1
|
Liguori A, D'Ambrosio F, Napodano C, Gentili V, Giustiniani MC, Pompili M, Grieco A, Rapaccini G, Urbani A, Gasbarrini A, Basile U, Miele L. Serum-free light chains as a dependable biomarker for stratifying patients with metabolic dysfunction-associated steatotic liver disease. Liver Int 2024; 44:2625-2638. [PMID: 39016540 DOI: 10.1111/liv.16036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 05/29/2024] [Accepted: 06/23/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND AND AIMS Adaptive immunity is gaining a significant role in progression of metabolic dysfunction-associated steatotic liver disease (MASLD). B-cell activity can be assessed by serum-free light chains (sFLCs) k and λ levels. The objective of the present investigation is to examine the utility of sFLCs as non-invasive biomarkers for the stratification of MASLD. METHODS We enrolled a consecutive cohort from an outpatient liver unit. Diagnosis of metabolic dysfunction-associated steatohepatitis (MASH) was made with liver biopsy according to current guidelines. Compensated advanced chronic liver disease (cACLD) and clinically significant portal hypertension (CSPH) were defined according to Baveno VII criteria. sFLCs were measured by turbidimetry using an immunoassay. RESULTS We evaluated 254 patients, 162/254 (63.8%) were male. Median age was 54 years old, and the median body mass index was 28.4 kg/m2. A total of 157/254 (61.8%) subjects underwent liver biopsy: 88 had histological diagnosis of MASH, 89 were considered as simple metabolic dysfunction-associated steatotic liver (MASL) and 77/254 (30.3%) patients with compensated metabolic dysfunction-associated cirrhosis. By using Baveno VII criteria, 101/254 (39.7%) patients had cACLD; among them, 45/101 (44.5%) had CSPH. Patients with cACLD showed higher sFLC levels compared with patients without cACLD (p < .01), and patients with CSPH showed higher sFLC levels than patients without CSPH (p < .01). At multivariable analysis, sFLCs were associated with cACLD (p < .05) independently from γ-globulins and other known dysmetabolic risk factors. κFLC was associated with CSPH (p < .05) independently from γ-globulins and other known dysmetabolic risk factors. CONCLUSION sFLCs could be a simple biomarker for stratification of cACLD in MASLD patients.
Collapse
Affiliation(s)
- Antonio Liguori
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Internal Medicine and Liver Transplant Unit, Fondazione Policlinico Universitario A, Gemelli IRCCS, Rome, Italy
- CEMAD, Digestive Disease Center, Fondazione Policlinico Universitario A, Gemelli IRCCS, Rome, Italy
| | - Francesca D'Ambrosio
- Department of Laboratory and Infectious Diseases Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Cecilia Napodano
- Department of Laboratory and Infectious Diseases Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Vanessa Gentili
- Department of Laboratory and Infectious Diseases Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Maria Cristina Giustiniani
- Department of Women, Children and Public Health Sciences, Fondazione Policlinico Universitario A, Gemelli IRCCS, Rome, Italy
| | - Maurizio Pompili
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonio Grieco
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gianludovico Rapaccini
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Urbani
- Department of Laboratory and Infectious Diseases Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Antonio Gasbarrini
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Internal Medicine and Liver Transplant Unit, Fondazione Policlinico Universitario A, Gemelli IRCCS, Rome, Italy
| | - Umberto Basile
- Department of Clinical Pathology, Santa Maria Goretti HospitalAUSL Latina, Latina, Italy
| | - Luca Miele
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Internal Medicine and Liver Transplant Unit, Fondazione Policlinico Universitario A, Gemelli IRCCS, Rome, Italy
- CEMAD, Digestive Disease Center, Fondazione Policlinico Universitario A, Gemelli IRCCS, Rome, Italy
| |
Collapse
|
2
|
Wang H, Kim SJ, Lei Y, Wang S, Wang H, Huang H, Zhang H, Tsung A. Neutrophil extracellular traps in homeostasis and disease. Signal Transduct Target Ther 2024; 9:235. [PMID: 39300084 DOI: 10.1038/s41392-024-01933-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/25/2024] [Accepted: 07/16/2024] [Indexed: 09/22/2024] Open
Abstract
Neutrophil extracellular traps (NETs), crucial in immune defense mechanisms, are renowned for their propensity to expel decondensed chromatin embedded with inflammatory proteins. Our comprehension of NETs in pathogen clearance, immune regulation and disease pathogenesis, has grown significantly in recent years. NETs are not only pivotal in the context of infections but also exhibit significant involvement in sterile inflammation. Evidence suggests that excessive accumulation of NETs can result in vessel occlusion, tissue damage, and prolonged inflammatory responses, thereby contributing to the progression and exacerbation of various pathological states. Nevertheless, NETs exhibit dual functionalities in certain pathological contexts. While NETs may act as autoantigens, aggregated NET complexes can function as inflammatory mediators by degrading proinflammatory cytokines and chemokines. The delineation of molecules and signaling pathways governing NET formation aids in refining our appreciation of NETs' role in immune homeostasis, inflammation, autoimmune diseases, metabolic dysregulation, and cancer. In this comprehensive review, we delve into the multifaceted roles of NETs in both homeostasis and disease, whilst discussing their potential as therapeutic targets. Our aim is to enhance the understanding of the intricate functions of NETs across the spectrum from physiology to pathology.
Collapse
Affiliation(s)
- Han Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Susan J Kim
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Yu Lei
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuhui Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Wang
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hai Huang
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Hongji Zhang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| | - Allan Tsung
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
3
|
Choi YJ, Kim Y, Hwang S. Role of Neutrophils in the Development of Steatotic Liver Disease. Semin Liver Dis 2024; 44:300-318. [PMID: 39117322 DOI: 10.1055/s-0044-1789207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
This review explores the biological aspects of neutrophils, their contributions to the development of steatotic liver disease, and their potential as therapeutic targets for the disease. Although alcohol-associated and metabolic dysfunction-associated liver diseases originate from distinct etiological factors, the two diseases frequently share excessive lipid accumulation as a common contributor to their pathogenesis, thereby classifying them as types of steatotic liver disease. Dysregulated lipid deposition in the liver induces hepatic injury, triggering the activation of the innate immunity, partially through neutrophil recruitment. Traditionally recognized for their role in microbial clearance, neutrophils have recently garnered attention for their involvement in sterile inflammation, a pivotal component of steatotic liver disease pathogenesis. In conclusion, technological innovations, including single-cell RNA sequencing, have gradually disclosed the existence of various neutrophil subsets; however, how the distinct subsets of neutrophil population contribute differentially to the development of steatotic liver disease remains unclear.
Collapse
Affiliation(s)
- You-Jin Choi
- College of Pharmacy, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - Yeonsoo Kim
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Seonghwan Hwang
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
4
|
Yu M, Li X, Xu L, Zheng C, Pan W, Chen H, Liu X, Zhang X, Zhang J. Neutrophil extracellular traps induce intrahepatic thrombotic tendency and liver damage in cholestatic liver disease. Hepatol Commun 2024; 8:e0513. [PMID: 39101776 PMCID: PMC11299992 DOI: 10.1097/hc9.0000000000000513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/28/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND Cholestatic liver diseases induce local and systemic hypercoagulation, with neutrophil extracellular traps (NETs) serving as major drivers. These NETs have been linked to decreased liver function in patients with obstructive jaundice. However, the impact of NETs on liver hypercoagulation in cholestatic liver disease remains unknown. METHODS We utilized bile duct ligation to create experimental mice and analyzed NETs formation in the liver. Fibrin deposition, tissue factor expression, and inflammation in the liver were visualized through western blot and immunohistochemical techniques. LSECs were incubated with isolated NETs, and we detected endothelial procoagulant activity using coagulation protein production assays and measuring endothelial permeability. In both in vivo and in vitro settings, DNase I was applied to clarify the effect of NETs on intrahepatic hypercoagulability, hepatotoxicity, LSEC, and macrophage activation or injury. RESULTS Bile duct ligation mice exhibited significantly increased levels of NETs in liver tissue, accompanied by neutrophil infiltration, tissue necrosis, fibrin deposition, and thrombophilia compared to sham mice. Notably, NETs resulted in phosphatidylserine and tissue factor exposure on LSEC, enhancing coagulation Factor Xa and thrombin production. The enhanced procoagulant activity could be reversed by degrading NETs with DNase I. Additionally, NETs-induced permeability changes in LSECs, characterized by increased VE-cadherin expression and F-actin retraction, which could be rescued by DNase I. Meanwhile, NET formation is associated with KC activation and the formation of inflammatory factors. CONCLUSIONS NETs promote intrahepatic activation of coagulation and inflammation, leading to liver tissue injury. Strategies targeting NET formation may offer a potential therapeutic approach for treating cholestatic liver disease.
Collapse
Affiliation(s)
- Muxin Yu
- Department of Clinical Medical Sciences, College of Medicine, Jiaxing University, Jiaxing, China
| | - Xiaowen Li
- Department of Pathology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Long Xu
- Department of Clinical Medical Sciences, College of Medicine, Jiaxing University, Jiaxing, China
| | - Chuwei Zheng
- Department of Gastroenterology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Weiwei Pan
- Department of Clinical Medical Sciences, College of Medicine, Jiaxing University, Jiaxing, China
| | - Hui Chen
- Department of Clinical Medical Sciences, College of Medicine, Jiaxing University, Jiaxing, China
| | - Xiaoyu Liu
- Department of Clinical Medical Sciences, College of Medicine, Jiaxing University, Jiaxing, China
| | - Xianshan Zhang
- Department of Clinical Medical Sciences, College of Medicine, Jiaxing University, Jiaxing, China
| | - Jinming Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
5
|
Li X, Hu L, Naeem A, Xiao S, Yang M, Shang H, Zhang J. Neutrophil Extracellular Traps in Tumors and Potential Use of Traditional Herbal Medicine Formulations for Its Regulation. Int J Nanomedicine 2024; 19:2851-2877. [PMID: 38529365 PMCID: PMC10961241 DOI: 10.2147/ijn.s449181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/28/2024] [Indexed: 03/27/2024] Open
Abstract
Neutrophil extracellular traps (NETs) are extracellular fibers composed of deoxyribonucleic acid (DNA) and decorated proteins produced by neutrophils. Recently, NETs have been associated with the development of many diseases, including tumors. Herein, we reviewed the correlation between NETs and tumors. In addition, we detailed active compounds from traditional herbal medicine formulations that inhibit NETs, related nanodrug delivery systems, and antibodies that serve as "guiding moieties" to ensure targeted delivery to NETs. Furthermore, we discussed the strategies used by pathogenic microorganisms to evade NETs.
Collapse
Affiliation(s)
- Xiang Li
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Lei Hu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Abid Naeem
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China
| | - Shanghua Xiao
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
| | - Ming Yang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
| | - Hongming Shang
- Department of Biochemistry & Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Jing Zhang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
| |
Collapse
|
6
|
Minciuna I, Taru MG, Procopet B, Stefanescu H. The Interplay between Liver Sinusoidal Endothelial Cells, Platelets, and Neutrophil Extracellular Traps in the Development and Progression of Metabolic Dysfunction-Associated Steatotic Liver Disease. J Clin Med 2024; 13:1406. [PMID: 38592258 PMCID: PMC10932189 DOI: 10.3390/jcm13051406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 04/10/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a societal burden due to the lack of effective treatment and incomplete pathophysiology understanding. This review explores the intricate connections among liver sinusoidal endothelial cells (LSECs), platelets, neutrophil extracellular traps (NETs), and coagulation disruptions in MASLD pathogenesis. In MASLD's early stages, LSECs undergo capillarization and dysfunction due to excessive dietary macronutrients and gut-derived products. Capillarization leads to ischemic changes in hepatocytes, triggering pro-inflammatory responses in Kupffer cells (KCs) and activating hepatic stellate cells (HSCs). Capillarized LSECs show a pro-inflammatory phenotype through adhesion molecule overexpression, autophagy loss, and increased cytokines production. Platelet interaction favors leucocyte recruitment, NETs formation, and liver inflammatory foci. Liver fibrosis is facilitated by reduced nitric oxide, HSC activation, profibrogenic mediators, and increased angiogenesis. Moreover, platelet attachment, activation, α-granule cargo release, and NETs formation contribute to MASLD progression. Platelets foster fibrosis and microthrombosis, leading to parenchymal extinction and fibrotic healing. Additionally, platelets promote tumor growth, epithelial-mesenchymal transition, and tumor cell metastasis. MASLD's prothrombotic features are exacerbated by insulin resistance, diabetes, and obesity, manifesting as increased von Willebrand factor, platelet hyperaggregability, hypo-fibrinolysis, and a prothrombotic fibrin clot structure. Improving LSEC health and using antiplatelet treatment appear promising for preventing MASLD development and progression.
Collapse
Affiliation(s)
- Iulia Minciuna
- Regional Institute of Gastroenterology and Hepatology “Prof. Dr. Octavian Fodor”, 400394 Cluj-Napoca, Romania (H.S.)
- Deaprtment IV, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Madalina Gabriela Taru
- Regional Institute of Gastroenterology and Hepatology “Prof. Dr. Octavian Fodor”, 400394 Cluj-Napoca, Romania (H.S.)
- Deaprtment IV, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Bogdan Procopet
- Regional Institute of Gastroenterology and Hepatology “Prof. Dr. Octavian Fodor”, 400394 Cluj-Napoca, Romania (H.S.)
- Deaprtment IV, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Horia Stefanescu
- Regional Institute of Gastroenterology and Hepatology “Prof. Dr. Octavian Fodor”, 400394 Cluj-Napoca, Romania (H.S.)
| |
Collapse
|
7
|
Li HJ, Wang YS, Wang YN, Liu AR, Su XH, Ma ZA, Wang LX, Zhang ZY, Lv SQ, Miao J, Cui HT. Mechanical study of alisol B 23-acetate on methionine and choline deficient diet-induced nonalcoholic steatohepatitis based on untargeted metabolomics. Biomed Chromatogr 2024; 38:e5763. [PMID: 37858975 DOI: 10.1002/bmc.5763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023]
Abstract
Alisol B 23-acetate (AB23A) has been demonstrated to have beneficial effects on nonalcoholic steatohepatitis (NASH). However, the mechanisms of AB23A on NASH remain unclear. This study aimed to investigate the mechanisms underlying the metabolic regulatory effects of AB23A on NASH. We used AB23A to treat mice with NASH, which was induced by a methionine and choline deficient (MCD) diet. We initially investigated therapeutic effect and resistance to oxidation and inflammation of AB23A on NASH. Subsequently, we performed untargeted metabolomic analyses and relative validation assessments to evaluate the metabolic regulatory effects of AB23A. AB23A reduced lipid accumulation, ameliorated oxidative stress and decreased pro-inflammatory cytokines in the liver. Untargeted metabolomic analysis found that AB23A altered the metabolites of liver. A total of 55 differential metabolites and three common changed pathways were screened among the control, model and AB23A treatment groups. Further tests validated the effects of AB23A on modulating common changed pathway-involved factors. AB23A treatment can ameliorate NASH by inhibiting oxidative stress and inflammation. The mechanism of AB23A on NASH may be related to the regulation of alanine, aspartate and glutamate metabolism, d-glutamine and d-glutamate metabolism, and arginine biosynthesis pathways.
Collapse
Affiliation(s)
- Hua-Jun Li
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Yuan-Song Wang
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Ya-Nan Wang
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Ai-Ru Liu
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Xiu-Hai Su
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Zi-Ang Ma
- Graduate School of Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Li-Xin Wang
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Zhong-Yong Zhang
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Shu-Quan Lv
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Jing Miao
- Tianjin Second People's Hospital, Tianjin, China
| | - Huan-Tian Cui
- Yunnan University of Traditional Chinese Medicine, Kunming, China
| |
Collapse
|
8
|
Fa P, Ke BG, Dupre A, Tsung A, Zhang H. The implication of neutrophil extracellular traps in nonalcoholic fatty liver disease. Front Immunol 2023; 14:1292679. [PMID: 38022519 PMCID: PMC10652891 DOI: 10.3389/fimmu.2023.1292679] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is an expanding worldwide health concern, and the underlying mechanisms contributing to its progression still need further exploration. Neutrophil extracellular traps (NETs) are intricate formations comprised of nuclear constituents and diverse antimicrobial granules that are released into the extracellular milieu by activated neutrophils upon various triggers, which play a pivotal part in the onset and advancement of NAFLD. NETs actively participate in the genesis of NAFLD by fostering oxidative stress and inflammation, ultimately resulting in hepatic fat accumulation and the escalation of liver injury. Recent insights into the interaction with other hepatic immune populations and mediators, such as macrophages and T regulatory cells, have revealed several important mechanisms that can trigger further liver injury. In conclusion, the formation of NETs emerged as an important factor in the development of NAFLD, offering a promising target for innovative therapeutic approaches against this debilitating condition. This comprehensive review seeks to compile existing studies exploring the involvement of NETs in the genesis of NAFLD and their influence on the immune response throughout the progression of NAFLD.
Collapse
Affiliation(s)
- Pengyan Fa
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Benjamin G. Ke
- School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Abigail Dupre
- School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Allan Tsung
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Hongji Zhang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
9
|
Huang C, Fan X, Shen Y, Shen M, Yang L. Neutrophil subsets in noncancer liver diseases: Cellular crosstalk and therapeutic targets. Eur J Immunol 2023; 53:e2250324. [PMID: 37495829 DOI: 10.1002/eji.202250324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/28/2023]
Abstract
Neutrophils are the most abundant circulating granulocytes, linking innate and adaptive immunity. Neutrophils can regulate inflammatory and immune responses through degranulation, reactive oxygen species generation, the production of cytokines and chemokines, and NETosis. Emerging evidence has indicated that neutrophils contribute to the pathogenesis of various noncancer liver diseases, including nonalcoholic fatty liver disease, alcohol-associated liver disease, hepatic ischemia-reperfusion injury, and liver fibrosis. Cellular interactions among neutrophils, other immune cells, and nonimmune cells constitute a complex network that regulates the immune microenvironment of the liver. This review summarizes novel neutrophil subtypes, including CD177+ neutrophils and low-density neutrophils. Moreover, we provide an overview of the cellular cros stalk of neutrophils in noncancer liver diseases, aiming to shed new light on mechanistic studies of novel neutrophil subtypes. In addition, we discuss the potential of neutrophils as therapeutic targets in noncancer liver diseases, including inhibitors targeting NETosis, granule proteins, and chemokines.
Collapse
Affiliation(s)
- Chen Huang
- Department of Gastroenterology and Hepatology and Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoli Fan
- Department of Gastroenterology and Hepatology and Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Shen
- Department of Gastroenterology and Hepatology and Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Mengyi Shen
- Department of Gastroenterology and Hepatology and Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Li Yang
- Department of Gastroenterology and Hepatology and Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Li J, Yin L, Chen S, Li Z, Ding J, Wu J, Yang K, Xu J. The perspectives of NETosis on the progression of obesity and obesity-related diseases: mechanisms and applications. Front Cell Dev Biol 2023; 11:1221361. [PMID: 37649550 PMCID: PMC10465184 DOI: 10.3389/fcell.2023.1221361] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023] Open
Abstract
Obesity is a disease commonly associated with urbanization and can also be characterized as a systemic, chronic metabolic condition resulting from an imbalance between energy intake and expenditure. The World Health Organization (WHO) has identified obesity as the most serious chronic disease that is increasingly prevalent in the world population. If left untreated, it can lead to dangerous health issues such as hypertension, hyperglycemia, hyperlipidemia, hyperuricemia, nonalcoholic steatohepatitis, atherosclerosis, and vulnerability to cardiovascular and cerebrovascular events. The specific mechanisms by which obesity affects the development of these diseases can be refined to the effect on immune cells. Existing studies have shown that the development of obesity and its associated diseases is closely related to the balance or lack thereof in the number and function of various immune cells, of which neutrophils are the most abundant immune cells in humans, infiltrating and accumulating in the adipose tissues of obese individuals, whereas NETosis, as a newly discovered type of neutrophil-related cell death, its role in the development of obesity and related diseases is increasingly emphasized. The article reviews the significant role that NETosis plays in the development of obesity and related diseases, such as diabetes and its complications. It discusses the epidemiology and negative impacts of obesity, explains the mechanisms of NETosis, and examines its potential as a targeted drug to treat obesity and associated ailments.
Collapse
Affiliation(s)
- Jinyu Li
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, China
- The First Clinical Medical College of Nanchang University, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lijia Yin
- The First Clinical Medical College of Nanchang University, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Siyi Chen
- The First Clinical Medical College of Nanchang University, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zelin Li
- The First Clinical Medical College of Nanchang University, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiatong Ding
- The Second Clinical Medical College of Nanchang University, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiaqiang Wu
- The Second Clinical Medical College of Nanchang University, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kangping Yang
- The Second Clinical Medical College of Nanchang University, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jixiong Xu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, Jiangxi, China
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, Jiangxi, China
| |
Collapse
|
11
|
Chen H, Zhou S, Chen W, Zhu M, Yu H, Zheng L, Wang B, Wang M, Feng W. PEG-GNPs aggravate MCD-induced steatohepatitic injury and liver fibrosis in mice through excessive lipid accumulation-mediated hepatic inflammatory damage. NANOIMPACT 2023; 31:100469. [PMID: 37270064 DOI: 10.1016/j.impact.2023.100469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/19/2023] [Accepted: 05/26/2023] [Indexed: 06/05/2023]
Abstract
Rapid development of gold nanoparticles (GNPs) in delivering pharmaceutics and therapeutics approaches still linger the concerns of their toxic effects. Nonalcoholic steatohepatitis (NASH) is characterized by excessive lipid accumulation and overt hepatic inflammatory damage, and is the leading cause of chronic liver disease worldwide. This study aimed to assess the potential hepatic effects of GNPs on NASH phenotype and progression in mice. Mice were fed a MCD diet for 8 weeks to elicit NASH and then intravenously injected with PEG-GNPs at a single dose of 1, 5, and 25 mg/kg-bw. After 24 h and 1 week of administration, the levels of plasma ALT and AST, and the number of lipid droplets, the degree of lobular inflammation and the contents of triglycerides and cholesterols in the livers of the NASH mice significantly increased compared with the untreated NASH mice, indicating that the severity of MCD diet-induced NASH-like symptoms in mice increased after PEG-GNP administration. Moreover, the aggravated hepatic steatosis in a manner involving altered expression of the genes related to hepatic de novo lipogenesis, lipolysis, and fatty acid oxidation was observed after PEG-GNP administration. Additionally, the RNA levels of biomarkers of hepatic pro-inflammatory responses, endoplasmic reticulum stress, apoptosis, and autophagy in MCD-fed mice increased compared with the untreated NASH group. Moreover, PEG-GNP-treated NASH mice displayed an increase in MCD diet-induced hepatic fibrosis, revealed by massive deposition of collagen fiber in the liver and increased expression of fibrogenic genes. Collectively, these results suggest that hepatic GNP deposition after PEG-GNP administration increase the severity of MCD-induced NASH phenotype in mice, which is attributable to, in large part, increased steatohepatitic injury and liver fibrosis in mice.
Collapse
Affiliation(s)
- Hanqing Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China; Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Shuang Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China; Beijing Institute of Medical Device Testing, Beijing 101111, China
| | - Wei Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Meilin Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Hongyang Yu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Lingna Zheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Bing Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Meng Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Weiyue Feng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China.
| |
Collapse
|
12
|
Zhang Y, Song J, Zhang Y, Li T, Peng J, Zhou H, Zong Z. Emerging Role of Neutrophil Extracellular Traps in Gastrointestinal Tumors: A Narrative Review. Int J Mol Sci 2022; 24:ijms24010334. [PMID: 36613779 PMCID: PMC9820455 DOI: 10.3390/ijms24010334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/07/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Neutrophil extracellular traps (NETs) are extracellular fibrous networks consisting of depolymerized chromatin DNA skeletons with a variety of antimicrobial proteins. They are secreted by activated neutrophils and play key roles in host defense and immune responses. Gastrointestinal (GI) malignancies are globally known for their high mortality and morbidity. Increasing research suggests that NETs contribute to the progression and metastasis of digestive tract tumors, among them gastric, colon, liver, and pancreatic cancers. This article explores the formation of NETs and reviews the role that NETs play in the gastrointestinal oncologic microenvironment, tumor proliferation and metastasis, tumor-related thrombosis, and surgical stress. At the same time, we analyze the qualitative and quantitative detection methods of NETs in recent years and found that NETs are specific markers of coronavirus disease 2019 (COVID-19). Then, we explore the possibility of NET inhibitors for the treatment of digestive tract tumor diseases to provide a new, efficient, and safe solution for the future therapy of gastrointestinal tumors.
Collapse
Affiliation(s)
- Yujun Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, 1 MinDe Road, Nanchang 330006, China
- HuanKui Academy, Nanchang University, Nanchang 330006, China
| | - Jingjing Song
- Nanchang University School of Ophthalmology & Optometry, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yiwei Zhang
- Queen Marry College, Nanchang University, Nanchang 330006, China
| | - Ting Li
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Jie Peng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, 1 MinDe Road, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Haonan Zhou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, 1 MinDe Road, Nanchang 330006, China
- Queen Marry College, Nanchang University, Nanchang 330006, China
| | - Zhen Zong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, 1 MinDe Road, Nanchang 330006, China
- Correspondence:
| |
Collapse
|
13
|
Zhang J, Huo J, Zhao Z, Lu Y, Hong Z, Li H, Chen D. An anticomplement homogeneous polysaccharide from Hedyotis diffusa attenuates lipopolysaccharide-induced acute lung injury and inhibits neutrophil extracellular trap formation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154453. [PMID: 36116199 DOI: 10.1016/j.phymed.2022.154453] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/25/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Owing to the involvement of the overactivated complement system in acute lung injury (ALI) development, anticomplement components may attenuate ALI. Hedyotis diffusa is a traditional Chinese medicine for treating lung heat and its crude polysaccharides (HDP) exhibit significant anticomplement activity in vitro. PURPOSE To obtain an anticomplement homogeneous polysaccharide from HDP and verify its therapeutic effect and mechanism on ALI. METHODS Diethylaminoethyl-52 (DEAE-52) cellulose and gel permeation columns were used to isolate a homogeneous polysaccharide HD-PS-3, which was then characterized using nuclear magnetic resonance (NMR) and methylation analysis. In vitro, the anticomplement activities of HD-PS-3 through classical and alternative pathways were determined using a hemolytic test. The therapeutic effects of HDP and HD-PS-3 on ALI were evaluated in lipopolysaccharide (LPS) intratracheal instilled mice. Hematoxylin and eosin (H&E) staining, enzyme-linked immunosorbent assay (ELISA), and immunohistochemical staining were used to assess histological changes, measure cytokine levels, and evaluate the degree of complement component 3c (C3c) deposition and neutrophil infiltration, respectively. ELISA, western blotting, and immunofluorescence were used to analyze neutrophil extracellular trap (NET) formation. RESULTS From HDP, 1.5 g of the homogeneous polysaccharide HD-PS-3 was obtained. HD-PS-3 was an acidic heteropolysaccharide with an acetyl group, which was composed of →4,6)-α-Glcp-(1→, →3,4)-α-Glcp-(1→, →4)-α-Glcp-(1→, →4,6)-α-Galp-(1→, →5)-α-Araf-(1→, α-Rhap-(1→, α-Araf-(1→, α-GlcpA-(1→, →4)-β-Manp-(1→, β-Manp-(1→ and →3)-β-Manp-(1→. The in vitro results suggest that HD-PS-3 exhibited anticomplement activity with CH50 and AP50 values of 115 ± 12 μg/ml and 307 ± 11 μg/ml, respectively. After confirming the efficacy of HDP (200 mg/kg) in attenuating lung injury, the effect of HD-PS-3 on ALI was also investigated. HD-PS-3 (75 and 150 mg/kg) attenuated LPS-induced ALI as well, evidenced by lung pathology, lung injury scores, protein concentration, leukocyte counts, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) contents in bronchoalveolar lavage fluid (BALF). Mechanistically, HD-PS-3 inhibited complement activation, manifested in reduced pulmonary C3c deposition in lung tissue and complement component 3a (C3a) content in BALF. Neutrophil recruitment was also reduced by HD-PS-3, with significantly reduced pulmonary neutrophil infiltration and lower levels of C-X-C motif chemokine ligand 1 (CXCL1) and myeloperoxidase (MPO) in BALF. In addition, HD-PS-3 reduced the levels of MPO-DNA complex in BALF, decreased citrullinated histone H3 (Cit H3) expression and NET formation (colocalization of MPO, Cit H3, and DNA) in lung tissue. CONCLUSION An anticomplement homogeneous polysaccharide HD-PS-3 was isolated from H. diffusa. HD-PS-3 exhibited a therapeutic effect against ALI, and the mechanism might be related to its inhibitory effects on complement activation, neutrophil recruitment, and NET formation.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong New Area, Shanghai 201203, China
| | - Jiangyan Huo
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong New Area, Shanghai 201203, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Lane, Nanjing 210009, China
| | - Zhizhi Zhao
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong New Area, Shanghai 201203, China
| | - Yan Lu
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong New Area, Shanghai 201203, China
| | - Zhou Hong
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong New Area, Shanghai 201203, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Lane, Nanjing 210009, China
| | - Hong Li
- Department of Pharmacology, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| | - Daofeng Chen
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong New Area, Shanghai 201203, China.
| |
Collapse
|
14
|
Elsayed A, Ismaiel A, Procopio AC, Luzza F, Abenavoli L, Dumitrascu DL. Noninvasive biochemical markers and surrogate scores in evaluating nonalcoholic steatohepatitis. Minerva Med 2022; 113:864-874. [PMID: 35583419 DOI: 10.23736/s0026-4806.22.08185-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The histological features of nonalcoholic steatohepatitis (NASH) are the presence of hepatic steatosis with concomitant inflammation, ballooned hepatocytes, and potential fibrosis, which can lead to liver cirrhosis. To reduce the need for liver biopsy, that is still the gold standard for diagnosing NASH, various noninvasive biomarkers have been investigated. This narrative review summarizes the current knowledge about noninvasive diagnostic biomarkers and scores proposed for patients with NASH. A search was performed in the main medical literature databases. The following search terms were used: NASH, noninvasive biomarkers or NASH scores and panels. We focused only on studies assessing NASH diagnosis or predictive values for biomarkers, panels and scores. Data on their accuracy in predicting NASH were collected. Several panels such as NAFLD Fibrosis Score (NFS), Fibrosis-4 (FIB-4), and FibroMeter presented good predictive values of NASH, with novel proteomics panels such as the NAFLD Fibrosis Protein Panel (NFPP) using mainly the adisintegrin and metalloproteinase with thrombospondin motifs like 2 (ADAMTSL2) that showed an advantage in predicting NASH compared to NFS and FIB-4. Another novel panel, Index of NASH (ION) performed better than cytokeratin 18 (CK-18) in excluding severe fibrosis, but the overall accuracy of ION and CK-18 was modest compared to NFS and FIB-4 as it did not provide any significant advantage. Noninvasive biomarkers are currently unable to replace liver biopsy and histological assessment. However, they may play a key and vital role in triaging patients for liver biopsy, lowering the related financial burden. Future studies are needed to verify the predictive values of the newly emerging tests and panels as well as to find more affordable and reliable noninvasive early diagnostic tools.
Collapse
Affiliation(s)
- Abdalla Elsayed
- Department of Internal Medicine, County Emergency Hospital Ilfov, Bucharest, Romania
| | - Abdulrahman Ismaiel
- Second Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania -
| | - Anna C Procopio
- Department of Health Sciences, The Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Francesco Luzza
- Department of Health Sciences, The Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Ludovico Abenavoli
- Department of Health Sciences, The Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Dan L Dumitrascu
- Second Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
15
|
Shafiey SI, Abo-Saif AA, Abo-Youssef AM, Mohamed WR. Protective effects of rivaroxaban against cisplatin-induced testicular damage in rats: Impact on oxidative stress, coagulation, and p-NF-κB/VCAM-1 signaling. Food Chem Toxicol 2022; 169:113419. [PMID: 36122812 DOI: 10.1016/j.fct.2022.113419] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/16/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022]
Abstract
Coagulation is a main pathway in various diseases pathogenesis including testicular damage. This study evaluated rivaroxaban (RVX) protective effects in testicular impairment by cisplatin (CP). Rats were randomly allocated into five groups: Control, RVX (7 mg/kg/day), CP (10 mg/kg), RVX 5 mg + CP and RVX 7 mg + CP. Serum testosterone and testicular ALT, AST, and ALP were assessed. Testicular oxidative stress and antioxidant parameters and inflammatory indicators including interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) were assessed. qRT-PCR was used to determine mRNA expression of 3β-hydroxysteroid dehydrogenase (3β-HSD), 17β-hydroxysteroid dehydrogenase (17β-HSD), and steroidogenic acute regulatory protein (stAR). Protein expressions of p-Nuclear factor kappa B (p- NF-κB) and vascular cell adhesion protein-1 (VCAM-1) were analyzed by Western blot analysis. Tissue factor (TF) expression was immunohistochemically analyzed. Results revealed that RVX significantly increased serum testosterone and sperm count while significantly reduced IL-1β and TNF-α. It significantly decreased tissue MDA and NO contents while increased SOD and GPx. In addition, RVX attenuated CP-induced histopathological aberrations and normalized TF. It also decreased the VCAM-1 and p-NF-κB expression and showed strong expression of 3β-HSD, 17β-HSD, and stAR, indicating improvement of steroidogenesis. In conclusion, RVX counteracted testicular damage by CP via suppressing oxidative stress, inflammation, and coagulation and downregulating p-NF-κB/VCAM-1 signaling.
Collapse
Affiliation(s)
- Sara I Shafiey
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, 62514, Egypt
| | - Ali A Abo-Saif
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, 62514, Egypt
| | - Amira M Abo-Youssef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| |
Collapse
|
16
|
Valenti L, Tripodi A, La Mura V, Pelusi S, Bianco C, Scalambrino E, Margarita S, Malvestiti F, Ronzoni L, Clerici M, D’Ambrosio R, Fraquelli M, Carpani R, Prati D, Peyvandi F. Interplay between coagulation and determinants of liver disease in patients with metabolic dysfunction. JHEP Rep 2022; 4:100598. [PMID: 36313186 PMCID: PMC9597122 DOI: 10.1016/j.jhepr.2022.100598] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background & Aims The aim of this study was to examine the determinants of the interplay between liver damage and the coagulation balance in individuals at risk of non-alcoholic fatty liver disease (NAFLD). Methods We considered 581 healthy participants with ≥3 metabolic alterations undergoing clinical and genomic evaluation, measurement of liver stiffness (LSM) and controlled attenuation parameter (CAP) by Fibroscan, Pro-C3, coagulation balance (von Willebrand factor [vWF], factor VIII/protein C ratio [F8/PC] as the main outcome, D-dimer as marker of coagulation/fibrinolysis activation). Results Liver fibrosis indices (both Fibrosis-4 [FIB-4] and liver stiffness measurement [LSM]), but not liver fat (CAP), were independently associated with higher F8/PC ratio (p <0.01), triggering D-dimer formation (p = 2E-21). In keeping with a causal role of liver damage in determining a procoagulant status, the main fatty liver inherited risk variant PNPLA3 p.I148M was independently associated with the F8/PC ratio (p = 0.048). Vice versa, the main determinant of the coagulation balance was ABO locus variation (p = 1E-16), through the impact on vWF (p = 8E-26). Both rs687289 ABO and factor V Leiden were independently associated with higher Pro-C3 (p <0.025), with the effect of ABO being mediated by the impact on vWF (p = 5E-10 for association with Pro-C3). Mendelian randomisation analysis was consistent with a causal association of procoagulant imbalance with heightened fibrogenesis (p = 0.001 at robust MR-Egger for Pro-C3), but not with fibrosis (for LSM; p = not significant). Conclusions In individuals with metabolic dysfunction, liver damage severity and possibly the PNPLA3 p.I148M variant were associated with procoagulant status. Vice versa, evaluation of inherited variants in ABO and other genes influencing coagulation was consistent with a causal role of procoagulant imbalance in activation of early stages of fibrogenesis. Lay summary In individuals with metabolic alterations at risk of metabolic fatty liver disease, there is a tendency toward heightened blood coagulation (clotting), but the cause and the impact on the progression of liver disease remain unclear. Here we show that liver damage severity and metabolic alterations, but not hepatic fat, are mainly responsible for heightened coagulation in patients with metabolic fatty liver disease. By using genetic approaches, we showed that hepatic inflammation due to lipotoxicity may favour heightened coagulation, which in turn can trigger liver fibrosis, igniting a vicious cycle that leads to progressive liver disease. There is a complex interplay between liver damage and the coagulation balance in individuals at risk of non-alcoholic fatty liver disease. Non-invasive indices and genetic determinants of liver damage, but not fat, were associated with a procoagulant imbalance. Vice versa, genetic predisposition to hypercoagulability was associated with fibrogenesis. In individuals with metabolic dysfunction, liver damage appears to promote coagulation, which in turn can activate fibrogenesis.
Collapse
|
17
|
Wolf A, Khimani F, Yoon B, Gerhart C, Endsley D, Ray AK, Yango AF, Flynn SD, Lip GYH, Gonzalez SA, Sathyamoorthy M. The mechanistic basis linking cytokine storm to thrombosis in COVID-19. THROMBOSIS UPDATE 2022; 8:100110. [PMID: 38620974 PMCID: PMC9116969 DOI: 10.1016/j.tru.2022.100110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/26/2022] [Accepted: 05/09/2022] [Indexed: 12/15/2022] Open
Abstract
It is now well established that infection with SARS-CoV-2 resulting in COVID-19 disease includes a severely symptomatic subset of patients in whom an aggressive and/or dysregulated host immune response leads to cytokine storm syndrome (CSS) that may be further complicated by thrombotic events, contributing to the severe morbidity and mortality observed in COVID-19. This review provides a brief overview of cytokine storm in COVID-19, and then presents a mechanistic discussion of how cytokine storm affects integrated pathways in thrombosis involving the endothelium, platelets, the coagulation cascade, eicosanoids, auto-antibody mediated thrombosis, and the fibrinolytic system.
Collapse
Affiliation(s)
- Adam Wolf
- Sathyamoorthy Laboratory, TCU School of Medicine, Fort Worth, TX, United States
- TCU School of Medicine, Fort Worth, TX, United States
| | - Faria Khimani
- Sathyamoorthy Laboratory, TCU School of Medicine, Fort Worth, TX, United States
- TCU School of Medicine, Fort Worth, TX, United States
| | - Braian Yoon
- Sathyamoorthy Laboratory, TCU School of Medicine, Fort Worth, TX, United States
- TCU School of Medicine, Fort Worth, TX, United States
| | - Coltin Gerhart
- Sathyamoorthy Laboratory, TCU School of Medicine, Fort Worth, TX, United States
- TCU School of Medicine, Fort Worth, TX, United States
| | - Dakota Endsley
- Sathyamoorthy Laboratory, TCU School of Medicine, Fort Worth, TX, United States
- TCU School of Medicine, Fort Worth, TX, United States
| | - Anish K Ray
- Cook Children's Medical Center, Fort Worth, TX, United States
- Department of Pediatrics, TCU School of Medicine, Fort Worth, TX, United States
| | - Angelito F Yango
- Department of Medicine, TCU School of Medicine, Fort Worth, TX, United States
- Annette C. and Harold C. Simmons Transplant Institute, Baylor All Saints Medical Center, Fort Worth, TX, USA
| | | | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom
- Department of Clinical Medicine, Aalborg, Denmark
| | - Stevan A Gonzalez
- Department of Medicine, TCU School of Medicine, Fort Worth, TX, United States
- Annette C. and Harold C. Simmons Transplant Institute, Baylor All Saints Medical Center, Fort Worth, TX, USA
| | - Mohanakrishnan Sathyamoorthy
- Sathyamoorthy Laboratory, TCU School of Medicine, Fort Worth, TX, United States
- Department of Medicine, TCU School of Medicine, Fort Worth, TX, United States
- Consultants in Cardiovascular Medicine and Science - Fort Worth, PLLC, Fort Worth, TX, United States
| |
Collapse
|
18
|
Liu Y, Zhang X, Chen S, Wang J, Yu S, Li Y, Xu M, Aboubacar H, Li J, Shan T, Wang J, Cao G. Gut-derived lipopolysaccharide promotes alcoholic hepatosteatosis and subsequent hepatocellular carcinoma by stimulating neutrophil extracellular traps through TLR4. Clin Mol Hepatol 2022; 28:522-539. [PMID: 35508957 PMCID: PMC9293619 DOI: 10.3350/cmh.2022.0039] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 05/01/2022] [Indexed: 11/23/2022] Open
Abstract
Background/Aims Binge drinking leads to many disorders, including alcoholic hepatosteatosis, which is characterized by intrahepatic neutrophil infiltration and increases the risk of hepatocellular carcinoma (HCC). Molecular mechanisms may involve the migration of bacterial metabolites from the gut to the liver and the activation of neutrophil extracellular traps (NETs). Methods Serum samples from both binge drinking and alcohol-avoiding patients were analyzed. Mouse models of chronic plus binge alcohol-induced hepatosteatosis and HCC models were used. Results A marker of NETs formation, lipopolysaccharide (LPS), was significantly higher in alcoholic hepatosteatosis and HCC patients and mice than in controls. Intrahepatic inflammation markers and HCC-related cytokines were decreased in mice with reduced NET formation due to neutrophil elastase (NE) deletion, and liver-related symptoms of alcohol were also alleviated in NE knockout mice. Removal of intestinal bacteria with antibiotics led to decreases in markers of NETs formation and inflammatory cytokines upon chronic alcohol consumption, and development of alcoholic hepatosteatosis and HCC was also attenuated. These functions were restored upon supplementation with the bacterial product LPS. When mice lacking toll-like receptor 4 (TLR4) received chronic alcohol feeding, intrahepatic markers of NETs formation decreased, and hepatosteatosis and HCC were alleviated. Conclusions Formation of NETs following LPS stimulation of TLR4 upon chronic alcohol use leads to increased alcoholic steatosis and subsequent HCC.
Collapse
Affiliation(s)
- Yang Liu
- Department of General Surgery, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China
| | - Xin Zhang
- Department of Infectious Diseases, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China
| | - Shuo Chen
- Department of General Surgery, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China
| | - Jiazhong Wang
- Department of General Surgery, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China
| | - Shuo Yu
- Department of General Surgery, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China.,Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China
| | - Yiming Li
- Department of General Surgery, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China
| | - Meng Xu
- Department of General Surgery, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China
| | - Harouna Aboubacar
- Department of General Surgery, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China
| | - Junhui Li
- Department of General Surgery, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China
| | - Tao Shan
- Department of General Surgery, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China
| | - Jixin Wang
- Department of Infectious Diseases, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China
| | - Gang Cao
- Department of General Surgery, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China
| |
Collapse
|
19
|
Arelaki S, Koletsa T, Sinakos E, Papadopoulos V, Arvanitakis K, Skendros P, Akriviadis E, Ritis K, Germanidis G, Hytiroglou P. Neutrophil extracellular traps enriched with IL-1β and IL-17A participate in the hepatic inflammatory process of patients with non-alcoholic steatohepatitis. Virchows Arch 2022; 481:455-465. [PMID: 35503185 DOI: 10.1007/s00428-022-03330-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/18/2022] [Accepted: 04/24/2022] [Indexed: 10/18/2022]
Abstract
Neutrophil extracellular traps (NETs) are implicated in the pathogenesis of various non-infectious inflammatory and thrombotic diseases. We investigated the presence and possible associations of NETs with various histopathologic parameters in patients with non-alcoholic steatohepatitis (NASH). We retrospectively assessed 20 liver biopsy specimens from patients with non-alcoholic fatty liver disease (NAFLD), including 17 specimens with NASH, and 14 control specimens. NETs were identified with confocal microscopy as extracellular structures with co-localization of neutrophil elastase (NE) and citrullinated histone-3. Interleukin-1β (IL-1β) and IL-17A were assessed with the same methodology. Histologic features of NAFLD were semi-quantitatively evaluated, and correlated with presence of NETs, neutrophil density, and platelet density/aggregates (assessed by immunohistochemistry for NE and CD42b, respectively). NETs were identified in 94.1% (16/17) of the NASH biopsy specimens; they were absent from all other NAFLD and control specimens. The presence of NETs was strongly correlated with steatosis (p = 0.003), ballooning degeneration (p < 0.001), lobular inflammation (p < 0.001), portal inflammation (p < 0.001), NAS score (p = 0.001), stage (p = 0.001), and diagnosis of NASH (p < 0.001). NETs were decorated with IL-1β and IL-17A. Platelet aggregates were much larger in NASH specimens, as compared to controls. In conclusion, NETs are implicated in the pathogenesis of NASH. Their associations with inflammation, ballooning degeneration (a hallmark of NASH), and stage emphasize their role in the disease process. In this setting, NETs provide a vehicle for IL-1β and IL-17A. In addition, platelet aggregation in hepatic sinusoids implies a role for thromboinflammation in NASH, and may explain the low peripheral blood platelet counts reported in patients with NASH.
Collapse
Affiliation(s)
- Stella Arelaki
- Department of Pathology, Aristotle University School of Medicine, 54006, Thessaloniki, Greece.,Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece.,National Center for Tumor Diseases, Heidelberg, Germany
| | - Triantafyllia Koletsa
- Department of Pathology, Aristotle University School of Medicine, 54006, Thessaloniki, Greece
| | - Emmanuil Sinakos
- Fourth Department of Internal Medicine, Aristotle University School of Medicine, "Hippokration" General Hospital, Thessaloniki, Greece
| | | | - Konstantinos Arvanitakis
- First Department of Internal Medicine, Aristotle University School of Medicine, AHEPA University Hospital, 54636, Thessaloniki, Greece.,Basic and Translational Research Unit, Special Unit for Biomedical Research and Education (SUBRE), School of Medicine, Aristotle University, Thessaloniki, Greece
| | - Panagiotis Skendros
- Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece.,First Department of Internal Medicine, Democritus University of Thrace, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Evangelos Akriviadis
- Fourth Department of Internal Medicine, Aristotle University School of Medicine, "Hippokration" General Hospital, Thessaloniki, Greece
| | - Konstantinos Ritis
- Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece.,First Department of Internal Medicine, Democritus University of Thrace, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Georgios Germanidis
- First Department of Internal Medicine, Aristotle University School of Medicine, AHEPA University Hospital, 54636, Thessaloniki, Greece. .,Basic and Translational Research Unit, Special Unit for Biomedical Research and Education (SUBRE), School of Medicine, Aristotle University, Thessaloniki, Greece.
| | - Prodromos Hytiroglou
- Department of Pathology, Aristotle University School of Medicine, 54006, Thessaloniki, Greece.
| |
Collapse
|
20
|
Herrero-Cervera A, Soehnlein O, Kenne E. Neutrophils in chronic inflammatory diseases. Cell Mol Immunol 2022; 19:177-191. [PMID: 35039631 PMCID: PMC8803838 DOI: 10.1038/s41423-021-00832-3] [Citation(s) in RCA: 224] [Impact Index Per Article: 112.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic inflammation is a component of many disease conditions that affect a large group of individuals worldwide. Chronic inflammation is characterized by persistent, low-grade inflammation and is increased in the aging population. Neutrophils are normally the first responders to acute inflammation and contribute to the resolution of inflammation. However, in chronic inflammation, the role of neutrophils is less well understood and has been described as either beneficial or detrimental, causing tissue damage and enhancing the immune response. Emerging evidence suggests that neutrophils are important players in several chronic diseases, such as atherosclerosis, diabetes mellitus, nonalcoholic fatty liver disease and autoimmune disorders. This review will highlight the interaction of neutrophils with other cells in the context of chronic inflammation, the contribution of neutrophils to selected chronic inflammatory diseases, and possible future therapeutic strategies.
Collapse
Affiliation(s)
- Andrea Herrero-Cervera
- Institute for Experimental Pathology, Center for Molecular Biology of Inflammation, Westfälische Wilhelms-Universität Münster, Münster, Germany.
| | - Oliver Soehnlein
- Institute for Experimental Pathology, Center for Molecular Biology of Inflammation, Westfälische Wilhelms-Universität Münster, Münster, Germany
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Ellinor Kenne
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
21
|
Siraki AG. The many roles of myeloperoxidase: From inflammation and immunity to biomarkers, drug metabolism and drug discovery. Redox Biol 2021; 46:102109. [PMID: 34455146 PMCID: PMC8403760 DOI: 10.1016/j.redox.2021.102109] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/11/2022] Open
Abstract
This review provides a practical guide to myeloperoxidase (MPO) and presents to the reader the diversity of its presence in biology. The review provides a historical background, from peroxidase activity to the discovery of MPO, to its role in disease and drug development. MPO is discussed in terms of its necessity, as specific individuals lack MPO expression. An underlying theme presented throughout brings up the question of the benefit and burden of MPO activity. Enzyme structure is discussed, including accurate masses and glycosylation sites. The catalytic cycle of MPO and its corresponding pathways are presented, with a discussion of the importance of the redox couples of the different states of MPO. Cell lines expressing MPO are discussed and practically summarized for the reader, and locations of MPO (primary and secondary) are provided. Useful methods of MPO detection are discussed, and how these can be used for studying disease processes are implied through the presentation of MPO as a biomarker. The presence of MPO in neutrophil extracellular traps is presented, and the activators of the former are provided. Lastly, the transition from drug metabolism to a target for drug development is where the review concludes.
Collapse
Affiliation(s)
- Arno G Siraki
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|