1
|
Shao H, Li S. A new perspective on HIV: effects of HIV on brain-heart axis. Front Cardiovasc Med 2023; 10:1226782. [PMID: 37600062 PMCID: PMC10436320 DOI: 10.3389/fcvm.2023.1226782] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023] Open
Abstract
The human immunodeficiency virus (HIV) infection can cause damage to multiple systems within the body, and the interaction among these various organ systems means that pathological changes in one system can have repercussions on the functions of other systems. However, the current focus of treatment and research on HIV predominantly centers around individual systems without considering the comprehensive relationship among them. The central nervous system (CNS) and cardiovascular system play crucial roles in supporting human life, and their functions are closely intertwined. In this review, we examine the effects of HIV on the CNS, the resulting impact on the cardiovascular system, and the direct damage caused by HIV to the cardiovascular system to provide new perspectives on HIV treatment.
Collapse
Affiliation(s)
| | - Sijun Li
- Department of Internal Medicine, The Fourth People's Hospital of Nanning, Nanning, China
| |
Collapse
|
2
|
Nguchu BA, Zhao J, Wang Y, Li Y, Wei Y, Uwisengeyimana JDD, Wang X, Qiu B, Li H. Atypical Resting-State Functional Connectivity Dynamics Correlate With Early Cognitive Dysfunction in HIV Infection. Front Neurol 2021; 11:606592. [PMID: 33519683 PMCID: PMC7841016 DOI: 10.3389/fneur.2020.606592] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/01/2020] [Indexed: 01/20/2023] Open
Abstract
Purpose: Previous studies have shown that HIV affects striato-cortical regions, leading to persisting cognitive impairment in 30-70% of the infected individuals despite combination antiretroviral therapy. This study aimed to investigate brain functional dynamics whose deficits might link to early cognitive decline or immunologic deterioration. Methods: We applied sliding windows and K-means clustering to fMRI data (HIV patients with asymptomatic neurocognitive impairment and controls) to construct dynamic resting-state functional connectivity (RSFC) maps and identify states of their reoccurrences. The average and variability of dynamic RSFC, and the dwelling time and state transitioning of each state were evaluated. Results: HIV patients demonstrated greater variability in RSFC between the left pallidum and regions of right pre-central and post-central gyri, and between the right supramarginal gyrus and regions of the right putamen and left pallidum. Greater variability was also found in the frontal RSFC of pars orbitalis of the left inferior frontal gyrus and right superior frontal gyrus (medial). While deficits in learning and memory recall of HIV patients related to greater striato-sensorimotor variability, deficits in attention and working memory were associated with greater frontal variability. Greater striato-parietal variability presented a strong link with immunologic function (CD4+/CD8+ ratio). Furthermore, HIV-infected patients exhibited longer time and reduced transitioning in states typified by weaker connectivity in specific networks. CD4+T-cell counts of the HIV-patients were related to reduced state transitioning. Conclusion: Our findings suggest that HIV alters brain functional connectivity dynamics, which may underlie early cognitive impairment. These findings provide novel insights into our understanding of HIV pathology, complementing the existing knowledge.
Collapse
Affiliation(s)
- Benedictor Alexander Nguchu
- Hefei National Laboratory for Physical Sciences at the Microscale, Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, China
| | - Jing Zhao
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yanming Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, China
| | - Yu Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, China
| | - Yarui Wei
- Hefei National Laboratory for Physical Sciences at the Microscale, Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, China
| | - Jean de Dieu Uwisengeyimana
- Hefei National Laboratory for Physical Sciences at the Microscale, Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, China
| | - Xiaoxiao Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, China
| | - Bensheng Qiu
- Hefei National Laboratory for Physical Sciences at the Microscale, Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, China
| | - Hongjun Li
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
3
|
Zhuang Y, Zhang Z, Tivarus M, Qiu X, Zhong J, Schifitto G. Whole-brain computational modeling reveals disruption of microscale brain dynamics in HIV infected individuals. Hum Brain Mapp 2020; 42:95-109. [PMID: 32941693 PMCID: PMC7721235 DOI: 10.1002/hbm.25207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/13/2020] [Accepted: 08/30/2020] [Indexed: 01/07/2023] Open
Abstract
MRI‐based neuroimaging techniques have been used to investigate brain injury associated with HIV‐infection. Whole‐brain cortical mean‐field dynamic modeling provides a way to integrate structural and functional imaging outcomes, allowing investigation of microscale brain dynamics. In this study, we adopted the relaxed mean‐field dynamic modeling to investigate structural and functional connectivity in 42 HIV‐infected subjects before and after 12‐week of combination antiretroviral therapy (cART) and compared them with 46 age‐matched healthy subjects. Microscale brain dynamics were modeled by a set of parameters including two region‐specific microscale brain properties, recurrent connection strengths, and subcortical inputs. We also analyzed the relationship between the model parameters (i.e., the recurrent connection and subcortical inputs) and functional network topological characterizations, including smallworldness, clustering coefficient, and network efficiency. The results show that untreated HIV‐infected individuals have disrupted local brain dynamics that in part correlate with network topological measurements. Notably, after 12 weeks of cART, both the microscale brain dynamics and the network topological measurements improved and were closer to those in the healthy brain. This was also associated with improved cognitive performance, suggesting that improvement in local brain dynamics translates into clinical improvement.
Collapse
Affiliation(s)
- Yuchuan Zhuang
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York, USA
| | - Zhengwu Zhang
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York, USA.,Department of Neuroscience, University of Rochester Medical Center, Rochester, New York, USA
| | - Madalina Tivarus
- Department of Neuroscience, University of Rochester Medical Center, Rochester, New York, USA.,Department of Imaging Sciences, University of Rochester Medical Center, Rochester, New York, USA
| | - Xing Qiu
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York, USA
| | - Jianhui Zhong
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, New York, USA.,Department of Biomedical Engineering, University of Rochester, Rochester, New York, USA
| | - Giovanni Schifitto
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, New York, USA.,Department of Neurology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
4
|
Unal Evren E, Cekirdekci EI, Evren H, Suer K, Sarigul Yildirim F, Asan A, Bugan B. Abnormal Dispersion of Ventricular Repolarization as a Risk Factor in Patients with Human Immunodeficiency Virus: Tp-e Interval, Tp-e/QTc Ratio. Med Princ Pract 2020; 29:544-550. [PMID: 32422636 PMCID: PMC7768102 DOI: 10.1159/000508725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 05/18/2020] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE In recent years, there has been worldwide recognition of the problems associated with Human Immunodeficiency Virus (HIV) infection and Acquired Immune Deficiency Syndrome (AIDS). The prevalence of cardiovascular disease in the HIV-infected population is increasing. Repolarization abnormalities, the significant contributor to life-threatening arrhythmias and mortality, are the most frequent electrocardiographic changes in this population. This study aimed to evaluate the changes in Tp-e interval, Tp-e/QT and Tp-e/corrected QT (QTc) ratios, and traditional electrocardiographic features of electrical dispersion in adults infected with HIV. SUBJECTS AND METHODS A total of 235 participants were selected in the current study. The HIV group consisted of 85 subjects (median age 36 years [25-48], and the control group included 150 individuals (median age 39 years [27-51]). Tp-e interval, Tp-e/QT and Tp-e/QTc ratios were measured by the 12-lead electrocardiogram. RESULTS Tp-e interval, cTp-e interval, and Tp-e/QT and Tp-e/QTc ratios were significantly higher in HIV patients compared to the control group (p = 0.006, p = 0.004, p = 0.003, and p = 0.002, respectively). In correlation analysis, there was inverse correlation between the mean cTp-e interval and CD4 count and Tp-e/QTc ratios and CD4 count (r = - 0.407, p < 0.001, r = - 0.416, p < 0.001, respectively). Besides, there was correlation between the mean cTp-e interval and high-sensitivity C-reactive protein (hsCRP) and Tp-e/QTc ratios and hsCRP (r = 0.403, p = 0.001, r = 0.406, p = 0.001, respectively). CONCLUSION Our study revealed that the cTp-e interval, Tp-e/QT and cTp-e/QT ratios were prolonged and correlated to the severity of the disease in HIV-infected patients. Our findings may shed light on the cTp-e interval and Tp-e/QTc ratio and lead to further studies showing a relationship with ventricular arrhythmias and mortality in HIV-infected individuals.
Collapse
Affiliation(s)
- Emine Unal Evren
- Department of Clinical Microbiology and Infectious Disease, University of Kyrenia, Kyrenia, Cyprus
| | | | - Hakan Evren
- Department of Clinical Microbiology and Infectious Disease, University of Kyrenia, Kyrenia, Cyprus
| | - Kaya Suer
- Department of Clinical Microbiology and Infectious Disease, Near East University, Nicosia, Cyprus
| | - Figen Sarigul Yildirim
- Department of Clinical Microbiology and Infectious Disease, University of Health Sciences, Antalya Training and Research Hospital, Antalya, Turkey
| | - Ali Asan
- Department of Clinical Microbiology and Infectious Disease, University of Health Sciences, Bursa Yuksek Ihtisas Education and Research Hospital, Bursa, Turkey
| | - Baris Bugan
- Department of Cardiology, University of Kyrenia, Kyrenia, Cyprus
| |
Collapse
|
5
|
Nash B, Festa L, Lin C, Meucci O. Opioid and chemokine regulation of cortical synaptodendritic damage in HIV-associated neurocognitive disorders. Brain Res 2019; 1723:146409. [PMID: 31465771 PMCID: PMC6766413 DOI: 10.1016/j.brainres.2019.146409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/20/2019] [Accepted: 08/25/2019] [Indexed: 01/17/2023]
Abstract
Human immunodeficiency virus (HIV)-associated neurocognitive disorders (HAND) persist despite effective antiretroviral therapies (ART). Evidence suggests that modern HAND is driven by subtle synaptodendritic damage in select brain regions, as ART-treated patients do not display overt neuronal death in postmortem brain studies. HAND symptoms are also aggravated by drug abuse, particularly with injection opioids. Opioid use produces region-specific synaptodendritic damage in similar brain regions, suggesting a convergent mechanism that may enhance HAND progression in opioid-using patients. Importantly, studies indicate that synaptodendritic damage and cognitive impairment in HAND may be reversible. Activation of the homeostatic chemokine receptor CXCR4 by its natural ligand CXCL12 positively regulates neuronal survival and dendritic spine density in cortical neurons, reducing functional deficits. However, the molecular mechanisms that underlie CXCR4, as well as opioid-mediated regulation of dendritic spines are not completely defined. Here, we will consolidate studies that describe the region-specific synaptodendritic damage in the cerebral cortex of patients and animal models of HAND, describe the pathways by which opioids may contribute to cortical synaptodendritic damage, and discuss the prospects of using the CXCR4 signaling pathway to identify new approaches to reverse dendritic spine deficits. Additionally, we will discuss novel research questions that have emerged from recent studies of CXCR4 and µ-opioid actions in the cortex. Understanding the pathways that underlie synaptodendritic damage and rescue are necessary for developing novel, effective therapeutics for this growing patient population.
Collapse
Affiliation(s)
- Bradley Nash
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA.
| | - Lindsay Festa
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA.
| | - Chihyang Lin
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA.
| | - Olimpia Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA; Department of Microbiology and Immunology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA.
| |
Collapse
|
6
|
Nagai M, Dote K, Kato M, Oda N. The insular cortex and QTc interval in HIV+ and HIV− individuals: Is there an effect of sympathetic nervous system activity? Clin Neurophysiol 2018; 129:336. [DOI: 10.1016/j.clinph.2017.09.119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 09/21/2017] [Indexed: 10/18/2022]
|
7
|
Abstract
Human immunodeficiency virus (HIV) enters the brain early after infecting humans and may remain in the central nervous system despite successful antiretroviral treatment. Many neuroimaging techniques were used to study HIV+ patients with or without opportunistic infections. These techniques assessed abnormalities in brain structures (using computed tomography, structural magnetic resonance imaging (MRI), diffusion MRI) and function (using functional MRI at rest or during a task, and perfusion MRI with or without a contrast agent). In addition, single-photon emission computed tomography with various tracers (e.g., thallium-201, Tc99-HMPAO) and positron emission tomography with various agents (e.g., [18F]-dexoyglucose, [11C]-PiB, and [11C]-TSPO tracers), were applied to study opportunistic infections or HIV-associated neurocognitive disorders. Neuroimaging provides diagnoses and biomarkers to quantitate the severity of brain injury or to monitor treatment effects, and may yield insights into the pathophysiology of HIV infection. As the majority of antiretroviral-stable HIV+ patients are living longer, age-related comorbid disorders (e.g., additional neuroinflammation, cerebrovascular disorders, or other dementias) will need to be considered. Other highly prevalent conditions, such as substance use disorders, psychiatric illnesses, and the long-term effects of combined antiretroviral therapy, all may lead to additional brain injury. Neuroimaging studies could provide knowledge regarding how these comorbid conditions impact the HIV-infected brain. Lastly, specific molecular imaging agents may be needed to assess the central nervous system viral reservoir.
Collapse
Affiliation(s)
- Linda Chang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States; Department of Medicine and Department of Neurology, John A. Burns School of Medicine, University of Hawaii, Manoa, United States.
| | - Dinesh K Shukla
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
8
|
McIntosh RC, Chow DC, Lum CJ, Shikuma CM, Kallianpur KJ. Reply to "The insular cortex and QTc interval in HIV+ and HIV- individuals: Is there an effect of sympathetic nervous system activity?". Clin Neurophysiol 2017; 129:337-338. [PMID: 29169688 DOI: 10.1016/j.clinph.2017.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 10/14/2017] [Indexed: 10/18/2022]
Affiliation(s)
- Roger C McIntosh
- Department of Health Psychology, University of Miami, Coral Gables, FL 33124, USA.
| | - Dominic C Chow
- Hawaii Center for AIDS, Department of Medicine, John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI 96813, USA
| | - Corey J Lum
- Hawaii Center for AIDS, Department of Medicine, John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI 96813, USA; Division of Cardiology, Department of Medicine, John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI 96813, USA
| | - Cecilia M Shikuma
- Hawaii Center for AIDS, Department of Medicine, John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI 96813, USA
| | - Kalpana J Kallianpur
- Hawaii Center for AIDS, Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI 96813, USA
| |
Collapse
|