatrics, Detroit Medical Center, Children's Hospital of Michigan, Wayne State University, Detroit, Michigan.,Department of Neurology, Detroit Medical Center, Children's Hospital of Michigan, Wayne State University, Detroit, Michigan
| |
Collapse
|
14
|
Kambara T, Brown EC, Silverstein BH, Nakai Y, Asano E. Neural dynamics of verbal working memory in auditory description naming. Sci Rep 2018; 8:15868. [PMID: 30367077 PMCID: PMC6203730 DOI: 10.1038/s41598-018-33776-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/06/2018] [Indexed: 11/24/2022] Open
Abstract
Auditory naming is suggested to require verbal working memory (WM) operations in addition to speech sound perception during the sentence listening period and semantic/syntactic processing during the subsequent judgement period. We attempted to dissect cortical activations attributable to verbal WM from those otherwise involved in answering auditory sentence questions. We studied 19 patients who underwent electrocorticography recordings and measured high-gamma activity during auditory naming and WM tasks. In the auditory naming task, inferior-precentral high-gamma activity was augmented during sentence listening, and the magnitude of augmentation was independently correlated to that during the WM task maintenance period as well as patient age. High-gamma augmentation during the WM task scanning period accounted for high-gamma variance during the naming task judgement period in some of the left frontal association neocortex regions (most significantly in the middle-frontal, less in the inferior-frontal, and least in the orbitofrontal gyrus). Inferior-frontal high-gamma augmentation was left-hemispheric dominant during naming task judgement but rather symmetric during WM scanning. Left orbitofrontal high-gamma augmentation was evident only during the naming task judgement period but minimal during the WM task scanning period. The inferior-precentral regions may exert WM maintenance during sentence listening, and such maintenance function may be gradually strengthened as the brain matures. The left frontal association neocortex may have a dorsal-to-ventral gradient in functional roles during naming task judgement. Namely, left middle-frontal activation may be well-attributable to WM scanning function, whereas left orbitofrontal activation may be attributable less to WM scanning but more largely to syntactic/semantic processing.
Collapse
Affiliation(s)
- Toshimune Kambara
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, MI, 48201, USA
- Postdoctoral Fellowship for Research Abroad, Japan Society for the Promotion of Science (JSPS), Chiyoda-ku, Tokyo, 1020083, Japan
- Department of Psychology, Hiroshima University, Hiroshima, 7398524, Japan
| | - Erik C Brown
- Department of Neurological Surgery, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Brian H Silverstein
- Translational Neuroscience Program, Wayne State University, Detroit, MI, USA
| | - Yasuo Nakai
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, MI, 48201, USA
| | - Eishi Asano
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, MI, 48201, USA.
- Department of Neurology, Children's Hospital of Michigan, Wayne State University, Detroit, MI, 48201, USA.
| |
Collapse
|
15
|
Neshige S, Matsuhashi M, Kobayashi K, Sakurai T, Shimotake A, Hitomi T, Kikuchi T, Yoshida K, Kunieda T, Matsumoto R, Takahashi R, Miyamoto S, Maruyama H, Matsumoto M, Ikeda A. Multi-component intrinsic brain activities as a safe alternative to cortical stimulation for sensori-motor mapping in neurosurgery. Clin Neurophysiol 2018; 129:2038-2048. [PMID: 29935961 DOI: 10.1016/j.clinph.2018.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/02/2018] [Accepted: 06/08/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To assess the feasibility of multi-component electrocorticography (ECoG)-based mapping using "wide-spectrum, intrinsic-brain activities" for identifying the primary sensori-motor area (S1-M1). METHODS We evaluated 14 epilepsy patients with 1514 subdural electrodes implantation covering the perirolandic cortices at Kyoto University Hospital between 2011 and 2016. We performed multi-component, ECoG-based mapping (band-pass filter, 0.016-300/600 Hz) involving combined analyses of the single components: movement-related cortical potential (<0.5-1 Hz), event-related synchronization (76-200 Hz), and event-related de-synchronization (8-24 Hz) to identify the S1-M1. The feasibility of multi-component mapping was assessed through comparisons with single-component mapping and electrical cortical stimulation (ECS). RESULTS Among 54 functional areas evaluation, ECoG-based maps showed significantly higher rate of localization concordances with ECS maps when the three single-component maps were consistent than when those were inconsistent with each other (p < 0.001 in motor, and p = 0.02 in sensory mappings). Multi-component mapping revealed high sensitivity (89-90%) and specificity (94-97%) as compared with ECS. CONCLUSIONS Wide-spectrum, multi-component ECoG-based mapping is feasible, having high sensitivity/specificity relative to ECS. SIGNIFICANCE This safe (non-stimulus) mapping strategy, alternative to ECS, would allow clinicians to rule in/out the possibility of brain function prior to resection surgery.
Collapse
Affiliation(s)
- Shuichiro Neshige
- Department of Neurology, Kyoto University Graduate School of Medicine, Japan; Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Japan
| | - Masao Matsuhashi
- Human Brain Research Center, Kyoto University Graduate School of Medicine, Japan
| | - Katsuya Kobayashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Japan
| | - Takeyo Sakurai
- Department of Neurology, Kyoto University Graduate School of Medicine, Japan
| | - Akihiro Shimotake
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Japan
| | - Takefumi Hitomi
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Japan
| | - Takayuki Kikuchi
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Japan
| | - Kazumichi Yoshida
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Japan
| | - Takeharu Kunieda
- Department of Neurosurgery, Ehime University Graduate School of Medicine, Japan
| | - Riki Matsumoto
- Department of Neurology, Kyoto University Graduate School of Medicine, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Japan
| | - Hirofumi Maruyama
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Japan
| | - Masayasu Matsumoto
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Japan
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Japan.
| |
Collapse
|
16
|
Lee DJ, Kulubya E, Goldin P, Goodarzi A, Girgis F. Review of the Neural Oscillations Underlying Meditation. Front Neurosci 2018; 12:178. [PMID: 29662434 PMCID: PMC5890111 DOI: 10.3389/fnins.2018.00178] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 03/06/2018] [Indexed: 12/13/2022] Open
Abstract
Objective: Meditation is one type of mental training that has been shown to produce many cognitive benefits. Meditation practice is associated with improvement in concentration and reduction of stress, depression, and anxiety symptoms. Furthermore, different forms of meditation training are now being used as interventions for a variety of psychological and somatic illnesses. These benefits are thought to occur as a result of neurophysiologic changes. The most commonly studied specific meditation practices are focused attention (FA), open-monitoring (OM), as well as transcendental meditation (TM), and loving-kindness (LK) meditation. In this review, we compare the neural oscillatory patterns during these forms of meditation. Method: We performed a systematic review of neural oscillations during FA, OM, TM, and LK meditation practices, comparing meditators to meditation-naïve adults. Results: FA, OM, TM, and LK meditation are associated with global increases in oscillatory activity in meditators compared to meditation-naïve adults, with larger changes occurring as the length of meditation training increases. While FA and OM are related to increases in anterior theta activity, only FA is associated with changes in posterior theta oscillations. Alpha activity increases in posterior brain regions during both FA and OM. In anterior regions, FA shows a bilateral increase in alpha power, while OM shows a decrease only in left-sided power. Gamma activity in these meditation practices is similar in frontal regions, but increases are variable in parietal and occipital regions. Conclusions: The current literature suggests distinct differences in neural oscillatory activity among FA, OM, TM, and LK meditation practices. Further characterizing these oscillatory changes may better elucidate the cognitive and therapeutic effects of specific meditation practices, and potentially lead to the development of novel neuromodulation targets to take advantage of their benefits.
Collapse
Affiliation(s)
- Darrin J Lee
- Neurosurgery, University of Toronto, Toronto, ON, Canada
| | - Edwin Kulubya
- Neurosurgery, University of California, Davis, Davis, CA, United States
| | - Philippe Goldin
- Nursing, University of California, Davis, Davis, CA, United States
| | - Amir Goodarzi
- Neurosurgery, University of California, Davis, Davis, CA, United States
| | - Fady Girgis
- Neurosurgery, University of California, Davis, Davis, CA, United States
| |
Collapse
|
17
|
Progovac L, Rakhlin N, Angell W, Liddane R, Tang L, Ofen N. Diversity of Grammars and Their Diverging Evolutionary and Processing Paths: Evidence From Functional MRI Study of Serbian. Front Psychol 2018; 9:278. [PMID: 29559943 PMCID: PMC5845673 DOI: 10.3389/fpsyg.2018.00278] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/19/2018] [Indexed: 12/21/2022] Open
Abstract
We address the puzzle of "unity in diversity" in human languages by advocating the (minimal) common denominator for the diverse expressions of transitivity across human languages, consistent with the view that early in language evolution there was a modest beginning for syntax and that this beginning provided the foundation for the further elaboration of syntactic complexity. This study reports the results of a functional MRI experiment investigating differential patterns of brain activation during processing of sentences with minimal versus fuller syntactic structures. These structural layers have been postulated to represent different stages in the evolution of syntax, potentially engaging different brain networks. We focused on the Serbian "middles," analyzed as lacking the transitivity (vP) layer, contrasted with matched transitives, containing the transitivity layer. Our main hypothesis was that transitives will produce more activation in the syntactic (Broca's-Basal Ganglia) brain network, in comparison to more rudimentary middles. The participants (n = 14) were healthy adults (Mean age = 33.36; SD = 12.23), native speakers of Serbo-Croatian. The task consisted of reading a series of sentences (middles and transitives; n = 64) presented in blocks of 8, while being engaged in a detection of repetition task. We found that the processing of transitives, compared to middles, was associated with an increase in activation in the basal ganglia bilaterally. Although we did not find an effect in Broca's area, transitives, compared to middles, evoked greater activation in the precentral gyrus (BA 6), proposed to be part of the "Broca's complex." Our results add to the previous findings that Broca's area is not the sole center for syntactic processing, but rather is part of a larger circuit that involves subcortical structures. We discuss our results in the context of the recent findings concerning the gene-brain-language pathway involving mutations in FOXP2 that likely contributed to the enhancement of the frontal-striatal brain network, facilitating human capacity for complex syntax.
Collapse
Affiliation(s)
- Ljiljana Progovac
- Linguistics Program, Wayne State University, Detroit, MI, United States
- Department of English, Wayne State University, Detroit, MI, United States
| | - Natalia Rakhlin
- Communication Sciences and Disorders, Wayne State University, Detroit, MI, United States
| | - William Angell
- Linguistics Program, Wayne State University, Detroit, MI, United States
- Lifespan Cognitive Neuroscience Program, Institute of Gerontology, Wayne State University, Detroit, MI, United States
| | - Ryan Liddane
- Linguistics Program, Wayne State University, Detroit, MI, United States
- Lifespan Cognitive Neuroscience Program, Institute of Gerontology, Wayne State University, Detroit, MI, United States
| | - Lingfei Tang
- Department of Psychology, Wayne State University, Detroit, MI, United States
| | - Noa Ofen
- Lifespan Cognitive Neuroscience Program, Institute of Gerontology, Wayne State University, Detroit, MI, United States
- Department of Psychology, Wayne State University, Detroit, MI, United States
| |
Collapse
|
18
|
Nakai Y, Jeong JW, Brown EC, Rothermel R, Kojima K, Kambara T, Shah A, Mittal S, Sood S, Asano E. Three- and four-dimensional mapping of speech and language in patients with epilepsy. Brain 2017; 140:1351-1370. [PMID: 28334963 PMCID: PMC5405238 DOI: 10.1093/brain/awx051] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 01/14/2017] [Indexed: 11/13/2022] Open
Abstract
We have provided 3-D and 4D mapping of speech and language function based upon the results of direct cortical stimulation and event-related modulation of electrocorticography signals. Patients estimated to have right-hemispheric language dominance were excluded. Thus, 100 patients who underwent two-stage epilepsy surgery with chronic electrocorticography recording were studied. An older group consisted of 84 patients at least 10 years of age (7367 artefact-free non-epileptic electrodes), whereas a younger group included 16 children younger than age 10 (1438 electrodes). The probability of symptoms transiently induced by electrical stimulation was delineated on a 3D average surface image. The electrocorticography amplitude changes of high-gamma (70-110 Hz) and beta (15-30 Hz) activities during an auditory-naming task were animated on the average surface image in a 4D manner. Thereby, high-gamma augmentation and beta attenuation were treated as summary measures of cortical activation. Stimulation data indicated the causal relationship between (i) superior-temporal gyrus of either hemisphere and auditory hallucination; (ii) left superior-/middle-temporal gyri and receptive aphasia; (iii) widespread temporal/frontal lobe regions of the left hemisphere and expressive aphasia; and (iv) bilateral precentral/left posterior superior-frontal regions and speech arrest. On electrocorticography analysis, high-gamma augmentation involved the bilateral superior-temporal and precentral gyri immediately following question onset; at the same time, high-gamma activity was attenuated in the left orbitofrontal gyrus. High-gamma activity was augmented in the left temporal/frontal lobe regions, as well as left inferior-parietal and cingulate regions, maximally around question offset, with high-gamma augmentation in the left pars orbitalis inferior-frontal, middle-frontal, and inferior-parietal regions preceded by high-gamma attenuation in the contralateral homotopic regions. Immediately before verbal response, high-gamma augmentation involved the posterior superior-frontal and pre/postcentral regions, bilaterally. Beta-attenuation was spatially and temporally correlated with high-gamma augmentation in general but with exceptions. The younger and older groups shared similar spatial-temporal profiles of high-gamma and beta modulation; except, the younger group failed to show left-dominant activation in the rostral middle-frontal and pars orbitalis inferior-frontal regions around stimulus offset. The human brain may rapidly and alternately activate and deactivate cortical areas advantageous or obtrusive to function directed toward speech and language at a given moment. Increased left-dominant activation in the anterior frontal structures in the older age group may reflect developmental consolidation of the language system. The results of our functional mapping may be useful in predicting, across not only space but also time and patient age, sites specific to language function for presurgical evaluation of focal epilepsy.
Collapse
Affiliation(s)
- Yasuo Nakai
- Department of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, 48201, USA.,Department of Neurological Surgery, Wakayama Medical University, Wakayama-shi, Wakayama, 6418510, Japan
| | - Jeong-Won Jeong
- Department of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, 48201, USA.,Department of Neurology, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, 48201, USA
| | - Erik C Brown
- Department of Neurological Surgery, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Robert Rothermel
- Department of Psychiatry, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, 48201, USA
| | - Katsuaki Kojima
- Department of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, 48201, USA.,Department of Pediatrics, University of California San Francisco, CA, 94143, USA
| | - Toshimune Kambara
- Department of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, 48201, USA.,Postdoctoral Fellowship for Research Abroad, Japan Society for the Promotion of Science (JSPS), Chiyoda-ku, Tokyo, 1020083, Japan
| | - Aashit Shah
- Department of Neurology, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, 48201, USA
| | - Sandeep Mittal
- Department of Neurosurgery, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, 48201, USA
| | - Sandeep Sood
- Department of Neurosurgery, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, 48201, USA
| | - Eishi Asano
- Department of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, 48201, USA.,Department of Neurology, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, 48201, USA
| |
Collapse
|
19
|
Nishida M, Korzeniewska A, Crone NE, Toyoda G, Nakai Y, Ofen N, Brown EC, Asano E. Brain network dynamics in the human articulatory loop. Clin Neurophysiol 2017. [PMID: 28622530 DOI: 10.1016/j.clinph.2017.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The articulatory loop is a fundamental component of language function, involved in the short-term buffer of auditory information followed by its vocal reproduction. We characterized the network dynamics of the human articulatory loop, using invasive recording and stimulation. METHODS We measured high-gamma activity70-110 Hz recorded intracranially when patients with epilepsy either only listened to, or listened to and then reproduced two successive tones by humming. We also conducted network analyses, and analyzed behavioral responses to cortical stimulation. RESULTS Presentation of the initial tone elicited high-gamma augmentation bilaterally in the superior-temporal gyrus (STG) within 40ms, and in the precentral and inferior-frontal gyri (PCG and IFG) within 160ms after sound onset. During presentation of the second tone, high-gamma augmentation was reduced in STG but enhanced in IFG. The task requiring tone reproduction further enhanced high-gamma augmentation in PCG during and after sound presentation. Event-related causality (ERC) analysis revealed dominant flows within STG immediately after sound onset, followed by reciprocal interactions involving PCG and IFG. Measurement of cortico-cortical evoked-potentials (CCEPs) confirmed connectivity between distant high-gamma sites in the articulatory loop. High-frequency stimulation of precentral high-gamma sites in either hemisphere induced speech arrest, inability to control vocalization, or forced vocalization. Vocalization of tones was accompanied by high-gamma augmentation over larger extents of PCG. CONCLUSIONS Bilateral PCG rapidly and directly receives feed-forward signals from STG, and may promptly initiate motor planning including sub-vocal rehearsal for short-term buffering of auditory stimuli. Enhanced high-gamma augmentation in IFG during presentation of the second tone may reflect high-order processing of the tone sequence. SIGNIFICANCE The articulatory loop employs sustained reciprocal propagation of neural activity across a network of cortical sites with strong neurophysiological connectivity.
Collapse
Affiliation(s)
- Masaaki Nishida
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit Medical Center, Detroit, MI 48201, USA; Department of Anesthesiology, Hanyu General Hospital, Hanyu City, Saitama 348-8508, Japan
| | - Anna Korzeniewska
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21287, USA.
| | - Nathan E Crone
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Goichiro Toyoda
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit Medical Center, Detroit, MI 48201, USA
| | - Yasuo Nakai
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit Medical Center, Detroit, MI 48201, USA
| | - Noa Ofen
- Institute of Gerontology, Wayne State University, Detroit, MI 48202, USA; Department of Psychology, Wayne State University, Detroit, MI 48202, USA
| | - Erik C Brown
- Department of Neurosurgery, Oregon Health and Science University, Portland, OR, USA
| | - Eishi Asano
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit Medical Center, Detroit, MI 48201, USA; Department of Neurology, Children's Hospital of Michigan, Wayne State University, Detroit Medical Center, Detroit, MI 48201, USA.
| |
Collapse
|