1
|
Wang Y, Yang J, Wang W, Zhou X, Wang X, Luo J, Li F. A novel nomogram for predicting the prognosis of critically ill patients with EEG patterns exhibiting stimulus-induced rhythmic, periodic, or ictal discharges. Neurophysiol Clin 2024; 54:103010. [PMID: 39244827 DOI: 10.1016/j.neucli.2024.103010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024] Open
Abstract
OBJECTIVES To explore the factors associated with poor prognosis in critically ill patients with Electroencephalogram (EEG) patterns exhibiting stimulus-induced rhythmic, periodic, or ictal discharges (SIRPIDs), and to construct a prognostic prediction model. METHODS This study included a total of 53 critically ill patients with EEG patterns exhibiting SIRPIDs who were admitted to the First Affiliated Hospital of Chongqing Medical University from May 2023 to March 2024. Patients were divided into two groups based on their Modified Rankin Scale (mRS) scores at discharge: good prognosis group (0-3 points) and poor prognosis group (4-6 points). Retrospective analyses were performed on the clinical and EEG parameters of patients in both groups. Logistic regression analysis was applied to identify the risk factors related to poor prognosis in critically ill patients with EEG patterns exhibiting SIRPIDs; a risk prediction model for poor prognosis was constructed, along with an individualized predictive nomogram model, and the predictive performance and consistency of the model were evaluated. RESULTS Multivariate logistic regression analysis revealed that APACHE II score (OR=1.217, 95 %CI=1.030∼1.438), slow frequency bands or no obvious brain electrical activity (OR=8.720, 95 %CI=1.220∼62.313), and no sleep waveforms (OR=9.813, 95 %CI=1.371∼70.223) were independent risk factors for poor prognosis in patients. A regression model established based on multivariate logistic regression analysis had an area under the curve of 0.902. The model's accuracy was 90.60 %, with a sensitivity of 92.86 % and a specificity of 89.70 %. The nomogram model, after internal validation, showed a concordance index of 0.904. CONCLUSIONS A high APACHE II score, EEG patterns with slow frequency bands or no obvious brain electrical activity, and no sleep waveforms were independent risk factors for poor prognosis in patients with SIRPIDs. The nomogram model constructed based on these factors had a favorably high level of accuracy in predicting the risk of poor prognosis and held certain reference and application value for clinical neurofunctional assessment and prognostic determination.
Collapse
Affiliation(s)
- Yan Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Jiajia Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Wei Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Xin Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Xuefeng Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Jing Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| | - Feng Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
2
|
Turella S, Dankiewicz J, Ben-Hamouda N, Nilsen KB, Düring J, Endisch C, Engstrøm M, Flügel D, Gaspard N, Grejs AM, Haenggi M, Haffey S, Imbach L, Johnsen B, Kemlink D, Leithner C, Legriel S, Lindehammar H, Mazzon G, Nielsen N, Peyre A, Ribalta Stanford B, Roman-Pognuz E, Rossetti AO, Schrag C, Valeriánová A, Wendel-Garcia P, Zubler F, Cronberg T, Westhall E. EEG for good outcome prediction after cardiac arrest: A multicentre cohort study. Resuscitation 2024; 202:110319. [PMID: 39029579 DOI: 10.1016/j.resuscitation.2024.110319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/21/2024]
Abstract
AIM Assess the prognostic ability of a non-highly malignant and reactive EEG to predict good outcome after cardiac arrest (CA). METHODS Prospective observational multicentre substudy of the "Targeted Hypothermia versus Targeted Normothermia after Out-of-hospital Cardiac Arrest Trial", also known as the TTM2-trial. Presence or absence of highly malignant EEG patterns and EEG reactivity to external stimuli were prospectively assessed and reported by the trial sites. Highly malignant patterns were defined as burst-suppression or suppression with or without superimposed periodic discharges. Multimodal prognostication was performed 96 h after CA. Good outcome at 6 months was defined as a modified Rankin Scale score of 0-3. RESULTS 873 comatose patients at 59 sites had an EEG assessment during the hospital stay. Of these, 283 (32%) had good outcome. EEG was recorded at a median of 69 h (IQR 47-91) after CA. Absence of highly malignant EEG patterns was seen in 543 patients of whom 255 (29% of the cohort) had preserved EEG reactivity. A non-highly malignant and reactive EEG had 56% (CI 50-61) sensitivity and 83% (CI 80-86) specificity to predict good outcome. Presence of EEG reactivity contributed (p < 0.001) to the specificity of EEG to predict good outcome compared to only assessing background pattern without taking reactivity into account. CONCLUSION Nearly one-third of comatose patients resuscitated after CA had a non-highly malignant and reactive EEG that was associated with a good long-term outcome. Reactivity testing should be routinely performed since preserved EEG reactivity contributed to prognostic performance.
Collapse
Affiliation(s)
- S Turella
- Department of Clinical Sciences Lund, Clinical Neurophysiology, Lund University, Lund, Sweden
| | - J Dankiewicz
- Department of Clinical Sciences Lund, Cardiology, Lund University, Lund, Sweden
| | - N Ben-Hamouda
- Department of Adult Intensive Care Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - K B Nilsen
- Section for Clinical Neurophysiology, Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - J Düring
- Department of Clinical Sciences, Anaesthesia and Intensive Care, Lund University, Malmö, Sweden
| | - C Endisch
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt - Universität zu Berlin, Department of Neurology and Experimental Neurology, Augustenburger Platz 1, 13353 Berlin, Germany
| | - M Engstrøm
- Department of Clinical Neurophysiology, St. Olavs University Hospital and Department of Neuromedicine and Movement Science (INB) NTNU, Trondheim, Norway
| | - D Flügel
- Department of Neurology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - N Gaspard
- Department of Neurology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium; Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - A M Grejs
- Department of Intensive Care Medicine, Aarhus University Hospital and Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - M Haenggi
- Department of Intensive Care Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - S Haffey
- Department of Clinical Neurophysiology, Royal Victoria Hospital, Belfast, Ireland
| | - L Imbach
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - B Johnsen
- Department of Clinical Medicine, Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
| | - D Kemlink
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - C Leithner
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt - Universität zu Berlin, Department of Neurology and Experimental Neurology, Augustenburger Platz 1, 13353 Berlin, Germany
| | - S Legriel
- Intensive Care Unit, Versailles Hospital, France
| | - H Lindehammar
- Clinical Neurophysiology, Department of Clinical and Experimental Medicine, Linköping University, Sweden
| | - G Mazzon
- Department of Neurology, University Hospital of Trieste, Trieste, Italy
| | - N Nielsen
- Department of Clinical Sciences Lund, Anesthesiology and Intensive Care Medicine, Helsingborg Hospital, Helsingborg, Sweden
| | - A Peyre
- Department of Neurology, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - B Ribalta Stanford
- Department of Clinical Neurophysiology, Karolinska University Hospital, Stockholm, Sweden
| | - E Roman-Pognuz
- Intensive Care Unit, University Hospital of Trieste, Trieste, Italy
| | - A O Rossetti
- Department of Neurology, University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - C Schrag
- Intensive Care Department, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - A Valeriánová
- General University Hospital in Prague, Prague, Czech Republic
| | - P Wendel-Garcia
- Institute of Intensive Care Medicine, University Hospital Zürich, Zürich, Switzerland
| | - F Zubler
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - T Cronberg
- Department of Clinical Sciences Lund, Neurology, Lund University, Lund, Sweden
| | - E Westhall
- Department of Clinical Sciences Lund, Clinical Neurophysiology, Lund University, Lund, Sweden.
| |
Collapse
|
3
|
Stammet P. Neuroprognostication after cardiac arrest: Don't forget the good! Resuscitation 2024; 202:110350. [PMID: 39103032 DOI: 10.1016/j.resuscitation.2024.110350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Affiliation(s)
- Pascal Stammet
- Department of Anaesthesia and Intensive Care Medicine, Centre Hospitalier de Luxembourg, 4, rue Barblé, L-1210 Luxembourg, Luxembourg; Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, 2, place de l'Université, L-4365 Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
4
|
Bitar R, Khan UM, Rosenthal ES. Utility and rationale for continuous EEG monitoring: a primer for the general intensivist. Crit Care 2024; 28:244. [PMID: 39014421 PMCID: PMC11251356 DOI: 10.1186/s13054-024-04986-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/09/2024] [Indexed: 07/18/2024] Open
Abstract
This review offers a comprehensive guide for general intensivists on the utility of continuous EEG (cEEG) monitoring for critically ill patients. Beyond the primary role of EEG in detecting seizures, this review explores its utility in neuroprognostication, monitoring neurological deterioration, assessing treatment responses, and aiding rehabilitation in patients with encephalopathy, coma, or other consciousness disorders. Most seizures and status epilepticus (SE) events in the intensive care unit (ICU) setting are nonconvulsive or subtle, making cEEG essential for identifying these otherwise silent events. Imaging and invasive approaches can add to the diagnosis of seizures for specific populations, given that scalp electrodes may fail to identify seizures that may be detected by depth electrodes or electroradiologic findings. When cEEG identifies SE, the risk of secondary neuronal injury related to the time-intensity "burden" often prompts treatment with anti-seizure medications. Similarly, treatment may be administered for seizure-spectrum activity, such as periodic discharges or lateralized rhythmic delta slowing on the ictal-interictal continuum (IIC), even when frank seizures are not evident on the scalp. In this setting, cEEG is utilized empirically to monitor treatment response. Separately, cEEG has other versatile uses for neurotelemetry, including identifying the level of sedation or consciousness. Specific conditions such as sepsis, traumatic brain injury, subarachnoid hemorrhage, and cardiac arrest may each be associated with a unique application of cEEG; for example, predicting impending events of delayed cerebral ischemia, a feared complication in the first two weeks after subarachnoid hemorrhage. After brief training, non-neurophysiologists can learn to interpret quantitative EEG trends that summarize elements of EEG activity, enhancing clinical responsiveness in collaboration with clinical neurophysiologists. Intensivists and other healthcare professionals also play crucial roles in facilitating timely cEEG setup, preventing electrode-related skin injuries, and maintaining patient mobility during monitoring.
Collapse
Affiliation(s)
- Ribal Bitar
- Department of Neurology, Massachusetts General Hospital, 55 Fruit St., Lunder 644, Boston, MA, 02114, USA
| | - Usaamah M Khan
- Department of Neurology, Massachusetts General Hospital, 55 Fruit St., Lunder 644, Boston, MA, 02114, USA
| | - Eric S Rosenthal
- Department of Neurology, Massachusetts General Hospital, 55 Fruit St., Lunder 644, Boston, MA, 02114, USA.
| |
Collapse
|
5
|
Annoni F, Gouvea Bogossian E, Peluso L, Su F, Moreau A, Nobile L, Casu SG, Sterchele ED, Calabro L, Salvagno M, Oddo M, Taccone FS. Ketone Bodies after Cardiac Arrest: A Narrative Review and the Rationale for Use. Cells 2024; 13:784. [PMID: 38727320 PMCID: PMC11083685 DOI: 10.3390/cells13090784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
Cardiac arrest survivors suffer the repercussions of anoxic brain injury, a critical factor influencing long-term prognosis. This injury is characterised by profound and enduring metabolic impairment. Ketone bodies, an alternative energetic resource in physiological states such as exercise, fasting, and extended starvation, are avidly taken up and used by the brain. Both the ketogenic diet and exogenous ketone supplementation have been associated with neuroprotective effects across a spectrum of conditions. These include refractory epilepsy, neurodegenerative disorders, cognitive impairment, focal cerebral ischemia, and traumatic brain injuries. Beyond this, ketone bodies possess a plethora of attributes that appear to be particularly favourable after cardiac arrest. These encompass anti-inflammatory effects, the attenuation of oxidative stress, the improvement of mitochondrial function, a glucose-sparing effect, and the enhancement of cardiac function. The aim of this manuscript is to appraise pertinent scientific literature on the topic through a narrative review. We aim to encapsulate the existing evidence and underscore the potential therapeutic value of ketone bodies in the context of cardiac arrest to provide a rationale for their use in forthcoming translational research efforts.
Collapse
Affiliation(s)
- Filippo Annoni
- Department of Intensive Care, University Hospital of Brussels (HUB), 1070 Brussels, Belgium
- Experimental Laboratory of Intensive Care, Department of Intensive Care, Free University of Brussels (ULB), 1070 Brussels, Belgium
| | - Elisa Gouvea Bogossian
- Department of Intensive Care, University Hospital of Brussels (HUB), 1070 Brussels, Belgium
- Experimental Laboratory of Intensive Care, Department of Intensive Care, Free University of Brussels (ULB), 1070 Brussels, Belgium
| | - Lorenzo Peluso
- Department of Intensive Care, University Hospital of Brussels (HUB), 1070 Brussels, Belgium
- Department of Anesthesiology and Intensive Care, Humanitas Gavazzeni Hospital, 24125 Bergamo, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy
| | - Fuhong Su
- Department of Intensive Care, University Hospital of Brussels (HUB), 1070 Brussels, Belgium
- Experimental Laboratory of Intensive Care, Department of Intensive Care, Free University of Brussels (ULB), 1070 Brussels, Belgium
| | - Anthony Moreau
- Department of Intensive Care, University Hospital of Brussels (HUB), 1070 Brussels, Belgium
- Experimental Laboratory of Intensive Care, Department of Intensive Care, Free University of Brussels (ULB), 1070 Brussels, Belgium
| | - Leda Nobile
- Department of Intensive Care, University Hospital of Brussels (HUB), 1070 Brussels, Belgium
| | - Stefano Giuseppe Casu
- Department of Intensive Care, University Hospital of Brussels (HUB), 1070 Brussels, Belgium
- Experimental Laboratory of Intensive Care, Department of Intensive Care, Free University of Brussels (ULB), 1070 Brussels, Belgium
| | - Elda Diletta Sterchele
- Department of Intensive Care, University Hospital of Brussels (HUB), 1070 Brussels, Belgium
| | - Lorenzo Calabro
- Department of Intensive Care, University Hospital of Brussels (HUB), 1070 Brussels, Belgium
| | - Michele Salvagno
- Department of Intensive Care, University Hospital of Brussels (HUB), 1070 Brussels, Belgium
| | - Mauro Oddo
- Medical Directorate for Research, Education and Innovation, Direction Médicale, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, 1011 Lausanne, Switzerland
| | - Fabio Silvio Taccone
- Department of Intensive Care, University Hospital of Brussels (HUB), 1070 Brussels, Belgium
- Experimental Laboratory of Intensive Care, Department of Intensive Care, Free University of Brussels (ULB), 1070 Brussels, Belgium
| |
Collapse
|
6
|
Bencsik C, Josephson C, Soo A, Ainsworth C, Savard M, van Diepen S, Kramer A, Kromm J. The Evolving Role of Electroencephalography in Postarrest Care. Can J Neurol Sci 2024:1-13. [PMID: 38572611 DOI: 10.1017/cjn.2024.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Electroencephalography is an accessible, portable, noninvasive and safe means of evaluating a patient's brain activity. It can aid in diagnosis and management decisions for post-cardiac arrest patients with seizures, myoclonus and other non-epileptic movements. It also plays an important role in a multimodal approach to neuroprognostication predicting both poor and favorable outcomes. Individuals ordering, performing and interpreting these tests, regardless of the indication, should understand the supporting evidence, logistical considerations, limitations and impact the results may have on postarrest patients and their families as outlined herein.
Collapse
Affiliation(s)
- Caralyn Bencsik
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Health Services, Calgary, AB, Canada
| | - Colin Josephson
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- O'Brien Institute for Public Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Centre for Health Informatics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Andrea Soo
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Health Services, Calgary, AB, Canada
| | - Craig Ainsworth
- Division of Cardiology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Martin Savard
- Département de Médecine, Université Laval, Quebec City, QC, Canada
| | - Sean van Diepen
- Department of Critical Care Medicine, University of Alberta, Edmonton, AB, Canada
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Andreas Kramer
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Health Services, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Julie Kromm
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Health Services, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
7
|
Yuan F, Damien C, Schuind S, Salvagno M, Taccone FS, Legros B, Gaspard N. Combined depth and scalp electroencephalographic monitoring in acute brain injury: Yield and prognostic value. Eur J Neurol 2024; 31:e16208. [PMID: 38270448 PMCID: PMC11235592 DOI: 10.1111/ene.16208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/08/2023] [Accepted: 12/28/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND AND PURPOSE Depth electroencephalography (dEEG) is an emerging neuromonitoring technology in acute brain injury (ABI). We aimed to explore the concordances between electrophysiological activities on dEEG and on scalp EEG (scEEG) in ABI patients. METHODS Consecutive ABI patients who received dEEG monitoring between 2018 and 2022 were included. Background, sporadic epileptiform discharges, rhythmic and periodic patterns (RPPs), electrographic seizures, brief potentially ictal rhythmic discharges, ictal-interictal continuum (IIC) patterns, and hourly RPP burden on dEEG and scEEG were compared. RESULTS Sixty-one ABI patients with a median dEEG monitoring duration of 114 h were included. dEEG significantly showed less continuous background (75% vs. 90%, p = 0.03), higher background amplitude (p < 0.001), more frequent rhythmic spike-and-waves (16% vs. 3%, p = 0.03), more IIC patterns (39% vs. 21%, p = 0.03), and greater hourly RPP burden (2430 vs. 1090 s/h, p = 0.01), when compared to scEEG. Among five patients with seizures on scEEG, one patient had concomitant seizures on dEEG, one had periodic discharges (not concomitant) on dEEG, and three had no RPPs on dEEG. Features and temporal occurrence of electrophysiological activities observed on dEEG and scEEG are not strongly associated. Patients with seizures and IIC patterns on dEEG seemed to have a higher rate of poor outcomes at discharge than patients without these patterns on dEEG (42% vs. 25%, p = 0.37). CONCLUSIONS dEEG can detect abnormal electrophysiological activities that may not be seen on scEEG and can be used as a complement in the neuromonitoring of ABI patients.
Collapse
Affiliation(s)
- Fang Yuan
- Neurology DepartmentSecond Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- Service de Neurologie, Hôpital Universitaire de Bruxelles, Hôpital ErasmeUniversité Libre de BruxellesBrusselsBelgium
- State Key Laboratory of Traditional Chinese Medicine SyndromeGuangzhouChina
| | - Charlotte Damien
- Service de Neurologie, Hôpital Universitaire de Bruxelles, Hôpital ErasmeUniversité Libre de BruxellesBrusselsBelgium
| | - Sophie Schuind
- Service de Neurochirurgie, Hôpital Universitaire de Bruxelles, Hôpital ErasmeUniversité Libre de BruxellesBrusselsBelgium
| | - Michele Salvagno
- Service des Soins Intensifs, Hôpital Universitaire de Bruxelles, Hôpital ErasmeUniversité Libre de BruxellesBrusselsBelgium
| | - Fabio Silvio Taccone
- Service des Soins Intensifs, Hôpital Universitaire de Bruxelles, Hôpital ErasmeUniversité Libre de BruxellesBrusselsBelgium
| | - Benjamin Legros
- Service de Neurologie, Hôpital Universitaire de Bruxelles, Hôpital ErasmeUniversité Libre de BruxellesBrusselsBelgium
| | - Nicolas Gaspard
- Service de Neurologie, Hôpital Universitaire de Bruxelles, Hôpital ErasmeUniversité Libre de BruxellesBrusselsBelgium
- Neurology DepartmentYale University School of MedicineNew HavenConnecticutUSA
| |
Collapse
|
8
|
Hirsch KG, Abella BS, Amorim E, Bader MK, Barletta JF, Berg K, Callaway CW, Friberg H, Gilmore EJ, Greer DM, Kern KB, Livesay S, May TL, Neumar RW, Nolan JP, Oddo M, Peberdy MA, Poloyac SM, Seder D, Taccone FS, Uzendu A, Walsh B, Zimmerman JL, Geocadin RG. Critical Care Management of Patients After Cardiac Arrest: A Scientific Statement from the American Heart Association and Neurocritical Care Society. Neurocrit Care 2024; 40:1-37. [PMID: 38040992 PMCID: PMC10861627 DOI: 10.1007/s12028-023-01871-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 12/03/2023]
Abstract
The critical care management of patients after cardiac arrest is burdened by a lack of high-quality clinical studies and the resultant lack of high-certainty evidence. This results in limited practice guideline recommendations, which may lead to uncertainty and variability in management. Critical care management is crucial in patients after cardiac arrest and affects outcome. Although guidelines address some relevant topics (including temperature control and neurological prognostication of comatose survivors, 2 topics for which there are more robust clinical studies), many important subject areas have limited or nonexistent clinical studies, leading to the absence of guidelines or low-certainty evidence. The American Heart Association Emergency Cardiovascular Care Committee and the Neurocritical Care Society collaborated to address this gap by organizing an expert consensus panel and conference. Twenty-four experienced practitioners (including physicians, nurses, pharmacists, and a respiratory therapist) from multiple medical specialties, levels, institutions, and countries made up the panel. Topics were identified and prioritized by the panel and arranged by organ system to facilitate discussion, debate, and consensus building. Statements related to postarrest management were generated, and 80% agreement was required to approve a statement. Voting was anonymous and web based. Topics addressed include neurological, cardiac, pulmonary, hematological, infectious, gastrointestinal, endocrine, and general critical care management. Areas of uncertainty, areas for which no consensus was reached, and future research directions are also included. Until high-quality studies that inform practice guidelines in these areas are available, the expert panel consensus statements that are provided can advise clinicians on the critical care management of patients after cardiac arrest.
Collapse
Affiliation(s)
| | | | - Edilberto Amorim
- San Francisco-Weill Institute for Neurosciences, University of California, San Francisco, USA
| | - Mary Kay Bader
- Providence Mission Hospital Nursing Center of Excellence/Critical Care Services, Mission Viejo, USA
| | | | | | | | | | | | | | - Karl B Kern
- Sarver Heart Center, University of Arizona, Tucson, USA
| | | | | | | | - Jerry P Nolan
- Warwick Medical School, University of Warwick, Coventry, UK
- Royal United Hospital, Bath, UK
| | - Mauro Oddo
- CHUV-Lausanne University Hospital, Lausanne, Switzerland
| | | | | | | | | | - Anezi Uzendu
- St. Luke's Mid America Heart Institute, Kansas City, USA
| | - Brian Walsh
- University of Texas Medical Branch School of Health Sciences, Galveston, USA
| | | | | |
Collapse
|
9
|
Perman SM, Elmer J, Maciel CB, Uzendu A, May T, Mumma BE, Bartos JA, Rodriguez AJ, Kurz MC, Panchal AR, Rittenberger JC. 2023 American Heart Association Focused Update on Adult Advanced Cardiovascular Life Support: An Update to the American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2024; 149:e254-e273. [PMID: 38108133 DOI: 10.1161/cir.0000000000001194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Cardiac arrest is common and deadly, affecting up to 700 000 people in the United States annually. Advanced cardiac life support measures are commonly used to improve outcomes. This "2023 American Heart Association Focused Update on Adult Advanced Cardiovascular Life Support" summarizes the most recent published evidence for and recommendations on the use of medications, temperature management, percutaneous coronary angiography, extracorporeal cardiopulmonary resuscitation, and seizure management in this population. We discuss the lack of data in recent cardiac arrest literature that limits our ability to evaluate diversity, equity, and inclusion in this population. Last, we consider how the cardiac arrest population may make up an important pool of organ donors for those awaiting organ transplantation.
Collapse
|
10
|
Hirsch KG, Abella BS, Amorim E, Bader MK, Barletta JF, Berg K, Callaway CW, Friberg H, Gilmore EJ, Greer DM, Kern KB, Livesay S, May TL, Neumar RW, Nolan JP, Oddo M, Peberdy MA, Poloyac SM, Seder D, Taccone FS, Uzendu A, Walsh B, Zimmerman JL, Geocadin RG. Critical Care Management of Patients After Cardiac Arrest: A Scientific Statement From the American Heart Association and Neurocritical Care Society. Circulation 2024; 149:e168-e200. [PMID: 38014539 PMCID: PMC10775969 DOI: 10.1161/cir.0000000000001163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The critical care management of patients after cardiac arrest is burdened by a lack of high-quality clinical studies and the resultant lack of high-certainty evidence. This results in limited practice guideline recommendations, which may lead to uncertainty and variability in management. Critical care management is crucial in patients after cardiac arrest and affects outcome. Although guidelines address some relevant topics (including temperature control and neurological prognostication of comatose survivors, 2 topics for which there are more robust clinical studies), many important subject areas have limited or nonexistent clinical studies, leading to the absence of guidelines or low-certainty evidence. The American Heart Association Emergency Cardiovascular Care Committee and the Neurocritical Care Society collaborated to address this gap by organizing an expert consensus panel and conference. Twenty-four experienced practitioners (including physicians, nurses, pharmacists, and a respiratory therapist) from multiple medical specialties, levels, institutions, and countries made up the panel. Topics were identified and prioritized by the panel and arranged by organ system to facilitate discussion, debate, and consensus building. Statements related to postarrest management were generated, and 80% agreement was required to approve a statement. Voting was anonymous and web based. Topics addressed include neurological, cardiac, pulmonary, hematological, infectious, gastrointestinal, endocrine, and general critical care management. Areas of uncertainty, areas for which no consensus was reached, and future research directions are also included. Until high-quality studies that inform practice guidelines in these areas are available, the expert panel consensus statements that are provided can advise clinicians on the critical care management of patients after cardiac arrest.
Collapse
|
11
|
Rossetti AO, Claassen J, Gaspard N. Status epilepticus in the ICU. Intensive Care Med 2024; 50:1-16. [PMID: 38117319 DOI: 10.1007/s00134-023-07263-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/26/2023] [Indexed: 12/21/2023]
Abstract
Status epilepticus (SE) is a common medical emergency associated with significant morbidity and mortality. Management that follows published guidelines is best suited to improve outcomes, with the most severe cases frequently being managed in the intensive care unit (ICU). Diagnosis of convulsive SE can be made without electroencephalography (EEG), but EEG is required to reliably diagnose nonconvulsive SE. Rapidly narrowing down underlying causes for SE is crucial, as this may guide additional management steps. Causes may range from underlying epilepsy to acute brain injuries such as trauma, cardiac arrest, stroke, and infections. Initial management consists of rapid administration of benzodiazepines and one of the following non-sedating intravenous antiseizure medications (ASM): (fos-)phenytoin, levetiracetam, or valproate; other ASM are increasingly used, such as lacosamide or brivaracetam. SE that continues despite these medications is called refractory, and most commonly treated with continuous infusions of midazolam or propofol. Alternatives include further non-sedating ASM and non-pharmacologic approaches. SE that reemerges after weaning or continues despite management with propofol or midazolam is labeled super-refractory SE. At this step, management may include non-sedating or sedating compounds including ketamine and barbiturates. Continuous video EEG is necessary for the management of refractory and super-refractory SE, as these are almost always nonconvulsive. If possible, management of the underlying cause of seizures is crucial particularly for patients with autoimmune encephalitis. Short-term mortality ranges from 10 to 15% after SE and is primarily related to increasing age, underlying etiology, and medical comorbidities. Refractoriness of treatment is clearly related to outcome with mortality rising from 10% in responsive cases, to 25% in refractory, and nearly 40% in super-refractory SE.
Collapse
Affiliation(s)
- Andrea O Rossetti
- Department of Neurology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Jan Claassen
- Department of Neurology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY, USA
| | - Nicolas Gaspard
- Service de Neurologie, Hôpital Universitaire de Bruxelles, Hôpital Erasme, Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium.
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
12
|
Park JS, Kim EY, You Y, Min JH, Jeong W, Ahn HJ, In YN, Lee IH, Kim JM, Kang C. Combination strategy for prognostication in patients undergoing post-resuscitation care after cardiac arrest. Sci Rep 2023; 13:21880. [PMID: 38072906 PMCID: PMC10711008 DOI: 10.1038/s41598-023-49345-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 12/07/2023] [Indexed: 12/18/2023] Open
Abstract
This study investigated the prognostic performance of combination strategies using a multimodal approach in patients treated after cardiac arrest. Prospectively collected registry data were used for this retrospective analysis. Poor outcome was defined as a cerebral performance category of 3-5 at 6 months. Predictors of poor outcome were absence of ocular reflexes (PR/CR) without confounding factors, a highly malignant pattern on the most recent electroencephalography, defined as suppressed background with or without periodic discharges and burst-suppression, high neuron-specific enolase (NSE) after 48 h, and diffuse injury on imaging studies (computed tomography or diffusion-weighted imaging [DWI]) at 72-96 h. The prognostic performances for poor outcomes were analyzed for sensitivity and specificity. A total of 130 patients were included in the analysis. Of these, 68 (52.3%) patients had poor outcomes. The best prognostic performance was observed with the combination of absent PR/CR, high NSE, and diffuse injury on DWI [91.2%, 95% confidence interval (CI) 80.7-97.1], whereas the combination strategy of all available predictors did not improve prognostic performance (87.8%, 95% CI 73.8-95.9). Combining three of the predictors may improve prognostic performance and be more efficient than adding all tests indiscriminately, given limited medical resources.
Collapse
Affiliation(s)
- Jung Soo Park
- Department of Emergency Medicine, Chungnam National University Hospital, 282 Munhwa-ro, Jung-gu, Daejeon, Republic of Korea
- Department of Emergency Medicine, College of Medicine, Chungnam National University, 282 Mokdong-ro, Jung-gu, Daejeon, Republic of Korea
| | - Eun Young Kim
- Department of Neurology, Chungnam National University Sejong Hospital, 20, Bodeum 7-ro, Sejong, Republic of Korea
| | - Yeonho You
- Department of Emergency Medicine, Chungnam National University Hospital, 282 Munhwa-ro, Jung-gu, Daejeon, Republic of Korea
- Department of Emergency Medicine, College of Medicine, Chungnam National University, 282 Mokdong-ro, Jung-gu, Daejeon, Republic of Korea
| | - Jin Hong Min
- Department of Emergency Medicine, College of Medicine, Chungnam National University, 282 Mokdong-ro, Jung-gu, Daejeon, Republic of Korea
| | - Wonjoon Jeong
- Department of Emergency Medicine, Chungnam National University Hospital, 282 Munhwa-ro, Jung-gu, Daejeon, Republic of Korea
- Department of Emergency Medicine, College of Medicine, Chungnam National University, 282 Mokdong-ro, Jung-gu, Daejeon, Republic of Korea
| | - Hong Joon Ahn
- Department of Emergency Medicine, Chungnam National University Hospital, 282 Munhwa-ro, Jung-gu, Daejeon, Republic of Korea
- Department of Emergency Medicine, College of Medicine, Chungnam National University, 282 Mokdong-ro, Jung-gu, Daejeon, Republic of Korea
| | - Yong Nam In
- Department of Emergency Medicine, College of Medicine, Chungnam National University, 282 Mokdong-ro, Jung-gu, Daejeon, Republic of Korea
| | - In Ho Lee
- Department of Radiology, Chungnam National University Hospital, 282 Munhwa-ro, Jung-gu, Daejeon, Republic of Korea
- Department of Radiology, College of Medicine, Chungnam National University, 282 Mokdong-ro, Jung-gu, Daejeon, Republic of Korea
| | - Jae Moon Kim
- Department of Neurology, College of Medicine, Chungnam National University, 282 Mokdong-ro, Jung-gu, Daejeon, Republic of Korea
| | - Changshin Kang
- Department of Emergency Medicine, Chungnam National University Hospital, 282 Munhwa-ro, Jung-gu, Daejeon, Republic of Korea.
- Department of Emergency Medicine, College of Medicine, Chungnam National University, 282 Mokdong-ro, Jung-gu, Daejeon, Republic of Korea.
| |
Collapse
|
13
|
Carroll EE, Der-Nigoghossian C, Alkhachroum A, Appavu B, Gilmore E, Kromm J, Rohaut B, Rosanova M, Sitt JD, Claassen J. Common Data Elements for Disorders of Consciousness: Recommendations from the Electrophysiology Working Group. Neurocrit Care 2023; 39:578-585. [PMID: 37606737 DOI: 10.1007/s12028-023-01795-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Electroencephalography (EEG) has long been recognized as an important tool in the investigation of disorders of consciousness (DoC). From inspection of the raw EEG to the implementation of quantitative EEG, and more recently in the use of perturbed EEG, it is paramount to providing accurate diagnostic and prognostic information in the care of patients with DoC. However, a nomenclature for variables that establishes a convention for naming, defining, and structuring data for clinical research variables currently is lacking. As such, the Neurocritical Care Society's Curing Coma Campaign convened nine working groups composed of experts in the field to construct common data elements (CDEs) to provide recommendations for DoC, with the main goal of facilitating data collection and standardization of reporting. This article summarizes the recommendations of the electrophysiology DoC working group. METHODS After assessing previously published pertinent CDEs, we developed new CDEs and categorized them into "disease core," "basic," "supplemental," and "exploratory." Key EEG design elements, defined as concepts that pertained to a methodological parameter relevant to the acquisition, processing, or analysis of data, were also included but were not classified as CDEs. RESULTS After identifying existing pertinent CDEs and developing novel CDEs for electrophysiology in DoC, variables were organized into a framework based on the two primary categories of resting state EEG and perturbed EEG. Using this categorical framework, two case report forms were generated by the working group. CONCLUSIONS Adherence to the recommendations outlined by the electrophysiology working group in the resting state EEG and perturbed EEG case report forms will facilitate data collection and sharing in DoC research on an international level. In turn, this will allow for more informed and reliable comparison of results across studies, facilitating further advancement in the realm of DoC research.
Collapse
Affiliation(s)
- Elizabeth E Carroll
- Department of Neurology, Columbia University Medical Center, 177 Fort Washington Avenue, MHB 8 Center, Room 300, New York, NY, 10032, USA
- NewYork-Presbyterian Hospital, New York, NY, USA
| | | | | | - Brian Appavu
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA
- University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Emily Gilmore
- Divisions of Neurocritical Care and Emergency Neurology and Epilepsy, Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Yale New Haven Hospital, New Haven, CT, USA
| | - Julie Kromm
- Departments of Critical Care Medicine and Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Benjamin Rohaut
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, Centre national de la recherche scientifique, Assistance Publique-Hôpitaux de Paris, Neurosciences, Hôpital de La Pitié Salpêtrière, Paris, France
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Jacobo Diego Sitt
- Paris Brain Institute (ICM), Centre national de la recherche scientifique, Paris, France
| | - Jan Claassen
- Department of Neurology, Columbia University Medical Center, 177 Fort Washington Avenue, MHB 8 Center, Room 300, New York, NY, 10032, USA.
- NewYork-Presbyterian Hospital, New York, NY, USA.
| |
Collapse
|
14
|
Amorim E, Zheng WL, Jing J, Ghassemi MM, Lee JW, Wu O, Herman ST, Pang T, Sivaraju A, Gaspard N, Hirsch L, Ruijter BJ, Tjepkema-Cloostermans MC, Hofmeijer J, van Putten MJAM, Westover MB. Neurophysiology State Dynamics Underlying Acute Neurologic Recovery After Cardiac Arrest. Neurology 2023; 101:e940-e952. [PMID: 37414565 PMCID: PMC10501085 DOI: 10.1212/wnl.0000000000207537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 05/04/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Epileptiform activity and burst suppression are neurophysiology signatures reflective of severe brain injury after cardiac arrest. We aimed to delineate the evolution of coma neurophysiology feature ensembles associated with recovery from coma after cardiac arrest. METHODS Adults in acute coma after cardiac arrest were included in a retrospective database involving 7 hospitals. The combination of 3 quantitative EEG features (burst suppression ratio [BSup], spike frequency [SpF], and Shannon entropy [En]) was used to define 5 distinct neurophysiology states: epileptiform high entropy (EHE: SpF ≥4 per minute and En ≥5); epileptiform low entropy (ELE: SpF ≥4 per minute and <5 En); nonepileptiform high entropy (NEHE: SpF <4 per minute and ≥5 En); nonepileptiform low entropy (NELE: SpF <4 per minute and <5 En), and burst suppression (BSup ≥50% and SpF <4 per minute). State transitions were measured at consecutive 6-hour blocks between 6 and 84 hours after return of spontaneous circulation. Good neurologic outcome was defined as best cerebral performance category 1-2 at 3-6 months. RESULTS One thousand thirty-eight individuals were included (50,224 hours of EEG), and 373 (36%) had good outcome. Individuals with EHE state had a 29% rate of good outcome, while those with ELE had 11%. Transitions out of an EHE or BSup state to an NEHE state were associated with good outcome (45% and 20%, respectively). No individuals with ELE state lasting >15 hours had good recovery. DISCUSSION Transition to high entropy states is associated with an increased likelihood of good outcome despite preceding epileptiform or burst suppression states. High entropy may reflect mechanisms of resilience to hypoxic-ischemic brain injury.
Collapse
Affiliation(s)
- Edilberto Amorim
- From the Department of Neurology (E.A.), Weill Institute for Neurosciences, University of California, San Francisco; Department of Neurology (E.A., W.-L.Z., J.J., M.B.W.), Massachusetts General Hospital, Boston; Department of Computer Science and Engineering (W.-L.Z.), Shanghai Jiao Tong University, China; Department of Neurology (J.J., T.P., M.B.W.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Computer Science and Engineering (M.M.G.), Michigan State University, East Lansing; Department of Neurology (J.W.L.), Brigham and Women's Hospital; Athinoula A. Martinos Center for Biomedical Imaging (O.W.), Department of Radiology, Massachusetts General Hospital, Boston; Department of Neurology (S.T.H.), Barrow Neurological Institute Comprehensive Epilepsy Center, Phoenix, AZ; Department of Neurology (A.S., N.G., L.H.), Yale School of Medicine, New Haven, CT; Department of Neurology (N.G.), Universite Libre de Bruxelles, Belgium; Clinical Neurophysiology Group (B.J.R., M.C.T.-C., J.H., M.J.A.M.v.P.), University of Twente, Enschede; Department of Neurology (J.H.), Rijnstate Hospital, Arnhem; and Department of Neurology and Clinical Neurophysiology (M.J.A.M.v.P.), Medisch Spectrum Twente, Enschede, the Netherlands.
| | - Wei-Long Zheng
- From the Department of Neurology (E.A.), Weill Institute for Neurosciences, University of California, San Francisco; Department of Neurology (E.A., W.-L.Z., J.J., M.B.W.), Massachusetts General Hospital, Boston; Department of Computer Science and Engineering (W.-L.Z.), Shanghai Jiao Tong University, China; Department of Neurology (J.J., T.P., M.B.W.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Computer Science and Engineering (M.M.G.), Michigan State University, East Lansing; Department of Neurology (J.W.L.), Brigham and Women's Hospital; Athinoula A. Martinos Center for Biomedical Imaging (O.W.), Department of Radiology, Massachusetts General Hospital, Boston; Department of Neurology (S.T.H.), Barrow Neurological Institute Comprehensive Epilepsy Center, Phoenix, AZ; Department of Neurology (A.S., N.G., L.H.), Yale School of Medicine, New Haven, CT; Department of Neurology (N.G.), Universite Libre de Bruxelles, Belgium; Clinical Neurophysiology Group (B.J.R., M.C.T.-C., J.H., M.J.A.M.v.P.), University of Twente, Enschede; Department of Neurology (J.H.), Rijnstate Hospital, Arnhem; and Department of Neurology and Clinical Neurophysiology (M.J.A.M.v.P.), Medisch Spectrum Twente, Enschede, the Netherlands
| | - Jin Jing
- From the Department of Neurology (E.A.), Weill Institute for Neurosciences, University of California, San Francisco; Department of Neurology (E.A., W.-L.Z., J.J., M.B.W.), Massachusetts General Hospital, Boston; Department of Computer Science and Engineering (W.-L.Z.), Shanghai Jiao Tong University, China; Department of Neurology (J.J., T.P., M.B.W.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Computer Science and Engineering (M.M.G.), Michigan State University, East Lansing; Department of Neurology (J.W.L.), Brigham and Women's Hospital; Athinoula A. Martinos Center for Biomedical Imaging (O.W.), Department of Radiology, Massachusetts General Hospital, Boston; Department of Neurology (S.T.H.), Barrow Neurological Institute Comprehensive Epilepsy Center, Phoenix, AZ; Department of Neurology (A.S., N.G., L.H.), Yale School of Medicine, New Haven, CT; Department of Neurology (N.G.), Universite Libre de Bruxelles, Belgium; Clinical Neurophysiology Group (B.J.R., M.C.T.-C., J.H., M.J.A.M.v.P.), University of Twente, Enschede; Department of Neurology (J.H.), Rijnstate Hospital, Arnhem; and Department of Neurology and Clinical Neurophysiology (M.J.A.M.v.P.), Medisch Spectrum Twente, Enschede, the Netherlands
| | - Mohammad M Ghassemi
- From the Department of Neurology (E.A.), Weill Institute for Neurosciences, University of California, San Francisco; Department of Neurology (E.A., W.-L.Z., J.J., M.B.W.), Massachusetts General Hospital, Boston; Department of Computer Science and Engineering (W.-L.Z.), Shanghai Jiao Tong University, China; Department of Neurology (J.J., T.P., M.B.W.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Computer Science and Engineering (M.M.G.), Michigan State University, East Lansing; Department of Neurology (J.W.L.), Brigham and Women's Hospital; Athinoula A. Martinos Center for Biomedical Imaging (O.W.), Department of Radiology, Massachusetts General Hospital, Boston; Department of Neurology (S.T.H.), Barrow Neurological Institute Comprehensive Epilepsy Center, Phoenix, AZ; Department of Neurology (A.S., N.G., L.H.), Yale School of Medicine, New Haven, CT; Department of Neurology (N.G.), Universite Libre de Bruxelles, Belgium; Clinical Neurophysiology Group (B.J.R., M.C.T.-C., J.H., M.J.A.M.v.P.), University of Twente, Enschede; Department of Neurology (J.H.), Rijnstate Hospital, Arnhem; and Department of Neurology and Clinical Neurophysiology (M.J.A.M.v.P.), Medisch Spectrum Twente, Enschede, the Netherlands
| | - Jong Woo Lee
- From the Department of Neurology (E.A.), Weill Institute for Neurosciences, University of California, San Francisco; Department of Neurology (E.A., W.-L.Z., J.J., M.B.W.), Massachusetts General Hospital, Boston; Department of Computer Science and Engineering (W.-L.Z.), Shanghai Jiao Tong University, China; Department of Neurology (J.J., T.P., M.B.W.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Computer Science and Engineering (M.M.G.), Michigan State University, East Lansing; Department of Neurology (J.W.L.), Brigham and Women's Hospital; Athinoula A. Martinos Center for Biomedical Imaging (O.W.), Department of Radiology, Massachusetts General Hospital, Boston; Department of Neurology (S.T.H.), Barrow Neurological Institute Comprehensive Epilepsy Center, Phoenix, AZ; Department of Neurology (A.S., N.G., L.H.), Yale School of Medicine, New Haven, CT; Department of Neurology (N.G.), Universite Libre de Bruxelles, Belgium; Clinical Neurophysiology Group (B.J.R., M.C.T.-C., J.H., M.J.A.M.v.P.), University of Twente, Enschede; Department of Neurology (J.H.), Rijnstate Hospital, Arnhem; and Department of Neurology and Clinical Neurophysiology (M.J.A.M.v.P.), Medisch Spectrum Twente, Enschede, the Netherlands
| | - Ona Wu
- From the Department of Neurology (E.A.), Weill Institute for Neurosciences, University of California, San Francisco; Department of Neurology (E.A., W.-L.Z., J.J., M.B.W.), Massachusetts General Hospital, Boston; Department of Computer Science and Engineering (W.-L.Z.), Shanghai Jiao Tong University, China; Department of Neurology (J.J., T.P., M.B.W.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Computer Science and Engineering (M.M.G.), Michigan State University, East Lansing; Department of Neurology (J.W.L.), Brigham and Women's Hospital; Athinoula A. Martinos Center for Biomedical Imaging (O.W.), Department of Radiology, Massachusetts General Hospital, Boston; Department of Neurology (S.T.H.), Barrow Neurological Institute Comprehensive Epilepsy Center, Phoenix, AZ; Department of Neurology (A.S., N.G., L.H.), Yale School of Medicine, New Haven, CT; Department of Neurology (N.G.), Universite Libre de Bruxelles, Belgium; Clinical Neurophysiology Group (B.J.R., M.C.T.-C., J.H., M.J.A.M.v.P.), University of Twente, Enschede; Department of Neurology (J.H.), Rijnstate Hospital, Arnhem; and Department of Neurology and Clinical Neurophysiology (M.J.A.M.v.P.), Medisch Spectrum Twente, Enschede, the Netherlands
| | - Susan T Herman
- From the Department of Neurology (E.A.), Weill Institute for Neurosciences, University of California, San Francisco; Department of Neurology (E.A., W.-L.Z., J.J., M.B.W.), Massachusetts General Hospital, Boston; Department of Computer Science and Engineering (W.-L.Z.), Shanghai Jiao Tong University, China; Department of Neurology (J.J., T.P., M.B.W.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Computer Science and Engineering (M.M.G.), Michigan State University, East Lansing; Department of Neurology (J.W.L.), Brigham and Women's Hospital; Athinoula A. Martinos Center for Biomedical Imaging (O.W.), Department of Radiology, Massachusetts General Hospital, Boston; Department of Neurology (S.T.H.), Barrow Neurological Institute Comprehensive Epilepsy Center, Phoenix, AZ; Department of Neurology (A.S., N.G., L.H.), Yale School of Medicine, New Haven, CT; Department of Neurology (N.G.), Universite Libre de Bruxelles, Belgium; Clinical Neurophysiology Group (B.J.R., M.C.T.-C., J.H., M.J.A.M.v.P.), University of Twente, Enschede; Department of Neurology (J.H.), Rijnstate Hospital, Arnhem; and Department of Neurology and Clinical Neurophysiology (M.J.A.M.v.P.), Medisch Spectrum Twente, Enschede, the Netherlands
| | - Trudy Pang
- From the Department of Neurology (E.A.), Weill Institute for Neurosciences, University of California, San Francisco; Department of Neurology (E.A., W.-L.Z., J.J., M.B.W.), Massachusetts General Hospital, Boston; Department of Computer Science and Engineering (W.-L.Z.), Shanghai Jiao Tong University, China; Department of Neurology (J.J., T.P., M.B.W.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Computer Science and Engineering (M.M.G.), Michigan State University, East Lansing; Department of Neurology (J.W.L.), Brigham and Women's Hospital; Athinoula A. Martinos Center for Biomedical Imaging (O.W.), Department of Radiology, Massachusetts General Hospital, Boston; Department of Neurology (S.T.H.), Barrow Neurological Institute Comprehensive Epilepsy Center, Phoenix, AZ; Department of Neurology (A.S., N.G., L.H.), Yale School of Medicine, New Haven, CT; Department of Neurology (N.G.), Universite Libre de Bruxelles, Belgium; Clinical Neurophysiology Group (B.J.R., M.C.T.-C., J.H., M.J.A.M.v.P.), University of Twente, Enschede; Department of Neurology (J.H.), Rijnstate Hospital, Arnhem; and Department of Neurology and Clinical Neurophysiology (M.J.A.M.v.P.), Medisch Spectrum Twente, Enschede, the Netherlands
| | - Adithya Sivaraju
- From the Department of Neurology (E.A.), Weill Institute for Neurosciences, University of California, San Francisco; Department of Neurology (E.A., W.-L.Z., J.J., M.B.W.), Massachusetts General Hospital, Boston; Department of Computer Science and Engineering (W.-L.Z.), Shanghai Jiao Tong University, China; Department of Neurology (J.J., T.P., M.B.W.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Computer Science and Engineering (M.M.G.), Michigan State University, East Lansing; Department of Neurology (J.W.L.), Brigham and Women's Hospital; Athinoula A. Martinos Center for Biomedical Imaging (O.W.), Department of Radiology, Massachusetts General Hospital, Boston; Department of Neurology (S.T.H.), Barrow Neurological Institute Comprehensive Epilepsy Center, Phoenix, AZ; Department of Neurology (A.S., N.G., L.H.), Yale School of Medicine, New Haven, CT; Department of Neurology (N.G.), Universite Libre de Bruxelles, Belgium; Clinical Neurophysiology Group (B.J.R., M.C.T.-C., J.H., M.J.A.M.v.P.), University of Twente, Enschede; Department of Neurology (J.H.), Rijnstate Hospital, Arnhem; and Department of Neurology and Clinical Neurophysiology (M.J.A.M.v.P.), Medisch Spectrum Twente, Enschede, the Netherlands
| | - Nicolas Gaspard
- From the Department of Neurology (E.A.), Weill Institute for Neurosciences, University of California, San Francisco; Department of Neurology (E.A., W.-L.Z., J.J., M.B.W.), Massachusetts General Hospital, Boston; Department of Computer Science and Engineering (W.-L.Z.), Shanghai Jiao Tong University, China; Department of Neurology (J.J., T.P., M.B.W.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Computer Science and Engineering (M.M.G.), Michigan State University, East Lansing; Department of Neurology (J.W.L.), Brigham and Women's Hospital; Athinoula A. Martinos Center for Biomedical Imaging (O.W.), Department of Radiology, Massachusetts General Hospital, Boston; Department of Neurology (S.T.H.), Barrow Neurological Institute Comprehensive Epilepsy Center, Phoenix, AZ; Department of Neurology (A.S., N.G., L.H.), Yale School of Medicine, New Haven, CT; Department of Neurology (N.G.), Universite Libre de Bruxelles, Belgium; Clinical Neurophysiology Group (B.J.R., M.C.T.-C., J.H., M.J.A.M.v.P.), University of Twente, Enschede; Department of Neurology (J.H.), Rijnstate Hospital, Arnhem; and Department of Neurology and Clinical Neurophysiology (M.J.A.M.v.P.), Medisch Spectrum Twente, Enschede, the Netherlands
| | - Lawrence Hirsch
- From the Department of Neurology (E.A.), Weill Institute for Neurosciences, University of California, San Francisco; Department of Neurology (E.A., W.-L.Z., J.J., M.B.W.), Massachusetts General Hospital, Boston; Department of Computer Science and Engineering (W.-L.Z.), Shanghai Jiao Tong University, China; Department of Neurology (J.J., T.P., M.B.W.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Computer Science and Engineering (M.M.G.), Michigan State University, East Lansing; Department of Neurology (J.W.L.), Brigham and Women's Hospital; Athinoula A. Martinos Center for Biomedical Imaging (O.W.), Department of Radiology, Massachusetts General Hospital, Boston; Department of Neurology (S.T.H.), Barrow Neurological Institute Comprehensive Epilepsy Center, Phoenix, AZ; Department of Neurology (A.S., N.G., L.H.), Yale School of Medicine, New Haven, CT; Department of Neurology (N.G.), Universite Libre de Bruxelles, Belgium; Clinical Neurophysiology Group (B.J.R., M.C.T.-C., J.H., M.J.A.M.v.P.), University of Twente, Enschede; Department of Neurology (J.H.), Rijnstate Hospital, Arnhem; and Department of Neurology and Clinical Neurophysiology (M.J.A.M.v.P.), Medisch Spectrum Twente, Enschede, the Netherlands
| | - Barry J Ruijter
- From the Department of Neurology (E.A.), Weill Institute for Neurosciences, University of California, San Francisco; Department of Neurology (E.A., W.-L.Z., J.J., M.B.W.), Massachusetts General Hospital, Boston; Department of Computer Science and Engineering (W.-L.Z.), Shanghai Jiao Tong University, China; Department of Neurology (J.J., T.P., M.B.W.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Computer Science and Engineering (M.M.G.), Michigan State University, East Lansing; Department of Neurology (J.W.L.), Brigham and Women's Hospital; Athinoula A. Martinos Center for Biomedical Imaging (O.W.), Department of Radiology, Massachusetts General Hospital, Boston; Department of Neurology (S.T.H.), Barrow Neurological Institute Comprehensive Epilepsy Center, Phoenix, AZ; Department of Neurology (A.S., N.G., L.H.), Yale School of Medicine, New Haven, CT; Department of Neurology (N.G.), Universite Libre de Bruxelles, Belgium; Clinical Neurophysiology Group (B.J.R., M.C.T.-C., J.H., M.J.A.M.v.P.), University of Twente, Enschede; Department of Neurology (J.H.), Rijnstate Hospital, Arnhem; and Department of Neurology and Clinical Neurophysiology (M.J.A.M.v.P.), Medisch Spectrum Twente, Enschede, the Netherlands
| | - Marleen C Tjepkema-Cloostermans
- From the Department of Neurology (E.A.), Weill Institute for Neurosciences, University of California, San Francisco; Department of Neurology (E.A., W.-L.Z., J.J., M.B.W.), Massachusetts General Hospital, Boston; Department of Computer Science and Engineering (W.-L.Z.), Shanghai Jiao Tong University, China; Department of Neurology (J.J., T.P., M.B.W.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Computer Science and Engineering (M.M.G.), Michigan State University, East Lansing; Department of Neurology (J.W.L.), Brigham and Women's Hospital; Athinoula A. Martinos Center for Biomedical Imaging (O.W.), Department of Radiology, Massachusetts General Hospital, Boston; Department of Neurology (S.T.H.), Barrow Neurological Institute Comprehensive Epilepsy Center, Phoenix, AZ; Department of Neurology (A.S., N.G., L.H.), Yale School of Medicine, New Haven, CT; Department of Neurology (N.G.), Universite Libre de Bruxelles, Belgium; Clinical Neurophysiology Group (B.J.R., M.C.T.-C., J.H., M.J.A.M.v.P.), University of Twente, Enschede; Department of Neurology (J.H.), Rijnstate Hospital, Arnhem; and Department of Neurology and Clinical Neurophysiology (M.J.A.M.v.P.), Medisch Spectrum Twente, Enschede, the Netherlands
| | - Jeannette Hofmeijer
- From the Department of Neurology (E.A.), Weill Institute for Neurosciences, University of California, San Francisco; Department of Neurology (E.A., W.-L.Z., J.J., M.B.W.), Massachusetts General Hospital, Boston; Department of Computer Science and Engineering (W.-L.Z.), Shanghai Jiao Tong University, China; Department of Neurology (J.J., T.P., M.B.W.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Computer Science and Engineering (M.M.G.), Michigan State University, East Lansing; Department of Neurology (J.W.L.), Brigham and Women's Hospital; Athinoula A. Martinos Center for Biomedical Imaging (O.W.), Department of Radiology, Massachusetts General Hospital, Boston; Department of Neurology (S.T.H.), Barrow Neurological Institute Comprehensive Epilepsy Center, Phoenix, AZ; Department of Neurology (A.S., N.G., L.H.), Yale School of Medicine, New Haven, CT; Department of Neurology (N.G.), Universite Libre de Bruxelles, Belgium; Clinical Neurophysiology Group (B.J.R., M.C.T.-C., J.H., M.J.A.M.v.P.), University of Twente, Enschede; Department of Neurology (J.H.), Rijnstate Hospital, Arnhem; and Department of Neurology and Clinical Neurophysiology (M.J.A.M.v.P.), Medisch Spectrum Twente, Enschede, the Netherlands
| | - Michel J A M van Putten
- From the Department of Neurology (E.A.), Weill Institute for Neurosciences, University of California, San Francisco; Department of Neurology (E.A., W.-L.Z., J.J., M.B.W.), Massachusetts General Hospital, Boston; Department of Computer Science and Engineering (W.-L.Z.), Shanghai Jiao Tong University, China; Department of Neurology (J.J., T.P., M.B.W.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Computer Science and Engineering (M.M.G.), Michigan State University, East Lansing; Department of Neurology (J.W.L.), Brigham and Women's Hospital; Athinoula A. Martinos Center for Biomedical Imaging (O.W.), Department of Radiology, Massachusetts General Hospital, Boston; Department of Neurology (S.T.H.), Barrow Neurological Institute Comprehensive Epilepsy Center, Phoenix, AZ; Department of Neurology (A.S., N.G., L.H.), Yale School of Medicine, New Haven, CT; Department of Neurology (N.G.), Universite Libre de Bruxelles, Belgium; Clinical Neurophysiology Group (B.J.R., M.C.T.-C., J.H., M.J.A.M.v.P.), University of Twente, Enschede; Department of Neurology (J.H.), Rijnstate Hospital, Arnhem; and Department of Neurology and Clinical Neurophysiology (M.J.A.M.v.P.), Medisch Spectrum Twente, Enschede, the Netherlands
| | - M Brandon Westover
- From the Department of Neurology (E.A.), Weill Institute for Neurosciences, University of California, San Francisco; Department of Neurology (E.A., W.-L.Z., J.J., M.B.W.), Massachusetts General Hospital, Boston; Department of Computer Science and Engineering (W.-L.Z.), Shanghai Jiao Tong University, China; Department of Neurology (J.J., T.P., M.B.W.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Computer Science and Engineering (M.M.G.), Michigan State University, East Lansing; Department of Neurology (J.W.L.), Brigham and Women's Hospital; Athinoula A. Martinos Center for Biomedical Imaging (O.W.), Department of Radiology, Massachusetts General Hospital, Boston; Department of Neurology (S.T.H.), Barrow Neurological Institute Comprehensive Epilepsy Center, Phoenix, AZ; Department of Neurology (A.S., N.G., L.H.), Yale School of Medicine, New Haven, CT; Department of Neurology (N.G.), Universite Libre de Bruxelles, Belgium; Clinical Neurophysiology Group (B.J.R., M.C.T.-C., J.H., M.J.A.M.v.P.), University of Twente, Enschede; Department of Neurology (J.H.), Rijnstate Hospital, Arnhem; and Department of Neurology and Clinical Neurophysiology (M.J.A.M.v.P.), Medisch Spectrum Twente, Enschede, the Netherlands
| |
Collapse
|
15
|
Horn J, Admiraal M, Hofmeijer J. Diagnosis and management of seizures and myoclonus after cardiac arrest. EUROPEAN HEART JOURNAL. ACUTE CARDIOVASCULAR CARE 2023; 12:525-531. [PMID: 37486703 DOI: 10.1093/ehjacc/zuad086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Affiliation(s)
- Janneke Horn
- Department of Intensive care Medicine, AmsterdamUMC, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Neurosciences Institute, AmsterdamUMC, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Marjolein Admiraal
- Neurosciences Institute, AmsterdamUMC, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Department of Neurology and Clinical Neurophysiology, AmsterdamUMC, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Jeannette Hofmeijer
- Department of Clinical Neurophysiology, Technical Medical Center, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
- Department of Neurology, Rijnstate Hospital, Wagnerlaan 55, 6815 AD Arnhem, The Netherlands
| |
Collapse
|
16
|
Tziakouri A, Novy J, Ben-Hamouda N, Rossetti AO. Relationship between serum neuron-specific enolase and EEG after cardiac arrest: A reappraisal. Clin Neurophysiol 2023; 151:100-106. [PMID: 37236128 DOI: 10.1016/j.clinph.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/05/2023] [Accepted: 05/01/2023] [Indexed: 05/28/2023]
Abstract
OBJECTIVE Electroencephalogram (EEG) and serum neuron specific enolase (NSE) are frequently used prognosticators after cardiac arrest (CA). This study explored the association between NSE and EEG, considering the role of EEG timing, its background continuity, reactivity, occurrence of epileptiform discharges, and pre-defined malignancy degree. METHODS Retrospective analysis including 445 consecutive adults from a prospective registry, surviving the first 24 hours after CA and undergoing multimodal evaluation. EEG were interpreted blinded to NSE results. RESULTS Higher NSE was associated with poor EEG prognosticators, such as increasing malignancy, repetitive epileptiform discharges and lack of background reactivity, independently of EEG timing (including sedation and temperature). When stratified for background continuity, NSE was higher with repetitive epileptiform discharges, except in the case of suppressed EEGs. This relationship showed some variation according to the recording time. CONCLUSIONS Neuronal injury after CA, reflected by NSE, correlates with several EEG features: increasing EEG malignancy, lack of background reactivity, and presence of repetitive epileptiform discharges. The correlation between epileptiform discharges and NSE is influenced by underlying EEG background and timing. SIGNIFICANCE This study, describing the complex interplay between serum NSE and epileptiform features, suggests that epileptiform discharges reflect neuronal injury particularly in non-suppressed EEG.
Collapse
Affiliation(s)
- Andria Tziakouri
- Department of Neurology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jan Novy
- Department of Neurology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Nawfel Ben-Hamouda
- Department of Adult Intensive Care Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Andrea O Rossetti
- Department of Neurology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
17
|
Crawford AH, Beltran E, Danciu C, Yaffy D. Clinical presentation, diagnosis, treatment, and outcome in 8 dogs and 2 cats with global hypoxic-ischemic brain injury (2010-2022). J Vet Intern Med 2023; 37:1428-1437. [PMID: 37316975 PMCID: PMC10365066 DOI: 10.1111/jvim.16790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 05/27/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Global hypoxic-ischemic brain injury (GHIBI) results in variable degrees of neurological dysfunction. Limited data exists to guide prognostication on likelihood of functional recovery. HYPOTHESIS Prolonged duration of hypoxic-ischemic insult and absence of neurological improvement in the first 72 hours are negative prognostic indicators. ANIMALS Ten clinical cases with GHIBI. METHODS Retrospective case series describing 8 dogs and 2 cats with GHIBI, including clinical signs, treatment, and outcome. RESULTS Six dogs and 2 cats experienced cardiopulmonary arrest or anesthetic complication in a veterinary hospital and were promptly resuscitated. Seven showed progressive neurological improvement within 72 hours of the hypoxic-ischemic insult. Four fully recovered and 3 had residual neurological deficits. One dog presented comatose after resuscitation at the primary care practice. Magnetic resonance imaging confirmed diffuse cerebral cortical swelling and severe brainstem compression and the dog was euthanized. Two dogs suffered out-of-hospital cardiopulmonary arrest, secondary to a road traffic accident in 1 and laryngeal obstruction in the other. The first dog was euthanized after MRI that identified diffuse cerebral cortical swelling with severe brainstem compression. In the other dog, spontaneous circulation was recovered after 22 minutes of cardiopulmonary resuscitation. However, the dog remained blind, disorientated, and ambulatory tetraparetic with vestibular ataxia and was euthanized 58 days after presentation. Histopathological examination of the brain confirmed severe diffuse cerebral and cerebellar cortical necrosis. CONCLUSIONS AND CLINICAL IMPORTANCE Duration of hypoxic-ischemic insult, diffuse brainstem involvement, MRI features, and rate of neurological recovery could provide indications of the likelihood of functional recovery after GHIBI.
Collapse
Affiliation(s)
- Abbe Harper Crawford
- Clinical Science and ServicesRoyal Veterinary College, Hawkshead Lane, North MymmsHatfield AL9 7TAUnited Kingdom
| | - Elsa Beltran
- Clinical Science and ServicesRoyal Veterinary College, Hawkshead Lane, North MymmsHatfield AL9 7TAUnited Kingdom
| | - Cecilia‐Gabriella Danciu
- Clinical Science and ServicesRoyal Veterinary College, Hawkshead Lane, North MymmsHatfield AL9 7TAUnited Kingdom
| | - Dylan Yaffy
- Pathobiology and Population SciencesRoyal Veterinary College, Hawkshead Lane, North MymmsHatfield AL9 7TAUnited Kingdom
| |
Collapse
|
18
|
Rajajee V, Muehlschlegel S, Wartenberg KE, Alexander SA, Busl KM, Chou SHY, Creutzfeldt CJ, Fontaine GV, Fried H, Hocker SE, Hwang DY, Kim KS, Madzar D, Mahanes D, Mainali S, Meixensberger J, Montellano F, Sakowitz OW, Weimar C, Westermaier T, Varelas PN. Guidelines for Neuroprognostication in Comatose Adult Survivors of Cardiac Arrest. Neurocrit Care 2023; 38:533-563. [PMID: 36949360 PMCID: PMC10241762 DOI: 10.1007/s12028-023-01688-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 03/24/2023]
Abstract
BACKGROUND Among cardiac arrest survivors, about half remain comatose 72 h following return of spontaneous circulation (ROSC). Prognostication of poor neurological outcome in this population may result in withdrawal of life-sustaining therapy and death. The objective of this article is to provide recommendations on the reliability of select clinical predictors that serve as the basis of neuroprognostication and provide guidance to clinicians counseling surrogates of comatose cardiac arrest survivors. METHODS A narrative systematic review was completed using Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology. Candidate predictors, which included clinical variables and prediction models, were selected based on clinical relevance and the presence of an appropriate body of evidence. The Population, Intervention, Comparator, Outcome, Timing, Setting (PICOTS) question was framed as follows: "When counseling surrogates of comatose adult survivors of cardiac arrest, should [predictor, with time of assessment if appropriate] be considered a reliable predictor of poor functional outcome assessed at 3 months or later?" Additional full-text screening criteria were used to exclude small and lower-quality studies. Following construction of the evidence profile and summary of findings, recommendations were based on four GRADE criteria: quality of evidence, balance of desirable and undesirable consequences, values and preferences, and resource use. In addition, good practice recommendations addressed essential principles of neuroprognostication that could not be framed in PICOTS format. RESULTS Eleven candidate clinical variables and three prediction models were selected based on clinical relevance and the presence of an appropriate body of literature. A total of 72 articles met our eligibility criteria to guide recommendations. Good practice recommendations include waiting 72 h following ROSC/rewarming prior to neuroprognostication, avoiding sedation or other confounders, the use of multimodal assessment, and an extended period of observation for awakening in patients with an indeterminate prognosis, if consistent with goals of care. The bilateral absence of pupillary light response > 72 h from ROSC and the bilateral absence of N20 response on somatosensory evoked potential testing were identified as reliable predictors. Computed tomography or magnetic resonance imaging of the brain > 48 h from ROSC and electroencephalography > 72 h from ROSC were identified as moderately reliable predictors. CONCLUSIONS These guidelines provide recommendations on the reliability of predictors of poor outcome in the context of counseling surrogates of comatose survivors of cardiac arrest and suggest broad principles of neuroprognostication. Few predictors were considered reliable or moderately reliable based on the available body of evidence.
Collapse
Affiliation(s)
- Venkatakrishna Rajajee
- Departments of Neurology and Neurosurgery, 3552 Taubman Health Care Center, SPC 5338, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI, 48109-5338, USA.
| | - Susanne Muehlschlegel
- Departments of Neurology, Anesthesiology, and Surgery, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | | | - Katharina M Busl
- Departments of Neurology and Neurosurgery, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Sherry H Y Chou
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Gabriel V Fontaine
- Departments of Pharmacy and Neurosciences, Intermountain Healthcare, Salt Lake City, UT, USA
| | - Herbert Fried
- Department of Neurosurgery, Denver Health Medical Center, Denver, CO, USA
| | - Sara E Hocker
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - David Y Hwang
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Keri S Kim
- Pharmacy Practice, University of Illinois, Chicago, IL, USA
| | - Dominik Madzar
- Department of Neurology, University of Erlangen, Erlangen, Germany
| | - Dea Mahanes
- Departments of Neurology and Neurosurgery, University of Virginia Health, Charlottesville, VA, USA
| | - Shraddha Mainali
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, USA
| | | | | | - Oliver W Sakowitz
- Department of Neurosurgery, Neurosurgery Center Ludwigsburg-Heilbronn, Ludwigsburg, Germany
| | - Christian Weimar
- Institute of Medical Informatics, Biometry, and Epidemiology, University Hospital Essen, Essen, Germany
- BDH-Clinic Elzach, Elzach, Germany
| | | | | |
Collapse
|
19
|
Kumar A, Ridha M, Claassen J. Prognosis of consciousness disorders in the intensive care unit. Presse Med 2023; 52:104180. [PMID: 37805070 PMCID: PMC10995112 DOI: 10.1016/j.lpm.2023.104180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/03/2023] [Indexed: 10/09/2023] Open
Abstract
Assessments of consciousness are a critical part of prognostic algorithms for critically ill patients suffering from severe brain injuries. There have been significant advances in the field of coma science over the past two decades, providing clinicians with more advanced and precise tools for diagnosing and prognosticating disorders of consciousness (DoC). Advanced neuroimaging and electrophysiological techniques have vastly expanded our understanding of the biological mechanisms underlying consciousness, and have helped identify new states of consciousness. One of these, termed cognitive motor dissociation, can predict functional recovery at 1 year post brain injury, and is present in up to 15-20% of patients with DoC. In this chapter, we review several tools that are used to predict DoC, describing their strengths and limitations, from the neurological examination to advanced imaging and electrophysiologic techniques. We also describe multimodal assessment paradigms that can be used to identify covert consciousness and thus help recognize patients with the potential for future recovery and improve our prognostication practices.
Collapse
Affiliation(s)
- Aditya Kumar
- Department of Neurology, Columbia University Medical Center, New York-Presbyterian Hospital, New York, NY, USA
| | - Mohamed Ridha
- Department of Neurology, Columbia University Medical Center, New York-Presbyterian Hospital, New York, NY, USA
| | - Jan Claassen
- Department of Neurology, Columbia University Medical Center, New York-Presbyterian Hospital, New York, NY, USA.
| |
Collapse
|
20
|
Wahlster S, Danielson K, Craft L, Matin N, Town JA, Srinivasan V, Schubert G, Carlbom D, Kim F, Johnson NJ, Tirschwell D. Factors Associated with Early Withdrawal of Life-Sustaining Treatments After Out-of-Hospital Cardiac Arrest: A Subanalysis of a Randomized Trial of Prehospital Therapeutic Hypothermia. Neurocrit Care 2023; 38:676-687. [PMID: 36380126 DOI: 10.1007/s12028-022-01636-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND The objective of this study is to describe incidence and factors associated with early withdrawal of life-sustaining therapies based on presumed poor neurologic prognosis (WLST-N) and practices around multimodal prognostication after out-of-hospital cardiac arrest (OHCA). METHODS We performed a subanalysis of a randomized controlled trial assessing prehospital therapeutic hypothermia in adult patients admitted to nine hospitals in King County with nontraumatic OHCA between 2007 and 2012. Patients who underwent tracheal intubation and were unconscious following return of spontaneous circulation were included. Our outcomes were (1) incidence of early WLST-N (WLST-N within < 72 h from return of spontaneous circulation), (2) factors associated with early WLST-N compared with patients who remained comatose at 72 h without WLST-N, (3) institutional variation in early WLST-N, (4) use of multimodal prognostication, and (5) use of sedative medications in patients with early WLST-N. Analysis included descriptive statistics and multivariable logistic regression. RESULTS We included 1,040 patients (mean age was 65 years, 37% were female, 41% were White, and 44% presented with arrest due to ventricular fibrillation) admitted to nine hospitals. Early WLST-N accounted for 24% (n = 154) of patient deaths and occurred in half (51%) of patients with WLST-N. Factors associated with early WLST-N in multivariate regressions were older age (odds ratio [OR] 1.02, 95% confidence interval [CI]: 1.01-1.03), preexisting do-not-attempt-resuscitation orders (OR 4.67, 95% CI: 1.55-14.01), bilateral absent pupillary reflexes (OR 2.4, 95% CI: 1.42-4.10), and lack of neurological consultation (OR 2.60, 95% CI: 1.52-4.46). The proportion of patients with early WLST-N among all OHCA admissions ranged from 19-60% between institutions. A head computed tomography scan was obtained in 54% (n = 84) of patients with early WLST-N; 22% (n = 34) and 5% (n = 8) underwent ≥ 1 and ≥ 2 additional prognostic tests, respectively. Prognostic tests were more frequently performed when neurological consultation occurred. Most patients received sedating medications (90%) within 24 h before early WLST-N; the median time from last sedation to early WLST-N was 4.2 h (interquartile range 0.4-15). CONCLUSIONS Nearly one quarter of deaths after OHCA were due to early WLST-N. The presence of concerning neurological examination findings appeared to impact early WLST-N decisions, even though these are not fully reliable in this time frame. Lack of neurological consultation was associated with early WLST-N and resulted in underuse of guideline-concordant multimodal prognostication. Sedating medications were often coadministered prior to early WLST-N and may have further confounded the neurological examination. Standardizing prognostication, restricting early WLST-N, and a multidisciplinary approach including neurological consultation might improve outcomes after OHCA.
Collapse
Affiliation(s)
- Sarah Wahlster
- Department of Neurology, Harborview Medical Center, University of Washington, 325 9th Avenue, Box 359702, Seattle, WA, USA.
- Department of Anesthesiology, University of Washington, Seattle, WA, USA.
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA.
| | - Kyle Danielson
- Airlift Northwest, University of Washington Medicine, Seattle, WA, USA
| | - Lindy Craft
- Department of Anesthesiology, University of Washington, Seattle, WA, USA
| | - Nassim Matin
- Department of Neurology, Harborview Medical Center, University of Washington, 325 9th Avenue, Box 359702, Seattle, WA, USA
| | - James A Town
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Vasisht Srinivasan
- Department of Emergency Medicine, University of Washington, Seattle, WA, USA
| | - Glenn Schubert
- Department of Neurology, Harborview Medical Center, University of Washington, 325 9th Avenue, Box 359702, Seattle, WA, USA
| | - David Carlbom
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Francis Kim
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Nicholas J Johnson
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Emergency Medicine, University of Washington, Seattle, WA, USA
| | - David Tirschwell
- Department of Neurology, Harborview Medical Center, University of Washington, 325 9th Avenue, Box 359702, Seattle, WA, USA
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW To describe the available neuromonitoring tools in patients who are comatose after resuscitation from cardiac arrest because of hypoxic-ischemic brain injury (HIBI). RECENT FINDINGS Electroencephalogram (EEG) is useful for detecting seizures and guiding antiepileptic treatment. Moreover, specific EEG patterns accurately identify patients with irreversible HIBI. Cerebral blood flow (CBF) decreases in HIBI, and a greater decrease with no CBF recovery indicates poor outcome. The CBF autoregulation curve is narrowed and right-shifted in some HIBI patients, most of whom have poor outcome. Parameters derived from near-infrared spectroscopy (NIRS), intracranial pressure (ICP) and transcranial Doppler (TCD), together with brain tissue oxygenation, are under investigation as tools to optimize CBF in patients with HIBI and altered autoregulation. Blood levels of brain biomarkers and their trend over time are used to assess the severity of HIBI in both the research and clinical setting, and to predict the outcome of postcardiac arrest coma. Neuron-specific enolase (NSE) is recommended as a prognostic tool for HIBI in the current postresuscitation guidelines, but other potentially more accurate biomarkers, such as neurofilament light chain (NfL) are under investigation. SUMMARY Neuromonitoring provides essential information to detect complications, individualize treatment and predict prognosis in patients with HIBI.
Collapse
Affiliation(s)
- Claudio Sandroni
- Department of Intensive Care, Emergency Medicine and Anaesthesiology, Fondazione Policlinico Universitario ‘Agostino Gemelli’- IRCCS
- Institute of Anaesthesiology and Intensive Care Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Markus Benedikt Skrifvars
- Department of Emergency Medicine and Services, University of Helsinki
- Helsinki University Hospital, Helsinki, Finland
| | - Fabio Silvio Taccone
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
22
|
Misirocchi F, Bernabè G, Zinno L, Spallazzi M, Zilioli A, Mannini E, Lazzari S, Tontini V, Mutti C, Parrino L, Picetti E, Florindo I. Epileptiform patterns predicting unfavorable outcome in postanoxic patients: A matter of time? Neurophysiol Clin 2023; 53:102860. [PMID: 37011480 DOI: 10.1016/j.neucli.2023.102860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 04/03/2023] Open
Abstract
OBJECTIVE Historically, epileptiform malignant EEG patterns (EMPs) have been considered to anticipate an unfavorable outcome, but an increasing amount of evidence suggests that they are not always or invariably associated with poor prognosis. We evaluated the prognostic significance of an EMP onset in two different timeframes in comatose patients after cardiac arrest (CA): early-EMPs and late-EMPs, respectively. METHODS We included all comatose post-CA survivors admitted to our intensive care unit (ICU) between 2016 and 2018 who underwent at least two 30-minute EEGs, collected at T0 (12-36 h after CA) and T1 (36-72 h after CA). All EEGs recordings were re-analyzed following the 2021 ACNS terminology by two senior EEG specialists, blinded to outcome. Malignant EEGs with abundant sporadic spikes/sharp waves, rhythmic and periodic patterns, or electrographic seizure/status epilepticus, were included in the EMP definition. The primary outcome was the cerebral performance category (CPC) score at 6 months, dichotomized as good (CPC 1-2) or poor (CPC 3-5) outcome. RESULTS A total of 58 patients and 116 EEG recording were included in the study. Poor outcome was seen in 28 (48%) patients. In contrast to late-EMPs, early-EMPs were associated with a poor outcome (p = 0.037), persisting after multiple regression analysis. Moreover, a multivariate binomial model coupling the timing of EMP onset with other EEG predictors such as T1 reactivity and T1 normal voltage background can predict outcome in the presence of an otherwise non-specific malignant EEG pattern with quite high specificity (82%) and moderate sensitivity (77%). CONCLUSIONS The prognostic significance of EMPs seems strongly time-dependent and only their early-onset may be associated with an unfavorable outcome. The time of onset of EMP combined with other EEG features could aid in defining prognosis in patients with intermediate EEG patterns.
Collapse
|
23
|
Nonconvulsive status epilepticus following cardiac arrest: overlooked, untreated and misjudged. J Neurol 2023; 270:130-138. [PMID: 36076090 DOI: 10.1007/s00415-022-11368-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 01/07/2023]
Abstract
AIMS Seizures and status epilepticus (SE) are detected in almost a third of the comatose cardiac arrest survivors. As the literature is quite exhaustive regarding SE with motor symptoms in those patients, little is known about nonconvulsive SE (NCSE). Our aim was to compile the evidence from the literature of the frequency and outcome of NCSE in adult patients remaining in coma after resuscitation. METHODS The medical search PubMed was screened for most relevant articles reporting the emergence and outcome of NCSE in comatose post-resuscitated adult patients. RESULTS We identified 11 cohort studies (four prospective observational, seven retrospective) including 1092 patients with SE in 29-96% and NCSE reported in 1-20%. EEG evaluation started at a median of 9.5 h (range 7.5-14.8) after cardiac arrest, during sedation and targeted temperature management (TTM). Favorable outcome after NCSE occurred in 24.5%. We found no study reporting EEG to detect or exclude NCSE in patients remaining in coma prior to the initiation of TTM and without sedation withing the first hours after ROSC. DISCUSSION Studies on NCSE after ROSC are scarce and unsystematic, reporting favorable outcome in every fourth patient experiencing NCSE after ROSC. This suggests that NCSE is often overlooked and outcome after NCSE is not always poor. The low data quality does not allow firm conclusions regarding the effects of NCSE on outcome calling for further investigation. In the meantime, clinicians should avoid equating NCSE after ROSC with poor prognosis.
Collapse
|
24
|
Benghanem S, Pruvost-Robieux E, Bouchereau E, Gavaret M, Cariou A. Prognostication after cardiac arrest: how EEG and evoked potentials may improve the challenge. Ann Intensive Care 2022; 12:111. [PMID: 36480063 PMCID: PMC9732180 DOI: 10.1186/s13613-022-01083-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/07/2022] [Indexed: 12/13/2022] Open
Abstract
About 80% of patients resuscitated from CA are comatose at ICU admission and nearly 50% of survivors are still unawake at 72 h. Predicting neurological outcome of these patients is important to provide correct information to patient's relatives, avoid disproportionate care in patients with irreversible hypoxic-ischemic brain injury (HIBI) and inappropriate withdrawal of care in patients with a possible favorable neurological recovery. ERC/ESICM 2021 algorithm allows a classification as "poor outcome likely" in 32%, the outcome remaining "indeterminate" in 68%. The crucial question is to know how we could improve the assessment of both unfavorable but also favorable outcome prediction. Neurophysiological tests, i.e., electroencephalography (EEG) and evoked-potentials (EPs) are a non-invasive bedside investigations. The EEG is the record of brain electrical fields, characterized by a high temporal resolution but a low spatial resolution. EEG is largely available, and represented the most widely tool use in recent survey examining current neuro-prognostication practices. The severity of HIBI is correlated with the predominant frequency and background continuity of EEG leading to "highly malignant" patterns as suppression or burst suppression in the most severe HIBI. EPs differ from EEG signals as they are stimulus induced and represent the summated activities of large populations of neurons firing in synchrony, requiring the average of numerous stimulations. Different EPs (i.e., somato sensory EPs (SSEPs), brainstem auditory EPs (BAEPs), middle latency auditory EPs (MLAEPs) and long latency event-related potentials (ERPs) with mismatch negativity (MMN) and P300 responses) can be assessed in ICU, with different brain generators and prognostic values. In the present review, we summarize EEG and EPs signal generators, recording modalities, interpretation and prognostic values of these different neurophysiological tools. Finally, we assess the perspective for futures neurophysiological investigations, aiming to reduce prognostic uncertainty in comatose and disorders of consciousness (DoC) patients after CA.
Collapse
Affiliation(s)
- Sarah Benghanem
- grid.411784.f0000 0001 0274 3893Medical ICU, Cochin Hospital, Assistance Publique – Hôpitaux de Paris (AP-HP), 27 Rue du Faubourg Saint-Jacques, 75014 Paris, France ,grid.508487.60000 0004 7885 7602Medical School, University Paris Cité, Paris, France ,After ROSC Network, Paris, France ,grid.7429.80000000121866389UMR 1266, Institut de Psychiatrie et, INSERM FHU NeuroVascNeurosciences de Paris-IPNP, 75014 Paris, France
| | - Estelle Pruvost-Robieux
- grid.508487.60000 0004 7885 7602Medical School, University Paris Cité, Paris, France ,Neurophysiology and Epileptology Department, GHU Psychiatry and Neurosciences, Sainte Anne, 75014 Paris, France ,grid.7429.80000000121866389UMR 1266, Institut de Psychiatrie et, INSERM FHU NeuroVascNeurosciences de Paris-IPNP, 75014 Paris, France
| | - Eléonore Bouchereau
- Department of Neurocritical Care, G.H.U Paris Psychiatry and Neurosciences, 1, Rue Cabanis, 75014 Paris, France ,grid.7429.80000000121866389UMR 1266, Institut de Psychiatrie et, INSERM FHU NeuroVascNeurosciences de Paris-IPNP, 75014 Paris, France
| | - Martine Gavaret
- grid.508487.60000 0004 7885 7602Medical School, University Paris Cité, Paris, France ,Neurophysiology and Epileptology Department, GHU Psychiatry and Neurosciences, Sainte Anne, 75014 Paris, France ,grid.7429.80000000121866389UMR 1266, Institut de Psychiatrie et, INSERM FHU NeuroVascNeurosciences de Paris-IPNP, 75014 Paris, France
| | - Alain Cariou
- grid.411784.f0000 0001 0274 3893Medical ICU, Cochin Hospital, Assistance Publique – Hôpitaux de Paris (AP-HP), 27 Rue du Faubourg Saint-Jacques, 75014 Paris, France ,grid.508487.60000 0004 7885 7602Medical School, University Paris Cité, Paris, France ,After ROSC Network, Paris, France ,grid.462416.30000 0004 0495 1460Paris-Cardiovascular-Research-Center (Sudden-Death-Expertise-Center), INSERM U970, Paris, France
| |
Collapse
|
25
|
Alkhachroum A, Appavu B, Egawa S, Foreman B, Gaspard N, Gilmore EJ, Hirsch LJ, Kurtz P, Lambrecq V, Kromm J, Vespa P, Zafar SF, Rohaut B, Claassen J. Electroencephalogram in the intensive care unit: a focused look at acute brain injury. Intensive Care Med 2022; 48:1443-1462. [PMID: 35997792 PMCID: PMC10008537 DOI: 10.1007/s00134-022-06854-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/31/2022] [Indexed: 02/04/2023]
Abstract
Over the past decades, electroencephalography (EEG) has become a widely applied and highly sophisticated brain monitoring tool in a variety of intensive care unit (ICU) settings. The most common indication for EEG monitoring currently is the management of refractory status epilepticus. In addition, a number of studies have associated frequent seizures, including nonconvulsive status epilepticus (NCSE), with worsening secondary brain injury and with worse outcomes. With the widespread utilization of EEG (spot and continuous EEG), rhythmic and periodic patterns that do not fulfill strict seizure criteria have been identified, epidemiologically quantified, and linked to pathophysiological events across a wide spectrum of critical and acute illnesses, including acute brain injury. Increasingly, EEG is not just qualitatively described, but also quantitatively analyzed together with other modalities to generate innovative measurements with possible clinical relevance. In this review, we discuss the current knowledge and emerging applications of EEG in the ICU, including seizure detection, ischemia monitoring, detection of cortical spreading depolarizations, assessment of consciousness and prognostication. We also review some technical aspects and challenges of using EEG in the ICU including the logistics of setting up ICU EEG monitoring in resource-limited settings.
Collapse
Affiliation(s)
- Ayham Alkhachroum
- Department of Neurology, University of Miami, Miami, FL, USA
- Department of Neurology, Jackson Memorial Hospital, Miami, FL, USA
| | - Brian Appavu
- Department of Child Health and Neurology, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
- Department of Neurosciences, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Satoshi Egawa
- Neurointensive Care Unit, Department of Neurosurgery, and Stroke and Epilepsy Center, TMG Asaka Medical Center, Saitama, Japan
| | - Brandon Foreman
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, USA
| | - Nicolas Gaspard
- Department of Neurology, Erasme Hospital, Free University of Brussels, Brussels, Belgium
| | - Emily J Gilmore
- Comprehensive Epilepsy Center, Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Neurocritical Care and Emergency Neurology, Department of Neurology, Ale University School of Medicine, New Haven, CT, USA
| | - Lawrence J Hirsch
- Comprehensive Epilepsy Center, Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Pedro Kurtz
- Department of Intensive Care Medicine, D'or Institute for Research and Education, Rio de Janeiro, Brazil
- Neurointensive Care, Paulo Niemeyer State Brain Institute, Rio de Janeiro, Brazil
| | - Virginie Lambrecq
- Department of Clinical Neurophysiology and Epilepsy Unit, AP-HP, Pitié Salpêtrière Hospital, Reference Center for Rare Epilepsies, 75013, Paris, France
| | - Julie Kromm
- Departments of Critical Care Medicine and Clinical Neurosciences, Cumming School of Medicine, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, Calgary, AB, Canada
| | - Paul Vespa
- Brain Injury Research Center, Department of Neurosurgery, University of California, Los Angeles, USA
| | - Sahar F Zafar
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Benjamin Rohaut
- Department of Neurology, Sorbonne Université, Pitié-Salpêtrière-AP-HP and Paris Brain Institute, ICM, Inserm, CNRS, Paris, France
| | - Jan Claassen
- Department of Neurology, Neurological Institute, Columbia University, New York Presbyterian Hospital, 177 Fort Washington Avenue, MHB 8 Center, Room 300, New York, NY, 10032, USA.
| |
Collapse
|
26
|
Curley WH, Comanducci A, Fecchio M. Conventional and Investigational Approaches Leveraging Clinical EEG for Prognosis in Acute Disorders of Consciousness. Semin Neurol 2022; 42:309-324. [PMID: 36100227 DOI: 10.1055/s-0042-1755220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Prediction of recovery of consciousness after severe brain injury is difficult and limited by a lack of reliable, standardized biomarkers. Multiple approaches for analysis of clinical electroencephalography (EEG) that shed light on prognosis in acute severe brain injury have emerged in recent years. These approaches fall into two major categories: conventional characterization of EEG background and quantitative measurement of resting state or stimulus-induced EEG activity. Additionally, a small number of studies have associated the presence of electrophysiologic sleep features with prognosis in the acute phase of severe brain injury. In this review, we focus on approaches for the analysis of clinical EEG that have prognostic significance and that could be readily implemented with minimal additional equipment in clinical settings, such as intensive care and intensive rehabilitation units, for patients with acute disorders of consciousness.
Collapse
Affiliation(s)
- William H Curley
- Harvard Medical School, Boston, Massachusetts.,Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, Massachusetts
| | - Angela Comanducci
- IRCSS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy.,Università Campus Bio-Medico di Roma, Rome, Italy
| | - Matteo Fecchio
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
27
|
Urbano V, Alvarez V, Schindler K, Rüegg S, Ben-Hamouda N, Novy J, Rossetti AO. Continuous versus routine EEG in patients after cardiac arrest-Analysis of a randomized controlled trial (CERTA) - RESUS-D-22-00369. Resuscitation 2022; 176:68-73. [PMID: 35654226 DOI: 10.1016/j.resuscitation.2022.05.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Electroencephalography (EEG) is essential to assess prognosis in patients after cardiac arrest (CA). Use of continuous EEG (cEEG) is increasing in critically-ill patients, but it is more resource-consuming than routine EEG (rEEG). Observational studies did not show a major impact of cEEG versus rEEG on outcome, but randomized studies are lacking. METHODS We analyzed data of the CERTA trial (NCT03129438), including comatose adults after CA undergoing cEEG (30-48 hours) or two rEEG (20-30 minutes each). We explored correlations between recording EEG type and mortality (primary outcome), or Cerebral Performance Categories (CPC, secondary outcome), assessed blindly at 6 months, using uni- and multivariable analyses (adjusting for other prognostic variables showing some imbalance across groups). RESULTS We analyzed 112 adults (52 underwent rEEG, 60 cEEG,); 31 (27.7%) were women; 68 (60.7%) patients died. In univariate analysis, mortality (rEEG 59%, cEEG 65%, p=0.318) and good outcome (CPC 1-2; rEEG 33%, cEEG 27%, p=0.247) were comparable across EEG groups. This did not change after multiple logistic regressions, adjusting for shockable rhythm, time to return of spontaneous circulation, serum neuron-specific enolase, EEG background reactivity, regarding mortality (rEEG vs cEEG: OR 1.60, 95% CI 0.43 - 5.83, p=0.477), and good outcome (OR 0.51, 95% CI 0.14 - 1.90, p=0.318). CONCLUSION This analysis suggests that cEEG or repeated rEEG are related to comparable outcomes of comatose patients after CA. Pending a prospective, large randomized trial, this finding does not support the routine use of cEEG for prognostication in this setting. Trial registration Continuous EEG Randomized Trial in Adults (CERTA); NCT03129438; July 25, 2019.
Collapse
Affiliation(s)
- Valentina Urbano
- Department of Neurology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Vincent Alvarez
- Department of Neurology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Department of Neurology, Hôpital du Valais, Sion, Switzerland
| | - Kaspar Schindler
- Sleep-Wake-Epilepsy-Center, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Stephan Rüegg
- Department of Neurology, University Hospital Basel, and University of Basel, Basel, Switzerland
| | - Nawfel Ben-Hamouda
- Department of Adult Intensive Care Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jan Novy
- Department of Neurology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Andrea O Rossetti
- Department of Neurology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
28
|
Sandroni C, D'Arrigo S, Cacciola S, Hoedemaekers CWE, Westhall E, Kamps MJA, Taccone FS, Poole D, Meijer FJA, Antonelli M, Hirsch KG, Soar J, Nolan JP, Cronberg T. Prediction of good neurological outcome in comatose survivors of cardiac arrest: a systematic review. Intensive Care Med 2022; 48:389-413. [PMID: 35244745 PMCID: PMC8940794 DOI: 10.1007/s00134-022-06618-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/03/2022] [Indexed: 12/11/2022]
Abstract
PURPOSE To assess the ability of clinical examination, blood biomarkers, electrophysiology or neuroimaging assessed within 7 days from return of spontaneous circulation (ROSC) to predict good neurological outcome, defined as no, mild, or moderate disability (CPC 1-2 or mRS 0-3) at discharge from intensive care unit or later, in comatose adult survivors from cardiac arrest (CA). METHODS PubMed, EMBASE, Web of Science and the Cochrane Database of Systematic Reviews were searched. Sensitivity and specificity for good outcome were calculated for each predictor. The risk of bias was assessed using the QUIPS tool. RESULTS A total of 37 studies were included. Due to heterogeneities in recording times, predictor thresholds, and definition of some predictors, meta-analysis was not performed. A withdrawal or localisation motor response to pain immediately or at 72-96 h after ROSC, normal blood values of neuron-specific enolase (NSE) at 24 h-72 h after ROSC, a short-latency somatosensory evoked potentials (SSEPs) N20 wave amplitude > 4 µV or a continuous background without discharges on electroencephalogram (EEG) within 72 h from ROSC, and absent diffusion restriction in the cortex or deep grey matter on MRI on days 2-7 after ROSC predicted good neurological outcome with more than 80% specificity and a sensitivity above 40% in most studies. Most studies had moderate or high risk of bias. CONCLUSIONS In comatose cardiac arrest survivors, clinical, biomarker, electrophysiology, and imaging studies identified patients destined to a good neurological outcome with high specificity within the first week after cardiac arrest (CA).
Collapse
Affiliation(s)
- Claudio Sandroni
- Department of Intensive Care, Emergency Medicine and Anaesthesiology, Fondazione Policlinico Universitario "Agostino Gemelli"-IRCCS, Largo Francesco Vito, 1, 00168, Rome, Italy.,Institute of Anaesthesiology and Intensive Care Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Sonia D'Arrigo
- Department of Intensive Care, Emergency Medicine and Anaesthesiology, Fondazione Policlinico Universitario "Agostino Gemelli"-IRCCS, Largo Francesco Vito, 1, 00168, Rome, Italy.
| | - Sofia Cacciola
- Department of Intensive Care, Emergency Medicine and Anaesthesiology, Fondazione Policlinico Universitario "Agostino Gemelli"-IRCCS, Largo Francesco Vito, 1, 00168, Rome, Italy
| | | | - Erik Westhall
- Department of Clinical Sciences Lund, Clinical Neurophysiology, Lund University, Skane University Hospital, Lund, Sweden
| | - Marlijn J A Kamps
- Intensive Care Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | - Fabio S Taccone
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Daniele Poole
- Department of Anaesthesiology and Intensive Care, San Martino Hospital, Belluno, Italy
| | - Frederick J A Meijer
- Department of Radiology and Nuclear Medicine, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Massimo Antonelli
- Department of Intensive Care, Emergency Medicine and Anaesthesiology, Fondazione Policlinico Universitario "Agostino Gemelli"-IRCCS, Largo Francesco Vito, 1, 00168, Rome, Italy.,Institute of Anaesthesiology and Intensive Care Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Karen G Hirsch
- Department of Neurology, Stanford University, Stanford, USA
| | - Jasmeet Soar
- Critical Care Unit, Southmead Hospital, North Bristol NHS Trust, Bristol, UK
| | - Jerry P Nolan
- Department of Anaesthesia and Intensive Care Medicine, Royal United Hospital, Bath, UK
| | - Tobias Cronberg
- Department of Clinical Sciences Lund, Neurology, Lund University, Skane University Hospital, Lund, Sweden
| |
Collapse
|
29
|
Ruijter BJ, Keijzer HM, Tjepkema-Cloostermans MC, Blans MJ, Beishuizen A, Tromp SC, Scholten E, Horn J, van Rootselaar AF, Admiraal MM, van den Bergh WM, Elting JWJ, Foudraine NA, Kornips FHM, van Kranen-Mastenbroek VHJM, Rouhl RPW, Thomeer EC, Moudrous W, Nijhuis FAP, Booij SJ, Hoedemaekers CWE, Doorduin J, Taccone FS, van der Palen J, van Putten MJAM, Hofmeijer J. Treating Rhythmic and Periodic EEG Patterns in Comatose Survivors of Cardiac Arrest. N Engl J Med 2022; 386:724-734. [PMID: 35196426 DOI: 10.1056/nejmoa2115998] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Whether the treatment of rhythmic and periodic electroencephalographic (EEG) patterns in comatose survivors of cardiac arrest improves outcomes is uncertain. METHODS We conducted an open-label trial of suppressing rhythmic and periodic EEG patterns detected on continuous EEG monitoring in comatose survivors of cardiac arrest. Patients were randomly assigned in a 1:1 ratio to a stepwise strategy of antiseizure medications to suppress this activity for at least 48 consecutive hours plus standard care (antiseizure-treatment group) or to standard care alone (control group); standard care included targeted temperature management in both groups. The primary outcome was neurologic outcome according to the score on the Cerebral Performance Category (CPC) scale at 3 months, dichotomized as a good outcome (CPC score indicating no, mild, or moderate disability) or a poor outcome (CPC score indicating severe disability, coma, or death). Secondary outcomes were mortality, length of stay in the intensive care unit (ICU), and duration of mechanical ventilation. RESULTS We enrolled 172 patients, with 88 assigned to the antiseizure-treatment group and 84 to the control group. Rhythmic or periodic EEG activity was detected a median of 35 hours after cardiac arrest; 98 of 157 patients (62%) with available data had myoclonus. Complete suppression of rhythmic and periodic EEG activity for 48 consecutive hours occurred in 49 of 88 patients (56%) in the antiseizure-treatment group and in 2 of 83 patients (2%) in the control group. At 3 months, 79 of 88 patients (90%) in the antiseizure-treatment group and 77 of 84 patients (92%) in the control group had a poor outcome (difference, 2 percentage points; 95% confidence interval, -7 to 11; P = 0.68). Mortality at 3 months was 80% in the antiseizure-treatment group and 82% in the control group. The mean length of stay in the ICU and mean duration of mechanical ventilation were slightly longer in the antiseizure-treatment group than in the control group. CONCLUSIONS In comatose survivors of cardiac arrest, the incidence of a poor neurologic outcome at 3 months did not differ significantly between a strategy of suppressing rhythmic and periodic EEG activity with the use of antiseizure medication for at least 48 hours plus standard care and standard care alone. (Funded by the Dutch Epilepsy Foundation; TELSTAR ClinicalTrials.gov number, NCT02056236.).
Collapse
Affiliation(s)
- Barry J Ruijter
- From the Department of Clinical Neurophysiology, Technical Medical Center (B.J.R., M.C.T.-C., M.J.A.M.P., J. Hofmeijer), and the Section of Cognition, Data, and Education (J.P.), University of Twente, and the Departments of Neurology and Clinical Neurophysiology (M.C.T.-C., M.J.A.M.P.), the Intensive Care Center (A.B.), and the Department of Epidemiology (J.P.), Medisch Spectrum Twente, Enschede, the Departments of Neurology (H.M.K., J. Hofmeijer) and Intensive Care (M.J.B.), Rijnstate Hospital, Arnhem, the Departments of Intensive Care Medicine (H.M.K., C.W.E.H.) and Neurology (H.M.K., J.D.) and the Donders Institute for Brain, Cognition, and Behavior (H.M.K.), Radboud University Medical Center, and the Department of Neurology, Canisius Wilhelmina Hospital (F.A.P.N., S.J.B.), Nijmegen, the Departments of Neurology and Clinical Neurophysiology (S.C.T.) and Intensive Care (E.S.), St. Antonius Hospital, Nieuwegein, the Department of Neurology, Leiden University Medical Center, Leiden (S.C.T.), the Amsterdam Coma Group (J. Horn, A.-F.R., M.M.A.), the Department of Intensive Care (J. Horn), and the Department of Neurology and Clinical Neurophysiology (A.-F.R., M.M.A.), Amsterdam University Medical Center, Amsterdam, the Departments of Critical Care (W.M.B.) and Neurology and Clinical Neurophysiology (J.W.J.E.), University Medical Center Groningen, University of Groningen, Groningen, the Departments of Intensive Care (N.A.F.) and Neurology (F.H.M.K.), VieCuri Medical Center, Venlo, the Departments of Clinical Neurophysiology (V.H.J.M.K.-M.) and Neurology (R.P.W.R.), Maastricht University Medical Center, and the Academic Center for Epileptology Kempenhaeghe and Maastricht UMC+ (V.H.J.M.K.-M., R.P.W.R.), Maastricht, and the Department of Neurology, Maasstad Hospital, Rotterdam (E.C.T., W.M.) - all in the Netherlands; and the Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels (F.S.T.)
| | - Hanneke M Keijzer
- From the Department of Clinical Neurophysiology, Technical Medical Center (B.J.R., M.C.T.-C., M.J.A.M.P., J. Hofmeijer), and the Section of Cognition, Data, and Education (J.P.), University of Twente, and the Departments of Neurology and Clinical Neurophysiology (M.C.T.-C., M.J.A.M.P.), the Intensive Care Center (A.B.), and the Department of Epidemiology (J.P.), Medisch Spectrum Twente, Enschede, the Departments of Neurology (H.M.K., J. Hofmeijer) and Intensive Care (M.J.B.), Rijnstate Hospital, Arnhem, the Departments of Intensive Care Medicine (H.M.K., C.W.E.H.) and Neurology (H.M.K., J.D.) and the Donders Institute for Brain, Cognition, and Behavior (H.M.K.), Radboud University Medical Center, and the Department of Neurology, Canisius Wilhelmina Hospital (F.A.P.N., S.J.B.), Nijmegen, the Departments of Neurology and Clinical Neurophysiology (S.C.T.) and Intensive Care (E.S.), St. Antonius Hospital, Nieuwegein, the Department of Neurology, Leiden University Medical Center, Leiden (S.C.T.), the Amsterdam Coma Group (J. Horn, A.-F.R., M.M.A.), the Department of Intensive Care (J. Horn), and the Department of Neurology and Clinical Neurophysiology (A.-F.R., M.M.A.), Amsterdam University Medical Center, Amsterdam, the Departments of Critical Care (W.M.B.) and Neurology and Clinical Neurophysiology (J.W.J.E.), University Medical Center Groningen, University of Groningen, Groningen, the Departments of Intensive Care (N.A.F.) and Neurology (F.H.M.K.), VieCuri Medical Center, Venlo, the Departments of Clinical Neurophysiology (V.H.J.M.K.-M.) and Neurology (R.P.W.R.), Maastricht University Medical Center, and the Academic Center for Epileptology Kempenhaeghe and Maastricht UMC+ (V.H.J.M.K.-M., R.P.W.R.), Maastricht, and the Department of Neurology, Maasstad Hospital, Rotterdam (E.C.T., W.M.) - all in the Netherlands; and the Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels (F.S.T.)
| | - Marleen C Tjepkema-Cloostermans
- From the Department of Clinical Neurophysiology, Technical Medical Center (B.J.R., M.C.T.-C., M.J.A.M.P., J. Hofmeijer), and the Section of Cognition, Data, and Education (J.P.), University of Twente, and the Departments of Neurology and Clinical Neurophysiology (M.C.T.-C., M.J.A.M.P.), the Intensive Care Center (A.B.), and the Department of Epidemiology (J.P.), Medisch Spectrum Twente, Enschede, the Departments of Neurology (H.M.K., J. Hofmeijer) and Intensive Care (M.J.B.), Rijnstate Hospital, Arnhem, the Departments of Intensive Care Medicine (H.M.K., C.W.E.H.) and Neurology (H.M.K., J.D.) and the Donders Institute for Brain, Cognition, and Behavior (H.M.K.), Radboud University Medical Center, and the Department of Neurology, Canisius Wilhelmina Hospital (F.A.P.N., S.J.B.), Nijmegen, the Departments of Neurology and Clinical Neurophysiology (S.C.T.) and Intensive Care (E.S.), St. Antonius Hospital, Nieuwegein, the Department of Neurology, Leiden University Medical Center, Leiden (S.C.T.), the Amsterdam Coma Group (J. Horn, A.-F.R., M.M.A.), the Department of Intensive Care (J. Horn), and the Department of Neurology and Clinical Neurophysiology (A.-F.R., M.M.A.), Amsterdam University Medical Center, Amsterdam, the Departments of Critical Care (W.M.B.) and Neurology and Clinical Neurophysiology (J.W.J.E.), University Medical Center Groningen, University of Groningen, Groningen, the Departments of Intensive Care (N.A.F.) and Neurology (F.H.M.K.), VieCuri Medical Center, Venlo, the Departments of Clinical Neurophysiology (V.H.J.M.K.-M.) and Neurology (R.P.W.R.), Maastricht University Medical Center, and the Academic Center for Epileptology Kempenhaeghe and Maastricht UMC+ (V.H.J.M.K.-M., R.P.W.R.), Maastricht, and the Department of Neurology, Maasstad Hospital, Rotterdam (E.C.T., W.M.) - all in the Netherlands; and the Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels (F.S.T.)
| | - Michiel J Blans
- From the Department of Clinical Neurophysiology, Technical Medical Center (B.J.R., M.C.T.-C., M.J.A.M.P., J. Hofmeijer), and the Section of Cognition, Data, and Education (J.P.), University of Twente, and the Departments of Neurology and Clinical Neurophysiology (M.C.T.-C., M.J.A.M.P.), the Intensive Care Center (A.B.), and the Department of Epidemiology (J.P.), Medisch Spectrum Twente, Enschede, the Departments of Neurology (H.M.K., J. Hofmeijer) and Intensive Care (M.J.B.), Rijnstate Hospital, Arnhem, the Departments of Intensive Care Medicine (H.M.K., C.W.E.H.) and Neurology (H.M.K., J.D.) and the Donders Institute for Brain, Cognition, and Behavior (H.M.K.), Radboud University Medical Center, and the Department of Neurology, Canisius Wilhelmina Hospital (F.A.P.N., S.J.B.), Nijmegen, the Departments of Neurology and Clinical Neurophysiology (S.C.T.) and Intensive Care (E.S.), St. Antonius Hospital, Nieuwegein, the Department of Neurology, Leiden University Medical Center, Leiden (S.C.T.), the Amsterdam Coma Group (J. Horn, A.-F.R., M.M.A.), the Department of Intensive Care (J. Horn), and the Department of Neurology and Clinical Neurophysiology (A.-F.R., M.M.A.), Amsterdam University Medical Center, Amsterdam, the Departments of Critical Care (W.M.B.) and Neurology and Clinical Neurophysiology (J.W.J.E.), University Medical Center Groningen, University of Groningen, Groningen, the Departments of Intensive Care (N.A.F.) and Neurology (F.H.M.K.), VieCuri Medical Center, Venlo, the Departments of Clinical Neurophysiology (V.H.J.M.K.-M.) and Neurology (R.P.W.R.), Maastricht University Medical Center, and the Academic Center for Epileptology Kempenhaeghe and Maastricht UMC+ (V.H.J.M.K.-M., R.P.W.R.), Maastricht, and the Department of Neurology, Maasstad Hospital, Rotterdam (E.C.T., W.M.) - all in the Netherlands; and the Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels (F.S.T.)
| | - Albertus Beishuizen
- From the Department of Clinical Neurophysiology, Technical Medical Center (B.J.R., M.C.T.-C., M.J.A.M.P., J. Hofmeijer), and the Section of Cognition, Data, and Education (J.P.), University of Twente, and the Departments of Neurology and Clinical Neurophysiology (M.C.T.-C., M.J.A.M.P.), the Intensive Care Center (A.B.), and the Department of Epidemiology (J.P.), Medisch Spectrum Twente, Enschede, the Departments of Neurology (H.M.K., J. Hofmeijer) and Intensive Care (M.J.B.), Rijnstate Hospital, Arnhem, the Departments of Intensive Care Medicine (H.M.K., C.W.E.H.) and Neurology (H.M.K., J.D.) and the Donders Institute for Brain, Cognition, and Behavior (H.M.K.), Radboud University Medical Center, and the Department of Neurology, Canisius Wilhelmina Hospital (F.A.P.N., S.J.B.), Nijmegen, the Departments of Neurology and Clinical Neurophysiology (S.C.T.) and Intensive Care (E.S.), St. Antonius Hospital, Nieuwegein, the Department of Neurology, Leiden University Medical Center, Leiden (S.C.T.), the Amsterdam Coma Group (J. Horn, A.-F.R., M.M.A.), the Department of Intensive Care (J. Horn), and the Department of Neurology and Clinical Neurophysiology (A.-F.R., M.M.A.), Amsterdam University Medical Center, Amsterdam, the Departments of Critical Care (W.M.B.) and Neurology and Clinical Neurophysiology (J.W.J.E.), University Medical Center Groningen, University of Groningen, Groningen, the Departments of Intensive Care (N.A.F.) and Neurology (F.H.M.K.), VieCuri Medical Center, Venlo, the Departments of Clinical Neurophysiology (V.H.J.M.K.-M.) and Neurology (R.P.W.R.), Maastricht University Medical Center, and the Academic Center for Epileptology Kempenhaeghe and Maastricht UMC+ (V.H.J.M.K.-M., R.P.W.R.), Maastricht, and the Department of Neurology, Maasstad Hospital, Rotterdam (E.C.T., W.M.) - all in the Netherlands; and the Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels (F.S.T.)
| | - Selma C Tromp
- From the Department of Clinical Neurophysiology, Technical Medical Center (B.J.R., M.C.T.-C., M.J.A.M.P., J. Hofmeijer), and the Section of Cognition, Data, and Education (J.P.), University of Twente, and the Departments of Neurology and Clinical Neurophysiology (M.C.T.-C., M.J.A.M.P.), the Intensive Care Center (A.B.), and the Department of Epidemiology (J.P.), Medisch Spectrum Twente, Enschede, the Departments of Neurology (H.M.K., J. Hofmeijer) and Intensive Care (M.J.B.), Rijnstate Hospital, Arnhem, the Departments of Intensive Care Medicine (H.M.K., C.W.E.H.) and Neurology (H.M.K., J.D.) and the Donders Institute for Brain, Cognition, and Behavior (H.M.K.), Radboud University Medical Center, and the Department of Neurology, Canisius Wilhelmina Hospital (F.A.P.N., S.J.B.), Nijmegen, the Departments of Neurology and Clinical Neurophysiology (S.C.T.) and Intensive Care (E.S.), St. Antonius Hospital, Nieuwegein, the Department of Neurology, Leiden University Medical Center, Leiden (S.C.T.), the Amsterdam Coma Group (J. Horn, A.-F.R., M.M.A.), the Department of Intensive Care (J. Horn), and the Department of Neurology and Clinical Neurophysiology (A.-F.R., M.M.A.), Amsterdam University Medical Center, Amsterdam, the Departments of Critical Care (W.M.B.) and Neurology and Clinical Neurophysiology (J.W.J.E.), University Medical Center Groningen, University of Groningen, Groningen, the Departments of Intensive Care (N.A.F.) and Neurology (F.H.M.K.), VieCuri Medical Center, Venlo, the Departments of Clinical Neurophysiology (V.H.J.M.K.-M.) and Neurology (R.P.W.R.), Maastricht University Medical Center, and the Academic Center for Epileptology Kempenhaeghe and Maastricht UMC+ (V.H.J.M.K.-M., R.P.W.R.), Maastricht, and the Department of Neurology, Maasstad Hospital, Rotterdam (E.C.T., W.M.) - all in the Netherlands; and the Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels (F.S.T.)
| | - Erik Scholten
- From the Department of Clinical Neurophysiology, Technical Medical Center (B.J.R., M.C.T.-C., M.J.A.M.P., J. Hofmeijer), and the Section of Cognition, Data, and Education (J.P.), University of Twente, and the Departments of Neurology and Clinical Neurophysiology (M.C.T.-C., M.J.A.M.P.), the Intensive Care Center (A.B.), and the Department of Epidemiology (J.P.), Medisch Spectrum Twente, Enschede, the Departments of Neurology (H.M.K., J. Hofmeijer) and Intensive Care (M.J.B.), Rijnstate Hospital, Arnhem, the Departments of Intensive Care Medicine (H.M.K., C.W.E.H.) and Neurology (H.M.K., J.D.) and the Donders Institute for Brain, Cognition, and Behavior (H.M.K.), Radboud University Medical Center, and the Department of Neurology, Canisius Wilhelmina Hospital (F.A.P.N., S.J.B.), Nijmegen, the Departments of Neurology and Clinical Neurophysiology (S.C.T.) and Intensive Care (E.S.), St. Antonius Hospital, Nieuwegein, the Department of Neurology, Leiden University Medical Center, Leiden (S.C.T.), the Amsterdam Coma Group (J. Horn, A.-F.R., M.M.A.), the Department of Intensive Care (J. Horn), and the Department of Neurology and Clinical Neurophysiology (A.-F.R., M.M.A.), Amsterdam University Medical Center, Amsterdam, the Departments of Critical Care (W.M.B.) and Neurology and Clinical Neurophysiology (J.W.J.E.), University Medical Center Groningen, University of Groningen, Groningen, the Departments of Intensive Care (N.A.F.) and Neurology (F.H.M.K.), VieCuri Medical Center, Venlo, the Departments of Clinical Neurophysiology (V.H.J.M.K.-M.) and Neurology (R.P.W.R.), Maastricht University Medical Center, and the Academic Center for Epileptology Kempenhaeghe and Maastricht UMC+ (V.H.J.M.K.-M., R.P.W.R.), Maastricht, and the Department of Neurology, Maasstad Hospital, Rotterdam (E.C.T., W.M.) - all in the Netherlands; and the Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels (F.S.T.)
| | - Janneke Horn
- From the Department of Clinical Neurophysiology, Technical Medical Center (B.J.R., M.C.T.-C., M.J.A.M.P., J. Hofmeijer), and the Section of Cognition, Data, and Education (J.P.), University of Twente, and the Departments of Neurology and Clinical Neurophysiology (M.C.T.-C., M.J.A.M.P.), the Intensive Care Center (A.B.), and the Department of Epidemiology (J.P.), Medisch Spectrum Twente, Enschede, the Departments of Neurology (H.M.K., J. Hofmeijer) and Intensive Care (M.J.B.), Rijnstate Hospital, Arnhem, the Departments of Intensive Care Medicine (H.M.K., C.W.E.H.) and Neurology (H.M.K., J.D.) and the Donders Institute for Brain, Cognition, and Behavior (H.M.K.), Radboud University Medical Center, and the Department of Neurology, Canisius Wilhelmina Hospital (F.A.P.N., S.J.B.), Nijmegen, the Departments of Neurology and Clinical Neurophysiology (S.C.T.) and Intensive Care (E.S.), St. Antonius Hospital, Nieuwegein, the Department of Neurology, Leiden University Medical Center, Leiden (S.C.T.), the Amsterdam Coma Group (J. Horn, A.-F.R., M.M.A.), the Department of Intensive Care (J. Horn), and the Department of Neurology and Clinical Neurophysiology (A.-F.R., M.M.A.), Amsterdam University Medical Center, Amsterdam, the Departments of Critical Care (W.M.B.) and Neurology and Clinical Neurophysiology (J.W.J.E.), University Medical Center Groningen, University of Groningen, Groningen, the Departments of Intensive Care (N.A.F.) and Neurology (F.H.M.K.), VieCuri Medical Center, Venlo, the Departments of Clinical Neurophysiology (V.H.J.M.K.-M.) and Neurology (R.P.W.R.), Maastricht University Medical Center, and the Academic Center for Epileptology Kempenhaeghe and Maastricht UMC+ (V.H.J.M.K.-M., R.P.W.R.), Maastricht, and the Department of Neurology, Maasstad Hospital, Rotterdam (E.C.T., W.M.) - all in the Netherlands; and the Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels (F.S.T.)
| | - Anne-Fleur van Rootselaar
- From the Department of Clinical Neurophysiology, Technical Medical Center (B.J.R., M.C.T.-C., M.J.A.M.P., J. Hofmeijer), and the Section of Cognition, Data, and Education (J.P.), University of Twente, and the Departments of Neurology and Clinical Neurophysiology (M.C.T.-C., M.J.A.M.P.), the Intensive Care Center (A.B.), and the Department of Epidemiology (J.P.), Medisch Spectrum Twente, Enschede, the Departments of Neurology (H.M.K., J. Hofmeijer) and Intensive Care (M.J.B.), Rijnstate Hospital, Arnhem, the Departments of Intensive Care Medicine (H.M.K., C.W.E.H.) and Neurology (H.M.K., J.D.) and the Donders Institute for Brain, Cognition, and Behavior (H.M.K.), Radboud University Medical Center, and the Department of Neurology, Canisius Wilhelmina Hospital (F.A.P.N., S.J.B.), Nijmegen, the Departments of Neurology and Clinical Neurophysiology (S.C.T.) and Intensive Care (E.S.), St. Antonius Hospital, Nieuwegein, the Department of Neurology, Leiden University Medical Center, Leiden (S.C.T.), the Amsterdam Coma Group (J. Horn, A.-F.R., M.M.A.), the Department of Intensive Care (J. Horn), and the Department of Neurology and Clinical Neurophysiology (A.-F.R., M.M.A.), Amsterdam University Medical Center, Amsterdam, the Departments of Critical Care (W.M.B.) and Neurology and Clinical Neurophysiology (J.W.J.E.), University Medical Center Groningen, University of Groningen, Groningen, the Departments of Intensive Care (N.A.F.) and Neurology (F.H.M.K.), VieCuri Medical Center, Venlo, the Departments of Clinical Neurophysiology (V.H.J.M.K.-M.) and Neurology (R.P.W.R.), Maastricht University Medical Center, and the Academic Center for Epileptology Kempenhaeghe and Maastricht UMC+ (V.H.J.M.K.-M., R.P.W.R.), Maastricht, and the Department of Neurology, Maasstad Hospital, Rotterdam (E.C.T., W.M.) - all in the Netherlands; and the Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels (F.S.T.)
| | - Marjolein M Admiraal
- From the Department of Clinical Neurophysiology, Technical Medical Center (B.J.R., M.C.T.-C., M.J.A.M.P., J. Hofmeijer), and the Section of Cognition, Data, and Education (J.P.), University of Twente, and the Departments of Neurology and Clinical Neurophysiology (M.C.T.-C., M.J.A.M.P.), the Intensive Care Center (A.B.), and the Department of Epidemiology (J.P.), Medisch Spectrum Twente, Enschede, the Departments of Neurology (H.M.K., J. Hofmeijer) and Intensive Care (M.J.B.), Rijnstate Hospital, Arnhem, the Departments of Intensive Care Medicine (H.M.K., C.W.E.H.) and Neurology (H.M.K., J.D.) and the Donders Institute for Brain, Cognition, and Behavior (H.M.K.), Radboud University Medical Center, and the Department of Neurology, Canisius Wilhelmina Hospital (F.A.P.N., S.J.B.), Nijmegen, the Departments of Neurology and Clinical Neurophysiology (S.C.T.) and Intensive Care (E.S.), St. Antonius Hospital, Nieuwegein, the Department of Neurology, Leiden University Medical Center, Leiden (S.C.T.), the Amsterdam Coma Group (J. Horn, A.-F.R., M.M.A.), the Department of Intensive Care (J. Horn), and the Department of Neurology and Clinical Neurophysiology (A.-F.R., M.M.A.), Amsterdam University Medical Center, Amsterdam, the Departments of Critical Care (W.M.B.) and Neurology and Clinical Neurophysiology (J.W.J.E.), University Medical Center Groningen, University of Groningen, Groningen, the Departments of Intensive Care (N.A.F.) and Neurology (F.H.M.K.), VieCuri Medical Center, Venlo, the Departments of Clinical Neurophysiology (V.H.J.M.K.-M.) and Neurology (R.P.W.R.), Maastricht University Medical Center, and the Academic Center for Epileptology Kempenhaeghe and Maastricht UMC+ (V.H.J.M.K.-M., R.P.W.R.), Maastricht, and the Department of Neurology, Maasstad Hospital, Rotterdam (E.C.T., W.M.) - all in the Netherlands; and the Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels (F.S.T.)
| | - Walter M van den Bergh
- From the Department of Clinical Neurophysiology, Technical Medical Center (B.J.R., M.C.T.-C., M.J.A.M.P., J. Hofmeijer), and the Section of Cognition, Data, and Education (J.P.), University of Twente, and the Departments of Neurology and Clinical Neurophysiology (M.C.T.-C., M.J.A.M.P.), the Intensive Care Center (A.B.), and the Department of Epidemiology (J.P.), Medisch Spectrum Twente, Enschede, the Departments of Neurology (H.M.K., J. Hofmeijer) and Intensive Care (M.J.B.), Rijnstate Hospital, Arnhem, the Departments of Intensive Care Medicine (H.M.K., C.W.E.H.) and Neurology (H.M.K., J.D.) and the Donders Institute for Brain, Cognition, and Behavior (H.M.K.), Radboud University Medical Center, and the Department of Neurology, Canisius Wilhelmina Hospital (F.A.P.N., S.J.B.), Nijmegen, the Departments of Neurology and Clinical Neurophysiology (S.C.T.) and Intensive Care (E.S.), St. Antonius Hospital, Nieuwegein, the Department of Neurology, Leiden University Medical Center, Leiden (S.C.T.), the Amsterdam Coma Group (J. Horn, A.-F.R., M.M.A.), the Department of Intensive Care (J. Horn), and the Department of Neurology and Clinical Neurophysiology (A.-F.R., M.M.A.), Amsterdam University Medical Center, Amsterdam, the Departments of Critical Care (W.M.B.) and Neurology and Clinical Neurophysiology (J.W.J.E.), University Medical Center Groningen, University of Groningen, Groningen, the Departments of Intensive Care (N.A.F.) and Neurology (F.H.M.K.), VieCuri Medical Center, Venlo, the Departments of Clinical Neurophysiology (V.H.J.M.K.-M.) and Neurology (R.P.W.R.), Maastricht University Medical Center, and the Academic Center for Epileptology Kempenhaeghe and Maastricht UMC+ (V.H.J.M.K.-M., R.P.W.R.), Maastricht, and the Department of Neurology, Maasstad Hospital, Rotterdam (E.C.T., W.M.) - all in the Netherlands; and the Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels (F.S.T.)
| | - Jan-Willem J Elting
- From the Department of Clinical Neurophysiology, Technical Medical Center (B.J.R., M.C.T.-C., M.J.A.M.P., J. Hofmeijer), and the Section of Cognition, Data, and Education (J.P.), University of Twente, and the Departments of Neurology and Clinical Neurophysiology (M.C.T.-C., M.J.A.M.P.), the Intensive Care Center (A.B.), and the Department of Epidemiology (J.P.), Medisch Spectrum Twente, Enschede, the Departments of Neurology (H.M.K., J. Hofmeijer) and Intensive Care (M.J.B.), Rijnstate Hospital, Arnhem, the Departments of Intensive Care Medicine (H.M.K., C.W.E.H.) and Neurology (H.M.K., J.D.) and the Donders Institute for Brain, Cognition, and Behavior (H.M.K.), Radboud University Medical Center, and the Department of Neurology, Canisius Wilhelmina Hospital (F.A.P.N., S.J.B.), Nijmegen, the Departments of Neurology and Clinical Neurophysiology (S.C.T.) and Intensive Care (E.S.), St. Antonius Hospital, Nieuwegein, the Department of Neurology, Leiden University Medical Center, Leiden (S.C.T.), the Amsterdam Coma Group (J. Horn, A.-F.R., M.M.A.), the Department of Intensive Care (J. Horn), and the Department of Neurology and Clinical Neurophysiology (A.-F.R., M.M.A.), Amsterdam University Medical Center, Amsterdam, the Departments of Critical Care (W.M.B.) and Neurology and Clinical Neurophysiology (J.W.J.E.), University Medical Center Groningen, University of Groningen, Groningen, the Departments of Intensive Care (N.A.F.) and Neurology (F.H.M.K.), VieCuri Medical Center, Venlo, the Departments of Clinical Neurophysiology (V.H.J.M.K.-M.) and Neurology (R.P.W.R.), Maastricht University Medical Center, and the Academic Center for Epileptology Kempenhaeghe and Maastricht UMC+ (V.H.J.M.K.-M., R.P.W.R.), Maastricht, and the Department of Neurology, Maasstad Hospital, Rotterdam (E.C.T., W.M.) - all in the Netherlands; and the Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels (F.S.T.)
| | - Norbert A Foudraine
- From the Department of Clinical Neurophysiology, Technical Medical Center (B.J.R., M.C.T.-C., M.J.A.M.P., J. Hofmeijer), and the Section of Cognition, Data, and Education (J.P.), University of Twente, and the Departments of Neurology and Clinical Neurophysiology (M.C.T.-C., M.J.A.M.P.), the Intensive Care Center (A.B.), and the Department of Epidemiology (J.P.), Medisch Spectrum Twente, Enschede, the Departments of Neurology (H.M.K., J. Hofmeijer) and Intensive Care (M.J.B.), Rijnstate Hospital, Arnhem, the Departments of Intensive Care Medicine (H.M.K., C.W.E.H.) and Neurology (H.M.K., J.D.) and the Donders Institute for Brain, Cognition, and Behavior (H.M.K.), Radboud University Medical Center, and the Department of Neurology, Canisius Wilhelmina Hospital (F.A.P.N., S.J.B.), Nijmegen, the Departments of Neurology and Clinical Neurophysiology (S.C.T.) and Intensive Care (E.S.), St. Antonius Hospital, Nieuwegein, the Department of Neurology, Leiden University Medical Center, Leiden (S.C.T.), the Amsterdam Coma Group (J. Horn, A.-F.R., M.M.A.), the Department of Intensive Care (J. Horn), and the Department of Neurology and Clinical Neurophysiology (A.-F.R., M.M.A.), Amsterdam University Medical Center, Amsterdam, the Departments of Critical Care (W.M.B.) and Neurology and Clinical Neurophysiology (J.W.J.E.), University Medical Center Groningen, University of Groningen, Groningen, the Departments of Intensive Care (N.A.F.) and Neurology (F.H.M.K.), VieCuri Medical Center, Venlo, the Departments of Clinical Neurophysiology (V.H.J.M.K.-M.) and Neurology (R.P.W.R.), Maastricht University Medical Center, and the Academic Center for Epileptology Kempenhaeghe and Maastricht UMC+ (V.H.J.M.K.-M., R.P.W.R.), Maastricht, and the Department of Neurology, Maasstad Hospital, Rotterdam (E.C.T., W.M.) - all in the Netherlands; and the Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels (F.S.T.)
| | - Francois H M Kornips
- From the Department of Clinical Neurophysiology, Technical Medical Center (B.J.R., M.C.T.-C., M.J.A.M.P., J. Hofmeijer), and the Section of Cognition, Data, and Education (J.P.), University of Twente, and the Departments of Neurology and Clinical Neurophysiology (M.C.T.-C., M.J.A.M.P.), the Intensive Care Center (A.B.), and the Department of Epidemiology (J.P.), Medisch Spectrum Twente, Enschede, the Departments of Neurology (H.M.K., J. Hofmeijer) and Intensive Care (M.J.B.), Rijnstate Hospital, Arnhem, the Departments of Intensive Care Medicine (H.M.K., C.W.E.H.) and Neurology (H.M.K., J.D.) and the Donders Institute for Brain, Cognition, and Behavior (H.M.K.), Radboud University Medical Center, and the Department of Neurology, Canisius Wilhelmina Hospital (F.A.P.N., S.J.B.), Nijmegen, the Departments of Neurology and Clinical Neurophysiology (S.C.T.) and Intensive Care (E.S.), St. Antonius Hospital, Nieuwegein, the Department of Neurology, Leiden University Medical Center, Leiden (S.C.T.), the Amsterdam Coma Group (J. Horn, A.-F.R., M.M.A.), the Department of Intensive Care (J. Horn), and the Department of Neurology and Clinical Neurophysiology (A.-F.R., M.M.A.), Amsterdam University Medical Center, Amsterdam, the Departments of Critical Care (W.M.B.) and Neurology and Clinical Neurophysiology (J.W.J.E.), University Medical Center Groningen, University of Groningen, Groningen, the Departments of Intensive Care (N.A.F.) and Neurology (F.H.M.K.), VieCuri Medical Center, Venlo, the Departments of Clinical Neurophysiology (V.H.J.M.K.-M.) and Neurology (R.P.W.R.), Maastricht University Medical Center, and the Academic Center for Epileptology Kempenhaeghe and Maastricht UMC+ (V.H.J.M.K.-M., R.P.W.R.), Maastricht, and the Department of Neurology, Maasstad Hospital, Rotterdam (E.C.T., W.M.) - all in the Netherlands; and the Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels (F.S.T.)
| | - Vivianne H J M van Kranen-Mastenbroek
- From the Department of Clinical Neurophysiology, Technical Medical Center (B.J.R., M.C.T.-C., M.J.A.M.P., J. Hofmeijer), and the Section of Cognition, Data, and Education (J.P.), University of Twente, and the Departments of Neurology and Clinical Neurophysiology (M.C.T.-C., M.J.A.M.P.), the Intensive Care Center (A.B.), and the Department of Epidemiology (J.P.), Medisch Spectrum Twente, Enschede, the Departments of Neurology (H.M.K., J. Hofmeijer) and Intensive Care (M.J.B.), Rijnstate Hospital, Arnhem, the Departments of Intensive Care Medicine (H.M.K., C.W.E.H.) and Neurology (H.M.K., J.D.) and the Donders Institute for Brain, Cognition, and Behavior (H.M.K.), Radboud University Medical Center, and the Department of Neurology, Canisius Wilhelmina Hospital (F.A.P.N., S.J.B.), Nijmegen, the Departments of Neurology and Clinical Neurophysiology (S.C.T.) and Intensive Care (E.S.), St. Antonius Hospital, Nieuwegein, the Department of Neurology, Leiden University Medical Center, Leiden (S.C.T.), the Amsterdam Coma Group (J. Horn, A.-F.R., M.M.A.), the Department of Intensive Care (J. Horn), and the Department of Neurology and Clinical Neurophysiology (A.-F.R., M.M.A.), Amsterdam University Medical Center, Amsterdam, the Departments of Critical Care (W.M.B.) and Neurology and Clinical Neurophysiology (J.W.J.E.), University Medical Center Groningen, University of Groningen, Groningen, the Departments of Intensive Care (N.A.F.) and Neurology (F.H.M.K.), VieCuri Medical Center, Venlo, the Departments of Clinical Neurophysiology (V.H.J.M.K.-M.) and Neurology (R.P.W.R.), Maastricht University Medical Center, and the Academic Center for Epileptology Kempenhaeghe and Maastricht UMC+ (V.H.J.M.K.-M., R.P.W.R.), Maastricht, and the Department of Neurology, Maasstad Hospital, Rotterdam (E.C.T., W.M.) - all in the Netherlands; and the Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels (F.S.T.)
| | - Rob P W Rouhl
- From the Department of Clinical Neurophysiology, Technical Medical Center (B.J.R., M.C.T.-C., M.J.A.M.P., J. Hofmeijer), and the Section of Cognition, Data, and Education (J.P.), University of Twente, and the Departments of Neurology and Clinical Neurophysiology (M.C.T.-C., M.J.A.M.P.), the Intensive Care Center (A.B.), and the Department of Epidemiology (J.P.), Medisch Spectrum Twente, Enschede, the Departments of Neurology (H.M.K., J. Hofmeijer) and Intensive Care (M.J.B.), Rijnstate Hospital, Arnhem, the Departments of Intensive Care Medicine (H.M.K., C.W.E.H.) and Neurology (H.M.K., J.D.) and the Donders Institute for Brain, Cognition, and Behavior (H.M.K.), Radboud University Medical Center, and the Department of Neurology, Canisius Wilhelmina Hospital (F.A.P.N., S.J.B.), Nijmegen, the Departments of Neurology and Clinical Neurophysiology (S.C.T.) and Intensive Care (E.S.), St. Antonius Hospital, Nieuwegein, the Department of Neurology, Leiden University Medical Center, Leiden (S.C.T.), the Amsterdam Coma Group (J. Horn, A.-F.R., M.M.A.), the Department of Intensive Care (J. Horn), and the Department of Neurology and Clinical Neurophysiology (A.-F.R., M.M.A.), Amsterdam University Medical Center, Amsterdam, the Departments of Critical Care (W.M.B.) and Neurology and Clinical Neurophysiology (J.W.J.E.), University Medical Center Groningen, University of Groningen, Groningen, the Departments of Intensive Care (N.A.F.) and Neurology (F.H.M.K.), VieCuri Medical Center, Venlo, the Departments of Clinical Neurophysiology (V.H.J.M.K.-M.) and Neurology (R.P.W.R.), Maastricht University Medical Center, and the Academic Center for Epileptology Kempenhaeghe and Maastricht UMC+ (V.H.J.M.K.-M., R.P.W.R.), Maastricht, and the Department of Neurology, Maasstad Hospital, Rotterdam (E.C.T., W.M.) - all in the Netherlands; and the Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels (F.S.T.)
| | - Elsbeth C Thomeer
- From the Department of Clinical Neurophysiology, Technical Medical Center (B.J.R., M.C.T.-C., M.J.A.M.P., J. Hofmeijer), and the Section of Cognition, Data, and Education (J.P.), University of Twente, and the Departments of Neurology and Clinical Neurophysiology (M.C.T.-C., M.J.A.M.P.), the Intensive Care Center (A.B.), and the Department of Epidemiology (J.P.), Medisch Spectrum Twente, Enschede, the Departments of Neurology (H.M.K., J. Hofmeijer) and Intensive Care (M.J.B.), Rijnstate Hospital, Arnhem, the Departments of Intensive Care Medicine (H.M.K., C.W.E.H.) and Neurology (H.M.K., J.D.) and the Donders Institute for Brain, Cognition, and Behavior (H.M.K.), Radboud University Medical Center, and the Department of Neurology, Canisius Wilhelmina Hospital (F.A.P.N., S.J.B.), Nijmegen, the Departments of Neurology and Clinical Neurophysiology (S.C.T.) and Intensive Care (E.S.), St. Antonius Hospital, Nieuwegein, the Department of Neurology, Leiden University Medical Center, Leiden (S.C.T.), the Amsterdam Coma Group (J. Horn, A.-F.R., M.M.A.), the Department of Intensive Care (J. Horn), and the Department of Neurology and Clinical Neurophysiology (A.-F.R., M.M.A.), Amsterdam University Medical Center, Amsterdam, the Departments of Critical Care (W.M.B.) and Neurology and Clinical Neurophysiology (J.W.J.E.), University Medical Center Groningen, University of Groningen, Groningen, the Departments of Intensive Care (N.A.F.) and Neurology (F.H.M.K.), VieCuri Medical Center, Venlo, the Departments of Clinical Neurophysiology (V.H.J.M.K.-M.) and Neurology (R.P.W.R.), Maastricht University Medical Center, and the Academic Center for Epileptology Kempenhaeghe and Maastricht UMC+ (V.H.J.M.K.-M., R.P.W.R.), Maastricht, and the Department of Neurology, Maasstad Hospital, Rotterdam (E.C.T., W.M.) - all in the Netherlands; and the Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels (F.S.T.)
| | - Walid Moudrous
- From the Department of Clinical Neurophysiology, Technical Medical Center (B.J.R., M.C.T.-C., M.J.A.M.P., J. Hofmeijer), and the Section of Cognition, Data, and Education (J.P.), University of Twente, and the Departments of Neurology and Clinical Neurophysiology (M.C.T.-C., M.J.A.M.P.), the Intensive Care Center (A.B.), and the Department of Epidemiology (J.P.), Medisch Spectrum Twente, Enschede, the Departments of Neurology (H.M.K., J. Hofmeijer) and Intensive Care (M.J.B.), Rijnstate Hospital, Arnhem, the Departments of Intensive Care Medicine (H.M.K., C.W.E.H.) and Neurology (H.M.K., J.D.) and the Donders Institute for Brain, Cognition, and Behavior (H.M.K.), Radboud University Medical Center, and the Department of Neurology, Canisius Wilhelmina Hospital (F.A.P.N., S.J.B.), Nijmegen, the Departments of Neurology and Clinical Neurophysiology (S.C.T.) and Intensive Care (E.S.), St. Antonius Hospital, Nieuwegein, the Department of Neurology, Leiden University Medical Center, Leiden (S.C.T.), the Amsterdam Coma Group (J. Horn, A.-F.R., M.M.A.), the Department of Intensive Care (J. Horn), and the Department of Neurology and Clinical Neurophysiology (A.-F.R., M.M.A.), Amsterdam University Medical Center, Amsterdam, the Departments of Critical Care (W.M.B.) and Neurology and Clinical Neurophysiology (J.W.J.E.), University Medical Center Groningen, University of Groningen, Groningen, the Departments of Intensive Care (N.A.F.) and Neurology (F.H.M.K.), VieCuri Medical Center, Venlo, the Departments of Clinical Neurophysiology (V.H.J.M.K.-M.) and Neurology (R.P.W.R.), Maastricht University Medical Center, and the Academic Center for Epileptology Kempenhaeghe and Maastricht UMC+ (V.H.J.M.K.-M., R.P.W.R.), Maastricht, and the Department of Neurology, Maasstad Hospital, Rotterdam (E.C.T., W.M.) - all in the Netherlands; and the Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels (F.S.T.)
| | - Frouke A P Nijhuis
- From the Department of Clinical Neurophysiology, Technical Medical Center (B.J.R., M.C.T.-C., M.J.A.M.P., J. Hofmeijer), and the Section of Cognition, Data, and Education (J.P.), University of Twente, and the Departments of Neurology and Clinical Neurophysiology (M.C.T.-C., M.J.A.M.P.), the Intensive Care Center (A.B.), and the Department of Epidemiology (J.P.), Medisch Spectrum Twente, Enschede, the Departments of Neurology (H.M.K., J. Hofmeijer) and Intensive Care (M.J.B.), Rijnstate Hospital, Arnhem, the Departments of Intensive Care Medicine (H.M.K., C.W.E.H.) and Neurology (H.M.K., J.D.) and the Donders Institute for Brain, Cognition, and Behavior (H.M.K.), Radboud University Medical Center, and the Department of Neurology, Canisius Wilhelmina Hospital (F.A.P.N., S.J.B.), Nijmegen, the Departments of Neurology and Clinical Neurophysiology (S.C.T.) and Intensive Care (E.S.), St. Antonius Hospital, Nieuwegein, the Department of Neurology, Leiden University Medical Center, Leiden (S.C.T.), the Amsterdam Coma Group (J. Horn, A.-F.R., M.M.A.), the Department of Intensive Care (J. Horn), and the Department of Neurology and Clinical Neurophysiology (A.-F.R., M.M.A.), Amsterdam University Medical Center, Amsterdam, the Departments of Critical Care (W.M.B.) and Neurology and Clinical Neurophysiology (J.W.J.E.), University Medical Center Groningen, University of Groningen, Groningen, the Departments of Intensive Care (N.A.F.) and Neurology (F.H.M.K.), VieCuri Medical Center, Venlo, the Departments of Clinical Neurophysiology (V.H.J.M.K.-M.) and Neurology (R.P.W.R.), Maastricht University Medical Center, and the Academic Center for Epileptology Kempenhaeghe and Maastricht UMC+ (V.H.J.M.K.-M., R.P.W.R.), Maastricht, and the Department of Neurology, Maasstad Hospital, Rotterdam (E.C.T., W.M.) - all in the Netherlands; and the Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels (F.S.T.)
| | - Suzanne J Booij
- From the Department of Clinical Neurophysiology, Technical Medical Center (B.J.R., M.C.T.-C., M.J.A.M.P., J. Hofmeijer), and the Section of Cognition, Data, and Education (J.P.), University of Twente, and the Departments of Neurology and Clinical Neurophysiology (M.C.T.-C., M.J.A.M.P.), the Intensive Care Center (A.B.), and the Department of Epidemiology (J.P.), Medisch Spectrum Twente, Enschede, the Departments of Neurology (H.M.K., J. Hofmeijer) and Intensive Care (M.J.B.), Rijnstate Hospital, Arnhem, the Departments of Intensive Care Medicine (H.M.K., C.W.E.H.) and Neurology (H.M.K., J.D.) and the Donders Institute for Brain, Cognition, and Behavior (H.M.K.), Radboud University Medical Center, and the Department of Neurology, Canisius Wilhelmina Hospital (F.A.P.N., S.J.B.), Nijmegen, the Departments of Neurology and Clinical Neurophysiology (S.C.T.) and Intensive Care (E.S.), St. Antonius Hospital, Nieuwegein, the Department of Neurology, Leiden University Medical Center, Leiden (S.C.T.), the Amsterdam Coma Group (J. Horn, A.-F.R., M.M.A.), the Department of Intensive Care (J. Horn), and the Department of Neurology and Clinical Neurophysiology (A.-F.R., M.M.A.), Amsterdam University Medical Center, Amsterdam, the Departments of Critical Care (W.M.B.) and Neurology and Clinical Neurophysiology (J.W.J.E.), University Medical Center Groningen, University of Groningen, Groningen, the Departments of Intensive Care (N.A.F.) and Neurology (F.H.M.K.), VieCuri Medical Center, Venlo, the Departments of Clinical Neurophysiology (V.H.J.M.K.-M.) and Neurology (R.P.W.R.), Maastricht University Medical Center, and the Academic Center for Epileptology Kempenhaeghe and Maastricht UMC+ (V.H.J.M.K.-M., R.P.W.R.), Maastricht, and the Department of Neurology, Maasstad Hospital, Rotterdam (E.C.T., W.M.) - all in the Netherlands; and the Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels (F.S.T.)
| | - Cornelia W E Hoedemaekers
- From the Department of Clinical Neurophysiology, Technical Medical Center (B.J.R., M.C.T.-C., M.J.A.M.P., J. Hofmeijer), and the Section of Cognition, Data, and Education (J.P.), University of Twente, and the Departments of Neurology and Clinical Neurophysiology (M.C.T.-C., M.J.A.M.P.), the Intensive Care Center (A.B.), and the Department of Epidemiology (J.P.), Medisch Spectrum Twente, Enschede, the Departments of Neurology (H.M.K., J. Hofmeijer) and Intensive Care (M.J.B.), Rijnstate Hospital, Arnhem, the Departments of Intensive Care Medicine (H.M.K., C.W.E.H.) and Neurology (H.M.K., J.D.) and the Donders Institute for Brain, Cognition, and Behavior (H.M.K.), Radboud University Medical Center, and the Department of Neurology, Canisius Wilhelmina Hospital (F.A.P.N., S.J.B.), Nijmegen, the Departments of Neurology and Clinical Neurophysiology (S.C.T.) and Intensive Care (E.S.), St. Antonius Hospital, Nieuwegein, the Department of Neurology, Leiden University Medical Center, Leiden (S.C.T.), the Amsterdam Coma Group (J. Horn, A.-F.R., M.M.A.), the Department of Intensive Care (J. Horn), and the Department of Neurology and Clinical Neurophysiology (A.-F.R., M.M.A.), Amsterdam University Medical Center, Amsterdam, the Departments of Critical Care (W.M.B.) and Neurology and Clinical Neurophysiology (J.W.J.E.), University Medical Center Groningen, University of Groningen, Groningen, the Departments of Intensive Care (N.A.F.) and Neurology (F.H.M.K.), VieCuri Medical Center, Venlo, the Departments of Clinical Neurophysiology (V.H.J.M.K.-M.) and Neurology (R.P.W.R.), Maastricht University Medical Center, and the Academic Center for Epileptology Kempenhaeghe and Maastricht UMC+ (V.H.J.M.K.-M., R.P.W.R.), Maastricht, and the Department of Neurology, Maasstad Hospital, Rotterdam (E.C.T., W.M.) - all in the Netherlands; and the Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels (F.S.T.)
| | - Jonne Doorduin
- From the Department of Clinical Neurophysiology, Technical Medical Center (B.J.R., M.C.T.-C., M.J.A.M.P., J. Hofmeijer), and the Section of Cognition, Data, and Education (J.P.), University of Twente, and the Departments of Neurology and Clinical Neurophysiology (M.C.T.-C., M.J.A.M.P.), the Intensive Care Center (A.B.), and the Department of Epidemiology (J.P.), Medisch Spectrum Twente, Enschede, the Departments of Neurology (H.M.K., J. Hofmeijer) and Intensive Care (M.J.B.), Rijnstate Hospital, Arnhem, the Departments of Intensive Care Medicine (H.M.K., C.W.E.H.) and Neurology (H.M.K., J.D.) and the Donders Institute for Brain, Cognition, and Behavior (H.M.K.), Radboud University Medical Center, and the Department of Neurology, Canisius Wilhelmina Hospital (F.A.P.N., S.J.B.), Nijmegen, the Departments of Neurology and Clinical Neurophysiology (S.C.T.) and Intensive Care (E.S.), St. Antonius Hospital, Nieuwegein, the Department of Neurology, Leiden University Medical Center, Leiden (S.C.T.), the Amsterdam Coma Group (J. Horn, A.-F.R., M.M.A.), the Department of Intensive Care (J. Horn), and the Department of Neurology and Clinical Neurophysiology (A.-F.R., M.M.A.), Amsterdam University Medical Center, Amsterdam, the Departments of Critical Care (W.M.B.) and Neurology and Clinical Neurophysiology (J.W.J.E.), University Medical Center Groningen, University of Groningen, Groningen, the Departments of Intensive Care (N.A.F.) and Neurology (F.H.M.K.), VieCuri Medical Center, Venlo, the Departments of Clinical Neurophysiology (V.H.J.M.K.-M.) and Neurology (R.P.W.R.), Maastricht University Medical Center, and the Academic Center for Epileptology Kempenhaeghe and Maastricht UMC+ (V.H.J.M.K.-M., R.P.W.R.), Maastricht, and the Department of Neurology, Maasstad Hospital, Rotterdam (E.C.T., W.M.) - all in the Netherlands; and the Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels (F.S.T.)
| | - Fabio S Taccone
- From the Department of Clinical Neurophysiology, Technical Medical Center (B.J.R., M.C.T.-C., M.J.A.M.P., J. Hofmeijer), and the Section of Cognition, Data, and Education (J.P.), University of Twente, and the Departments of Neurology and Clinical Neurophysiology (M.C.T.-C., M.J.A.M.P.), the Intensive Care Center (A.B.), and the Department of Epidemiology (J.P.), Medisch Spectrum Twente, Enschede, the Departments of Neurology (H.M.K., J. Hofmeijer) and Intensive Care (M.J.B.), Rijnstate Hospital, Arnhem, the Departments of Intensive Care Medicine (H.M.K., C.W.E.H.) and Neurology (H.M.K., J.D.) and the Donders Institute for Brain, Cognition, and Behavior (H.M.K.), Radboud University Medical Center, and the Department of Neurology, Canisius Wilhelmina Hospital (F.A.P.N., S.J.B.), Nijmegen, the Departments of Neurology and Clinical Neurophysiology (S.C.T.) and Intensive Care (E.S.), St. Antonius Hospital, Nieuwegein, the Department of Neurology, Leiden University Medical Center, Leiden (S.C.T.), the Amsterdam Coma Group (J. Horn, A.-F.R., M.M.A.), the Department of Intensive Care (J. Horn), and the Department of Neurology and Clinical Neurophysiology (A.-F.R., M.M.A.), Amsterdam University Medical Center, Amsterdam, the Departments of Critical Care (W.M.B.) and Neurology and Clinical Neurophysiology (J.W.J.E.), University Medical Center Groningen, University of Groningen, Groningen, the Departments of Intensive Care (N.A.F.) and Neurology (F.H.M.K.), VieCuri Medical Center, Venlo, the Departments of Clinical Neurophysiology (V.H.J.M.K.-M.) and Neurology (R.P.W.R.), Maastricht University Medical Center, and the Academic Center for Epileptology Kempenhaeghe and Maastricht UMC+ (V.H.J.M.K.-M., R.P.W.R.), Maastricht, and the Department of Neurology, Maasstad Hospital, Rotterdam (E.C.T., W.M.) - all in the Netherlands; and the Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels (F.S.T.)
| | - Job van der Palen
- From the Department of Clinical Neurophysiology, Technical Medical Center (B.J.R., M.C.T.-C., M.J.A.M.P., J. Hofmeijer), and the Section of Cognition, Data, and Education (J.P.), University of Twente, and the Departments of Neurology and Clinical Neurophysiology (M.C.T.-C., M.J.A.M.P.), the Intensive Care Center (A.B.), and the Department of Epidemiology (J.P.), Medisch Spectrum Twente, Enschede, the Departments of Neurology (H.M.K., J. Hofmeijer) and Intensive Care (M.J.B.), Rijnstate Hospital, Arnhem, the Departments of Intensive Care Medicine (H.M.K., C.W.E.H.) and Neurology (H.M.K., J.D.) and the Donders Institute for Brain, Cognition, and Behavior (H.M.K.), Radboud University Medical Center, and the Department of Neurology, Canisius Wilhelmina Hospital (F.A.P.N., S.J.B.), Nijmegen, the Departments of Neurology and Clinical Neurophysiology (S.C.T.) and Intensive Care (E.S.), St. Antonius Hospital, Nieuwegein, the Department of Neurology, Leiden University Medical Center, Leiden (S.C.T.), the Amsterdam Coma Group (J. Horn, A.-F.R., M.M.A.), the Department of Intensive Care (J. Horn), and the Department of Neurology and Clinical Neurophysiology (A.-F.R., M.M.A.), Amsterdam University Medical Center, Amsterdam, the Departments of Critical Care (W.M.B.) and Neurology and Clinical Neurophysiology (J.W.J.E.), University Medical Center Groningen, University of Groningen, Groningen, the Departments of Intensive Care (N.A.F.) and Neurology (F.H.M.K.), VieCuri Medical Center, Venlo, the Departments of Clinical Neurophysiology (V.H.J.M.K.-M.) and Neurology (R.P.W.R.), Maastricht University Medical Center, and the Academic Center for Epileptology Kempenhaeghe and Maastricht UMC+ (V.H.J.M.K.-M., R.P.W.R.), Maastricht, and the Department of Neurology, Maasstad Hospital, Rotterdam (E.C.T., W.M.) - all in the Netherlands; and the Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels (F.S.T.)
| | - Michel J A M van Putten
- From the Department of Clinical Neurophysiology, Technical Medical Center (B.J.R., M.C.T.-C., M.J.A.M.P., J. Hofmeijer), and the Section of Cognition, Data, and Education (J.P.), University of Twente, and the Departments of Neurology and Clinical Neurophysiology (M.C.T.-C., M.J.A.M.P.), the Intensive Care Center (A.B.), and the Department of Epidemiology (J.P.), Medisch Spectrum Twente, Enschede, the Departments of Neurology (H.M.K., J. Hofmeijer) and Intensive Care (M.J.B.), Rijnstate Hospital, Arnhem, the Departments of Intensive Care Medicine (H.M.K., C.W.E.H.) and Neurology (H.M.K., J.D.) and the Donders Institute for Brain, Cognition, and Behavior (H.M.K.), Radboud University Medical Center, and the Department of Neurology, Canisius Wilhelmina Hospital (F.A.P.N., S.J.B.), Nijmegen, the Departments of Neurology and Clinical Neurophysiology (S.C.T.) and Intensive Care (E.S.), St. Antonius Hospital, Nieuwegein, the Department of Neurology, Leiden University Medical Center, Leiden (S.C.T.), the Amsterdam Coma Group (J. Horn, A.-F.R., M.M.A.), the Department of Intensive Care (J. Horn), and the Department of Neurology and Clinical Neurophysiology (A.-F.R., M.M.A.), Amsterdam University Medical Center, Amsterdam, the Departments of Critical Care (W.M.B.) and Neurology and Clinical Neurophysiology (J.W.J.E.), University Medical Center Groningen, University of Groningen, Groningen, the Departments of Intensive Care (N.A.F.) and Neurology (F.H.M.K.), VieCuri Medical Center, Venlo, the Departments of Clinical Neurophysiology (V.H.J.M.K.-M.) and Neurology (R.P.W.R.), Maastricht University Medical Center, and the Academic Center for Epileptology Kempenhaeghe and Maastricht UMC+ (V.H.J.M.K.-M., R.P.W.R.), Maastricht, and the Department of Neurology, Maasstad Hospital, Rotterdam (E.C.T., W.M.) - all in the Netherlands; and the Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels (F.S.T.)
| | - Jeannette Hofmeijer
- From the Department of Clinical Neurophysiology, Technical Medical Center (B.J.R., M.C.T.-C., M.J.A.M.P., J. Hofmeijer), and the Section of Cognition, Data, and Education (J.P.), University of Twente, and the Departments of Neurology and Clinical Neurophysiology (M.C.T.-C., M.J.A.M.P.), the Intensive Care Center (A.B.), and the Department of Epidemiology (J.P.), Medisch Spectrum Twente, Enschede, the Departments of Neurology (H.M.K., J. Hofmeijer) and Intensive Care (M.J.B.), Rijnstate Hospital, Arnhem, the Departments of Intensive Care Medicine (H.M.K., C.W.E.H.) and Neurology (H.M.K., J.D.) and the Donders Institute for Brain, Cognition, and Behavior (H.M.K.), Radboud University Medical Center, and the Department of Neurology, Canisius Wilhelmina Hospital (F.A.P.N., S.J.B.), Nijmegen, the Departments of Neurology and Clinical Neurophysiology (S.C.T.) and Intensive Care (E.S.), St. Antonius Hospital, Nieuwegein, the Department of Neurology, Leiden University Medical Center, Leiden (S.C.T.), the Amsterdam Coma Group (J. Horn, A.-F.R., M.M.A.), the Department of Intensive Care (J. Horn), and the Department of Neurology and Clinical Neurophysiology (A.-F.R., M.M.A.), Amsterdam University Medical Center, Amsterdam, the Departments of Critical Care (W.M.B.) and Neurology and Clinical Neurophysiology (J.W.J.E.), University Medical Center Groningen, University of Groningen, Groningen, the Departments of Intensive Care (N.A.F.) and Neurology (F.H.M.K.), VieCuri Medical Center, Venlo, the Departments of Clinical Neurophysiology (V.H.J.M.K.-M.) and Neurology (R.P.W.R.), Maastricht University Medical Center, and the Academic Center for Epileptology Kempenhaeghe and Maastricht UMC+ (V.H.J.M.K.-M., R.P.W.R.), Maastricht, and the Department of Neurology, Maasstad Hospital, Rotterdam (E.C.T., W.M.) - all in the Netherlands; and the Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels (F.S.T.)
| |
Collapse
|
30
|
Critical care EEG standardized nomenclature in clinical practice: Strengths, limitations, and outlook on the example of prognostication after cardiac arrest. Clin Neurophysiol Pract 2022; 6:149-154. [PMID: 35112033 PMCID: PMC8790140 DOI: 10.1016/j.cnp.2021.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/08/2021] [Accepted: 03/03/2021] [Indexed: 11/21/2022] Open
Abstract
Optimal use of the ACNS nomenclature implies integration of clinical information. Knowledge of pathophysiological mechanisms of EEG patterns may help interpretation. Standardized therapeutic procedures for critical care patients are needed.
We discuss the achievements of the ACNS critical care EEG nomenclature proposed in 2013 and, from a clinical angle, outline some limitations regarding translation into treatment implications. While the recently proposed updated 2021 version of the nomenclature will probable improve some uncertainty areas, a refined understanding of the mechanisms at the origin of the EEG patterns, and a multimodal integration of the nomenclature to the clinical context may help improving the rationale supporting therapeutic procedures. We illustrate these aspects on prognostication after cardiac arrest.
Collapse
Key Words
- ACNS, American Clinical Neurophysiology Society
- American Clinical Neurophysiology Society (ACNS) Standardized Terminology
- BIRD, Brief potentially ictal rhythmic discharge
- BS, Burst suppression
- Burst suppression
- CA, Cardiac arrest
- Cardiac arrest (CA)
- DWI, diffusion-weighted MRI
- ESI, electric source imaging
- GPD
- GPD, generalized periodic discharge
- GRDA, generalized rhythmic delta activity
- ICU, Intensive care unit
- ICU-EEG, intensive care unit-electroencephalography
- IIC, Ictal-Interictal Continuum
- Ictal-Interictal Continuum
- LPD, Lateralized periodic discharge
- MEG, Magneto-electroencephalography
- NCSE, Non-Convulsive Status Epilepticus
- NSE, Serum neuron-specific enolase
- PET, Positron emission tomography
- Prognostication assessment
- SE, Status epilepticus
- SPECT, Single Photon Emission Computed Tomography
- SSEP, Somatosensory evoked potentials
- WLST, Withdraw of life sustaining treatment
- fMRI, functional MRI
Collapse
|
31
|
Are We Still Withdrawing Too Soon?-Predictors of Late Awakening After Cardiac Arrest. Crit Care Med 2022; 50:338-340. [PMID: 35100197 PMCID: PMC8827496 DOI: 10.1097/ccm.0000000000005379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
32
|
Sandroni C, Cronberg T, Hofmeijer J. EEG monitoring after cardiac arrest. Intensive Care Med 2022; 48:1439-1442. [PMID: 35471582 PMCID: PMC9468095 DOI: 10.1007/s00134-022-06697-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/03/2022] [Indexed: 02/04/2023]
Affiliation(s)
- Claudio Sandroni
- Department of Intensive Care, Emergency Medicine and Anaesthesiology, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy.
- Institute of Anaesthesiology and Intensive Care Medicine, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168, Rome, Italy.
| | - Tobias Cronberg
- Department of Clinical Sciences Lund, Neurology, Lund University, Skane University Hospital, Lund, Sweden
| | - Jeannette Hofmeijer
- Department of Clinical Neurophysiology, Technical Medical Center, University of Twente, Enschede, The Netherlands
- Department of Neurology, Rijnstate Hospital, Arnhem, The Netherlands
| |
Collapse
|
33
|
Sandroni C, Cronberg T, Sekhon M. Brain injury after cardiac arrest: pathophysiology, treatment, and prognosis. Intensive Care Med 2021; 47:1393-1414. [PMID: 34705079 PMCID: PMC8548866 DOI: 10.1007/s00134-021-06548-2] [Citation(s) in RCA: 187] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/28/2021] [Indexed: 01/03/2023]
Abstract
Post-cardiac arrest brain injury (PCABI) is caused by initial ischaemia and subsequent reperfusion of the brain following resuscitation. In those who are admitted to intensive care unit after cardiac arrest, PCABI manifests as coma, and is the main cause of mortality and long-term disability. This review describes the mechanisms of PCABI, its treatment options, its outcomes, and the suggested strategies for outcome prediction.
Collapse
Affiliation(s)
- Claudio Sandroni
- Institute of Anaesthesiology and Intensive Care Medicine, Università Cattolica del Sacro Cuore, Rome, Italy. .,Department of Intensive Care, Emergency Medicine and Anaesthesiology, Fondazione Policlinico Universitario "Agostino Gemelli", IRCCS, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168, Rome, Italy.
| | - Tobias Cronberg
- Department of Clinical Sciences Lund, Neurology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Mypinder Sekhon
- Division of Critical Care Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
34
|
Multimodal Approach to Predict Neurological Outcome after Cardiac Arrest: A Single-Center Experience. Brain Sci 2021; 11:brainsci11070888. [PMID: 34356123 PMCID: PMC8303816 DOI: 10.3390/brainsci11070888] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 12/22/2022] Open
Abstract
Introduction: The aims of this study were to assess the concordance of different tools and to describe the accuracy of a multimodal approach to predict unfavorable neurological outcome (UO) in cardiac arrest patients. Methods: Retrospective study of adult (>18 years) cardiac arrest patients who underwent multimodal monitoring; UO was defined as cerebral performance category 3–5 at 3 months. Predictors of UO were neurological pupillary index (NPi) ≤ 2 at 24 h; highly malignant patterns on EEG (HMp) within 48 h; bilateral absence of N20 waves on somato-sensory evoked potentials; and neuron-specific enolase (NSE) > 75 μg/L. Time-dependent decisional tree (i.e., NPi on day 1; HMp on day 1–2; absent N20 on day 2–3; highest NSE) and classification and regression tree (CART) analysis were used to assess the prediction of UO. Results: Of 137 patients, 104 (73%) had UO. Abnormal NPi, HMp on day 1 or 2, the bilateral absence of N20 or NSE >75 mcg/L had a specificity of 100% to predict UO. The presence of abnormal NPi was highly concordant with HMp and high NSE, and absence of N20 or high NSE with HMp. However, HMp had weak to moderate concordance with other predictors. The time-dependent decisional tree approach identified 73/103 patients (70%) with UO, showing a sensitivity of 71% and a specificity of 100%. Using the CART approach, HMp on EEG was the only variable significantly associated with UO. Conclusions: This study suggests that patients with UO had often at least two predictors of UO, except for HMp. A multimodal time-dependent approach may be helpful in the prediction of UO after CA. EEG should be included in all multimodal prognostic models.
Collapse
|
35
|
Nolan JP, Sandroni C, Böttiger BW, Cariou A, Cronberg T, Friberg H, Genbrugge C, Haywood K, Lilja G, Moulaert VRM, Nikolaou N, Olasveengen TM, Skrifvars MB, Taccone F, Soar J. Postreanimationsbehandlung. Notf Rett Med 2021. [DOI: 10.1007/s10049-021-00892-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
36
|
Chen S, Lachance BB, Gao L, Jia X. Targeted temperature management and early neuro-prognostication after cardiac arrest. J Cereb Blood Flow Metab 2021; 41:1193-1209. [PMID: 33444088 PMCID: PMC8142127 DOI: 10.1177/0271678x20970059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Targeted temperature management (TTM) is a recommended neuroprotective intervention for coma after out-of-hospital cardiac arrest (OHCA). However, controversies exist concerning the proper implementation and overall efficacy of post-CA TTM, particularly related to optimal timing and depth of TTM and cooling methods. A review of the literature finds that optimizing and individualizing TTM remains an open question requiring further clinical investigation. This paper will summarize the preclinical and clinical trial data to-date, current recommendations, and future directions of this therapy, including new cooling methods under investigation. For now, early induction, maintenance for at least 24 hours, and slow rewarming utilizing endovascular methods may be preferred. Moreover, timely and accurate neuro-prognostication is valuable for guiding ethical and cost-effective management of post-CA coma. Current evidence for early neuro-prognostication after TTM suggests that a combination of initial prediction models, biomarkers, neuroimaging, and electrophysiological methods is the optimal strategy in predicting neurological functional outcomes.
Collapse
Affiliation(s)
- Songyu Chen
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Brittany Bolduc Lachance
- Program in Trauma, Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Liang Gao
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
37
|
Nolan JP, Sandroni C, Böttiger BW, Cariou A, Cronberg T, Friberg H, Genbrugge C, Haywood K, Lilja G, Moulaert VRM, Nikolaou N, Olasveengen TM, Skrifvars MB, Taccone F, Soar J. European Resuscitation Council and European Society of Intensive Care Medicine guidelines 2021: post-resuscitation care. Intensive Care Med 2021; 47:369-421. [PMID: 33765189 PMCID: PMC7993077 DOI: 10.1007/s00134-021-06368-4] [Citation(s) in RCA: 473] [Impact Index Per Article: 157.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/08/2021] [Indexed: 12/13/2022]
Abstract
The European Resuscitation Council (ERC) and the European Society of Intensive Care Medicine (ESICM) have collaborated to produce these post-resuscitation care guidelines for adults, which are based on the 2020 International Consensus on Cardiopulmonary Resuscitation Science with Treatment Recommendations. The topics covered include the post-cardiac arrest syndrome, diagnosis of cause of cardiac arrest, control of oxygenation and ventilation, coronary reperfusion, haemodynamic monitoring and management, control of seizures, temperature control, general intensive care management, prognostication, long-term outcome, rehabilitation and organ donation.
Collapse
Affiliation(s)
- Jerry P. Nolan
- University of Warwick, Warwick Medical School, Coventry, CV4 7AL UK
- Royal United Hospital, Bath, BA1 3NG UK
| | - Claudio Sandroni
- Department of Intensive Care, Emergency Medicine and Anaesthesiology, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
- Institute of Anaesthesiology and Intensive Care Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Bernd W. Böttiger
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital of Cologne, Kerpener Straße 62, 50937 Cologne, Germany
| | - Alain Cariou
- Cochin University Hospital (APHP) and University of Paris (Medical School), Paris, France
| | - Tobias Cronberg
- Department of Clinical Sciences, Neurology, Lund University, Skane University Hospital, Lund, Sweden
| | - Hans Friberg
- Department of Clinical Sciences, Anaesthesia and Intensive Care Medicine, Lund University, Skane University Hospital, Lund, Sweden
| | - Cornelia Genbrugge
- Acute Medicine Research Pole, Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain, Brussels, Belgium
- Emergency Department, University Hospitals Saint-Luc, Brussels, Belgium
| | - Kirstie Haywood
- Warwick Research in Nursing, Division of Health Sciences, Warwick Medical School, University of Warwick, Room A108, Coventry, CV4 7AL UK
| | - Gisela Lilja
- Department of Clinical Sciences Lund, Neurology, Lund University, Skane University Hospital, Lund, Sweden
| | - Véronique R. M. Moulaert
- Department of Rehabilitation Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Nikolaos Nikolaou
- Cardiology Department, Konstantopouleio General Hospital, Athens, Greece
| | - Theresa Mariero Olasveengen
- Department of Anesthesiology, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Markus B. Skrifvars
- Department of Emergency Care and Services, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Fabio Taccone
- Department of Intensive Care, Hôpital Erasme, Université Libre de Bruxelles, Route de Lennik, 808, 1070 Brussels, Belgium
| | - Jasmeet Soar
- Southmead Hospital, North Bristol NHS Trust, Bristol, BS10 5NB UK
| |
Collapse
|
38
|
Nolan JP, Sandroni C, Böttiger BW, Cariou A, Cronberg T, Friberg H, Genbrugge C, Haywood K, Lilja G, Moulaert VRM, Nikolaou N, Mariero Olasveengen T, Skrifvars MB, Taccone F, Soar J. European Resuscitation Council and European Society of Intensive Care Medicine Guidelines 2021: Post-resuscitation care. Resuscitation 2021; 161:220-269. [PMID: 33773827 DOI: 10.1016/j.resuscitation.2021.02.012] [Citation(s) in RCA: 389] [Impact Index Per Article: 129.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The European Resuscitation Council (ERC) and the European Society of Intensive Care Medicine (ESICM) have collaborated to produce these post-resuscitation care guidelines for adults, which are based on the 2020 International Consensus on Cardiopulmonary Resuscitation Science with Treatment Recommendations. The topics covered include the post-cardiac arrest syndrome, diagnosis of cause of cardiac arrest, control of oxygenation and ventilation, coronary reperfusion, haemodynamic monitoring and management, control of seizures, temperature control, general intensive care management, prognostication, long-term outcome, rehabilitation, and organ donation.
Collapse
Affiliation(s)
- Jerry P Nolan
- University of Warwick, Warwick Medical School, Coventry CV4 7AL, UK; Royal United Hospital, Bath, BA1 3NG, UK.
| | - Claudio Sandroni
- Department of Intensive Care, Emergency Medicine and Anaesthesiology, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy; Institute of Anaesthesiology and Intensive Care Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Bernd W Böttiger
- University Hospital of Cologne, Kerpener Straße 62, D-50937 Cologne, Germany
| | - Alain Cariou
- Cochin University Hospital (APHP) and University of Paris (Medical School), Paris, France
| | - Tobias Cronberg
- Department of Clinical Sciences, Neurology, Lund University, Skane University Hospital, Lund, Sweden
| | - Hans Friberg
- Department of Clinical Sciences, Anaesthesia and Intensive Care Medicine, Lund University, Skane University Hospital, Lund, Sweden
| | - Cornelia Genbrugge
- Acute Medicine Research Pole, Institute of Experimental and Clinical Research (IREC) Université Catholique de Louvain, Brussels, Belgium; Emergency Department, University Hospitals Saint-Luc, Brussels, Belgium
| | - Kirstie Haywood
- Warwick Research in Nursing, Room A108, Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Gisela Lilja
- Lund University, Skane University Hospital, Department of Clinical Sciences Lund, Neurology, Lund, Sweden
| | - Véronique R M Moulaert
- University of Groningen, University Medical Center Groningen, Department of Rehabilitation Medicine, Groningen, The Netherlands
| | - Nikolaos Nikolaou
- Cardiology Department, Konstantopouleio General Hospital, Athens, Greece
| | - Theresa Mariero Olasveengen
- Department of Anesthesiology, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Norway
| | - Markus B Skrifvars
- Department of Emergency Care and Services, University of Helsinki and Helsinki University Hospital, Finland
| | - Fabio Taccone
- Department of Intensive Care, Hôpital Erasme, Université Libre de Bruxelles, Route de Lennik, 808, 1070 Brussels, Belgium
| | - Jasmeet Soar
- Southmead Hospital, North Bristol NHS Trust, Bristol BS10 5NB, UK
| |
Collapse
|
39
|
Abstract
Continuous video-EEG (cEEG, lasting hours to several days) is increasingly used in ICU patients, as it is more sensitive than routine video-EEG (rEEG, lasting 20-30 min) to detect seizures or status epilepticus, and allows more frequent changes in therapeutic regimens. However, cEEG is more resource-consuming, and its relationship to outcome compared to repeated rEEG has only been formally assessed very recently in a randomized controlled trial, which did not show any significant difference in terms of long-term mortality or functional outcome. Awaiting more refined trials, it seems therefore that using repeated rEEG in ICU patients may represent a reasonable alternative in resource-limited settings. Prolonged EEG has been used recently in patients with severe COVID-19 infection, the proportion of seizures seems albeit relatively low, and similar to ICU patients with medical conditions. As in any case a timely EEG recording is recommended in the ICU, r ecent technical developments may ease its use in clinical practice.
Collapse
Affiliation(s)
- Andrea O Rossetti
- Department of Clinical Neuroscience, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland -
| | - Jong W Lee
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Randomized controlled trials investigating the initial pharmacological treatment of status epilepticus have been recently published. Furthermore, status epilepticus arising in comatose survivors after cardiac arrest has received increasing attention in the last years. This review offers an updated assessment of status epilepticus treatment in these different scenarios. RECENT FINDINGS Initial benzodiazepines underdosing is common and correlates with development of status epilepticus refractoriness. The recently published ESETT trial provides high-level evidence regarding the equivalence of fosphenytoin, valproate, and levetiracetam as a second-line option. Myoclonus or epileptiform transients on electroencephalography occur in up to 1/3 of patients surviving a cardiac arrest. Contrary to previous assumptions regarding an almost invariable association with death, at least 1/10 of them may awaken with reasonably good prognosis, if treated. Multimodal prognostication including clinical examination, EEG, somatosensory evoked potentials, biochemical markers, and neuroimaging help identifying patients with a chance to recover consciousness, in whom a trial with antimyoclonic compounds and at times general anesthetics is indicated. SUMMARY There is a continuous, albeit relatively slow progress in knowledge regarding different aspect of status epilepticus; recent findings refine some treatment strategies and help improving patients' outcomes. Further high-quality studies are clearly needed to further improve the management of these patients, especially those with severe, refractory status epilepticus forms.
Collapse
|
41
|
Lybeck A, Friberg H, Nielsen N, Rundgren M, Ullén S, Zetterberg H, Blennow K, Cronberg T, Westhall E. Postanoxic electrographic status epilepticus and serum biomarkers of brain injury. Resuscitation 2020; 158:253-257. [PMID: 33127439 DOI: 10.1016/j.resuscitation.2020.10.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/01/2020] [Accepted: 10/18/2020] [Indexed: 01/21/2023]
Abstract
AIM To explore if electrographic status epilepticus (ESE) after cardiac arrest causes additional secondary brain injury reflected by serum levels of two novel biomarkers of brain injury: neurofilament light chain (NfL) originating from neurons and glial fibrillary acidic protein (GFAP) from glial cells. METHODS Simplified continuous EEG (cEEG) and serum levels of NfL and GFAP, sampled at 24, 48 and 72 h after cardiac arrest, were collected during the Target Temperature Management (TTM)-trial. Two statistical methods were used: multivariable regresssion analysis; and a matched control group of patients without ESE matched for early predictors of poor neurological outcome. RESULTS 128 patients had available biomarkers and cEEG. Twenty-six (20%) patients developed ESE, the majority (69%) within 24 h. ESE was an independent predictor of elevated serum NfL (p < 0.001) but not of serum GFAP (p = 0.16) at 72 h after cardiac arrest. Compared to a control group matched for early predictors of poor neurological outcome, patients who developed ESE had higher levels of serum NfL (p = 0.03) and GFAP (p = 0.04) at 72 h after cardiac arrest. CONCLUSION ESE after cardiac arrest is associated with higher levels of serum NfL which may suggest increased secondary neuronal injury compared to matched patients without ESE but similar initial brain injury. Associations with GFAP reflecting glial injury are less clear. The study design cannot exclude imperfect matching or other mechanisms of secondary brain injury contributing to the higher levels of biomarkers of brain injury seen in the patients with ESE.
Collapse
Affiliation(s)
- Anna Lybeck
- Lund University, Skane University Hospital, Department of Clinical Sciences, Anesthesia & Intensive Care, 221 85 Lund, Sweden.
| | - Hans Friberg
- Lund University, Skane University Hospital, Department of Clinical Sciences, Anesthesia & Intensive Care, 221 85 Lund, Sweden.
| | - Niklas Nielsen
- Lund University, Helsingborg Hospital, Department of Clinical Sciences, Anesthesia & Intensive Care, 221 85 Lund, Sweden.
| | - Malin Rundgren
- Lund University, Skane University Hospital, Department of Clinical Sciences, Anesthesia & Intensive Care, 221 85 Lund, Sweden.
| | - Susann Ullén
- Clinical Studies Sweden - Forum South, Skane University Hospital, 221 85 Lund, Sweden.
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 214 28 Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 431 80 Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK.
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 214 28 Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 431 80 Mölndal, Sweden.
| | - Tobias Cronberg
- Lund University, Skane University Hospital, Department of Clinical Sciences, Neurology, 221 85 Lund, Sweden.
| | - Erik Westhall
- Lund University, Skane University Hospital, Department of Clinical Sciences, Clinical Neurophysiology, 221 85 Lund, Sweden.
| |
Collapse
|
42
|
Cronberg T, Greer DM, Lilja G, Moulaert V, Swindell P, Rossetti AO. Brain injury after cardiac arrest: from prognostication of comatose patients to rehabilitation. Lancet Neurol 2020; 19:611-622. [PMID: 32562686 DOI: 10.1016/s1474-4422(20)30117-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 02/08/2023]
Abstract
More patients are surviving cardiac arrest than ever before; however, the burden now lies with estimating neurological prognoses in a large number of patients who were initially comatose, in whom the ultimate outcome is unclear. Neurologists, neurointensivists, and clinical neurophysiologists must accurately balance the concern that overly conservative prognostication could leave patients in a severely disabled state, with the possibility that inaccurately pessimistic prognostication could lead to the withdrawal of life-sustaining treatment in patients who might otherwise have a good functional outcome. Prognostic tools have improved greatly, including electrophysiological tests, neuroimaging, and chemical biomarkers. Conclusions about the prognosis should be delayed at least 72 h after arrest to allow for the clearance of sedative drugs. Cognitive impairments, emotional problems, and fatigue are common among patients who have survived cardiac arrest, and often go unrecognised despite being related to caregiver burden and a decreased participation in society. Through simple screening, these problems can be identified, and patients can be provided with adequate information and rehabilitation.
Collapse
Affiliation(s)
- Tobias Cronberg
- Department of Clinical Sciences, Neurology, Lund University, Skane University Hospital, Lund, Sweden.
| | - David M Greer
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Gisela Lilja
- Department of Clinical Sciences, Neurology, Lund University, Skane University Hospital, Lund, Sweden
| | - Véronique Moulaert
- Department of Rehabilitation Medicine, University of Groningen, University Medical Centre Groningen, Netherlands
| | | | - Andrea O Rossetti
- Department of Clinical Neurosciences, University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
43
|
Sandroni C, D'Arrigo S, Cacciola S, Hoedemaekers CWE, Kamps MJA, Oddo M, Taccone FS, Di Rocco A, Meijer FJA, Westhall E, Antonelli M, Soar J, Nolan JP, Cronberg T. Prediction of poor neurological outcome in comatose survivors of cardiac arrest: a systematic review. Intensive Care Med 2020; 46:1803-1851. [PMID: 32915254 PMCID: PMC7527362 DOI: 10.1007/s00134-020-06198-w] [Citation(s) in RCA: 186] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/15/2020] [Indexed: 12/17/2022]
Abstract
Purpose To assess the ability of clinical examination, blood biomarkers, electrophysiology, or neuroimaging assessed within 7 days from return of spontaneous circulation (ROSC) to predict poor neurological outcome, defined as death, vegetative state, or severe disability (CPC 3–5) at hospital discharge/1 month or later, in comatose adult survivors from cardiac arrest (CA). Methods PubMed, EMBASE, Web of Science, and the Cochrane Database of Systematic Reviews (January 2013–April 2020) were searched. Sensitivity and false-positive rate (FPR) for each predictor were calculated. Due to heterogeneities in recording times, predictor thresholds, and definition of some predictors, meta-analysis was not performed. Results Ninety-four studies (30,200 patients) were included. Bilaterally absent pupillary or corneal reflexes after day 4 from ROSC, high blood values of neuron-specific enolase from 24 h after ROSC, absent N20 waves of short-latency somatosensory-evoked potentials (SSEPs) or unequivocal seizures on electroencephalogram (EEG) from the day of ROSC, EEG background suppression or burst-suppression from 24 h after ROSC, diffuse cerebral oedema on brain CT from 2 h after ROSC, or reduced diffusion on brain MRI at 2–5 days after ROSC had 0% FPR for poor outcome in most studies. Risk of bias assessed using the QUIPS tool was high for all predictors. Conclusion In comatose resuscitated patients, clinical, biochemical, neurophysiological, and radiological tests have a potential to predict poor neurological outcome with no false-positive predictions within the first week after CA. Guidelines should consider the methodological concerns and limited sensitivity for individual modalities. (PROSPERO CRD42019141169) Electronic supplementary material The online version of this article (10.1007/s00134-020-06198-w) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Claudio Sandroni
- Department of Intensive Care, Emergency Medicine and Anesthesiology, Fondazione Policlinico Universitario "Agostino Gemelli"- IRCCS, Largo Francesco Vito, 1, 00168, Rome, Italy.,Institute of Anesthesiology and Intensive Care Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Sonia D'Arrigo
- Department of Intensive Care, Emergency Medicine and Anesthesiology, Fondazione Policlinico Universitario "Agostino Gemelli"- IRCCS, Largo Francesco Vito, 1, 00168, Rome, Italy.
| | - Sofia Cacciola
- Department of Intensive Care, Emergency Medicine and Anesthesiology, Fondazione Policlinico Universitario "Agostino Gemelli"- IRCCS, Largo Francesco Vito, 1, 00168, Rome, Italy
| | | | - Marlijn J A Kamps
- Intensive Care Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | - Mauro Oddo
- Department of Intensive Care Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Fabio S Taccone
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Arianna Di Rocco
- Department of Public Health and Infectious Disease, Sapienza University, Rome, Italy
| | - Frederick J A Meijer
- Department of Radiology and Nuclear Medicine, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Erik Westhall
- Department of ClinicalSciences, Clinical Neurophysiology, Lund University, Skane University Hospital, Lund, Sweden
| | - Massimo Antonelli
- Department of Intensive Care, Emergency Medicine and Anesthesiology, Fondazione Policlinico Universitario "Agostino Gemelli"- IRCCS, Largo Francesco Vito, 1, 00168, Rome, Italy.,Institute of Anesthesiology and Intensive Care Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Jasmeet Soar
- Critical Care Unit, Southmead Hospital, North Bristol NHS Trust, Bristol, UK
| | - Jerry P Nolan
- Department of Anaesthesia and Intensive Care Medicine, Royal United Hospital, Bath, UK
| | - Tobias Cronberg
- Department of Clinical Sciences Lund, Neurology, Lund University, Skane University Hospital, Lund, Sweden
| |
Collapse
|
44
|
Backman S, Cronberg T, Rosén I, Westhall E. Reduced EEG montage has a high accuracy in the post cardiac arrest setting. Clin Neurophysiol 2020; 131:2216-2223. [DOI: 10.1016/j.clinph.2020.06.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/18/2020] [Accepted: 06/08/2020] [Indexed: 10/23/2022]
|
45
|
Comanducci A, Boly M, Claassen J, De Lucia M, Gibson RM, Juan E, Laureys S, Naccache L, Owen AM, Rosanova M, Rossetti AO, Schnakers C, Sitt JD, Schiff ND, Massimini M. Clinical and advanced neurophysiology in the prognostic and diagnostic evaluation of disorders of consciousness: review of an IFCN-endorsed expert group. Clin Neurophysiol 2020; 131:2736-2765. [PMID: 32917521 DOI: 10.1016/j.clinph.2020.07.015] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 07/06/2020] [Accepted: 07/26/2020] [Indexed: 12/13/2022]
Abstract
The analysis of spontaneous EEG activity and evoked potentialsis a cornerstone of the instrumental evaluation of patients with disorders of consciousness (DoC). Thepast few years have witnessed an unprecedented surge in EEG-related research applied to the prediction and detection of recovery of consciousness after severe brain injury,opening up the prospect that new concepts and tools may be available at the bedside. This paper provides a comprehensive, critical overview of bothconsolidated and investigational electrophysiological techniquesfor the prognostic and diagnostic assessment of DoC.We describe conventional clinical EEG approaches, then focus on evoked and event-related potentials, and finally we analyze the potential of novel research findings. In doing so, we (i) draw a distinction between acute, prolonged and chronic phases of DoC, (ii) attempt to relate both clinical and research findings to the underlying neuronal processes and (iii) discuss technical and conceptual caveats.The primary aim of this narrative review is to bridge the gap between standard and emerging electrophysiological measures for the detection and prediction of recovery of consciousness. The ultimate scope is to provide a reference and common ground for academic researchers active in the field of neurophysiology and clinicians engaged in intensive care unit and rehabilitation.
Collapse
Affiliation(s)
- A Comanducci
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - M Boly
- Department of Neurology and Department of Psychiatry, University of Wisconsin, Madison, USA; Wisconsin Institute for Sleep and Consciousness, Department of Psychiatry, University of Wisconsin-Madison, Madison, USA
| | - J Claassen
- Department of Neurology, Columbia University Medical Center, New York Presbyterian Hospital, New York, NY, USA
| | - M De Lucia
- Laboratoire de Recherche en Neuroimagerie, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - R M Gibson
- The Brain and Mind Institute and the Department of Physiology and Pharmacology, Western Interdisciplinary Research Building, N6A 5B7 University of Western Ontario, London, Ontario, Canada
| | - E Juan
- Wisconsin Institute for Sleep and Consciousness, Department of Psychiatry, University of Wisconsin-Madison, Madison, USA; Amsterdam Brain and Cognition, Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
| | - S Laureys
- Coma Science Group, Centre du Cerveau, GIGA-Consciousness, University and University Hospital of Liège, 4000 Liège, Belgium; Fondazione Europea per la Ricerca Biomedica Onlus, Milan 20063, Italy
| | - L Naccache
- Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France; Sorbonne Université, UPMC Université Paris 06, Faculté de Médecine Pitié-Salpêtrière, Paris, France
| | - A M Owen
- The Brain and Mind Institute and the Department of Physiology and Pharmacology, Western Interdisciplinary Research Building, N6A 5B7 University of Western Ontario, London, Ontario, Canada
| | - M Rosanova
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy; Fondazione Europea per la Ricerca Biomedica Onlus, Milan 20063, Italy
| | - A O Rossetti
- Neurology Service, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - C Schnakers
- Research Institute, Casa Colina Hospital and Centers for Healthcare, Pomona, CA, USA
| | - J D Sitt
- Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - N D Schiff
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - M Massimini
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy; Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| |
Collapse
|
46
|
Barbella G, Lee JW, Alvarez V, Novy J, Oddo M, Beers L, Rossetti AO. Prediction of regaining consciousness despite an early epileptiform EEG after cardiac arrest. Neurology 2020; 94:e1675-e1683. [DOI: 10.1212/wnl.0000000000009283] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/16/2019] [Indexed: 11/15/2022] Open
Abstract
ObjectiveAfter cardiac arrest (CA), epileptiform EEG, occurring in about 1/3 of patients, often but not invariably heralds poor prognosis. We tested the hypothesis that a combination of specific EEG features identifies patients who may regain consciousness despite early epileptiform patterns.MethodsWe retrospectively analyzed a registry of comatose patients post-CA (2 Swiss centers), including those with epileptiform EEG. Background and epileptiform features in EEGs 12–36 hours or 36–72 hours from CA were scored according to the American Clinical Neurophysiology Society nomenclature. Best Cerebral Performance Category (CPC) score within 3 months (CPC 1–3 vs 4–5) was the primary outcome. Significant EEG variables were combined in a score assessed with receiver operating characteristic curves, and independently validated in a US cohort; its correlation with serum neuron-specific enolase (NSE) was also tested.ResultsOf 488 patients, 107 (21.9%) had epileptiform EEG <72 hours; 18 (17%) reached CPC 1–3. EEG 12–36 hours background continuity ≥50%, absence of epileptiform abnormalities (p< 0.00001 each), 12–36 and 36–72 hours reactivity (p< 0.0001 each), 36–72 hours normal background amplitude (p= 0.0004), and stimulus-induced discharges (p= 0.0001) correlated with favorable outcome. The combined 6-point score cutoff ≥2 was 100% sensitive (95% confidence interval [CI], 78%–100%) and 70% specific (95% CI, 59%–80%) for CPC 1–3 (area under the curve [AUC], 0.98; 95% CI, 0.94–1.00). Increasing score correlated with NSE (ρ = −0.46,p= 0.0001). In the validation cohort (41 patients), the score was 100% sensitive (95% CI, 60%–100%) and 88% specific (95% CI, 73%–97%) for CPC 1–3 (AUC, 0.96; 95% CI, 0.91–1.00).ConclusionPrognostic value of early epileptiform EEG after CA can be estimated combining timing, continuity, reactivity, and amplitude features in a score that correlates with neuronal damage.
Collapse
|
47
|
Westhall E, Cronberg T. Early or late neurophysiology after cardiac arrest: Timing and definitions are important! Resuscitation 2020; 147:114-116. [DOI: 10.1016/j.resuscitation.2019.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 12/26/2019] [Indexed: 10/25/2022]
|
48
|
Agarwal S, Morris N, Der-Nigoghossian C, May T, Brodie D. The Influence of Therapeutics on Prognostication After Cardiac Arrest. Curr Treat Options Neurol 2019; 21:60. [PMID: 31768661 DOI: 10.1007/s11940-019-0602-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE OF REVIEW The goal of this review is to highlight the influence of therapeutic maneuvers on neuro-prognostication measures administered to comatose survivors of cardiac arrest. We focus on the effect of sedation regimens in the setting of targeted temperature management (TTM), one of the principle interventions known to improve neurological recovery after cardiac arrest. Further, we discuss the critical need for novel markers, as well as refinement of existing markers, among patients receiving extracorporeal membrane oxygenation (ECMO) in the setting of failed conventional resuscitation, known as extracorporeal cardiopulmonary resuscitation (ECPR). RECENT FINDINGS Automated pupillometry may have some advantage over standard pupillary examination for prognostication following TTM, sedation, or the use of ECMO after cardiac arrest. New serum biomarkers such as Neurofilament light chain have shown good predictive abilities and need further validation in these populations. There is a high-level uncertainty in brain death declaration protocols particularly related to apnea testing and appropriate ancillary tests in patients receiving ECMO. Both sedation and TTM alone and in combination have been shown to affect prognostic markers to varying degrees. The optimal approach to analog-sedation is unknown, and requires further study. Moreover, validation of known prognostic markers, as well as brain death declaration processes in patients receiving ECMO is warranted. Data on the effects of TTM, sedation, and ECMO on biomarkers (e.g., neuron-specific enolase) and electrophysiology measures (e.g., somatosensory-evoked potentials) is sparse. The best approach may be one customized to the individual patient, a precision-medicine approach.
Collapse
Affiliation(s)
- Sachin Agarwal
- Division of Neurocritical Care and Hospitalist Neurology, Department of Neurology, New York-Presbyterian Hospital/Columbia University Irving Medical Center, New York, NY, USA.
| | - Nicholas Morris
- Department of Neurology, Program in Trauma, University of Maryland Medical Center, Baltimore, MD, USA
| | - Caroline Der-Nigoghossian
- Clinical Pharmacy, New York-Presbyterian Hospital/Columbia University Irving Medical Center, New York, NY, USA
| | - Teresa May
- Division of Pulmonary and Critical Care Medicine, Maine Medical Center, Portland, ME, USA
| | - Daniel Brodie
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
49
|
Assessing brain injury after cardiac arrest, towards a quantitative approach. Curr Opin Crit Care 2019; 25:211-217. [DOI: 10.1097/mcc.0000000000000611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
Faro J, Coppler PJ, Dezfulian C, Baldwin M, Molyneaux BJ, Urban A, Rittenberger JC, Callaway CW, Elmer J. Differential association of subtypes of epileptiform activity with outcome after cardiac arrest. Resuscitation 2019; 136:138-145. [PMID: 30586605 PMCID: PMC6397672 DOI: 10.1016/j.resuscitation.2018.11.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 11/20/2018] [Accepted: 11/29/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Epileptiform activity is common after cardiac arrest, although intensity of electroencephalographic (EEG) monitoring may affect detection rates. Prior work has grouped these patterns together as "malignant," without considering discrete subtypes. We describe the incidence of distinct patterns in the ictal-interictal spectrum at two centers and their association with outcomes. METHODS We analyzed a retrospective cohort of comatose post-arrest patients admitted at two academic centers from January 2011 to October 2014. One center uses routine continuous EEG, the other acquires "spot" EEG at the treating physicians' discretion. We reviewed all available EEG data and classified epileptiform patterns. We abstracted antiepileptic drugs (AEDs) administrations from the electronic medical record. We compared apparent incidence of each pattern between centers, and compared outcomes (awakening from coma, survival to discharge, discharge modified Rankin Scale (mRS) 0-2) across EEG patterns and number of AEDs administered. RESULTS We included 818 patients. Routine continuous EEG was associated with a higher apparent incidence of polyspike burst-suppression (25% vs 13% P < 0.001). Frequency of other epileptiform findings did not differ. Among patients with any epileptiform pattern, only 2/258 (1%, 95%CI 0-3%) were discharged with mRS 0-2, although 24/258 (9%, 95%CI 6-14%) awakened and 36/258 (14%, 95%CI 10-19%) survived. The proportions that awakened and survived decreased in a stepwise manner with progressively worse EEG patterns (range 38% to 2% and 32% to 7%, respectively). Among patients receiving ≥3 AEDs, only 5/80 (6%, 95%CI 2-14%) awakened and 1/80 (1%, 95%CI 0-7%) had a mRS 0-2. CONCLUSION We found high rates of epileptiform EEG findings, regardless of intensity of EEG monitoring. The association of distinct ictal-interictal EEG findings with outcome was variable.
Collapse
Affiliation(s)
- John Faro
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Patrick J Coppler
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cameron Dezfulian
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Maria Baldwin
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, Pittsburgh VA Medical Center, Pittsburgh, PA, USA
| | - Bradley J Molyneaux
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alexandra Urban
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jon C Rittenberger
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Clifton W Callaway
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jonathan Elmer
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|