1
|
Eliason M, Kalbande PP, Saleem GT. Is non-invasive neuromodulation a viable technique to improve neuroplasticity in individuals with acquired brain injury? A review. Front Hum Neurosci 2024; 18:1341707. [PMID: 39296918 PMCID: PMC11408216 DOI: 10.3389/fnhum.2024.1341707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 07/22/2024] [Indexed: 09/21/2024] Open
Abstract
Objective This study aimed to explore and evaluate the efficacy of non-invasive brain stimulation (NIBS) as a standalone or coupled intervention and understand its mechanisms to produce positive alterations in neuroplasticity and behavioral outcomes after acquired brain injury (ABI). Data sources Cochrane Library, Web of Science, PubMed, and Google Scholar databases were searched from January 2013 to January 2024. Study selection Using the PICO framework, transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) randomized controlled trials (RCTs), retrospective, pilot, open-label, and observational large group and single-participant case studies were included. Two authors reviewed articles according to pre-established inclusion criteria. Data extraction Data related to participant and intervention characteristics, mechanisms of change, methods, and outcomes were extracted by two authors. The two authors performed quality assessments using SORT. Results Twenty-two studies involving 657 participants diagnosed with ABIs were included. Two studies reported that NIBS was ineffective in producing positive alterations or behavioral outcomes. Twenty studies reported at least one, or a combination of, positively altered neuroplasticity and improved neuropsychological, neuropsychiatric, motor, or somatic symptoms. Twenty-eight current articles between 2020 and 2024 have been studied to elucidate potential mechanisms of change related to NIBS and other mediating or confounding variables. Discussion tDCS and TMS may be efficacious as standalone interventions or coupled with neurorehabilitation therapies to positively alter maladaptive brain physiology and improve behavioral symptomology resulting from ABI. Based on postintervention and follow-up results, evidence suggests NIBS may offer a direct or mediatory contribution to improving behavioral outcomes post-ABI. Conclusion More research is needed to better understand the extent of rTMS and tDCS application in affecting changes in symptoms after ABI.
Collapse
Affiliation(s)
- Michelle Eliason
- Rehabilitation Science Department, University at Buffalo, Buffalo, NY, United States
| | | | - Ghazala T Saleem
- Rehabilitation Science Department, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
2
|
Tam PK, Oey NE, Tang N, Ramamurthy G, Chew E. Facilitating Corticomotor Excitability of the Contralesional Hemisphere Using Non-Invasive Brain Stimulation to Improve Upper Limb Motor Recovery from Stroke-A Scoping Review. J Clin Med 2024; 13:4420. [PMID: 39124687 PMCID: PMC11313572 DOI: 10.3390/jcm13154420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Upper limb weakness following stroke poses a significant global psychosocial and economic burden. Non-invasive brain stimulation (NIBS) is a potential adjunctive treatment in rehabilitation. However, traditional approaches to rebalance interhemispheric inhibition may not be effective for all patients. The supportive role of the contralesional hemisphere in recovery of upper limb motor function has been supported by animal and clinical studies, particularly for those with severe strokes. This review aims to provide an overview of the facilitation role of the contralesional hemisphere for post-stroke motor recovery. While more studies are required to predict responses and inform the choice of NIBS approach, contralesional facilitation may offer new hope for patients in whom traditional rehabilitation and NIBS approaches have failed.
Collapse
Affiliation(s)
- Pui Kit Tam
- Division of Rehabilitation Medicine, Department of Medicine, National University Hospital, Singapore 119228, Singapore; (P.K.T.); (N.E.O.); (N.T.)
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Nicodemus Edrick Oey
- Division of Rehabilitation Medicine, Department of Medicine, National University Hospital, Singapore 119228, Singapore; (P.K.T.); (N.E.O.); (N.T.)
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Ning Tang
- Division of Rehabilitation Medicine, Department of Medicine, National University Hospital, Singapore 119228, Singapore; (P.K.T.); (N.E.O.); (N.T.)
| | - Guhan Ramamurthy
- BG Institute of Neurosciences, BG Hospital, Tiruchendur, Tuticorin 628216, Tamil Nadu, India;
| | - Effie Chew
- Division of Rehabilitation Medicine, Department of Medicine, National University Hospital, Singapore 119228, Singapore; (P.K.T.); (N.E.O.); (N.T.)
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| |
Collapse
|
3
|
Osman H, Siu R, Makowski NS, Knutson JS, Cunningham DA. Neurostimulation After Stroke. Phys Med Rehabil Clin N Am 2024; 35:369-382. [PMID: 38514224 DOI: 10.1016/j.pmr.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Neural stimulation technology aids stroke survivors in regaining lost motor functions. This article explores its applications in upper and lower limb stroke rehabilitation. The authors review various methods to target the corticomotor system, including transcranial direct current stimulation, repetitive transcranial magnetic stimulation, and vagus nerve stimulation. In addition, the authors review the use of peripheral neuromuscular electrical stimulation for therapeutic and assistive purposes, including transcutaneous electrical nerve stimulation, neuromuscular electrical stimulation, and functional electrical stimulation. For each, the authors examine the potential benefits, limitations, safety considerations, and FDA status.
Collapse
Affiliation(s)
- Hala Osman
- MetroHealth Center for Rehabilitation Research, 4229 Pearl Dr, Cleveland, OH 44109, USA; APT Center, 10701 East Boulevard, Cleveland, OH 44106, USA
| | - Ricardo Siu
- MetroHealth Center for Rehabilitation Research, 4229 Pearl Dr, Cleveland, OH 44109, USA; Department of Physical Medicine and Rehabilitation, Case Western Reserve University, 9501 Euclid Avenue, Cleveland, OH 44106, USA
| | - Nathan S Makowski
- MetroHealth Center for Rehabilitation Research, 4229 Pearl Dr, Cleveland, OH 44109, USA; APT Center, 10701 East Boulevard, Cleveland, OH 44106, USA; Department of Physical Medicine and Rehabilitation, Case Western Reserve University, 9501 Euclid Avenue, Cleveland, OH 44106, USA
| | - Jayme S Knutson
- MetroHealth Center for Rehabilitation Research, 4229 Pearl Dr, Cleveland, OH 44109, USA; Department of Physical Medicine and Rehabilitation, Case Western Reserve University, 9501 Euclid Avenue, Cleveland, OH 44106, USA; Cleveland FES Center, 10701 East Boulevard, Cleveland, OH 44106, USA
| | - David A Cunningham
- MetroHealth Center for Rehabilitation Research, 4229 Pearl Dr, Cleveland, OH 44109, USA; Department of Physical Medicine and Rehabilitation, Case Western Reserve University, 9501 Euclid Avenue, Cleveland, OH 44106, USA; Cleveland FES Center, 10701 East Boulevard, Cleveland, OH 44106, USA.
| |
Collapse
|
4
|
Yuan X, Zhong X, Wang C, Yang Y, Jiang C. Evaluation of Transcranial Direct Current Stimulation in Motor Function and Neural Rehabilitation. J ECT 2023; 39:235-241. [PMID: 36988514 DOI: 10.1097/yct.0000000000000918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
ABSTRACT Transcranial direct current stimulation (tDCS) is used in neuromodulation to regulate the excitability of the cerebral cortex and induce neural plasticity. It was initially used to rehabilitate patients with neurological diseases. However, with the increasing number of studies involving healthy individuals, this technology is currently used in the field of sports as well. The administration of tDCS to the cerebral cortex, especially over the primary motor cortex (M1), has been found to improve muscle strength, enhance endurance, and promote motor skills in humans. This study mainly summarizes the effects of tDCS on motor function, mainly involving motor promotion of tDCS in healthy athletes and nonathletes, and in patients diagnosed with neurological diseases. The tDCS is a promising and effective tool used to promote motor function by regulating cortical excitability. However, no consensus is available regarding individually appropriate models of tDCS.
Collapse
Affiliation(s)
| | | | | | - Yuan Yang
- College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | | |
Collapse
|
5
|
Safdar A, Smith MC, Byblow WD, Stinear CM. Applications of Repetitive Transcranial Magnetic Stimulation to Improve Upper Limb Motor Performance After Stroke: A Systematic Review. Neurorehabil Neural Repair 2023; 37:837-849. [PMID: 37947106 PMCID: PMC10685705 DOI: 10.1177/15459683231209722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
BACKGROUND Noninvasive brain stimulation (NIBS) is a promising technique for improving upper limb motor performance post-stroke. Its application has been guided by the interhemispheric competition model and typically involves suppression of contralesional motor cortex. However, the bimodal balance recovery model prompts a more tailored application of NIBS based on ipsilesional corticomotor function. OBJECTIVE To review and assess the application of repetitive transcranial magnetic stimulation (rTMS) protocols that aimed to improve upper limb motor performance after stroke. METHODS A PubMed search was conducted for studies published between 1st January 2005 and 1st November 2022 using rTMS to improve upper limb motor performance of human adults after stroke. Studies were grouped according to whether facilitatory or suppressive rTMS was applied to the contralesional hemisphere. RESULTS Of the 492 studies identified, 70 were included in this review. Only 2 studies did not conform to the interhemispheric competition model, and facilitated the contralesional hemisphere. Only 21 out of 70 (30%) studies reported motor evoked potential (MEP) status as a biomarker of ipsilesional corticomotor function. Around half of the studies (37/70, 53%) checked whether rTMS had the expected effect by measuring corticomotor excitability (CME) after application. CONCLUSION The interhemispheric competition model dominates the application of rTMS post-stroke. The majority of recent and current studies do not consider bimodal balance recovery model for the application of rTMS. Evaluating CME after the application rTMS could confirm that the intervention had the intended neurophysiological effect. Future studies could select patients and apply rTMS protocols based on ipsilesional MEP status.
Collapse
Affiliation(s)
- Afifa Safdar
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Marie-Claire Smith
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
| | - Winston D. Byblow
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
| | - Cathy M. Stinear
- Department of Medicine, University of Auckland, Auckland, New Zealand
| |
Collapse
|
6
|
Unger RH, Lowe MJ, Beall EB, Bethoux F, Jones SE, Machado AG, Plow EB, Cunningham DA. Stimulation of the Premotor Cortex Enhances Interhemispheric Functional Connectivity in Association with Upper Limb Motor Recovery in Moderate-to-Severe Chronic Stroke. Brain Connect 2023; 13:453-463. [PMID: 36772802 PMCID: PMC10618814 DOI: 10.1089/brain.2022.0064] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
Background: Transcranial direct current stimulation (tDCS) targeting the primary motor cortex is modestly effective for promoting upper-limb motor function following stroke. The premotor cortex (PMC) represents an alternative target based on its higher likelihood of survival and dense motor-network connections. Objective: The objective of this study was to determine whether ipsilesional PMC tDCS affects motor network functional connectivity (FC) in association with reduction in motor impairment, and to determine whether this relationship is influenced by baseline motor severity. Methods: Participants with chronic stroke were randomly assigned to receive active-PMC or sham-tDCS with rehabilitation for 5 weeks. Resting-state functional magnetic resonance imaging was acquired to characterize change in FC across motor-cortical regions. Results: Our results indicated that moderate-to-severe participants who received active-tDCS had greater increases in PMC-to-PMC interhemispheric FC compared to those who received sham; this increase was correlated with reduction in proximal motor impairment. There was also an increase in intrahemispheric dorsal premotor cortex-primary motor cortex FC across participants regardless of severity or tDCS group assignment; this increase was correlated with a reduction in proximal motor impairment in only the mild participants. Conclusions: Our findings have significance for developing targeted brain stimulation approaches. While participants with milder impairments may inherently recruit viable substrates within the ipsilesional hemisphere, stimulation of PMC may enhance interhemispheric FC in association with recovery in more impaired participants. Trial Registration: ClinicalTrials.gov Identifier: NCT01539096; Registration date: February 21, 2012.
Collapse
Affiliation(s)
- Robert H. Unger
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mark J. Lowe
- Imaging Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Erik B. Beall
- Imaging Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Francois Bethoux
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Andre G. Machado
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ela B. Plow
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - David A. Cunningham
- Department of Physical Medicine and Rehabilitation, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Physical Medicine and Rehabilitation, MetroHealth Medical Center, Cleveland, Ohio, USA
- Cleveland Functional Electrical Stimulation Center, Cleveland, Ohio, USA
| |
Collapse
|
7
|
Lim H, Madhavan S. Non-paretic leg movements can facilitate cortical drive to the paretic leg in individuals post stroke with severe motor impairment: Implications for motor priming. Eur J Neurosci 2023; 58:2853-2867. [PMID: 37354080 PMCID: PMC10530620 DOI: 10.1111/ejn.16069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 06/26/2023]
Abstract
Cross-education, a phenomenon where unilateral strength (or skill) training enhances strength (or skill) in the contralateral untrained limb, has been well studied in able-bodied individuals. Cross-education effect accompanies bilateral changes of corticomotor activity in the motor cortex (M1). Recent reports demonstrated greater cross-education effect in stroke survivors compared to healthy individuals, however, corticomotor responses to cross-education in stroke remains unclear. This study aimed to determine the effects of non-paretic leg movements on corticomotor excitability (CME) and reaction time of the paretic leg in severely impaired stroke survivors. Seventeen post stroke individuals with severe leg motor impairment (Fugl-Meyer lower extremity score less than 21 and absence of motor evoked potential in the paretic leg) performed three 20-min motor trainings using their non-paretic ankle: skill (targeted dynamic movements), strength (isometric resistance) and sham (sub-threshold electrical nerve stimulation). During training, verbal instructions were given to the participants to limit their movement to the non-paretic leg and this was confirmed with visual observation of the paretic leg. Transcranial magnetic stimulation measured CME of the contralateral pathways from the non-lesioned M1 to the non-paretic tibialis anterior (TA) muscle, ipsilateral pathways to the paretic TA and transcallosal inhibition (TCI) from the non-lesioned to lesioned M1. Paretic ankle reaction time was measured using a reaction time paradigm. All outcomes were measured before, immediately post, 30-min post and 60-min post priming. CME of the non-paretic TA increased after skill (.08 ± .10 mV) and strength (.06 ± .05 mV) training (p < .01). Ipsilateral CME of the paretic TA (.02 ± .01 mV) and TCI (.01 ± .01 s, ipsilateral silent period; more inhibition to the lesioned M1) increased after skill (p < .05) but not strength training. Reaction time of the paretic ankle improved after skill and strength training (-.11 ± .2 and -.13 ± .20 s, respectively; p < .05) and was sustained at 60 min. No changes were observed during the sham condition. Our findings may inform future studies for using non-paretic leg movements as a priming modality, especially for those who are contraindicated to other priming paradigms (e.g., brain stimulation) or unable to perform paretic leg movements. Conclusion: Non-paretic leg movements can be used as a priming modality, especially for those who are contraindicated to other priming paradigms (e.g., brain stimulation) or unable to perform paretic leg movements.
Collapse
Affiliation(s)
- Hyosok Lim
- Brain Plasticity Laboratory, Department of Physical Therapy, University of Illinois at Chicago, Chicago, IL, USA
- Graduate Program in Rehabilitation Sciences, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Sangeetha Madhavan
- Brain Plasticity Laboratory, Department of Physical Therapy, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
8
|
Mirdamadi JL, Xu J, Arevalo-Alas KM, Kam LK, Borich MR. State-dependent interhemispheric inhibition reveals individual differences in motor behavior in chronic stroke. Clin Neurophysiol 2023; 149:157-167. [PMID: 36965468 PMCID: PMC10101934 DOI: 10.1016/j.clinph.2023.02.177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/05/2023] [Accepted: 02/26/2023] [Indexed: 03/11/2023]
Abstract
OBJECTIVE To investigate state-dependent interhemispheric inhibition (IHI) in chronic stroke survivors compared to neurotypical older adult controls, and test whether abnormal IHI modulation was associated with upper extremity motor behavior. METHODS Dual-coil transcranial magnetic stimulation (TMS) measured IHI bi-directionally, between non-lesioned and lesioned motor cortex (M1) in two activity states: (1) at rest and (2) during contralateral isometric hand muscle contraction. IHI was tested by delivering a conditioning stimulus 8-msec or 50-msec prior to a test stimulus over contralateral M1. Paretic motor behavior was assessed by clinical measures of impairment, strength, and dexterity, and mirroring activity in the non-paretic hand. RESULTS Stroke survivors demonstrated reduced IHI at rest, and less IHI modulation (active - rest) compared to controls. Individual differences in IHI modulation were related to motor behavior differences where greater IHI modulation was associated with greater motor impairment and more mirroring. In contrast, there were no relationships between IHI at rest and motor behavior. CONCLUSIONS Abnormal state-dependent interhemispheric circuit activity may be more sensitive to post-stroke motor deficits than when assessed in a single motor state. SIGNIFICANCE Characterizing state-dependent changes in neural circuitry may enhance models of stroke recovery and inform rehabilitation interventions.
Collapse
Affiliation(s)
- Jasmine L Mirdamadi
- Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Jing Xu
- Department of Kinesiology, University of Georgia, Athens, GA, USA
| | - Karla M Arevalo-Alas
- Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Liana K Kam
- Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Michael R Borich
- Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
9
|
Delatorre RG, Sutter EN, Nemanich ST, Krach LE, Meekins G, Feyma T, Gillick BT. Anodal Contralesional tDCS Enhances CST Excitability Bilaterally in an Adolescent with Hemiparetic Cerebral Palsy: A Brief Report. Dev Neurorehabil 2023; 26:216-221. [PMID: 36967533 PMCID: PMC10228174 DOI: 10.1080/17518423.2023.2193626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 01/08/2023] [Accepted: 03/17/2023] [Indexed: 04/11/2023]
Abstract
Hemiparetic cerebral palsy (HCP), weakness on one side of the body typically caused by perinatal stroke, is characterized by lifelong motor impairments related to alterations in the corticospinal tract (CST). CST reorganization could be a useful biomarker to guide applications of neuromodulatory interventions, such as transcranial direct current stimulation (tDCS), to improve the effectiveness of rehabilitation therapies. We evaluated an adolescent with HCP and CST reorganization who demonstrated persistent heightened CST excitability in both upper limbs following anodal contralesional tDCS. The results support further investigation of targeted tDCS as an adjuvant therapy to traditional neurorehabilitation for upper limb function.
Collapse
Affiliation(s)
| | - Ellen N. Sutter
- Waisman Center, University of Wisconsin-Madison, Madison, USA
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Samuel T. Nemanich
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, USA
- Department of Occupational Therapy, Marquette University, Milwaukee, WI, USA
| | - Linda E. Krach
- Department of Neurology, Gillette Children’s Specialty Healthcare, Saint Paul, MN, USA
| | - Gregg Meekins
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | - Timothy Feyma
- Department of Neurology, Gillette Children’s Specialty Healthcare, Saint Paul, MN, USA
| | - Bernadette T. Gillick
- Waisman Center, University of Wisconsin-Madison, Madison, USA
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
10
|
Salazar CA, Feng W, Bonilha L, Kautz S, Jensen JH, George MS, Rowland NC. Transcranial Direct Current Stimulation for Chronic Stroke: Is Neuroimaging the Answer to the Next Leap Forward? J Clin Med 2023; 12:2601. [PMID: 37048684 PMCID: PMC10094806 DOI: 10.3390/jcm12072601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023] Open
Abstract
During rehabilitation, a large proportion of stroke patients either plateau or begin to lose motor skills. By priming the motor system, transcranial direct current stimulation (tDCS) is a promising clinical adjunct that could augment the gains acquired during therapy sessions. However, the extent to which patients show improvements following tDCS is highly variable. This variability may be due to heterogeneity in regions of cortical infarct, descending motor tract injury, and/or connectivity changes, all factors that require neuroimaging for precise quantification and that affect the actual amount and location of current delivery. If the relationship between these factors and tDCS efficacy were clarified, recovery from stroke using tDCS might be become more predictable. This review provides a comprehensive summary and timeline of the development of tDCS for stroke from the viewpoint of neuroimaging. Both animal and human studies that have explored detailed aspects of anatomy, connectivity, and brain activation dynamics relevant to tDCS are discussed. Selected computational works are also included to demonstrate how sophisticated strategies for reducing variable effects of tDCS, including electric field modeling, are moving the field ever closer towards the goal of personalizing tDCS for each individual. Finally, larger and more comprehensive randomized controlled trials involving tDCS for chronic stroke recovery are underway that likely will shed light on how specific tDCS parameters, such as dose, affect stroke outcomes. The success of these collective efforts will determine whether tDCS for chronic stroke gains regulatory approval and becomes clinical practice in the future.
Collapse
Affiliation(s)
- Claudia A. Salazar
- Department of Neurosurgery, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Center for Biomedical Imaging, University of South Carolina, Columbia, SC 29208, USA
- Department of Neuroscience, College of Graduate Studies, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Wuwei Feng
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Leonardo Bonilha
- Department of Neurology, College of Medicine, Emory University, Atlanta, GA 30322, USA
- Department of Neurology, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Steven Kautz
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC 29401, USA
| | - Jens H. Jensen
- Center for Biomedical Imaging, University of South Carolina, Columbia, SC 29208, USA
- Department of Neuroscience, College of Graduate Studies, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Radiology and Radiological Science, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Mark S. George
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC 29401, USA
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Nathan C. Rowland
- Department of Neurosurgery, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Center for Biomedical Imaging, University of South Carolina, Columbia, SC 29208, USA
- Department of Neuroscience, College of Graduate Studies, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Neurology, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC 29401, USA
| |
Collapse
|
11
|
Nemanich ST, Lench DH, Sutter EN, Kowalski JL, Francis SM, Meekins GD, Krach LE, Feyma T, Gillick BT. Safety and feasibility of transcranial direct current stimulation stratified by corticospinal organization in children with hemiparesis. Eur J Paediatr Neurol 2023; 43:27-35. [PMID: 36878110 PMCID: PMC10117060 DOI: 10.1016/j.ejpn.2023.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/13/2023] [Accepted: 01/25/2023] [Indexed: 03/04/2023]
Abstract
Children with hemiparesis (CWH) due to stroke early in life face lifelong impairments in motor function. Transcranial direct current stimulation (tDCS) may be a safe and feasible adjuvant therapy to augment rehabilitation. Given the variability in outcomes following tDCS, tailored protocols of tDCS are required. We evaluated the safety, feasibility, and preliminary effects of a single session of targeted anodal tDCS based on individual corticospinal tract organization on corticospinal excitability. Fourteen CWH (age = 13.8 ± 3.63) were stratified into two corticospinal organization subgroups based on transcranial magnetic stimulation (TMS)-confirmed motor evoked potentials (MEP): ipsilesional MEP presence (MEPIL+) or absence (MEPIL-). Subgroups were randomized to real anodal or sham tDCS (1.5 mA, 20 min) applied to the ipsilesional (MEPIL + group) or contralesional (MEPIL- group) hemisphere combined with hand training. Safety was assessed with questionnaires and motor function evaluation, and corticospinal excitability was assessed at baseline and every 15 min for 1 h after tDCS. No serious adverse events occurred and anticipated minor side effects were reported and were self-limiting. Six of 14 participants had consistent ipsilesional MEPs (MEPIL + group). Paretic hand MEP amplitude increased in 5/8 participants who received real anodal tDCS to either the ipsilesional or contralesional hemisphere (+80% change). Application of tDCS based on individual corticospinal organization was safe and feasible with expected effects on excitability, indicating the potential for tailored tDCS protocols for CWH. Additional research involving expanded experimental designs is needed to confirm these effects and to determine if this approach can be translated into a clinically relevant intervention.
Collapse
Affiliation(s)
- Samuel T Nemanich
- Department of Occupational Therapy, Marquette University, 1700 West Wells St., Room 140, Milwaukee, WI, 53201, USA.
| | - Daniel H Lench
- Department of Neurology, Medical University of South Carolina, 208B Rutledge Avenue, Charleston, SC, 29425, USA
| | - Ellen N Sutter
- Department of Rehabilitation Medicine, University of Minnesota, 420 Delaware St SE, MMC 388, Minneapolis, MN, 55455, USA
| | - Jesse L Kowalski
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, 79/96 13th Street, Charlestown, MA, United States
| | - Sunday M Francis
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, 2312 S. 6th St.Floor 2, Suite F-275, Minneapolis, MN, 55454, USA
| | - Gregg D Meekins
- Department of Neurology, University of Minnesota, 420 Delaware St SE, MMC 295, Minneapolis, MN, 55455, USA
| | - Linda E Krach
- Department of Rehabilitation Medicine, University of Minnesota, 420 Delaware St SE, MMC 388, Minneapolis, MN, 55455, USA; Rehabilitation Medicine, Gillette Children's Specialty Healthcare, 200 University Ave E, St Paul, MN, 55101, USA
| | - Tim Feyma
- Neurology, Gillette Children's Specialty Healthcare, 200 University Ave E, St Paul, MN, 55101, USA
| | - Bernadette T Gillick
- Department of Rehabilitation Medicine, University of Minnesota, 420 Delaware St SE, MMC 388, Minneapolis, MN, 55455, USA; Department of Pediatrics, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI, 53705, USA
| |
Collapse
|
12
|
Ni J, Jiang W, Gong X, Fan Y, Qiu H, Dou J, Zhang J, Wang H, Li C, Su M. Effect of rTMS intervention on upper limb motor function after stroke: A study based on fNIRS. Front Aging Neurosci 2023; 14:1077218. [PMID: 36711205 PMCID: PMC9880218 DOI: 10.3389/fnagi.2022.1077218] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023] Open
Abstract
Background Stroke is a disease with a high fatality rate worldwide and a major cause of long-term disability. In the rehabilitation of limb motor function after stroke, the rehabilitation of upper limb function takes a long time and the recovery progress is slow, which seriously affects the patients' self-care ability in daily life. Repeated transcranial magnetic stimulation (rTMS) has been increasingly used to improve limb dysfunction in patients with stroke. However, a standardized reference for selecting a magnetic stimulation regimen is not available. Whether to increase the inhibition of the contralateral hemispheric motor cortex remains controversial. This study has evaluated the effects of different rTMS stimulation programs on upper limb function and corresponding brain functional network characteristics of patients with stroke and sought a new objective standard based on changes in brain network parameters to guide accurate rTMS stimulation programs. Method Thirty-six patients with stroke were selected and divided into control group and treatment group by number table method, with 18 patients in each group, and 3 patients in the control group were turned out and lost due to changes in disease condition. The treatment group was divided into two groups. TMS1 group was given 1 Hz magnetic stimulation in the M1 region of the contralesional hemisphere +10 Hz magnetic stimulation in the M1 region of the affected hemisphere, and the TMS2 group was given 10 Hz magnetic stimulation in the M1 region of the affected hemisphere. The control group was given false stimulation. The treatment course was once a day for 5 days a week for 4 weeks. The Fugl-Meyer Assessment for upper extremity (FMA-UE) sand near-infrared brain function were collected before treatment, 2 weeks after treatment, and 4 weeks after treatment, and the brain function network was constructed. Changes in brain oxygenated hemoglobin concentration and brain network parameters were analyzed with the recovery of motor function (i.e., increased FMA score). Meanwhile, according to the average increment of brain network parameters, the rTMS stimulation group was divided into two groups with good efficacy and poor efficacy. Network parameters of the two groups before and after rTMS treatment were analyzed statistically. Results (1) Before treatment, there was no statistical difference in Fugl-Meyer score between the control group and the magnetic stimulation group (p = 0.178).Compared with before treatment, Fugl-Meyer scores of 2 and 4 weeks after treatment were significantly increased in both groups (p <0.001), and FMA scores of 4 weeks after treatment were significantly improved compared with 2 weeks after treatment (p < 0.001). FMA scores increased faster in the magnetic stimulation group at 2 and 4 weeks compared with the control group at the same time point (p <0.001).TMS1 and TMS2 were compared at the same time point, FMA score in TMS2 group increased more significantly after 4 weeks of treatment (p = 0.010). (2) Before treatment, HbO2 content in healthy sensory motor cortex (SMC) area of magnetic stimulation group and control group was higher than that in other region of interest (ROI) area, but there was no significant difference in ROI between the two groups. After 4 weeks of treatment, the HbO2 content in the healthy SMC area was significantly decreased (p < 0.001), while the HbO2 content in the affected SMC area was significantly increased, and the change was more significant in the magnetic stimulation group (p < 0.001). (3) In-depth study found that with the recovery of motor function (FMA upper limb score increase ≥4 points) after magnetic stimulation intervention, brain network parameters were significantly improved. The mean increment of network parameters in TMS1 group and TMS2 group was significantly different (χ 2 = 5.844, p = 0.016). TMS2 group was more advantageous than TMS1 group in improving the mean increment of brain network parameters. Conclusion (1) The rTMS treatment is beneficial to the recovery of upper limb motor function in stroke patients, and can significantly improve the intensity of brain network connection and reduce the island area. The island area refers to an isolated activated brain area that cannot transmit excitation to other related brain areas. (2) When the node degree of M1_Healthy region less than 0.52, it is suggested to perform promotion therapy only in the affected hemisphere. While the node degree greater than 0.52, and much larger than that in the M1_affected region. it is suggested that both inhibition in the contralesional hemisphere and high-frequency excitatory magnetic stimulation in the affected hemisphere can be performed. (3) In different brain functional network connection states, corresponding adjustment should be made to the treatment plan of rTMS to achieve optimal therapeutic effect and precise rehabilitation treatment.
Collapse
Affiliation(s)
- Jing Ni
- Department of Physical Medicine and Rehabilitation, Dushu Lake Hospital Affiliated of Soochow University, Suzhou, Jiangsu, China,Department of Physical Medicine and Rehabilitation, Jiangsu Rongjun Hospital, Wuxi, Jiangsu, China
| | - Wei Jiang
- Department of Physical Medicine and Rehabilitation, Dushu Lake Hospital Affiliated of Soochow University, Suzhou, Jiangsu, China,Department of Physical Medicine and Rehabilitation, Jiangsu Rongjun Hospital, Wuxi, Jiangsu, China
| | - Xueyang Gong
- Department of Physical Medicine and Rehabilitation, Dushu Lake Hospital Affiliated of Soochow University, Suzhou, Jiangsu, China,Department of Physical Medicine and Rehabilitation, Wuxi International Tongren Rehabilitation Hospital, Wuxi, Jiangsu, China
| | - Yingjie Fan
- Department of Physical Medicine and Rehabilitation, Dushu Lake Hospital Affiliated of Soochow University, Suzhou, Jiangsu, China,Institute of Rehabilitation Soochow University, Suzhou, Jiangsu, China
| | - Hao Qiu
- Department of Physical Medicine and Rehabilitation, Dushu Lake Hospital Affiliated of Soochow University, Suzhou, Jiangsu, China,Institute of Rehabilitation Soochow University, Suzhou, Jiangsu, China
| | - Jiaming Dou
- Department of Physical Medicine and Rehabilitation, Dushu Lake Hospital Affiliated of Soochow University, Suzhou, Jiangsu, China,Department of Physical Medicine and Rehabilitation, Wuxi International Tongren Rehabilitation Hospital, Wuxi, Jiangsu, China
| | - Juan Zhang
- Department of Physical Medicine and Rehabilitation, Dushu Lake Hospital Affiliated of Soochow University, Suzhou, Jiangsu, China,First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hongxing Wang
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, Jiangsu, China,*Correspondence: Hongxing Wang, ✉
| | - Chunguang Li
- The Key Laboratory of Robotics and System of Jiangsu Province, School of Mechanical and Electric Engineering, Soochow University, Suzhou, Jiangsu, China,Chunguang Li, ✉
| | - Min Su
- Department of Physical Medicine and Rehabilitation, Dushu Lake Hospital Affiliated of Soochow University, Suzhou, Jiangsu, China,Institute of Rehabilitation Soochow University, Suzhou, Jiangsu, China,First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China,Min Su, ✉
| |
Collapse
|
13
|
Seamon BA, Bowden MG, Kindred JH, Embry AE, Kautz SA. Transcranial Direct Current Stimulation Electrode Montages May Differentially Impact Variables of Walking Performance in Individuals Poststroke: A Preliminary Study. J Clin Neurophysiol 2023; 40:71-78. [PMID: 34009847 PMCID: PMC8497641 DOI: 10.1097/wnp.0000000000000848] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
PURPOSE Transcranial direct current stimulation (tDCS) has mixed effects on walking performance in individuals poststroke. This is likely the result of variations in tDCS electrode montages and individualized responses. The purpose of this study was to quantify the effects of a single session of tDCS using various electrode montages on poststroke walking performance. METHODS Individuals with chronic stroke ( n = 16) participated in a double-blind, randomized cross-over study with sham stimulation and three tDCS electrode montages. Gait speed, paretic step ratio, and paretic propulsion were assessed prestimulation and poststimulation at self-selected and fastest comfortable speeds. Changes in muscle activation patterns with self-selected walking were quantified by the number of modules derived from nonnegative matrix factorization of EMG signals for hypothesis generation. RESULTS There was no significant effect of active stimulation montages compared with sham. Comparisons between each participant's best response to tDCS and sham show personalized tDCS may have a positive effect on fastest comfortable overground gait speed ( P = 0.084), paretic step ratio ( P = 0.095) and paretic propulsion ( P = 0.090), and self-selected paretic step ratio ( P = 0.012). Participants with two or three modules at baseline increased module number in response to the all experimental montages and sham, but responses were highly variable. CONCLUSIONS A single session of tDCS may affect clinical and biomechanical walking performance, but effects seem to be dependent on individual response variability to different electrode montages. Findings of this study are consistent with responses to various tDCS electrode montages being the result of underlying neuropathology, and the authors recommend examining how individual factors affect responses to tDCS.
Collapse
Affiliation(s)
- Bryant A. Seamon
- Ralph H. Johnson VA Medical Center, 109 Bee St, Charleston, SC 29401, USA
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, 77 President Street, Charleston, SC 29425, USA
| | - Mark G. Bowden
- Ralph H. Johnson VA Medical Center, 109 Bee St, Charleston, SC 29401, USA
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, 77 President Street, Charleston, SC 29425, USA
- Division of Physical Therapy, College of Health Professions, Medical University of South Carolina, 151-B Rutledge Avenue, Charleston, SC 29425, USA
| | - John H. Kindred
- Ralph H. Johnson VA Medical Center, 109 Bee St, Charleston, SC 29401, USA
- Division of Physical Therapy, College of Health Professions, Medical University of South Carolina, 151-B Rutledge Avenue, Charleston, SC 29425, USA
| | - Aaron E. Embry
- Ralph H. Johnson VA Medical Center, 109 Bee St, Charleston, SC 29401, USA
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, 77 President Street, Charleston, SC 29425, USA
- Division of Physical Therapy, College of Health Professions, Medical University of South Carolina, 151-B Rutledge Avenue, Charleston, SC 29425, USA
| | - Steven A. Kautz
- Ralph H. Johnson VA Medical Center, 109 Bee St, Charleston, SC 29401, USA
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, 77 President Street, Charleston, SC 29425, USA
- Division of Physical Therapy, College of Health Professions, Medical University of South Carolina, 151-B Rutledge Avenue, Charleston, SC 29425, USA
| |
Collapse
|
14
|
Yuasa A, Uehara S, Ushizawa K, Toyama T, Gomez-Tames J, Hirata A, Otaka Y. Effects of cerebellar transcranial direct current stimulation on upper limb motor function after stroke: study protocol for the pilot of a randomized controlled trial. Pilot Feasibility Stud 2022; 8:259. [PMCID: PMC9748387 DOI: 10.1186/s40814-022-01223-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
Abstract
Background
Transcranial direct current stimulation (tDCS) is a technique that can noninvasively modulate neural states in a targeted brain region. As cerebellar activity levels are associated with upper limb motor improvement after stroke, the cerebellum is a plausible target of tDCS. However, the effect of tDCS remains unclear. Here, we designed a pilot study to assess: (1) the feasibility of a study that aims to examine the effects of cerebellar tDCS combined with an intensive rehabilitation approach based on the concept of constraint-induced movement therapy (CIMT) and (2) the preliminary outcome of the combined approach on upper limb motor function in patients with stroke in the chronic stage.
Methods
This pilot study has a double-blind randomized controlled design. Twenty-four chronic stroke patients with mild to moderate levels of upper limb motor impairment will be randomly assigned to an active or sham tDCS group. The participants will receive 20 min of active or sham tDCS to the contralesional cerebellum at the commencement of 4 h of daily intensive training, repeatedly for 5 days per week for 2 weeks. The primary outcomes are recruitment, enrollment, protocol adherence, and retention rates and measures to evaluate the feasibility of the study. The secondary outcome is upper limb motor function which will be evaluated using the Action Research Arm Test, Fugl-Meyer Assessment, for the upper extremity and the Motor Activity Log. Additionally, neurophysiological and neuroanatomical assessments of the cerebellum will be performed using transcranial magnetic stimulation and magnetic resonance imaging. These assessments will be conducted before, at the middle, and after the 2-week intervention, and finally, 1 month after the intervention. Any adverse events that occur during the study will be recorded.
Discussion
Cerebellar tDCS combined with intensive upper limb training may increase the gains of motor improvement when compared to the sham condition. The present study should provide valuable evidence regarding the feasibility of the design and the efficacy of cerebellar tDCS for upper limb motor function in patients with stroke before a future large trial is conducted.
Trial registration
This study has been registered at the Japan Registry of Clinical Trials (jRCTs042200078). Registered 17 December 2020
Collapse
|
15
|
Lim H, Madhavan S. Effects of Cross-Education on Neural Adaptations Following Non-Paretic Limb Training in Stroke: A Scoping Review with Implications for Neurorehabilitation. J Mot Behav 2022; 55:111-124. [PMID: 35940590 DOI: 10.1080/00222895.2022.2106935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Current stroke rehabilitation interventions focus on intensive task specific training of the paretic limb, which may not be feasible for individuals with higher levels of impairment or in the early phase of stroke. Cross-education, a mechanism that improves strength or skill of the untrained limb following unilateral motor training, has high clinical relevance for stroke rehabilitation. Despite its potential benefits, our knowledge on the application and efficacy of cross-education in stroke is limited. We performed a scoping review to synthesize the current evidence regarding neurophysiological and motor effects of cross-education training in stroke. Low to strong evidence from five studies demonstrated strength gains ranging from 31-200% in the untrained paretic limb following non-paretic muscle training. Neurophysiological mechanisms underlying cross-education were unclear as the three studies that used transcranial magnetic stimulation to probe functional connectivity demonstrated mixed results in low sample size. Our review suggests that cross-education is a promising clinical approach in stroke, however high quality studies focusing on neurophysiological mechanisms are required to establish the efficacy and underlying mechanisms of cross-education in stroke. Recommendations regarding future directions and clinical utility are provided.
Collapse
Affiliation(s)
- Hyosok Lim
- Brain Plasticity Laboratory, Department of Physical Therapy, University of Illinois at Chicago, Chicago, IL, USA.,Graduate Program in Rehabilitation Sciences, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Sangeetha Madhavan
- Brain Plasticity Laboratory, Department of Physical Therapy, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
16
|
Yuan Z, Xu W, Bao J, Gao H, Li W, Peng Y, Wang L, Zhao Y, Song S, Qiao J, Wang G. Task-State Cortical Motor Network Characteristics by Functional Near-Infrared Spectroscopy in Subacute Stroke Show Hemispheric Dominance. Front Aging Neurosci 2022; 14:932318. [PMID: 35813955 PMCID: PMC9263394 DOI: 10.3389/fnagi.2022.932318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background There was a reorganization of the brain network after stroke. Some studies have compared the characteristics of activation or functional connectivity (FC) of cortical and subcortical regions between the dominant and non-dominant hemisphere stroke. Objectives To analyze hemispheric dominance differences in task-state motor network properties in subacute stroke by functional near-infrared spectroscopy (fNIRS). Materials and Methods Patients with first ischemic stroke in the basal ganglia within 1–3 months after onset and age- and sex-matched right-handed healthy subjects (HS) were enrolled. fNIRS with 29 channels was used to detect the oxyhemoglobin concentration changes when performing the hand grasping task. Activation patterns of motor cortex and two macroscale and two mesoscale brain network indicators based on graph theory were compared between dominant and non-dominant hemisphere stroke. Results We enrolled 17 subjects in each of left hemisphere stroke (LHS), right hemisphere stroke (RHS), and HS groups. Both patient groups showed bilateral activation. The average weighted clustering coefficient and global efficiency of patients were lower than those of healthy people, and the inter-density was higher than that of the HS group, but the significance was different between LHS and RHS groups. The intra-density changes in the RHS group were opposite to those in the LHS group. The correlation between mesoscale indicators and motor function differed between dominant and non-dominant hemisphere stroke. Conclusion The changes in macroscale cortical network indicators were similar between the two patient groups, while those of the mesoscale indicators were different. The mesoscale brain network characteristics were affected by the severity of dysfunction to varying degrees in the LHS and RHS patients.
Collapse
Affiliation(s)
- Ziwen Yuan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Sciences and Technology, Xi’an Jiaotong University, Xi’an, China
- Department of Rehabilitation, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Weiwei Xu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Sciences and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Jiameng Bao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Sciences and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Hui Gao
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Wen Li
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Sciences and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Yu Peng
- Department of Rehabilitation, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Lisha Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Sciences and Technology, Xi’an Jiaotong University, Xi’an, China
- Department of Rehabilitation, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ye Zhao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Sciences and Technology, Xi’an Jiaotong University, Xi’an, China
- Department of Rehabilitation, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Siming Song
- Department of Rehabilitation, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jin Qiao
- Department of Rehabilitation, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Jin Qiao,
| | - Gang Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Sciences and Technology, Xi’an Jiaotong University, Xi’an, China
- Gang Wang,
| |
Collapse
|
17
|
Mohan A, Knutson JS, Cunningham DA, Widina M, O'Laughlin K, Arora T, Li X, Sakaie K, Wang X, Uchino K, Plow EB. Contralaterally Controlled Functional Electrical Stimulation Combined With Brain Stimulation for Severe Upper Limb Hemiplegia-Study Protocol for a Randomized Controlled Trial. Front Neurol 2022; 13:869733. [PMID: 35599736 PMCID: PMC9117963 DOI: 10.3389/fneur.2022.869733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/01/2022] [Indexed: 12/05/2022] Open
Abstract
Background Approximately two-thirds of stroke survivors experience chronic upper limb paresis, and of them, 50% experience severe paresis. Treatment options for severely impaired survivors are often limited. Rehabilitation involves intensively engaging the paretic upper limb, and disincentivizing use of the non-paretic upper limb, with the goal to increase excitability of the ipsilesional primary motor cortex (iM1) and suppress excitability of the undamaged (contralesional) motor cortices, presumed to have an inhibitory effect on iM1. Accordingly, brain stimulation approaches, such as repetitive transcranial magnetic stimulation (rTMS), are also given to excite iM1 and/or suppress contralesional motor cortices. But such approaches aimed at ultimately increasing iM1 excitability yield limited functional benefit in severely impaired survivors who lack sufficient ipsilesional substrate. Aim Here, we test the premise that combining Contralaterally Controlled Functional Electrical Stimulation (CCFES), a rehabilitation technique that engages the non-paretic upper limb in delivery of neuromuscular electrical stimulation to the paretic upper limb, and a new rTMS approach that excites intact, contralesional higher motor cortices (cHMC), may have more favorable effect on paretic upper limb function in severely impaired survivors based on recruitment of spared, transcallosal and (alternate) ipsilateral substrate. Methods In a prospective, double-blind, placebo-controlled RCT, 72 chronic stroke survivors with severe distal hand impairment receive CCFES plus cHMC rTMS, iM1 rTMS, or sham rTMS, 2X/wk for 12wks. Measures of upper limb motor impairment (Upper Extremity Fugl Meyer, UEFM), functional ability (Wolf Motor-Function Test, WMFT) and perceived disability are collected at 0, 6, 12 (end-of-treatment), 24, and 36 wks (follow-up). TMS is performed at 0, 12 (end-of-treatment), and 36 wks (follow-up) to evaluate inter-hemispheric and ipsilateral mechanisms. Influence of baseline severity is also characterized with imaging. Conclusions Targeting of spared neural substrates and rehabilitation which engages the unimpaired limb in movement of the impaired limb may serve as a suitable combinatorial treatment option for severely impaired stroke survivors. ClinicalTrials No NCT03870672.
Collapse
Affiliation(s)
- Akhil Mohan
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Jayme S. Knutson
- Department of Physical Medicine and Rehabilitation, MetroHealth System, Cleveland, OH, United States
- Department of Physical Medicine and Rehabilitation, Case Western Reserve University, Cleveland, OH, United States
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland FES Center, Cleveland, OH, United States
| | - David A. Cunningham
- Department of Physical Medicine and Rehabilitation, MetroHealth System, Cleveland, OH, United States
- Department of Physical Medicine and Rehabilitation, Case Western Reserve University, Cleveland, OH, United States
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland FES Center, Cleveland, OH, United States
| | - Morgan Widina
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Kyle O'Laughlin
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Tarun Arora
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Xin Li
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Ken Sakaie
- Department of Diagnostic Radiology, Imaging Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Xiaofeng Wang
- Respiratory Institute Biostatistics Core, Lerner Research Institute, Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, United States
| | - Ken Uchino
- Cerebrovascular Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Ela B. Plow
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Physical Medicine and Rehabilitation, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
18
|
Muffel T, Shih PC, Kalloch B, Nikulin V, Villringer A, Sehm B. Differential effects of anodal and dual tDCS on sensorimotor functions in chronic hemiparetic stroke patients. Brain Stimul 2022; 15:509-522. [DOI: 10.1016/j.brs.2022.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 11/24/2022] Open
|
19
|
Anodal tDCS of contralesional hemisphere modulates ipsilateral control of spinal motor networks targeting the paretic arm post-stroke. Clin Neurophysiol 2022; 136:1-12. [DOI: 10.1016/j.clinph.2021.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/23/2021] [Accepted: 12/19/2021] [Indexed: 11/23/2022]
|
20
|
Effect of transcranial direct current stimulation on in-vivo assessed neuro-metabolites through magnetic resonance spectroscopy: a systematic review. Acta Neuropsychiatr 2021; 33:242-253. [PMID: 33926587 DOI: 10.1017/neu.2021.14] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Previous studies have examined the effect of transcranial direct current stimulation (tDCS) on the in-vivo concentrations of neuro-metabolites assessed through magnetic resonance spectroscopy (MRS) in neurological and psychiatry disorders. This review aims to systematically evaluate the data on the effect of tDCS on MRS findings and thereby attempt to understand the potential mechanism of tDCS on neuro-metabolites. METHODS The relevant literature was obtained through PubMed and cross-reference (search till June 2020). Thirty-four studies were reviewed, of which 22 reported results from healthy controls and 12 were from patients with neurological and psychiatric disorders. RESULTS The evidence converges to highlight that tDCS modulates the neuro-metabolite levels at the site of stimulation, which, in turn, translates into alterations in the behavioural outcome. It also shows that the baseline level of these neuro-metabolites can, to a certain extent, predict the outcome after tDCS. However, even though tDCS has shown promising effects in alleviating symptoms of various psychiatric disorders, there are limited studies that have reported the effect of tDCS on neuro-metabolite levels. CONCLUSIONS There is a compelling need for more systematic studies examining patients with psychiatric/neurological disorders with larger samples and harmonised tDCS protocols. More studies will potentially help us to understand the tDCS mechanism of action pertinent to neuro-metabolite levels modulation. Further, studies should be conducted in psychiatric patients to understand the neurological changes in this population and potentially unravel the neuro-metabolite × tDCS interaction effect that can be translated into individualised treatment.
Collapse
|
21
|
Hammerbeck U, Tyson SF, Samraj P, Hollands K, Krakauer JW, Rothwell J. The Strength of the Corticospinal Tract Not the Reticulospinal Tract Determines Upper-Limb Impairment Level and Capacity for Skill-Acquisition in the Sub-Acute Post-Stroke Period. Neurorehabil Neural Repair 2021; 35:812-822. [PMID: 34219510 PMCID: PMC8414832 DOI: 10.1177/15459683211028243] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background. Upper-limb impairment in patients with
chronic stroke appears to be partly attributable to an
upregulated reticulospinal tract (RST). Here, we assessed whether the impact of
corticospinal (CST) and RST connectivity on motor impairment and
skill-acquisition differs in sub-acute stroke, using
transcranial magnetic stimulation (TMS)–based proxy measures.
Methods. Thirty-eight stroke survivors were randomized to
either reach training 3-6 weeks post-stroke (plus usual care) or usual care
only. At 3, 6 and 12 weeks post-stroke, we measured ipsilesional and
contralesional cortical connectivity (surrogates for CST and RST connectivity,
respectively) to weak pre-activated triceps and deltoid muscles with single
pulse TMS, accuracy of planar reaching movements, muscle strength (Motricity
Index) and synergies (Fugl-Meyer upper-limb score). Results.
Strength and presence of synergies were associated with ipsilesional (CST)
connectivity to the paretic upper-limb at 3 and 12 weeks. Training led to planar
reaching skill beyond that expected from spontaneous recovery and occurred for
both weak and strong ipsilesional tract integrity. Reaching ability, presence of
synergies, skill-acquisition and strength were not affected by either the
presence or absence of contralesional (RST) connectivity.
Conclusion. The degree of ipsilesional CST connectivity is
the main determinant of proximal dexterity, upper-limb strength and synergy
expression in sub-acute stroke. In contrast, there is no evidence for enhanced
contralesional RST connectivity contributing to any of these components of
impairment. In the sub-acute post-stroke period, the balance of activity between
CST and RST may matter more for the paretic phenotype than RST upregulation per
se.
Collapse
Affiliation(s)
- Ulrike Hammerbeck
- Geoffrey Jefferson Brain Research Centre, 158986Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Healthy, 5292University of Manchester, Manchester, UK.,Department of Health Professions, Faculty of Health, Psychology and Social Care, 5289Manchester Metropolitan University, Manchester, UK
| | - Sarah F Tyson
- Department of Health Professions, Faculty of Health, Psychology and Social Care, 5289Manchester Metropolitan University, Manchester, UK
| | - Prawin Samraj
- Department of Medical Physics, Northern Care Alliance NHS Trust, Salford, UK
| | - Kristen Hollands
- Department of Health Sciences, 105168University of Salford, Salford, UK
| | - John W Krakauer
- Departments of Neurology, Neuroscience and Physical Medicine & Rehabilitation, 1500The John Hopkins University School of Medicine, Baltimore, MD, USA.,The Santa Fe Institute, Santa Fe, NM, USA
| | - John Rothwell
- Institute of Neurology, University College London, London, UK
| |
Collapse
|
22
|
Pate JW, McCambridge AB. Single Case Experimental Design: A New Approach for Non-invasive Brain Stimulation Research? FRONTIERS IN NEUROERGONOMICS 2021; 2:678579. [PMID: 38235212 PMCID: PMC10790913 DOI: 10.3389/fnrgo.2021.678579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/10/2021] [Indexed: 01/19/2024]
Affiliation(s)
| | - Alana B. McCambridge
- Graduate School of Health, Discipline of Physiotherapy, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
23
|
Ferris JK, Neva JL, Vavasour IM, Attard KJ, Greeley B, Hayward KS, Wadden KP, MacKay AL, Boyd LA. Cortical N-acetylaspartate concentrations are impacted in chronic stroke but do not relate to motor impairment: A magnetic resonance spectroscopy study. Hum Brain Mapp 2021; 42:3119-3130. [PMID: 33939206 PMCID: PMC8193507 DOI: 10.1002/hbm.25421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/24/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Magnetic resonance spectroscopy (MRS) measures cerebral metabolite concentrations, which can inform our understanding of the neurobiological processes associated with stroke recovery. Here, we investigated whether metabolite concentrations in primary motor and somatosensory cortices (sensorimotor cortex) are impacted by stroke and relate to upper‐extremity motor impairment in 45 individuals with chronic stroke. Cerebral metabolite estimates were adjusted for cerebrospinal fluid and brain tissue composition in the MRS voxel. Upper‐extremity motor impairment was indexed with the Fugl‐Meyer (FM) scale. N‐acetylaspartate (NAA) concentration was reduced bilaterally in stroke participants with right hemisphere lesions (n = 23), relative to right‐handed healthy older adults (n = 15; p = .006). Within the entire stroke sample (n = 45) NAA and glutamate/glutamine (GLX) were lower in the ipsilesional sensorimotor cortex, relative to the contralesional cortex (NAA: p < .001; GLX: p = .003). Lower ipsilesional NAA was related to greater extent of corticospinal tract (CST) injury, quantified by a weighted CST lesion load (p = .006). Cortical NAA and GLX concentrations did not relate to the severity of chronic upper‐extremity impairment (p > .05), including after a sensitivity analysis imputing missing metabolite data for individuals with large cortical lesions (n = 5). Our results suggest that NAA, a marker of neuronal integrity, is sensitive to stroke‐related cortical damage and may provide mechanistic insights into cellular processes of cortical adaptation to stroke. However, cortical MRS metabolites may have limited clinical utility as prospective biomarkers of upper‐extremity outcomes in chronic stroke.
Collapse
Affiliation(s)
- Jennifer K Ferris
- Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jason L Neva
- École de Kinésiologie et des Sciences de l'activité Physique, Université of Montréal, Montreal, Quebec, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, CIUSSS Centre-sud-de-I'île de Montréal, Montreal, Quebec, Canada
| | - Irene M Vavasour
- Faculty of Medicine, UBC MRI Research Center, University of British Columbia, Vancouver, BC, Canada
| | - Kaitlin J Attard
- Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian Greeley
- Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kathryn S Hayward
- School of Health Sciences, Florey Institute of Neuroscience and Mental Health, NHMRC CRE in Stroke Rehabilitation and Brain Recovery, The University of Melbourne, Parkville, Victoria, Australia
| | - Katie P Wadden
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Alex L MacKay
- Faculty of Medicine, UBC MRI Research Center, University of British Columbia, Vancouver, BC, Canada
| | - Lara A Boyd
- Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
24
|
Chen JL, Schipani A, Schuch CP, Lam H, Swardfager W, Thiel A, Edwards JD. Does Cathodal vs. Sham Transcranial Direct Current Stimulation Over Contralesional Motor Cortex Enhance Upper Limb Motor Recovery Post-stroke? A Systematic Review and Meta-analysis. Front Neurol 2021; 12:626021. [PMID: 33935936 PMCID: PMC8083132 DOI: 10.3389/fneur.2021.626021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/03/2021] [Indexed: 11/17/2022] Open
Abstract
Background: During recovery from stroke, the contralesional motor cortex (M1) may undergo maladaptive changes that contribute to impaired interhemispheric inhibition (IHI). Transcranial direct current stimulation (tDCS) with the cathode over contralesional M1 may inhibit this maladaptive plasticity, normalize IHI, and enhance motor recovery. Objective: The objective of this systematic review and meta-analysis was to evaluate available evidence to determine whether cathodal tDCS on contralesional M1 enhances motor re-learning or recovery post-stroke more than sham tDCS. Methods: We searched OVID Medline, Embase, and the Cochrane Central Register of Controlled Trials for participants with stroke (>1 week post-onset) with motor impairment and who received cathodal or sham tDCS to contralesional M1 for one or more sessions. The outcomes included a change in any clinically validated assessment of physical function, activity, or participation, or a change in a movement performance variable (e.g., time, accuracy). A meta-analysis was performed by pooling five randomized controlled trials (RCTs) and comparing the change in Fugl–Meyer upper extremity scores between cathodal and sham tDCS groups. Results: Eleven studies met the inclusion criteria. Qualitatively, four out of five cross-over design studies and three out of six RCTs reported a significant effect of cathodal vs. sham tDCS. In the quantitative synthesis, cathodal tDCS (n = 65) did not significantly reduce motor impairment compared to sham tDCS (n = 67; standardized mean difference = 0.33, z = 1.79, p = 0.07) with a little observed heterogeneity (I2 = 5%). Conclusions: The effects of cathodal tDCS to contralesional M1 on motor recovery are small and consistent. There may be sub-populations that may respond to this approach; however, further research with larger cohorts is required.
Collapse
Affiliation(s)
- Joyce L Chen
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, ON, Canada.,Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada.,Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
| | - Ashley Schipani
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, ON, Canada
| | | | - Henry Lam
- Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Walter Swardfager
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Alexander Thiel
- Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Jodi D Edwards
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
25
|
Katz DI, Dwyer B. Clinical Neurorehabilitation: Using Principles of Neurological Diagnosis, Prognosis, and Neuroplasticity in Assessment and Treatment Planning. Semin Neurol 2021; 41:111-123. [PMID: 33663002 DOI: 10.1055/s-0041-1725132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurorehabilitation aspires to restore a person to his or her fullest potential after incurring neurological dysfunction. In medical rehabilitation, diagnosis involves assessment of medical conditions and their effects on functioning. It is usually a team effort that involves an amalgam of diagnostic assessments by multiple disciplines, leading to a collection of rehabilitative treatment plans and goals. This article discusses a clinical neurological paradigm, using rigorous clinical assessment of neuropathological and clinical diagnosis, along with prognostication of natural history and recovery. In the context of the role of neuroplasticity in recovery, this paradigm can add significant value to rehabilitation team management and planning. It contributes to enhanced understanding of neurological impairments and syndromes as they relate to functional disability, aiding in targeting deficits and setting treatment goals. Rehabilitation strategies and goals should be informed by natural history and prognosis, and viewed in the framework of the stage of recovery. Prognostic formulations should suggest an emphasis on restorative versus compensatory strategies for functional problems. Treatment planning should be informed by evidence on how interventions modulate brain reorganization in promoting recovery. Strategies that promote adaptive neuroplasticity should be favored, especially with restorative efforts, and evidence supporting optimal techniques, timing, and dosing of rehabilitation should be considered in treatment planning.
Collapse
Affiliation(s)
- Douglas I Katz
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts.,Encompass Health Braintree Rehabilitation Hospital, Braintree, Massachusetts
| | - Brigid Dwyer
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts.,Encompass Health Braintree Rehabilitation Hospital, Braintree, Massachusetts
| |
Collapse
|
26
|
Lim H, Iyer PC, Luciano C, Madhavan S. Game-based movement facilitates acute priming effect in stroke. Somatosens Mot Res 2020; 38:83-89. [PMID: 33190568 DOI: 10.1080/08990220.2020.1846513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Cortical priming is an emerging strategy to enhance motor recovery after stroke, however, limited information exists on the neuromodulatory effects of lower limb movement-based priming to facilitate corticomotor excitability after stroke. In this study, we investigated the feasibility and effectiveness of game-based ankle movement priming using the DIG-I-PRIME™ on corticomotor excitability and motor performance in chronic stroke survivors. METHODS Nineteen stroke survivors participated in a 20-min session of game-based priming. A period of rest served as a control for the priming condition. Transcranial magnetic stimulation (TMS) was used to measure corticomotor excitability of the paretic and non-paretic tibialis anterior (TA) muscle representations. Motor performance was quantified by assessing the accuracy to track a sinusoidal target wave with paretic dorsiflexion and plantarflexion. RESULTS Ipsilesional corticomotor excitability increased by 25% after game-based movement priming (p = 0.02) while changes were not observed after the control condition. No change in motor performance was noted. CONCLUSION Game-based ankle movement priming demonstrated a significant acute priming effect on the ipsilesional lower limb M1. These data provide preliminary evidence for the potential benefits of game-based priming to promote functional recovery after stroke.
Collapse
Affiliation(s)
- Hyosok Lim
- Brain Plasticity Laboratory, Department of Physical Therapy, University of Illinois at Chicago, Chicago, IL, USA.,Graduate Program in Rehabilitation Sciences, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Pooja C Iyer
- Brain Plasticity Laboratory, Department of Physical Therapy, University of Illinois at Chicago, Chicago, IL, USA.,Graduate Program in Rehabilitation Sciences, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Cristian Luciano
- Mixed Reality Laboratory, Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Sangeetha Madhavan
- Brain Plasticity Laboratory, Department of Physical Therapy, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
27
|
Lin YL, Potter-Baker KA, Cunningham DA, Li M, Sankarasubramanian V, Lee J, Jones S, Sakaie K, Wang X, Machado AG, Plow EB. Stratifying chronic stroke patients based on the influence of contralesional motor cortices: An inter-hemispheric inhibition study. Clin Neurophysiol 2020; 131:2516-2525. [PMID: 32712080 PMCID: PMC7487004 DOI: 10.1016/j.clinph.2020.06.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 01/27/2023]
Abstract
OBJECTIVE A recent "bimodal-balance recovery" model suggests that contralesional influence varies based on the amount of ipsilesional reserve: inhibitory when there is a large reserve, but supportive when there is a low reserve. Here, we investigated the relationships between contralesional influence (inter-hemispheric inhibition, IHI) and ipsilesional reserve (corticospinal damage/impairment), and also defined a criterion separating subgroups based on the relationships. METHODS Twenty-four patients underwent assessment of IHI using Transcranial Magnetic Stimulation (ipsilateral silent period method), motor impairment using Upper Extremity Fugl-Meyer (UEFM), and corticospinal damage using Diffusion Tensor Imaging and active motor threshold. Assessments of UEFM and IHI were repeated after 5-week rehabilitation (n = 21). RESULTS Relationship between IHI and baseline UEFM was quadratic with criterion at UEFM 43 (95%conference interval: 40-46). Patients less impaired than UEFM = 43 showed stronger IHI with more impairment, whereas patients more impaired than UEFM = 43 showed lower IHI with more impairment. Of those made clinically-meaningful functional gains in rehabilitation (n = 14), more-impaired patients showed further IHI reduction. CONCLUSIONS A criterion impairment-level can be derived to stratify patient-subgroups based on the bimodal influence of contralesional cortex. Contralesional influence also evolves differently across subgroups following rehabilitation. SIGNIFICANCE The criterion may be used to stratify patients to design targeted, precision treatments.
Collapse
Affiliation(s)
- Yin-Liang Lin
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei, Taiwan
| | - Kelsey A Potter-Baker
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veteran's Affairs, Cleveland, OH, USA; Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - David A Cunningham
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Physical Medicine and Rehabilitation, Case Western Reserve University, Cleveland, OH, USA; MetroHealth Rehabilitation Institute of Ohio, MetroHealth Medical Center, Cleveland, OH, USA; Cleveland Functional Electrical Stimulation Center, Louis Stokes Cleveland Department of Veteran's Affairs, Cleveland, OH, USA
| | - Manshi Li
- Respiratory Institute Biostatistics Core, Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Vishwanath Sankarasubramanian
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - John Lee
- Department of Physical Medicine and Rehabilitation, Neurological Institute, Cleveland Clinic, OH, USA
| | - Stephen Jones
- Department of Diagnostic Radiology, Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ken Sakaie
- Department of Diagnostic Radiology, Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Xiaofeng Wang
- Respiratory Institute Biostatistics Core, Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Ela B Plow
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Physical Medicine and Rehabilitation, Neurological Institute, Cleveland Clinic, OH, USA.
| |
Collapse
|
28
|
McCambridge AB, Hay K, Levin K, Philpott K, Wood K, Bradnam LV. Neck rotation modulates motor-evoked potential duration of proximal muscle cortical representations in healthy adults. Exp Brain Res 2020; 238:2531-2538. [PMID: 32862278 DOI: 10.1007/s00221-020-05887-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/17/2020] [Indexed: 10/23/2022]
Abstract
Transcranial magnetic stimulation (TMS) produces motor-evoked potentials (MEP) used to infer changes in corticomotor excitability. In humans, neck rotation can probe reticulospinal input on corticomotor output. This study investigated the effect of neck rotation on MEP duration in a proximal and distal upper limb muscle and compared responses between rest and preactivation. Single-pulse TMS to motor cortex was used to evoke MEPs at two stimulus intensities in 18 healthy adults (20-40 years). Surface electromyography recorded MEPs from the non-dominant biceps brachii (BB) and first dorsal interosseous (FDI). Participants were seated with the target muscle at rest or 10% preactivated, and head rotated ipsilateral, contralateral, or in neutral position. The primary outcome was MEP tail, defined as the mean difference in MEP duration between active and rest trials. Secondary outcomes were MEP duration and amplitude. MEP tail was modulated by neck rotation in the proximal BB (P = 0.03) but not distal FDI (P > 0.19), with shorter duration during ipsilateral or contralateral rotation relative to neutral. In a neutral neck position, MEP duration was prolonged by muscle preactivation and higher TMS intensities in the FDI and BB (P < 0.03). Neck rotation attenuated the prolongation of MEP duration during preactivation in the BB, but not the FDI. Neck rotation had no effect on MEP amplitude for either muscle (P > 0.05). Modulation of the late portion of the MEP by rotation of the neck could indicate subcortical projections to alpha-motoneuron pools are stronger in proximal than distal upper limb muscles. These findings may have relevance for using MEP duration as a neural biomarker in neurological diseases.
Collapse
Affiliation(s)
- Alana B McCambridge
- Graduate School of Health, Discipline of Physiotherapy, University of Technology Sydney, PO Box 123, Broadway, Sydney, NSW, 2007, Australia.
| | - Kayla Hay
- Graduate School of Health, Discipline of Physiotherapy, University of Technology Sydney, PO Box 123, Broadway, Sydney, NSW, 2007, Australia
| | - Kumbelin Levin
- Graduate School of Health, Discipline of Physiotherapy, University of Technology Sydney, PO Box 123, Broadway, Sydney, NSW, 2007, Australia
| | - Kirsty Philpott
- Graduate School of Health, Discipline of Physiotherapy, University of Technology Sydney, PO Box 123, Broadway, Sydney, NSW, 2007, Australia
| | - Kunal Wood
- Graduate School of Health, Discipline of Physiotherapy, University of Technology Sydney, PO Box 123, Broadway, Sydney, NSW, 2007, Australia
| | - Lynley V Bradnam
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
29
|
Di Pino G, Di Lazzaro V. The balance recovery bimodal model in stroke patients between evidence and speculation: Do recent studies support it? Clin Neurophysiol 2020; 131:2488-2490. [PMID: 32747189 DOI: 10.1016/j.clinph.2020.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 10/23/2022]
Affiliation(s)
- Giovanni Di Pino
- Research Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction (NeXTlab), Università Campus Bio-Medico di Roma, Rome, Italy.
| | - Vincenzo Di Lazzaro
- Research Unit of Neurology, Neurophysiology, Neurobiology, Università Campus Bio-Medico di Roma, Rome, Italy.
| |
Collapse
|
30
|
Lim H, Madhavan S. Differential corticomotor mechanisms of ankle motor control in post stroke individuals with and without motor evoked potentials. Brain Res 2020; 1739:146833. [PMID: 32298662 DOI: 10.1016/j.brainres.2020.146833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/05/2020] [Accepted: 04/10/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Deficits in ankle motor control has been identified as a significant contributor to impaired walking after stroke. Corticomotor excitability has been related to impaired upper limb motor control and poor recovery in stroke, however contributions to lower limb function are still unclear. This study used transcranial magnetic stimulation (TMS) to determine the influence of corticomotor characteristics on lower limb motor control in chronic stroke survivors. METHODS This retrospective study assessed 28 individuals with post stroke hemiparesis. Motor evoked potentials (MEP) measured from the paretic and non-paretic tibialis anterior (TA) muscles were used to calculate corticomotor excitability symmetry (CMEsym) and relative ipsilateral corticomotor excitability (ICE). Participants were assigned to MEP+ and MEP- groups depending on the presence (+) or absence (-) of MEPs. Ankle motor control was quantified by the ability of participants to track a sinusoidal target using dorsiflexion-plantarflexion movements of the paretic ankle and tracking error was calculated using root mean square error (RMSE). RESULTS Multiple linear regression model for all participants revealed only CMEsym and FMLE (p < 0.01) to significantly predict RMSE. In the MEP+ group, CMEsym significantly predicted RMSE (p = 0.03) while FMLE (p = 0.02) was a significant predictor for the MEP-. CONCLUSION Our results indicate that CMEsym between the ipsilesional and contralesional hemispheres does not necessarily translate to better paretic ankle motor control in chronic stroke. Presence or absence of a MEP in the TA muscle did not affect the ankle tracking performance, however, it was noted that different strategies maybe used by those with and without a MEP.
Collapse
Affiliation(s)
- Hyosok Lim
- Brain Plasticity Laboratory, Department of Physical Therapy, University of Illinois at Chicago, Chicago, IL, USA; Graduate Program in Rehabilitation Sciences, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Sangeetha Madhavan
- Brain Plasticity Laboratory, Department of Physical Therapy, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
31
|
Zhang K, Guo L, Zhang J, Rui G, An G, Zhou Y, Lin J, Xing J, Zhao T, Ding G. tDCS Accelerates the Rehabilitation of MCAO-Induced Motor Function Deficits via Neurogenesis Modulated by the Notch1 Signaling Pathway. Neurorehabil Neural Repair 2020; 34:640-651. [PMID: 32543269 DOI: 10.1177/1545968320925474] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background. Ischemic stroke carries a high mortality rate and is a leading cause of severe neurological disability. However, the efficacy of current therapeutic options remains limited. Objective. We aimed to investigate the treatment efficacy of transcranial direct current stimulation (tDCS) in motor function rehabilitation after ischemic stroke and explore the underlying mechanisms. Methods. Male Sprague-Dawley rats with epicranial electrodes were used to establish pathogenetic model through temporary right middle cerebral artery occlusion (MCAO). Subsequently, animals were randomly divided into 4 groups: MCAO + tDCS/sham tDCS, Control + tDCS/sham tDCS. Animals in the groups with tDCS underwent 10 days of cathodal tDCS totally (500 µA, 15 minutes, once a day). During and after tDCS treatment, the motor functions of the animals, ischemic damage area, proliferation and differentiation of neural stem cells (NSCs), and distribution, and protein expression of Notch1 signaling molecules were detected. Results. The rehabilitation of MCAO-induced motor function deficits was dramatically accelerated by tDCS treatment. NSC proliferation in the subventricular zone (SVZ) was significantly increased after MCAO surgery, and tDCS treatment promoted this process. Additionally, NSCs probably migrated from the SVZ to the ischemic striatum and then differentiated into neurons and oligodendrocytes after MCAO surgery, both of which processes were accelerated by tDCS treatment. Finally, tDCS treatment inhibited the activation of Notch1 signaling in NSCs in the ischemic striatum, which may be involved in NSC differentiation in the MCAO model. Conclusion. Our results suggest that tDCS may exert therapeutic efficacy after ischemic stroke in a regenerative medical perspective.
Collapse
Affiliation(s)
- Keying Zhang
- Department of Radiation Biology, Fourth Military Medical University, Xi'an, China.,Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Ling Guo
- Department of Radiation Biology, Fourth Military Medical University, Xi'an, China.,Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Junping Zhang
- Department of Radiation Biology, Fourth Military Medical University, Xi'an, China.,Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Gang Rui
- Department of Radiation Biology, Fourth Military Medical University, Xi'an, China.,Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Guangzhou An
- Department of Radiation Biology, Fourth Military Medical University, Xi'an, China.,Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Yan Zhou
- Department of Radiation Biology, Fourth Military Medical University, Xi'an, China.,Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Jiajin Lin
- Department of Radiation Biology, Fourth Military Medical University, Xi'an, China.,Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Junling Xing
- Department of Radiation Biology, Fourth Military Medical University, Xi'an, China.,Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Tao Zhao
- Department of Radiation Biology, Fourth Military Medical University, Xi'an, China.,Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Guirong Ding
- Department of Radiation Biology, Fourth Military Medical University, Xi'an, China.,Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| |
Collapse
|
32
|
Cabibel V, Hordacre B, Perrey S. Implication of the ipsilateral motor network in unilateral voluntary muscle contraction: the cross-activation phenomenon. J Neurophysiol 2020; 123:2090-2098. [DOI: 10.1152/jn.00064.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Voluntary force production requires that the brain produces and transmits a motor command to the muscles. It is widely acknowledged that motor commands are executed from the primary motor cortex (M1) located in the contralateral hemisphere. However, involvement of M1 located in the ipsilateral hemisphere during moderate to high levels of unilateral muscle contractions (>30% of the maximum) has been disclosed in recent years. This phenomenon has been termed cross-activation. The activation of the ipsilateral M1 relies on complex inhibitory and excitatory interhemispheric interactions mediated via the corpus callosum and modulated according to the contraction level. The regulatory mechanisms underlying these interhemispheric interactions, especially excitatory ones, remain vague, and contradictions exist in the literature. In addition, very little is known regarding the possibility that other pathways could also mediate the cross-activation. In the present review, we will therefore summarize the concept of cross-activation during unilateral voluntary muscle contraction and explore the associated mechanisms and other nervous system pathways underpinning this response. A broader knowledge of these mechanisms would consequently allow a better comprehension of the motor system as a whole, as distant brain networks working together to produce the motor command.
Collapse
Affiliation(s)
- Vincent Cabibel
- EuroMov Digital Health in Motion, University of Montpellier, IMT Mines Ales, Montpellier, France
| | - Brenton Hordacre
- Innovation, IMPlementation and Clinical Translation (IIMPACT) in Health, University of South Australia, Adelaide, Australia
| | - Stéphane Perrey
- EuroMov Digital Health in Motion, University of Montpellier, IMT Mines Ales, Montpellier, France
| |
Collapse
|
33
|
Berenguer-Rocha M, Baltar A, Rocha S, Shirahige L, Brito R, Monte-Silva K. Interhemispheric asymmetry of the motor cortex excitability in stroke: relationship with sensory-motor impairment and injury chronicity. Neurol Sci 2020; 41:2591-2598. [PMID: 32253636 DOI: 10.1007/s10072-020-04350-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 03/16/2020] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To compare the interhemispheric asymmetry of the motor cortex excitability of chronic stroke patients with healthy and to observe if the magnitude of this asymmetry is associated to sensory-motor impairment and stroke chronicity. METHODS This cross-sectional study was performed with chronic stroke and aged and sex-matched healthy individuals. The interhemispheric asymmetry index was calculated by the difference of rest motor threshold (rMT) of the brain hemispheres. The rMT was assessed by transcranial magnetic stimulation over the cortical representation of the first dorsal interosseous muscle. To investigate the relationship of the asymmetry with sensory-motor impairment and injury chronicity, the stroke patients were grouped according to the level of sensory-motor impairment (mild/moderate, moderate/severe, and severe) and different chronicity stages (> 3-12, 13-24, 25-60, and > 60 months since stroke). RESULTS Fifty-six chronic stroke and twenty-six healthy were included. We found higher interhemispheric asymmetry in stroke patients (mean, 27.1 ± 20.9) compared to healthy (mean, 4.9 ± 4.7). The asymmetry was higher in patients with moderate/severe (mean, 35.4 ± 20.4) and severe (mean, 32.9 ± 22.7) impairment. No difference was found between patients with mild/moderate impairment (mean, 15.5 ± 12.5) and healthy. There were no differences of the interhemispheric asymmetry between patients with different times since stroke (> 3-12, mean, 32 ± 18.1; > 13-24, mean, 20.7 ± 16.2; > 25-60, mean, 29.6 ± 18.1; > 60 months, mean, 25.9 ± 17.5). CONCLUSION Stroke patients showed higher interhemispheric asymmetry of the motor cortex excitability when compared to healthy, and the magnitude of this asymmetry seems to be correlated with the severity of sensory-motor impairment, but not with stroke chronicity. SIGNIFICANCE Higher interhemispheric asymmetry was found in stroke patients with greatest sensory-motor impairment.
Collapse
Affiliation(s)
- Marina Berenguer-Rocha
- Applied Neuroscience Laboratory, Department of Physical Therapy, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Adriana Baltar
- Applied Neuroscience Laboratory, Department of Physical Therapy, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Sérgio Rocha
- Applied Neuroscience Laboratory, Department of Physical Therapy, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Lívia Shirahige
- Applied Neuroscience Laboratory, Department of Physical Therapy, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Rodrigo Brito
- Applied Neuroscience Laboratory, Department of Physical Therapy, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Kátia Monte-Silva
- Applied Neuroscience Laboratory, Department of Physical Therapy, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
| |
Collapse
|
34
|
Yang L, Zhang W, Wang W, Yang Z, Wang H, Deng Z, Li C, Qiu B, Zhang D, Kadosh RC, Li H, Zhang X. Neural and Psychological Predictors of Cognitive Enhancement and Impairment from Neurostimulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902863. [PMID: 32099765 PMCID: PMC7029648 DOI: 10.1002/advs.201902863] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Indexed: 05/05/2023]
Abstract
Modulating the temporoparietal junction (TPJ), especially the right counterpart, shows promises in enhancing social cognitive ability. However, it is ambiguous whether the functional lateralization of TPJ determines people's responsiveness to brain stimulation. Here, this issue is investigated with an individual difference approach. Forty-five participants attended three sessions of transcranial direct current stimulation (tDCS) experiments and one neuroimaging session. The results support the symmetric mechanism of left and right TPJ stimulation. First, the left and right TPJ stimulation effect are comparable in the group-level analysis. Second, the individual-level analysis reveals that a less right-lateralized TPJ is associated with a higher level of responsiveness. Participants could be classified into positive responders showing cognitive enhancement and negative responders showing cognitive impairment due to stimulation. The positive responders show weaker connectivity between bilateral TPJ and the medial prefrontal cortex, which mediates the prediction of offline responsiveness by the lateralization and the social-related trait. These findings call for a better characterization and predictive models for whom tDCS should be used for, and highlight the necessity and feasibility of prestimulation screening.
Collapse
Affiliation(s)
- Li‐Zhuang Yang
- Anhui Province Key Laboratory of Medical Physics and TechnologyCenter of Medical Physics and TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhui230031China
- Cancer HospitalChinese Academy of ScienceHefeiAnhui230031China
- Hefei National Laboratory for Physical Sciences at the Microscale, and School of Life SciencesUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Wei Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, and School of Life SciencesUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Wenjuan Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, and School of Life SciencesUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Zhiyu Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, and School of Life SciencesUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Hongzhi Wang
- Anhui Province Key Laboratory of Medical Physics and TechnologyCenter of Medical Physics and TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhui230031China
- Cancer HospitalChinese Academy of ScienceHefeiAnhui230031China
| | - Zhi‐De Deng
- Noninvasive Neuromodulation UnitExperimental Therapeutics & Pathophysiology BranchIntramural Research ProgramNational Institute of Mental HealthNational Institutes of HealthBethesdaMD20892‐9663USA
| | - Chuanfu Li
- Laboratory of Digital Medical ImagingMedical Imaging CenterFirst Affiliated HospitalAnhui University of Chinese MedicineHefeiAnhui230031China
| | - Bensheng Qiu
- Center for Biomedical EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Da‐Ren Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, and School of Life SciencesUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Roi Cohen Kadosh
- Department of Experimental PsychologyUniversity of OxfordOxfordOX1 3UDUK
| | - Hai Li
- Anhui Province Key Laboratory of Medical Physics and TechnologyCenter of Medical Physics and TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhui230031China
- Cancer HospitalChinese Academy of ScienceHefeiAnhui230031China
| | - Xiaochu Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, and School of Life SciencesUniversity of Science and Technology of ChinaHefeiAnhui230027China
- Center for Biomedical EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230027China
- Academy of Psychology and BehaviorTianjin Normal UniversityTianjin300387China
- Hefei Medical Research Center on Alcohol AddictionAnhui Mental Health CenterHefei230022China
| |
Collapse
|
35
|
Yang YW, Pan WX, Xie Q. Combined effect of repetitive transcranial magnetic stimulation and physical exercise on cortical plasticity. Neural Regen Res 2020; 15:1986-1994. [PMID: 32394946 PMCID: PMC7716032 DOI: 10.4103/1673-5374.282239] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Physical exercise can minimize dysfunction and optimize functional motor recovery after stroke by modulating cortical plasticity. However, the limitation of physical exercise is that large amounts of time and effort are necessary to significantly improve motor function, and even then, substantial exercise may not be sufficient to normalize the observed improvements. Thus, interventions that could be used to strengthen physical exercise-induced neuroplasticity may be valuable in treating hemiplegia after stroke. Repetitive transcranial magnetic stimulation seems to be a viable strategy for enhancing such plasticity. As a non-invasive cortical stimulation technique, repetitive transcranial magnetic stimulation is able to induce long-term plastic changes in the motor system. Recently, repetitive transcranial magnetic stimulation was found to optimize the plastic changes caused by motor training, thereby enhancing the long-term effects of physical exercise in stroke patients. Therefore, it is believed that the combination of repetitive transcranial magnetic stimulation and physical exercise may represent a superior method for restoring motor function after stroke.
Collapse
Affiliation(s)
- Ya-Wen Yang
- Department of Rehabilitation Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wen-Xiu Pan
- Department of Rehabilitation Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Xie
- Department of Rehabilitation Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University; Department of Rehabilitation Medicine, Shanghai Ruijin Rehabilitation Hospital, Shanghai, China
| |
Collapse
|
36
|
Harrington RM, Chan E, Rounds AK, Wutzke CJ, Dromerick AW, Turkeltaub PE, Harris-Love ML. Roles of Lesioned and Nonlesioned Hemispheres in Reaching Performance Poststroke. Neurorehabil Neural Repair 2020; 34:61-71. [PMID: 31858870 PMCID: PMC6954952 DOI: 10.1177/1545968319876253] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background. Severe poststroke arm impairment is associated with greater activation of the nonlesioned hemisphere during movement of the affected arm. The circumstances under which this activation may be adaptive or maladaptive remain unclear. Objective. To identify the functional relevance of key lesioned and nonlesioned hemisphere motor areas to reaching performance in patients with mild versus severe arm impairment. Methods. A total of 20 participants with chronic stroke performed a reaching response time task with their affected arm. During the reaction time period, a transient magnetic stimulus was applied over the primary (M1) or dorsal premotor cortex (PMd) of either hemisphere, and the effect of the perturbation on movement time (MT) was calculated. Results. For perturbation of the nonlesioned hemisphere, there was a significant interaction effect of Site of perturbation (PMd vs M1) by Group (mild vs severe; P < .001). Perturbation of PMd had a greater effect on MT in the severe versus the mild group. This effect was not observed with perturbation of M1. For perturbation of the lesioned hemisphere, there was a main effect of site of perturbation (P < .05), with perturbation of M1 having a greater effect on MT than PMd. Conclusions. These results demonstrate that, in the context of reaching movements, the role of the nonlesioned hemisphere depends on both impairment severity and the specific site that is targeted. A deeper understanding of these individual-, task-, and site-specific factors is essential for advancing the potential usefulness of neuromodulation to enhance poststroke motor recovery.
Collapse
Affiliation(s)
- Rachael M. Harrington
- Georgetown University, Interdisciplinary Program in Neuroscience
- MedStar National Rehabilitation Hospital, Center for Brain Plasticity and Recovery
- George Mason University, Department of Bioengineering
- Georgia State University, Center for Research on the Acquisition of Language and Literacy
| | - Evan Chan
- MedStar National Rehabilitation Hospital, Center for Brain Plasticity and Recovery
- MedStar Health Research Institute
| | - Amanda K. Rounds
- MedStar National Rehabilitation Hospital, Center for Brain Plasticity and Recovery
- MedStar Health Research Institute
- George Mason University, Department of Rehabilitation Science
| | | | - Alexander W. Dromerick
- MedStar National Rehabilitation Hospital, Center for Brain Plasticity and Recovery
- Georgetown University Medical Center, Department of Neurology
- Georgetown University Medical Center, Department of Rehabilitation Medicine
| | - Peter E. Turkeltaub
- MedStar National Rehabilitation Hospital, Center for Brain Plasticity and Recovery
- Georgetown University Medical Center, Department of Neurology
| | - Michelle L. Harris-Love
- MedStar National Rehabilitation Hospital, Center for Brain Plasticity and Recovery
- George Mason University, Department of Bioengineering
| |
Collapse
|
37
|
Li X, Morton SM. Effects of chronic antidepressant use on neurophysiological responses to tDCS post-stroke. Neurosci Lett 2019; 717:134723. [PMID: 31881255 DOI: 10.1016/j.neulet.2019.134723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/17/2019] [Accepted: 12/21/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) induces neuroplastic changes in the motor cortex of healthy individuals and has become a candidate intervention to promote recovery post-stroke. However, neurophysiological effects of tDCS in stroke are poorly understood. Antidepressant medications, which are commonly prescribed post-stroke, have the potential to significantly affect cortical excitability and alter responsiveness to tDCS interventions, yet these effects have not previously been examined. OBJECTIVE/HYPOTHESIS To examine the effects of chronic antidepressant use, tDCS, and the interaction of the two on motor cortical excitability in people with chronic stroke. Based on previous literature in nondisabled adults, we hypothesized that post-stroke, antidepressant-takers would show decreased baseline motor cortical excitability but enhanced responsiveness to anodal tDCS. METHODS Twenty-six participants with chronic stroke (17 control, 9 antidepressant) received real and sham anodal tDCS during separate sessions at least a week apart. Motor cortical excitability was measured before and after tDCS was applied to the lesioned hemisphere primary motor cortex. We compared baseline cortical excitability and neurophysiological responses to tDCS between groups and sessions. RESULTS Baseline motor cortical excitability was not different between control and antidepressant groups. Following anodal tDCS over the ipsilesional primary motor cortex, cortical excitability in the non-lesioned hemisphere decreased in controls, but, surprisingly, increased in antidepressant-takers. CONCLUSIONS Chronic antidepressant use may not affect motor cortical excitability post-stroke, however it appears to reverse some of the expected effects of tDCS. Therefore future utilization of tDCS in post-stroke neurorehabilitation research should take antidepressant medication status into account.
Collapse
Affiliation(s)
- Xin Li
- Department of Physical Therapy, University of Delaware, Newark, DE, USA; Graduate Program in Biomechanics and Movement Science, University of Delaware, Newark, DE, USA
| | - Susanne M Morton
- Department of Physical Therapy, University of Delaware, Newark, DE, USA; Graduate Program in Biomechanics and Movement Science, University of Delaware, Newark, DE, USA.
| |
Collapse
|
38
|
Zhang K, Guo L, Zhang J, An G, Zhou Y, Lin J, Xing J, Lu M, Ding G. A safety study of 500 μA cathodal transcranial direct current stimulation in rat. BMC Neurosci 2019; 20:40. [PMID: 31387538 PMCID: PMC6683582 DOI: 10.1186/s12868-019-0523-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/29/2019] [Indexed: 12/21/2022] Open
Abstract
Background Transcranial direct current stimulation (tDCS) is a noninvasive neural control technology that has become a research hotspot. To facilitate further research of tDCS, the biosafety of 500 μA cathodal tDCS, a controversial parameter in rats was evaluated. Results 24 animals were randomly divided into two groups: a cathodal tDCS group (tDCS, n = 12) and control group (control, n = 12). Animals in the tDCS group received 5 consecutive days of cathodal tDCS (500 μA, 15 min, once per day) followed by a tDCS-free interval of 2 days and 5 additional days of stimulation, totally two treatments of tDCS for a total of 10 days. Computational 3D rat model was adopted to calculate the current density distributions in brain during tDCS treatment. Essential brain functions including motor function and learning and memory ability were evaluated. Additionally, to estimate the neurotoxicity of tDCS, the brain morphology, neurotransmitter levels and cerebral temperature were investigated. Our results showed that the current density inside the brain was less than 20 A/m2 during tDCS treatment in computational model. tDCS did not affect motor functions and learning and memory ability after tDCS treatment. In addition, no significant differences were found for the tDCS group in hematology, serum biochemical markers or the morphology of major organs. Moreover, tDCS treatment had no effect on the brain morphology, neural structures, neurotransmitter levels or cerebral temperature. Conclusion 500 μA cathodal tDCS as performed in the present study was safe for rodents. Electronic supplementary material The online version of this article (10.1186/s12868-019-0523-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Keying Zhang
- Department of Radiation Protection Biology, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Ling Guo
- Department of Radiation Protection Biology, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Junping Zhang
- Department of Radiation Protection Biology, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, 710032, People's Republic of China.,Military Health Team of 61255 Troops of the Chinese People's Liberation Army, Houma, 043000, People's Republic of China
| | - Guangzhou An
- Department of Radiation Protection Biology, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Yan Zhou
- Department of Radiation Protection Biology, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Jiajin Lin
- Department of Radiation Protection Biology, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Junling Xing
- Department of Radiation Protection Biology, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Mai Lu
- Key Lab. of Opt-Electronic Technology and Intelligent Control of Ministry of Education, Lanzhou Jiaotong University, Lanzhou, 730000, People's Republic of China
| | - Guirong Ding
- Department of Radiation Protection Biology, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, 710032, People's Republic of China.
| |
Collapse
|
39
|
Beaulieu LD, Blanchette AK, Mercier C, Bernard-Larocque V, Milot MH. Efficacy, safety, and tolerability of bilateral transcranial direct current stimulation combined to a resistance training program in chronic stroke survivors: A double-blind, randomized, placebo-controlled pilot study. Restor Neurol Neurosci 2019; 37:333-346. [DOI: 10.3233/rnn-190908] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Louis-David Beaulieu
- Laboratoire de recherche BioNR, Unité d’enseignement en physiothérapie, Département des sciences de la santé, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| | - Andréanne K. Blanchette
- Centre interdisciplinaire de recherche en réadaptation et intégration sociale, Département de Réadaptation, Faculté de médecine, Université Laval, Quebec city, QC, Canada
| | - Catherine Mercier
- Centre interdisciplinaire de recherche en réadaptation et intégration sociale, Département de Réadaptation, Faculté de médecine, Université Laval, Quebec city, QC, Canada
| | - Vincent Bernard-Larocque
- Centre de recherche sur le vieillissement, École de réadaptation, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marie-Hélène Milot
- Centre de recherche sur le vieillissement, École de réadaptation, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
40
|
Palmer JA, Wheaton LA, Gray WA, Saltão da Silva MA, Wolf SL, Borich MR. Role of Interhemispheric Cortical Interactions in Poststroke Motor Function. Neurorehabil Neural Repair 2019; 33:762-774. [PMID: 31328638 DOI: 10.1177/1545968319862552] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background/Objective. We investigated interhemispheric interactions in stroke survivors by measuring transcranial magnetic stimulation (TMS)-evoked cortical coherence. We tested the effect of TMS on interhemispheric coherence during rest and active muscle contraction and compared coherence in stroke and older adults. We evaluated the relationships between interhemispheric coherence, paretic motor function, and the ipsilateral cortical silent period (iSP). Methods. Participants with (n = 19) and without (n = 14) chronic stroke either rested or maintained a contraction of the ipsilateral hand muscle during simultaneous recordings of evoked responses to TMS of the ipsilesional/nondominant (i/ndM1) and contralesional/dominant (c/dM1) primary motor cortex with EEG and in the hand muscle with EMG. We calculated pre- and post-TMS interhemispheric beta coherence (15-30 Hz) between motor areas in both conditions and the iSP duration during the active condition. Results. During active i/ndM1 TMS, interhemispheric coherence increased immediately following TMS in controls but not in stroke. Coherence during active cM1 TMS was greater than iM1 TMS in the stroke group. Coherence during active iM1 TMS was less in stroke participants and was negatively associated with measures of paretic arm motor function. Paretic iSP was longer compared with controls and negatively associated with clinical measures of manual dexterity. There was no relationship between coherence and. iSP for either group. No within- or between-group differences in coherence were observed at rest. Conclusions. TMS-evoked cortical coherence during hand muscle activation can index interhemispheric interactions associated with poststroke motor function and potentially offer new insights into neural mechanisms influencing functional recovery.
Collapse
Affiliation(s)
| | | | | | | | - Steven L Wolf
- 1 Emory University, Atlanta, GA, USA
- 2 Atlanta VA Visual and Neurocognitive Center of Excellence, Decatur, GA, USA
| | | |
Collapse
|
41
|
Doost MY, Orban de Xivry JJ, Herman B, Vanthournhout L, Riga A, Bihin B, Jamart J, Laloux P, Raymackers JM, Vandermeeren Y. Learning a Bimanual Cooperative Skill in Chronic Stroke Under Noninvasive Brain Stimulation: A Randomized Controlled Trial. Neurorehabil Neural Repair 2019; 33:486-498. [PMID: 31088342 DOI: 10.1177/1545968319847963] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background. Transcranial direct current stimulation (tDCS) has been suggested to improve poststroke recovery. However, its effects on bimanual motor learning after stroke have not previously been explored. Objective. We investigated whether dual-tDCS of the primary motor cortex (M1), with cathodal and anodal tDCS applied over undamaged and damaged hemispheres, respectively, improves learning and retention of a new bimanual cooperative motor skill in stroke patients. Method. Twenty-one chronic hemiparetic patients were recruited for a randomized, double-blinded, cross-over, sham-controlled trial. While receiving real or sham dual-tDCS, they trained on a bimanual cooperative task called CIRCUIT. Changes in performance were quantified via bimanual speed/accuracy trade-off (Bi-SAT) and bimanual coordination factor (Bi-Co) before, during, and 0, 30, and 60 minutes after dual-tDCS, as well as one week later to measure retention. A generalization test then followed, where patients were asked to complete a new CIRCUIT layout. Results. The patients were able to learn and retain the bimanual cooperative skill. However, a general linear mixed model did not detect a significant difference in retention between the real and sham dual-tDCS conditions for either Bi-SAT or Bi-Co. Similarly, no difference in generalization was detected for Bi-SAT or Bi-Co. Conclusion. The chronic hemiparetic stroke patients learned and retained the complex bimanual cooperative task and generalized the newly acquired skills to other tasks, indicating that bimanual CIRCUIT training is promising as a neurorehabilitation approach. However, bimanual motor skill learning was not enhanced by dual-tDCS in these patients.
Collapse
Affiliation(s)
- Maral Yeganeh Doost
- 1 Université catholique de Louvain (UCLouvain), CHU UCL Namur (Mont-Godinne), Yvoir, Belgium.,2 Université catholique de Louvain (UCLouvain), Institute of NeuroScience (IoNS), NEUR division, Brussels, Belgium.,3 Université catholique de Louvain (UCLouvain), Louvain Bionics, Louvain-la-Neuve, Belgium
| | - Jean-Jacques Orban de Xivry
- 4 Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Belgium.,5 Leuven Brain Institute, KU Leuven, Belgium
| | - Benoît Herman
- 3 Université catholique de Louvain (UCLouvain), Louvain Bionics, Louvain-la-Neuve, Belgium.,6 Université catholique de Louvain (UCLouvain), Institute of Mechanics, Materials and Civil Engineering (iMMC), Louvain-la-Neuve, Belgium
| | - Léna Vanthournhout
- 3 Université catholique de Louvain (UCLouvain), Louvain Bionics, Louvain-la-Neuve, Belgium.,6 Université catholique de Louvain (UCLouvain), Institute of Mechanics, Materials and Civil Engineering (iMMC), Louvain-la-Neuve, Belgium
| | - Audrey Riga
- 1 Université catholique de Louvain (UCLouvain), CHU UCL Namur (Mont-Godinne), Yvoir, Belgium.,2 Université catholique de Louvain (UCLouvain), Institute of NeuroScience (IoNS), NEUR division, Brussels, Belgium.,3 Université catholique de Louvain (UCLouvain), Louvain Bionics, Louvain-la-Neuve, Belgium
| | - Benoît Bihin
- 1 Université catholique de Louvain (UCLouvain), CHU UCL Namur (Mont-Godinne), Yvoir, Belgium
| | - Jacques Jamart
- 1 Université catholique de Louvain (UCLouvain), CHU UCL Namur (Mont-Godinne), Yvoir, Belgium
| | - Patrice Laloux
- 1 Université catholique de Louvain (UCLouvain), CHU UCL Namur (Mont-Godinne), Yvoir, Belgium.,2 Université catholique de Louvain (UCLouvain), Institute of NeuroScience (IoNS), NEUR division, Brussels, Belgium
| | | | - Yves Vandermeeren
- 1 Université catholique de Louvain (UCLouvain), CHU UCL Namur (Mont-Godinne), Yvoir, Belgium.,2 Université catholique de Louvain (UCLouvain), Institute of NeuroScience (IoNS), NEUR division, Brussels, Belgium.,3 Université catholique de Louvain (UCLouvain), Louvain Bionics, Louvain-la-Neuve, Belgium
| |
Collapse
|
42
|
Nemanich ST, Rich TL, Chen CY, Menk J, Rudser K, Chen M, Meekins G, Gillick BT. Influence of Combined Transcranial Direct Current Stimulation and Motor Training on Corticospinal Excitability in Children With Unilateral Cerebral Palsy. Front Hum Neurosci 2019; 13:137. [PMID: 31105541 PMCID: PMC6492624 DOI: 10.3389/fnhum.2019.00137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/08/2019] [Indexed: 11/13/2022] Open
Abstract
Combined non-invasive brain stimulation (NIBS) and rehabilitation interventions have the potential to improve function in children with unilateral cerebral palsy (UCP), however their effects on developing brain function are not well understood. In a proof-of-principle study, we used single-pulse transcranial magnetic stimulation (TMS) to measure changes in corticospinal excitability and relationships to motor performance following a randomized controlled trial consisting of 10 days of combined constraint-induced movement therapy (CIMT) and cathodal transcranial direct current stimulation (tDCS) applied to the contralesional motor cortex. Twenty children and young adults (mean age = 12 years, 9 months, range = 7 years, 7 months, 21 years, 7 months) with UCP participated. TMS testing was performed before, after, and 6 months after the intervention to measure motor evoked potential (MEP) amplitude and cortical silent period (CSP) duration. The association between neurophysiologic and motor outcomes and differences in excitability between hemispheres were examined. Contralesional MEP amplitude decreased as hypothesized in five of five participants receiving active tDCS immediately after and 6 months after the intervention, however no statistically significant differences between intervention groups were noted for MEP amplitude [mean difference = −323.9 μV, 95% CI = (−989, 341), p = 0.34] or CSP duration [mean difference = 3.9 ms, 95% CI = (−7.7, 15.5), p = 0.51]. Changes in corticospinal excitability were not statistically associated with improvements in hand function after the intervention. Across all participants, MEP amplitudes measured in the more-affected hand from both contralesional (mean difference = −474.5 μV) and ipsilesional hemispheres (−624.5 μV) were smaller compared to the less-affected hand. Assessing neurophysiologic changes after tDCS in children with UCP provides an understanding of long-term effects on brain excitability to help determine its potential as a therapeutic intervention. Additional investigation into the neurophysiologic effects of tDCS in larger samples of children with UCP are needed to confirm these findings.
Collapse
Affiliation(s)
- Samuel T Nemanich
- Divisions of Physical Therapy and Rehabilitation Science, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Tonya L Rich
- Divisions of Physical Therapy and Rehabilitation Science, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Chao-Ying Chen
- Divisions of Physical Therapy and Rehabilitation Science, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, United States.,Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Jeremiah Menk
- Clinical and Translational Science Institute, Biostatistics, Design, and Analysis Center, University of Minnesota, Minneapolis, MN, United States
| | - Kyle Rudser
- School of Public Health, Division of Biostatistics, University of Minnesota, Minneapolis, MN, United States
| | - Mo Chen
- Non-invasive Neuromodulation Laboratory, University of Minnesota, Minneapolis, MN, United States
| | - Gregg Meekins
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Bernadette T Gillick
- Divisions of Physical Therapy and Rehabilitation Science, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
43
|
Ovadia-Caro S, Khalil AA, Sehm B, Villringer A, Nikulin VV, Nazarova M. Predicting the Response to Non-invasive Brain Stimulation in Stroke. Front Neurol 2019; 10:302. [PMID: 31001190 PMCID: PMC6454031 DOI: 10.3389/fneur.2019.00302] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 03/11/2019] [Indexed: 01/10/2023] Open
Affiliation(s)
- Smadar Ovadia-Caro
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Neurophysics Group, Department of Neurology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ahmed A. Khalil
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Bernhard Sehm
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Cognitive Neurology, University Hospital Leipzig and Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Vadim V. Nikulin
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Neurophysics Group, Department of Neurology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia
| | - Maria Nazarova
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia
- Federal Center for Cerebrovascular Pathology and Stroke, The Ministry of Healthcare of the Russian Federation, Federal State Budget Institution, Moscow, Russia
| |
Collapse
|
44
|
Hordacre B, Moezzi B, Ridding MC. Towards Targeted Brain Stimulation in Stroke: Connectivity as a Biomarker of Response. J Exp Neurosci 2018; 12:1179069518809060. [PMID: 30450005 PMCID: PMC6236477 DOI: 10.1177/1179069518809060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 10/02/2018] [Indexed: 01/24/2023] Open
Abstract
Stroke is a leading cause of adult disability. New treatments capable of
assisting recovery hold significant potential to improve quality of
life for many stroke survivors. Transcranial direct current
stimulation is one technique that has received much attention due to
its potential to promote neuroplasticity and enhance recovery.
However, current evidence suggests this is not a one-size-fits-all
treatment with indication that responses are highly variable. Using
electroencephalography, Hordacre et al recently demonstrated that
connectivity between the ipsilesional motor cortex, ipsilesional
parietal cortex, and contralesional frontotemporal cortex was a strong
predictor of the neurophysiological response to anodal transcranial
direct current stimulation applied to the ipsilesional motor cortex in
people with chronic ischemic stroke. Based on this outcome, we discuss
the potential for connectivity to be used as a biomarker to target
transcranial direct current stimulation. This includes identification
of a connectivity threshold which could be used to select stroke
survivors who are likely to respond to this potentially beneficial
neuromodulatory treatment. Furthermore, we discuss treatment
approaches for those identified as unlikely to benefit from
ipsilesional anodal transcranial direct current stimulation based on
connectivity profile. This represents an important progression towards
targeting transcranial direct current stimulation for best treatment
outcome based on individual connectivity characteristics.
Collapse
Affiliation(s)
- Brenton Hordacre
- Body in Mind, Division of Health
Sciences, University of South Australia, Adelaide, SA, Australia
- Brenton Hordacre, Body in Mind,
Division of Health Sciences, University of South Australia, City East
Campus, GPO Box 2471, Adelaide, SA 5001, Australia.
| | - Bahar Moezzi
- Cognitive Ageing and Impairment
Neurosciences Laboratory, School of Psychology, Social Work and Social
Policy, University of South Australia, Magill, SA, Australia
| | - Michael C Ridding
- Robinson Research Institute,
Adelaide Medical School, The University of Adelaide, Adelaide, SA,
Australia
| |
Collapse
|
45
|
Palmer JA, Wolf SL, Borich MR. Paired associative stimulation modulates corticomotor excitability in chronic stroke: A preliminary investigation. Restor Neurol Neurosci 2018. [PMID: 29526858 PMCID: PMC5870032 DOI: 10.3233/rnn-170785] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Paired associative stimulation (PAS) combining repeated pairing of electrical stimulation of a peripheral nerve with transcranial magnetic stimulation (TMS) over the primary motor cortex (M1) can induce neuroplastic adaptations in the human brain and enhance motor learning in neurologically-intact individuals. However, the extent to which PAS is an effective technique for inducing associative plasticity and improving motor function in individuals post-stroke is unclear. OBJECTIVE The objective of this pilot study was to investigate the effects of a single session of PAS to modulate corticomotor excitability and motor skill performance in individuals post-stroke. METHODS Seven individuals with chronic stroke completed two separate visits separated by at least one week. We assessed general corticomotor excitability, intracortical network activity and behavioral outcomes prior to and at three time points following PAS and compared these outcomes to those following a sham PAS condition (PASSHAM). RESULTS Following PAS, we found increased general corticomotor excitability but no significant difference in behavioral measures between PAS conditions. There was a relationship between PAS-induced corticomotor excitability increase and enhanced motor skill performance across post-PAS testing time points. CONCLUSION These results provide preliminary evidence for the potential of PAS to increase corticomotor excitability that could favorably impact motor skill performance in chronic individuals post-stroke and are an important first step for future studies investigating the clinical application and behavioral relevance of PAS interventions in post stroke patient populations.
Collapse
Affiliation(s)
- Jacqueline A Palmer
- Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University, Atlanta, GA, USA
| | - Steven L Wolf
- Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University, Atlanta, GA, USA.,Atlanta VA Visual and Neurocognitive Center of Excellence, Decatur, GA, USA
| | - Michael R Borich
- Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University, Atlanta, GA, USA
| |
Collapse
|
46
|
Effects of Excitatory Repetitive Transcranial Magnetic Stimulation of the P3 Point in Chronic Stroke Patients—Case Reports. Brain Sci 2018; 8:brainsci8050078. [PMID: 29710767 PMCID: PMC5977069 DOI: 10.3390/brainsci8050078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/15/2018] [Accepted: 04/24/2018] [Indexed: 11/17/2022] Open
Abstract
Objective: To evaluate the effects of excitatory repetitive transcranial magnetic stimulation (rTMS) of the international 10–20 system P3 point (intraparietal sulcus region) in chronic patients with a frontal lesion and parietal sparing due to stroke on the impaired upper (UL) and lower limb (LL) as measured by the Fugl-Meyer Assessment (FMA). Methods: Three patients (C1: 49.83/2.75, C2: 53.17/3.83, C3: 63.33/3.08-years-old at stroke/years post-stroke, respectively) received two weeks (five days/week) of rTMS at 10 Hz of P3. A patient was treated in similar conditions with a sham coil (S1: 56.58/4.33). Patients were evaluated before, after, and two months post-treatment (A1, A2, and A3, respectively). Results: For LL, the scores of the motor function subsection of C1 and C3 as well as the sensory function of C2 increased by A2 and remained by A3. For UL, the score of the motor function of C2 and C3 also increased, but the score of C3 decreased by A3. The score of the range of motion subsection of C3 increased by the two follow-up evaluations. Conclusion: This study suggests excitatory rTMS over P3 may be of use for some chronic stroke patients, but these findings need to be verified in a future clinical trial.
Collapse
|
47
|
Hordacre B, Goldsworthy MR. Commentary: Cooperation Not Competition: Bihemispheric tDCS and fMRI Show Role for Ipsilateral Hemisphere in Motor Learning. Front Hum Neurosci 2018; 12:97. [PMID: 29599713 PMCID: PMC5862803 DOI: 10.3389/fnhum.2018.00097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/28/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Brenton Hordacre
- Sansom Institute for Health Research, School of Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Mitchell R Goldsworthy
- Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, SA, Australia.,Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|