1
|
Barik P, Gupta S, Singh G, Bharti SK, Asati V. Structural aspects of HIV-1 integrase inhibitors: SAR studies and synthetic strategies. Mol Divers 2024:10.1007/s11030-024-11068-4. [PMID: 39690291 DOI: 10.1007/s11030-024-11068-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/22/2024] [Indexed: 12/19/2024]
Abstract
Acquired immunodeficiency syndrome (AIDS) poses a significant threat to life. Antiretroviral therapy is employed to diminish the replication of the human immunodeficiency virus (HIV), extending life expectancy and improving the quality of patients' lives. These HIV-1 integrase inhibitors form robust covalent interactions with Mg2+ ions, contributing to their tight binding, thereby inhibiting the integration of viral DNA into the CD4 cell DNA. The second-generation INSTIs, the most recently approved, exhibit a higher genetic barrier compared to first-generation drugs. Hence, there is a need to develop novel and safe compounds as inhibitors of HIV-1 integrase. This article presents an overview of the current landscape of anti-HIV-1 integrase inhibitors, emphasizing the structure-activity relationship (SAR) of small molecules. The molecules discussed include monocyclic rings consisting of triazoles moiety, and pyrimidine analog along with bicyclic rings with nitrogen-containing moieties. Researchers are exploring anti-HIV-1 integrase inhibitors from natural sources like marine environments, plant extracts, and microbial products, emphasizing the importance of diverse bioactive compounds in combating the virus, which have also been included in the manuscript. The current manuscript will be helpful to the scientific community engaged in the manipulation of small molecules as anti-HIV integrase inhibitors for designing newer leads.
Collapse
Affiliation(s)
- Pallavi Barik
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga, 142001, Punjab, India
- KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad, Uttar Pradesh, 201206, India
| | - Shankar Gupta
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Gurpreet Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Sanjay Kumar Bharti
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, 495009, India
| | - Vivek Asati
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India.
| |
Collapse
|
2
|
Roen AO, Peters L, Wandeler G, van der Valk M, Zangerle R, Günthard HF, Wit F, Mussini C, De Wit S, d’Arminio Monforte A, Vehreschild JJ, Castagna A, Jaschinski N, Vannappagari V, Chen L, Tallada J, C’mar J, Mocroft A, Ryom L. Chronic Liver Enzyme Elevation and Use of Contemporary ARVs Among People With HIV. Open Forum Infect Dis 2024; 11:ofae308. [PMID: 38919512 PMCID: PMC11196901 DOI: 10.1093/ofid/ofae308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Background While use of some older antiretroviral drugs (ARVs) is associated with chronic liver enzyme elevation (cLEE), the impact of newer ARVs remains unknown. Methods People with HIV enrolled in the RESPOND cohort who started an ARV after January 1, 2012 were included (baseline). The primary outcome was first cLEE individuals were censored at first of cLEE, last visit, death, or December 31, 2021. Incidence rates (IRs; events/1000 person-years) were calculated for each ARV overall and by ARV exposure (6-12 months, 1-2 years, and 2+ years). Poisson regression was used to estimate the incidence rate ratio (IRR) of cLEE and its association with individual ARVs and ARV class. Results Of 17 106 individuals included contributing 87 924 person-years of follow-up, 1932 (11.3%) experienced cLEE (incidence rate [IR], 22.0; 95% CI, 21.0-23.0). There was no evidence of a cumulative ARV effect on cLEE incidence, (6-12 months: IR, 45.8; 95% CI, 41.4-50.19; 1-2 years: IR, 34.3; 95% CI, 31.5-37.4; and 2+ years: IR, 18.5; 95% CI, 17.4-19.7). Any use (vs no prior use) of non-nucleoside reverse transcriptase inhibitors (NNRTIs) as a class and tenofovir disoproxil fumarate (TDF) was independently associated with an increased IRR of cLEE, and any use of darunavir (DRV) was associated with a decreased risk of cLEE. Conclusions cLEE is common and more frequent during the first year after initiating new ARVs. With a >5-year median follow-up, we found no short-term liver safety concerns with the use of INSTIs. Use of NNRTIs and TDF was associated with an increased cLEE risk, while DRV was associated with lower risk.
Collapse
Affiliation(s)
- Ashley O Roen
- Institute for Global Health, University College London, London, UK
| | - Lars Peters
- CHIP, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Gilles Wandeler
- Department of Infectious Diseases, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Marc van der Valk
- Stichting HIV Monitoring Amsterdam, Amsterdam, The Netherlands
- Amsterdam University Medical Centers, University of Amsterdam, Division of Infectious Diseases, and Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Robert Zangerle
- Austrian HIV Cohort Study (AHIVCOS), Medizinische Universität Innsbruck, Innsbruck, Austria
| | - Huldrych F Günthard
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Ferdinand Wit
- AIDS Therapy Evaluation in the Netherlands (ATHENA) Cohort, HIV Monitoring Foundation, Amsterdam, The Netherlands
| | - Cristina Mussini
- Modena HIV Cohort, Università degli Studi di Modena, Modena, Italy
| | - Stéphane De Wit
- CHU Saint-Pierre, Centre de Recherche en Maladies Infectieuses a.s.b.l., Brussels, Belgium
| | | | | | - Antonella Castagna
- San Raffaele Scientific Institute, Università Vita-Salute San Raffaele, Milano, Italy
| | | | | | - Linda Chen
- Gilead Science, Foster City, California, USA
| | - Joan Tallada
- European AIDS Treatment Group, Brussels, Belgium
| | | | - Amanda Mocroft
- Institute for Global Health, University College London, London, UK
- CHIP, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Lene Ryom
- CHIP, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases 144, Hvidovre University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Abstract
Metalloenzymes are responsible for numerous physiological and pathological processes in living organisms; however, there are very few FDA-approved metalloenzyme-targeting therapeutics (only ~ 67 FDA-approved metalloenzyme inhibitors as of 2020, less than ~ 5 % of all FDA-approved therapeutics). Most metalloenzyme inhibitors have been developed to target the catalytic metal centers in metalloenzymes via the incorporation of metal-binding groups. Light-controlled inhibition of metalloenzymes has been used as a means to specifically activate and inactivate inhibitor engagement at a desired location and time via light irradiation, allowing for precise spatiotemporal control over metalloenzyme activity. In this review, we summarize the strategies that have been employed to develop biocompatible light-sensitive inhibitors for metalloenzymes via the incorporation of different photo-activatable moieties (including photoswitchable and photocleavable groups), and the application of photo-activateable inhibitors both in vitro and in vivo. We also discuss the photophysical mechanisms of different photo-activatable groups, their action under physiological conditions, and the different modes of interaction between inhibitors and proteins (i.e., inhibition mechanisms) in the presence and absence of light. Finally, we discuss considerations for the future development of light-responsive metalloenzyme inhibitors and the challenges limiting their application in vivo.
Collapse
Affiliation(s)
- Noushaba Nusrat Mafy
- Department of Chemistry, University of Texas at Austin, 105 E 24th St, Austin, TX 78712, United States
| | - Dorothea B. Hudson
- Department of Chemistry, University of Texas at Austin, 105 E 24th St, Austin, TX 78712, United States
| | - Emily L. Que
- Department of Chemistry, University of Texas at Austin, 105 E 24th St, Austin, TX 78712, United States
| |
Collapse
|
4
|
Lachhab S, El Mansouri AE, Mehdi A, Dennemont I, Neyts J, Jochmans D, Andrei G, Snoeck R, Sanghvi YS, Ait Ali M, Loiseau PM, Lazrek HB. Synthesis of new 3-acetyl-1,3,4-oxadiazolines combined with pyrimidines as antileishmanial and antiviral agents. Mol Divers 2023; 27:2147-2159. [PMID: 36251201 PMCID: PMC9573813 DOI: 10.1007/s11030-022-10548-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 10/07/2022] [Indexed: 11/25/2022]
Abstract
A new series of 3-acetyl-1,3,4-oxadiazoline hybrid molecules was designed and synthesized using a condensation between acyclonucleosides and substituted phenylhydrazone. All intermediates and final products were screened against Leishmania donovani, a Protozoan parasite and against three viruses SARS-CoV-2, HCMV and VZV. While no significant activity was observed against the viruses, the intermediate with 6-azatymine as thymine and 5-azathymine-3-acetyl-1,3,4-oxadiazoline hybrid exhibited a significant antileishmanial activity. The later compound was the most promising, exhibiting an IC50 value at 8.98 µM on L. donovani intramacrophage amastigotes and a moderate selectivity index value at 2.4.
Collapse
Affiliation(s)
- Saida Lachhab
- Laboratory of Biomolecular and Medicinal Chemistry, Faculty of Science Semlalia, University Cadi Ayyad, Marrakech, Morocco
| | - Az-Eddine El Mansouri
- Department of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| | - Ahmad Mehdi
- ICGM, Université Montpellier, CNRS, ENSCM, Montpellier, France
| | - Indira Dennemont
- Antiparasite Chemotherapy, CNRS, BioCIS, Université Paris-Saclay, Chatenay-Malabry, 92290, Paris, France
| | - Johan Neyts
- Rega Institute for Medical Research, KULeuven, Louvain, Belgium
| | - Dirk Jochmans
- Rega Institute for Medical Research, KULeuven, Louvain, Belgium
| | - Graciela Andrei
- Rega Institute for Medical Research, KULeuven, Louvain, Belgium
| | - Robert Snoeck
- Rega Institute for Medical Research, KULeuven, Louvain, Belgium
| | - Yogesh S Sanghvi
- Rasayan Inc., 2802 Crystal Ridge Road, Encinitas, CA, 92024-6615, USA
| | - Mustapha Ait Ali
- Laboratory of Biomolecular and Medicinal Chemistry, Faculty of Science Semlalia, University Cadi Ayyad, Marrakech, Morocco
| | - Philippe M Loiseau
- Antiparasite Chemotherapy, CNRS, BioCIS, Université Paris-Saclay, Chatenay-Malabry, 92290, Paris, France
| | - Hassan B Lazrek
- Laboratory of Biomolecular and Medicinal Chemistry, Faculty of Science Semlalia, University Cadi Ayyad, Marrakech, Morocco.
| |
Collapse
|
5
|
Afzal O, Ali A, Ali A, Altamimi ASA, Alossaimi MA, Bakht MA, Salahuddin, Alamri MA, Ahsan MF, Ahsan MJ. Synthesis and Anticancer Evaluation of 4-Chloro-2-((5-aryl-1,3,4-oxadiazol-2-yl)amino)phenol Analogues: An Insight into Experimental and Theoretical Studies. Molecules 2023; 28:6086. [PMID: 37630338 PMCID: PMC10459877 DOI: 10.3390/molecules28166086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
We report herein the synthesis, docking studies and biological evaluation of a series of new 4-chloro-2-((5-aryl-1,3,4-oxadiazol-2-yl)amino)phenol analogues (6a-h). The new compounds were designed based on the oxadiazole-linked aryl core of tubulin inhibitors of IMC-038525 and IMC-094332, prepared in five steps and further characterized via spectral analyses. The anticancer activity of the compounds was assessed against several cancer cell lines belonging to nine different panels as per National Cancer Institute (NCI US) protocol. 4-Chloro-2-((5-(3,4,5-trimethoxyphenyl)-1,3,4-oxadiazol-2-yl)amino)phenol (6h) demonstrated significant anticancer activity against SNB-19 (PGI = 65.12), NCI-H460 (PGI = 55.61), and SNB-75 (PGI = 54.68) at 10 µM. The compounds were subjected to molecular docking studies against the active site of the tubulin-combretastatin A4 complex (PDB ID: 5LYJ); they displayed efficient binding and ligand 4h (with docking score = -8.030 kcal/mol) lay within the hydrophobic cavity surrounded by important residues Leu252, Ala250, Leu248, Leu242, Cys241, Val238, Ile318, Ala317, and Ala316. Furthermore, the antibacterial activity of some of the compounds was found to be promising. 4-Chloro-2-((5-(4-nitrophenyl)-1,3,4-oxadiazol-2-yl)amino)phenol (6c) displayed the most promising antibacterial activity against both Gram-negative as well as Gram-positive bacteria with MICs of 8 µg/mL and a zone of inhibition ranging from 17.0 ± 0.40 to 17.0 ± 0.15 mm at 200 µg/mL; however, the standard drug ciprofloxacin exhibited antibacterial activity with MIC values of 4 µg/mL.
Collapse
Affiliation(s)
- Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Amena Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Abuzer Ali
- Department of Pharmacognosy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | | | - Manal A. Alossaimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Md Afroz Bakht
- Department of Chemistry, College of Science and Humanity Studies, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Salahuddin
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology, (Pharmacy Institute), Knowledge Park-2, Greater Noida 201 306, India
| | - Mubarak A. Alamri
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Md. Faiyaz Ahsan
- Department of Chemistry, Bihar National College, Patna 800 004, India
| | - Mohamed Jawed Ahsan
- Department of Pharmaceutical Chemistry, Maharishi Arvind College of Pharmacy, Jaipur 302 039, India
| |
Collapse
|
6
|
Agarwal M, Afzal O, Salahuddin, Altamimi AS, Alamri MA, Alossaimi MA, Sharma V, Ahsan MJ. Design, Synthesis, ADME, and Anticancer Studies of Newer N-Aryl-5-(3,4,5-Trifluorophenyl)-1,3,4-Oxadiazol-2-Amines: An Insight into Experimental and Theoretical Investigations. ACS OMEGA 2023; 8:26837-26849. [PMID: 37593245 PMCID: PMC10431697 DOI: 10.1021/acsomega.3c01462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/05/2023] [Indexed: 08/19/2023]
Abstract
In continuance of our investigation into the anticancer activity of oxadiazoles, we report here the preparation of 10 new 1,3,4-oxadiazole analogues using the scaffold hopping technique. We have prepared the oxadiazoles having a common pharmacophoric structure (oxadiazole linked aryl nucleus) as seen in the reported anticancer agents IMC-038525 (tubulin inhibitor), IMC-094332 (tubulin inhibitor), and FATB (isosteric replacement of the S of thiadiazole with the O of oxadiazole). All of the oxadiazole analogues were predicted for their absorption, distribution, metabolism, and excretion (ADME) profiles and toxicity studies. All of the compounds were found to follow Lipinski's rule of 5 with a safe toxicity profile (Class IV compound) against immunotoxicity, mutagenicity, and toxicity. All of the compounds were synthesized and characterized using spectral data, followed by their anticancer activity tested in a single-dose assay at 10 μM as reported by the National Cancer Institute (NCI US) Protocol against nearly 59 cancer cell lines obtained from nine panels, including non-small-cell lung, ovarian, breast, central nervous system (CNS), colon, leukemia, prostate, and cancer melanoma. N-(2,4-Dimethylphenyl)-5-(3,4,5-trifluorophenyl)-1,3,4-oxadiazol-2-amine (6h) displayed significant anticancer activity against SNB-19, OVCAR-8, and NCI-H40 with percent growth inhibitions (PGIs) of 86.61, 85.26, and 75.99 and moderate anticancer activity against HOP-92, SNB-75, ACHN, NCI/ADR-RES, 786-O, A549/ATCC, HCT-116, MDA-MB-231, and SF-295 with PGIs of 67.55, 65.46, 59.09, 59.02, 57.88, 56.88, 56.53, 56.4, and 51.88, respectively. The compound 6h also registered better anticancer activity than Imatinib against CNS, ovarian, renal, breast, prostate, and melanoma cancers with average PGIs of 56.18, 40.41, 36.36, 27.61, 22.61, and 10.33, respectively. Molecular docking against tubulin, one of the appealing cancer targets, demonstrated an efficient binding within the binding site of combretastatin A4. The ligand 6h (docking score = -8.144 kcal/mol) interacted π-cationically with the residue Lys352 (with the oxadiazole ring). Furthermore, molecular dynamic (MD) simulation studies in complex with the tubulin-combretastatin A4 protein and ligand 6h were performed to examine the dynamic stability and conformational behavior.
Collapse
Affiliation(s)
- Mohit Agarwal
- Department
of Pharmaceutical Chemistry, Arya College
of Pharmacy, Jaipur, Rajasthan 302 001, India
- Department
of Pharmaceutical Chemistry, Nims Institute of Pharmacy, Nims University, Jaipur, Rajasthan 303
121, India
| | - Obaid Afzal
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Salahuddin
- Department
of Pharmaceutical Chemistry, Noida Institute
of Engineering and Technology (Pharmacy Institute), Knowledge Park-2, Greater Noida 201 306, India
| | | | - Mubarak A. Alamri
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Manal A. Alossaimi
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Vandana Sharma
- Department
of Pharmaceutical Chemistry, Arya College
of Pharmacy, Jaipur, Rajasthan 302 001, India
| | - Mohamed Jawed Ahsan
- Department
of Pharmaceutical Chemistry, Maharishi Arvind
College of Pharmacy, Jaipur, Rajasthan 302 039, India
| |
Collapse
|
7
|
Alemi M, Kamali F, Vahabpour Roudsari R, Hajimahdi Z, Zarghi A. Synthesis, Biological Evaluation, and Molecular Modeling Studies of New 8-methyl-4-oxo-1,4-dihydroquinoline-3-carbohydrazides as Potential Anti-HIV Agents. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e123962. [PMID: 36060911 PMCID: PMC9420234 DOI: 10.5812/ijpr-123962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 11/20/2022]
Abstract
Background The development of a highly safe and potent scaffold is a significant challenge in anti-HIV drug discovery. Objectives This study aimed at developing a novel series of anti-HIV agents based on HIV integrase inhibitor pharmacophores. Methods A novel series of 8-methyl-4-oxo-1,4-dihydroquinoline-3-carbohydrazide derivatives featuring various substituted benzoyl and N-phenyl carboxamide and carbothioamide moieties were designed and synthesized. Results According to the biological evaluation, all the developed compounds were effective against HIV at concentrations lower than 150 µM, associated with no significant cytotoxicity (CC50 > 500 µM). Conclusions Compound 8b, possessing a 4-fluorobenzoyl group, was the most potent compound, with an EC50 of 75 µM. Docking studies revealed that the binding modes of designed compounds are similar to the known HIV integrase inhibitors.
Collapse
Affiliation(s)
- Mehrdad Alemi
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Kamali
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rouhollah Vahabpour Roudsari
- Medical Lab Technology Department, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Hajimahdi
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Zarghi
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Abdollahi O, Mahboubi A, Hajimahdi Z, Zarghi A. Design, Synthesis, Docking Study, and Biological Evaluation of 4-hydroxy-2-oxo-1,2-dihydroquinoline-3-carbohydrazide Derivatives as Anti-HIV-1 and Antibacterial Agents. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH 2022; 21:e126562. [PMID: 36060913 PMCID: PMC9420229 DOI: 10.5812/ijpr-126562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/22/2021] [Accepted: 03/07/2022] [Indexed: 11/16/2022]
Abstract
Background: The emergence of drug resistance to the existing antibacterial and anti-HIV-1 therapeutics has posed an urgent medical need to develop new molecules. We describe in this regard, a series of novel N'-arylidene-4-hydroxy-2-oxo-1,2-dihydroquinoline-3-carbohydrazide derivatives with anti-HIV-1 and antibacterial activities were designed and synthesized in this study. Methods: The synthesized compounds were evaluated for the blocking of both the IN ST process and cell-based HIV-1 replication. The synthesized compounds were also examined for in vitro antibacterial activities using the minimum inhibitory concentration (MIC) assay. Results: The results revealed the moderate antibacterial activity of the synthesized compounds. Moreover, no significant integrase inhibitory and anti-HIV-1 activities were observed for the synthesized compounds at concentrations < 100 µM. Conclusions: According to the docking analyses, the orientation of the designed scaffold in the active site of integrase is similar to the other inhibitors of the HIV integrase and can be regarded as an acceptable template for further structural modification to improve potencies.
Collapse
Affiliation(s)
- Omid Abdollahi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Mahboubi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Hajimahdi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Zarghi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Tel: +98-218820096, Fax: +98-2188665341,
| |
Collapse
|
9
|
Antiviral Activity and Resistance Profile of the Novel HIV-1 Non-Catalytic Site Integrase Inhibitor, JTP-0157602. J Virol 2022; 96:e0184321. [PMID: 35045265 DOI: 10.1128/jvi.01843-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HIV-1 integrase (IN) is an essential enzyme for viral replication. Non-catalytic site integrase inhibitors (NCINIs) are allosteric HIV-1 IN inhibitors and a potential new class of antiretrovirals. In this report, we identified a novel NCINI, JTP-0157602, with an original scaffold. JTP-0157602 exhibited potent antiviral activity against HIV-1 and showed a serum-shifted EC90 of 138 nM, which is comparable to the FDA-approved IN strand transfer inhibitors (INSTIs). This compound was fully potent against a wide range of recombinant viruses with IN polymorphisms, including amino acids 124/125, a hot spot of IN polymorphisms. In addition, JTP-0157602 retained potent antiviral activity against a broad panel of recombinant viruses with INSTI-related resistant mutations, including multiple substitutions that emerged in clinical studies of INSTIs. Resistance selection experiments of JTP-0157602 led to the emergence of A128T and T174I mutations, which are located at the lens epithelium-derived growth factor/p75 binding pocket of IN. JTP-0157602 inhibited HIV-1 replication mainly during the late-phase of the replication cycle, and HIV-1 virions produced by reactivation from HIV-1 latently-infected Jurkat cells in the presence of JTP-0157602 were non-infectious. These results suggest that JTP-0157602 and analog compounds can be used to treat HIV-1 infectious diseases. IMPORTANCE Non-catalytic site integrase inhibitors (NCINIs) are allosteric HIV-1 integrase (IN) inhibitors that bind to the lens epithelium-derived growth factor (LEDGF)/p75 binding pocket of IN. NCINIs are expected to be a new class of anti-HIV-1 agents. In this study, we present a novel NCINI, JTP-0157602, which has potent activity against a broad range of HIV-1 strains with IN polymorphisms. Furthermore, JTP-0157602 shows strong antiviral activity against IN strand transfer inhibitor-resistant mutations, suggesting JTP-0157602 and its analogs are potential agents to treat HIV-1 infections. Structural modeling indicated that JTP-0157602 binds to the LEDGF/p75 binding pocket of IN, and the results of in vitro resistance induction revealed the JTP-0157602-resistance mechanism of HIV-1. These data shed light on developing novel NCINIs, which exhibit potent activity against HIV-1 with broad IN polymorphisms and multi-drug resistant HIV-1 variants.
Collapse
|
10
|
Karimi N, Roudsari RV, Hajimahdi Z, Zarghi A. Design, Synthesis and Docking Studies of Thioimidazolyl Diketoacid Derivatives Targeting HIV-1 Integrase. Med Chem 2021; 18:616-628. [PMID: 34587886 DOI: 10.2174/1573406417666210929124944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/05/2021] [Accepted: 08/07/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Integrase enzyme is a validated drug target to discover novel structures as anti-HIV-1 agents. OBJECTIVE Novel series of thioimidazolyl diketo acid derivatives characterizing various substituents at N-1 and 2-thio positions of central ring were developed as HIV-1 integrase inhibitors. RESULTS The obtained molecules were evaluated in the enzyme assay, displaying promising integrase inhibitory activity with IC50 values ranging from 0.9 to 7.7 M. The synthesized compounds were also tested for antiviral activity and cytotoxicity using HeLa cells infected by the single-cycle replicable HIV-1 NL4-3. CONCLUSION The most potent compound was 18i with EC50=19 µM, IC50 0.9 µM and SI= 10.5. Docking studies indicated that the binding mode of the active molecule is well aligned with the known HIV-1 integrase inhibitors.
Collapse
Affiliation(s)
- Nafiseh Karimi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| | - Rouhollah Vahabpour Roudsari
- Department of Medical Lab technology, School of Allied Medical Sciences of Shahid Beheshti University of Medical Sciences, Tehran. Iran
| | - Zahra Hajimahdi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| | - Afshin Zarghi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| |
Collapse
|
11
|
Identification of Potential Drug Targets of Broad-Spectrum Inhibitors with a Michael Acceptor Moiety Using Shotgun Proteomics. Viruses 2021; 13:v13091756. [PMID: 34578337 PMCID: PMC8473112 DOI: 10.3390/v13091756] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 01/10/2023] Open
Abstract
The Michael addition reaction is a spontaneous and quick chemical reaction that is widely applied in various fields. This reaction is performed by conjugating an addition of nucleophiles with α, β-unsaturated carbonyl compounds, resulting in the bond formation of C-N, C-S, C-O, and so on. In the development of molecular materials, the Michael addition is not only used to synthesize chemical compounds but is also involved in the mechanism of drug action. Several covalent drugs that bond via Michael addition are regarded as anticarcinogens and anti-inflammatory drugs. Although drug development is mainly focused on pharmaceutical drug discovery, target-based discovery can provide a different perspective for drug usage. However, considerable time and labor are required to define a molecular target through molecular biological experiments. In this review, we systematically examine the chemical structures of current FDA-approved antiviral drugs for potential Michael addition moieties with α, β-unsaturated carbonyl groups, which may exert an unidentified broad-spectrum inhibitory mechanism to target viral or host factors. We thus propose that profiling the targets of antiviral agents, such as Michael addition products, can be achieved by employing a high-throughput LC-MS approach to comprehensively analyze the interaction between drugs and targets, and the subsequent drug responses in the cellular environment to facilitate drug repurposing and/or identify potential adverse effects, with a particular emphasis on the pros and cons of this shotgun proteomic approach.
Collapse
|
12
|
Peregrym K, Szczukowski Ł, Wiatrak B, Potyrak K, Czyżnikowska Ż, Świątek P. In Vitro and In Silico Evaluation of New 1,3,4-Oxadiazole Derivatives of Pyrrolo[3,4- d]pyridazinone as Promising Cyclooxygenase Inhibitors. Int J Mol Sci 2021; 22:ijms22179130. [PMID: 34502040 PMCID: PMC8431030 DOI: 10.3390/ijms22179130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 12/24/2022] Open
Abstract
Since long-term use of classic NSAIDs can cause severe side effects related mainly to the gastroduodenal tract, discovery of novel cyclooxygenase inhibitors with a safe gastric profile still remains a crucial challenge. Based on the most recent literature data and previous own studies, we decided to modify the structure of already reported 1,3,4-oxadiazole based derivatives of pyrrolo[3,4-d]pyridazinone in order to obtain effective COX inhibitors. Herein we present the synthesis, biological evaluation and molecular docking studies of 12 novel compounds with disubstituted arylpiperazine pharmacophore linked in a different way with 1,3,4-oxadiazole ring. None of the obtained molecules show cytotoxicity on NHDF and THP-1 cell lines and, therefore, all were qualified for further investigation. In vitro cyclooxygenase inhibition assay revealed almost equal activity of new derivatives towards both COX-1 and COX-2 isoenzymes. Moreover, all compounds inhibit COX-2 isoform better than Meloxicam which was used as reference. Anti-inflammatory activity was confirmed in biological assays according to which title molecules are able to reduce induced inflammation within cells. Molecular docking studies were performed to describe the binding mode of new structures to cyclooxygenase. Investigated derivatives take place in the active site of COX, very similar to Meloxicam. For some compounds, promising druglikeness was calculated using in silico predictions.
Collapse
Affiliation(s)
- Krzysztof Peregrym
- Department of Medicinal Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| | - Łukasz Szczukowski
- Department of Medicinal Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
- Correspondence: (Ł.S.); (P.Ś.); Tel.: +48-71-784-03-91 (P.Ś.)
| | - Benita Wiatrak
- Department of Pharmacology, Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland; (B.W.); (K.P.)
| | - Katarzyna Potyrak
- Department of Pharmacology, Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland; (B.W.); (K.P.)
| | - Żaneta Czyżnikowska
- Department of Inorganic Chemistry, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| | - Piotr Świątek
- Department of Medicinal Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
- Correspondence: (Ł.S.); (P.Ś.); Tel.: +48-71-784-03-91 (P.Ś.)
| |
Collapse
|
13
|
Safakish M, Hajimahdi Z, Aghasadeghi MR, Vahabpour R, Zarghi A. Design, Synthesis, Molecular Modeling and Anti-HIV Assay of Novel Quinazolinone Incorporated Coumarin Derivatives. Curr HIV Res 2021; 18:41-51. [PMID: 31820700 DOI: 10.2174/1570162x17666191210105809] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 01/29/2023]
Abstract
BACKGROUND The emergence of drug-resistant viral strains has created the need for the development of novel anti-HIV agents with a diverse structure that targets key enzymes in the HIV lifecycle. OBJECTIVE Considering the pharmacophore of integrase inhibitors, one of the validated targets for anti-HIV therapy, we designed a quinazolinone incorporated coumarin scaffold to affect HIV. METHODS Coumarin is a beta enol ester and also a well-known drug scaffold. Designed structures were prepared using a one-pot three-component reaction from 3-amino-4-hydroxycoumarin, isatoic anhydride and benzaldehyde derivatives. RESULTS In vitro anti-HIV and cytotoxicity assay indicated that more than half of the compounds had EC50 values lower than 50 µM. Unsubstituted phenyl derivative showed the highest activity and selectivity with an EC50 value of 5 µM and a therapeutic index of 7. Compounds were docked into the integrase active site to investigate the probable mechanism of action. Accordingly, the hydroxyl moiety of coumarin along with the carbonyl of the quinazolinone ring could function as the metal chelating group. Quinazolinone and phenyl groups interact with side chains of IN residues, as well. CONCLUSION Here, a novel anti-HIV scaffold is represented for further modification and in-vivo studies.
Collapse
Affiliation(s)
- Mahdieh Safakish
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Hajimahdi
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Rouhollah Vahabpour
- Medical Lab Technology Department, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Zarghi
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Nilavar NM, Raghavan SC. HIV integrase inhibitors that inhibit strand transfer interact with RAG1 and hamper its activities. Int Immunopharmacol 2021; 95:107515. [PMID: 33735713 DOI: 10.1016/j.intimp.2021.107515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 12/16/2022]
Abstract
Multiple steps of the retroviral infection process have been targeted over the years to develop therapeutic approaches, starting from the entry of the virus into the cell till the viral DNA integration to host genome. Inhibitors against the Human Immunodeficiency Virus (HIV) integrase is the newest among the therapies employed against HIV. Recombination activating gene 1 (RAG1) is an integral protein involved in the generation of diversity of antibodies and T-cell receptors and is one of the partners of the RAG complex. Studies have shown structural and functional similarities between the HIV integrase and RAG1. Recently, we and others have shown that some of the integrase inhibitors can interfere with RAG binding and cleavage, hindering its physiological functions. This mini review focuses on the HIV integrase, integrase inhibitors and their effect on RAG activities.
Collapse
Affiliation(s)
- Namrata M Nilavar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
15
|
Ahsan MJ. 1,3,4-Oxadiazole Containing Compounds As Therapeutic Targets For Cancer Therapy. Mini Rev Med Chem 2021; 22:164-197. [PMID: 33634756 DOI: 10.2174/1389557521666210226145837] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/08/2021] [Accepted: 01/28/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cancer is the first or second leading cause of premature death in 134 of 183 countries in the world. 1,3,4-Oxadiazoles are five memebered heterocyclic rings containing two nitrogen (two atoms) and oxygen (one atom). They show better thermal stability, metabolic stability, aqueous solubility and lower lipophilicity than the other isomeric oxadiazoles. They are important class of heterocycles present in many drug structures like Raltegravir, Furamizole Tidazosin, Nesapidil, Setileuton (MK-0633) and Zibotentan. Presence of this nucleus in the therapeutics has made them an indispensable anchor for drug design and development. Several 1,3,4-oxadiazoles are prepared and reported as anticancer agents by numerous scientists worldwide. OBJECTIVES The present review discusses the anticancer potentials together with the molecular targets of 1,3,4-oxadiazoles reported since 2010. The structure activity relationship (SAR) and molecular docking simulation on different targets have also been discussed herein. Some of the important cancer targets have also been explored. METHODS The most potent 1,3,4-oxadiazoles reported in literature was highlighted in the manuscript. The anticancer activity was reported in terms of growth percent (GP), percent growth inhibition (%GI), GI50, IC50, and LC50 and TGI. RESULTS 1,3,4-Oxadiazoles are an important heterocyclic scaffolds with broad spectrum biological activities. They may be either mono substituted or disubstituted and act as an indispensable anchor for drug design and discovery due to their thermal stability together with low lipophilicity. They exhibited anticancer potentials and showed the inhibitions of various cancer targets. CONCLUSION The discussion outlined herein will proved to be a helpful and vital tool for medicinal chemists investigating and working with 1,3,4-oxadiazoles and anticancer research programs.
Collapse
Affiliation(s)
- Mohamed Jawed Ahsan
- Department of Pharmaceutical Chemistry, Maharishi Arvind College of Pharmacy, Jaipur, Rajasthan 302 039. India
| |
Collapse
|
16
|
Banik BK, Sahoo BM, Kumar BVVR, Panda KC, Jena J, Mahapatra MK, Borah P. Green Synthetic Approach: An Efficient Eco-Friendly Tool for Synthesis of Biologically Active Oxadiazole Derivatives. Molecules 2021; 26:molecules26041163. [PMID: 33671751 PMCID: PMC7927091 DOI: 10.3390/molecules26041163] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/30/2020] [Accepted: 01/07/2021] [Indexed: 11/23/2022] Open
Abstract
Green synthetic protocol refers to the development of processes for the sustainable production of chemicals and materials. For the synthesis of various biologically active compounds, energy-efficient and environmentally benign processes are applied, such as microwave irradiation technology, ultrasound-mediated synthesis, photo-catalysis (ultraviolet, visible and infrared irradiation), molecular sieving, grinding and milling techniques, etc. Thesemethods are considered sustainable technology and become valuable green protocol to synthesize new drug molecules as theyprovidenumerous benefits over conventional synthetic methods.Based on this concept, oxadiazole derivatives are synthesized under microwave irradiation technique to reduce the formation of byproduct so that the product yield can be increased quantitatively in less reaction time. Hence, the synthesis of drug molecules under microwave irradiation follows a green chemistry approach that employs a set of principles to minimize or remove the utilization and production of hazardous toxic materials during the design, manufacture and application of chemical substances.This approach plays a major role in controlling environmental pollution by utilizing safer solvents, catalysts, suitable reaction conditions and thereby increases the atom economy and energy efficiency. Oxadiazole is a five-membered heterocyclic compound that possesses one oxygen and two nitrogen atoms in the ring system.Oxadiazole moiety is drawing considerable interest for the development of new drug candidates with potential therapeutic activities including antibacterial, antifungal, antiviral, anticonvulsant, anticancer, antimalarial, antitubercular, anti-asthmatic, antidepressant, antidiabetic, antioxidant, antiparkinsonian, analgesic and antiinflammatory, etc. This review focuses on different synthetic approaches of oxadiazole derivatives under microwave heating method and study of their various biological activities.
Collapse
Affiliation(s)
- Bimal Krishna Banik
- Department of Mathematics and Natural Sciences, College of Sciences and Human Studies, Prince Mohammad Bin Fahd University, Al Khobar 31952, Saudi Arabia
- Correspondence: (B.K.B.); (B.M.S.)
| | - Biswa Mohan Sahoo
- Roland Institute of Pharmaceutical Sciences, Biju Patnaik University of Technology Nodal Centre of Research, Berhampur 760010, India; (B.V.V.R.K.); (K.C.P.); (J.J.)
- Correspondence: (B.K.B.); (B.M.S.)
| | - Bera Venkata Varaha Ravi Kumar
- Roland Institute of Pharmaceutical Sciences, Biju Patnaik University of Technology Nodal Centre of Research, Berhampur 760010, India; (B.V.V.R.K.); (K.C.P.); (J.J.)
| | - Krishna Chandra Panda
- Roland Institute of Pharmaceutical Sciences, Biju Patnaik University of Technology Nodal Centre of Research, Berhampur 760010, India; (B.V.V.R.K.); (K.C.P.); (J.J.)
| | - Jasma Jena
- Roland Institute of Pharmaceutical Sciences, Biju Patnaik University of Technology Nodal Centre of Research, Berhampur 760010, India; (B.V.V.R.K.); (K.C.P.); (J.J.)
| | | | - Preetismita Borah
- CSIR-Central Scientific Instruments Organization, Chandigarh 160030, India;
| |
Collapse
|
17
|
Smith SJ, Zhao XZ, Passos DO, Lyumkis D, Burke TR, Hughes SH. Integrase Strand Transfer Inhibitors Are Effective Anti-HIV Drugs. Viruses 2021; 13:v13020205. [PMID: 33572956 PMCID: PMC7912079 DOI: 10.3390/v13020205] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Integrase strand transfer inhibitors (INSTIs) are currently recommended for the first line treatment of human immunodeficiency virus type one (HIV-1) infection. The first-generation INSTIs are effective but can select for resistant viruses. Recent advances have led to several potent second-generation INSTIs that are effective against both wild-type (WT) HIV-1 integrase and many of the first-generation INSTI-resistant mutants. The emergence of resistance to these new second-generation INSTIs has been minimal, which has resulted in alternative treatment strategies for HIV-1 patients. Moreover, because of their high antiviral potencies and, in some cases, their bioavailability profiles, INSTIs will probably have prominent roles in pre-exposure prophylaxis (PrEP). Herein, we review the current state of the clinically relevant INSTIs and discuss the future outlook for this class of antiretrovirals.
Collapse
Affiliation(s)
- Steven J. Smith
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA;
| | - Xue Zhi Zhao
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; (X.Z.Z.); (T.R.B.J.)
| | - Dario Oliveira Passos
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; (D.O.P.); (D.L.)
| | - Dmitry Lyumkis
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; (D.O.P.); (D.L.)
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Terrence R. Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; (X.Z.Z.); (T.R.B.J.)
| | - Stephen H. Hughes
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA;
- Correspondence:
| |
Collapse
|
18
|
Imani A, Soleymani S, Vahabpour R, Hajimahdi Z, Zarghi A. Piroxicam Analogs: Design, Synthesis, Docking Study and Biological Evaluation as Promising Anti-HIV-1 agents. Med Chem 2021; 18:209-219. [PMID: 33550978 DOI: 10.2174/1573406417666210125141639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/19/2020] [Accepted: 12/14/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Taking the well-known drug, Piroxicam as a lead compound, we designed and synthesized two series of 1,2-benzothiazines 1,1-dioxide derivatives to assay their ability in inhibition of HIV-1 replication in cell culture. OBJECTIVE In this study, we describe the synthesis, docking study and biological evaluation of 1,2-benzothiazines 1,1- dioxide derivatives. RESULTS Most of the new compounds were active in the cell-based anti-HIV-1 assay with EC50 < 50 M. Among them, compounds 7g was found to be the most active molecule. Docking study using 3OYA pdb code on the most active molecule 7g with EC50 values of 10 M showed a similar binding mode to the HIV integrase inhibitors. CONCLUSION Since all the compounds showed no remarkable cytotoxicity (CC50> 500 M), the designed scaffold is promising structure for development of new anti-HIV-1 agents.
Collapse
Affiliation(s)
- Ali Imani
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| | - Sepehr Soleymani
- Hepatitis and AIDS department, Pasteur institute of Iran, Tehran. Iran
| | - Rouhollah Vahabpour
- Medical Lab Technology Department, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| | - Zahra Hajimahdi
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| | - Afshin Zarghi
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| |
Collapse
|
19
|
Paruch K, Popiołek Ł, Biernasiuk A, Hordyjewska A, Malm A, Wujec M. Novel 3-Acetyl-2,5-disubstituted-1,3,4-oxadiazolines: Synthesis and Biological Activity. Molecules 2020; 25:E5844. [PMID: 33322054 PMCID: PMC7763531 DOI: 10.3390/molecules25245844] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 12/30/2022] Open
Abstract
The aim of our study was the two-stage synthesis of 1,3,4-oxadiazole derivatives. The first step was the synthesis of hydrazide-hydrazones from 3-methyl-4-nitrobenzhydrazide and the corresponding substituted aromatic aldehydes. Then, the synthesized hydrazide-hydrazones were cyclized with acetic anhydride to obtain new 3-acetyl-2,3-disubstituted-1,3,4-oxadiazolines. All of obtained compounds were tested in in vitro assays to establish their potential antimicrobial activity and cytotoxicity. Our results indicated that few of the newly synthesized compounds had some antimicrobial activity, mainly compounds 20 and 37 towards all used reference bacterial strains (except Klebsiella pneumoniae, Proteus mirabilis, and Pseudomonas aeruginosa) and fungi. These substances showed a strong or powerful bactericidal effect, especially against Staphylococcus spp. belonging to Gram-positive bacteria. Compound 37 was active against Staphylococcus epidermidis at minimal inhibitory concentration (MIC) = 0.48 µg/mL and was characterized by low cytotoxicity. This compound possessed quinolin-4-yl substituent in the second position of 1,3,4-oxadiazole ring and 3-methyl-4-nitrophenyl in position 5. High effectiveness and safety of these derivatives make them promising candidates as antimicrobial agents. Whereas the compound 20 with the 5-iodofurane substituent in position 2 of the 1,3,4-oxadiazole ring showed the greatest activity against S. epidermidis at MIC = 1.95 µg/mL.
Collapse
Affiliation(s)
- Kinga Paruch
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland; (Ł.P.); (M.W.)
| | - Łukasz Popiołek
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland; (Ł.P.); (M.W.)
| | - Anna Biernasiuk
- Chair and Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland; (A.B.); (A.M.)
| | - Anna Hordyjewska
- Chair and Department of Medicinal Chemistry, Faculty of Medical Dentistry, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland;
| | - Anna Malm
- Chair and Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland; (A.B.); (A.M.)
| | - Monika Wujec
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland; (Ł.P.); (M.W.)
| |
Collapse
|
20
|
Ebrahimzadeh E, Tabatabai SA, Vahabpour R, Hajimahdi Z, Zarghi A. Design, Synthesis, Molecular Modeling Study and Biological Evaluation of New N'-Arylidene-pyrido [2,3- d]pyrimidine-5-carbohydrazide Derivatives as Anti-HIV-1 Agents. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 18:237-248. [PMID: 32802103 PMCID: PMC7393058 DOI: 10.22037/ijpr.2019.112198.13597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In an attempt to identify potential new agents that are active against HIV-1, a series of novel pyridopyrimidine-5-carbohydrazide derivatives featuring a substituted benzylidene fragment were designed and synthesized based on the general pharmacophore of HIV-1 integrase inhibitors. The cytotoxicity profiles of these compounds showed no significant toxicity to human cells and they exhibited anti-HIV-1 activity with EC50 values ranging from 90 to 155 µM. Compound 5j bearing 4-methylbenzylidene group was found to be the most active compound with EC50 = 90 µM and selectivity index, CC50/EC50 = 6.4. Molecular modeling studies indicated the capacity of compound 5j to interact with two Mg2+ cations and several residues that are important in HIV-1 integrase inhibition. These findings suggested that pyridopyrimidine-5-carbohydrazide scaffold might become a promising template for development of novel anti-HIV-1 agents.
Collapse
Affiliation(s)
- Elnaz Ebrahimzadeh
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyyed Abbas Tabatabai
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rouhollah Vahabpour
- Medical Lab Technology Department, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Hajimahdi
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Zarghi
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Caputo F, Corbetta S, Piccolo O, Vigo D. Seeking for Selectivity and Efficiency: New Approaches in the Synthesis of Raltegravir. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Francesco Caputo
- Cambrex Profarmaco Milano S.r.l., Via Curiel 34, 20067 Paullo, Milan, Italy
| | - Stefano Corbetta
- Cambrex Profarmaco Milano S.r.l., Via Curiel 34, 20067 Paullo, Milan, Italy
| | - Oreste Piccolo
- Studio di Consulenza Scientifica, Via Bornò 5, 23896 Sirtori, Lecco, Italy
| | - Daniele Vigo
- Cambrex Profarmaco Milano S.r.l., Via Curiel 34, 20067 Paullo, Milan, Italy
| |
Collapse
|
22
|
Nanomaterials Designed for Antiviral Drug Delivery Transport across Biological Barriers. Pharmaceutics 2020; 12:pharmaceutics12020171. [PMID: 32085535 PMCID: PMC7076512 DOI: 10.3390/pharmaceutics12020171] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/10/2020] [Accepted: 02/15/2020] [Indexed: 12/13/2022] Open
Abstract
Viral infections are a major global health problem, representing a significant cause of mortality with an unfavorable continuously amplified socio-economic impact. The increased drug resistance and constant viral replication have been the trigger for important studies regarding the use of nanotechnology in antiviral therapies. Nanomaterials offer unique physico-chemical properties that have linked benefits for drug delivery as ideal tools for viral treatment. Currently, different types of nanomaterials namely nanoparticles, liposomes, nanospheres, nanogels, nanosuspensions and nanoemulsions were studied either in vitro or in vivo for drug delivery of antiviral agents with prospects to be translated in clinical practice. This review highlights the drug delivery nanosystems incorporating the major antiviral classes and their transport across specific barriers at cellular and intracellular level. Important reflections on nanomedicines currently approved or undergoing investigations for the treatment of viral infections are also discussed. Finally, the authors present an overview on the requirements for the design of antiviral nanotherapeutics.
Collapse
|
23
|
Trivedi J, Mahajan D, Jaffe RJ, Acharya A, Mitra D, Byrareddy SN. Recent Advances in the Development of Integrase Inhibitors for HIV Treatment. Curr HIV/AIDS Rep 2020; 17:63-75. [PMID: 31965427 PMCID: PMC7004278 DOI: 10.1007/s11904-019-00480-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF THE REVIEW The complex multistep life cycle of HIV allows it to proliferate within the host and integrate its genome in to the host chromosomal DNA. This provirus can remain dormant for an indefinite period. The process of integration, governed by integrase (IN), is highly conserved across the Retroviridae family. Hence, targeting integration is not only expected to block HIV replication but may also reveal new therapeutic strategies to treat HIV as well as other retrovirus infections. RECENT FINDINGS HIV integrase (IN) has gained attention as the most promising therapeutic target as there are no equivalent homologues of IN that has been discovered in humans. Although current nano-formulated long-acting IN inhibitors have demonstrated the phenomenal ability to block HIV integration and replication with extraordinary half-life, they also have certain limitations. In this review, we have summarized the current literature on clinically established IN inhibitors, their mechanism of action, the advantages and disadvantages associated with their therapeutic application, and finally current HIV cure strategies using these inhibitors.
Collapse
Affiliation(s)
- Jay Trivedi
- National Centre for Cell Science, Pune University Campus, Pune, Maharashtra, India
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Dinesh Mahajan
- Drug Discovery Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad, Haryana, India
| | - Russell J Jaffe
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Arpan Acharya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Debashis Mitra
- National Centre for Cell Science, Pune University Campus, Pune, Maharashtra, India.
- Centre for DNA Fingerprinting and Diagnostics, Uppal Telangana state, Hyderabad, India.
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA.
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA.
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
24
|
Paruch K, Popiołek Ł, Wujec M. Antimicrobial and antiprotozoal activity of 3-acetyl-2,5-disubstituted-1,3,4-oxadiazolines: a review. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02463-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abstract
In the last 20 years there has been a significant increase in interest in the structure of oxadiazole derivatives, especially 3-acetyl-1,3,4-oxadiazolines. It is known that these derivatives possess: antibacterial, antifungal, antitubercular, antiprotozoal, anticancer and anti-inflammatory activity. Therefore, many medicinal chemists choose 3-acetyl-1,3,4-oxadiazoline scaffold for the synthesis of new potentially active substances with a better effectiveness and less toxicity. This article is a literature review since 2000 presenting new derivatives with proven antimicrobial and antiprotozoal activity, containing in its structure a 3-acetyl-1,3,4-oxadiazoline system.
Collapse
|
25
|
Structural Insights on Retroviral DNA Integration: Learning from Foamy Viruses. Viruses 2019; 11:v11090770. [PMID: 31443391 PMCID: PMC6784120 DOI: 10.3390/v11090770] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/28/2022] Open
Abstract
Foamy viruses (FV) are retroviruses belonging to the Spumaretrovirinae subfamily. They are non-pathogenic viruses endemic in several mammalian hosts like non-human primates, felines, bovines, and equines. Retroviral DNA integration is a mandatory step and constitutes a prime target for antiretroviral therapy. This activity, conserved among retroviruses and long terminal repeat (LTR) retrotransposons, involves a viral nucleoprotein complex called intasome. In the last decade, a plethora of structural insights on retroviral DNA integration arose from the study of FV. Here, we review the biochemistry and the structural features of the FV integration apparatus and will also discuss the mechanism of action of strand transfer inhibitors.
Collapse
|
26
|
Jesumoroti OJ, Faridoon, Mnkandhla D, Isaacs M, Hoppe HC, Klein R. Evaluation of novel N'-(3-hydroxybenzoyl)-2-oxo-2 H-chromene-3-carbohydrazide derivatives as potential HIV-1 integrase inhibitors. MEDCHEMCOMM 2018; 10:80-88. [PMID: 30774857 DOI: 10.1039/c8md00328a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 11/01/2018] [Indexed: 12/11/2022]
Abstract
In an attempt to identify potential new agents that are active against HIV-1 IN, a series of novel coumarin-3-carbohydrazide derivatives were designed and synthesised. The toxicity profiles of these compounds showed that they were non-toxic to human cells and they exhibited promising anti-HIV-1 IN activities with IC50 values in nM range. Also, an accompanying molecular modeling study showed that the compounds bind to the active pocket of the enzyme.
Collapse
Affiliation(s)
| | - Faridoon
- Department of Chemistry , Rhodes University , Grahamstown , 6140 , South Africa .
| | - Dumisani Mnkandhla
- Department of Biochemistry and Microbiology , Rhodes University , Grahamstown , 6140 , South Africa.,Centre for Chemico- and Biomedicinal Research , Rhodes University , Grahamstown , 6140 , South Africa
| | - Michelle Isaacs
- Department of Biochemistry and Microbiology , Rhodes University , Grahamstown , 6140 , South Africa.,Centre for Chemico- and Biomedicinal Research , Rhodes University , Grahamstown , 6140 , South Africa
| | - Heinrich C Hoppe
- Department of Biochemistry and Microbiology , Rhodes University , Grahamstown , 6140 , South Africa.,Centre for Chemico- and Biomedicinal Research , Rhodes University , Grahamstown , 6140 , South Africa
| | - Rosalyn Klein
- Department of Chemistry , Rhodes University , Grahamstown , 6140 , South Africa . .,Centre for Chemico- and Biomedicinal Research , Rhodes University , Grahamstown , 6140 , South Africa
| |
Collapse
|
27
|
Horberg MA, Oakes AH, Hurley LB, Towner WJ, Chao CR, Silverberg MJ, Chantra JQ, Ellis CG, Quesenberry CP. Association of raltegravir use with long-term health outcomes in HIV-infected patients: an observational post-licensure safety study in a large integrated healthcare system. HIV CLINICAL TRIALS 2018; 19:177-187. [PMID: 30370835 DOI: 10.1080/15284336.2018.1523826] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
BACKGROUND Raltegravir became the first integrase inhibitor to gain FDA approval; but with limited evidence documenting long-term risks in real world care, especially for major health outcomes of interest. OBJECTIVE Assess raltegravir safety in clinical practice within an integrated health system. METHODS We conducted a cohort study of HIV-infected adults within Kaiser Permanente California from 2005 to 2013. We compared patients initiating raltegravir during the study period with two groups; a historical cohort (started new antiretroviral regimen [ART] 2005-2007) and a concurrent cohort that did not initiate raltegravir (2007-2013). We used multivariate Cox proportional hazard regression to obtain hazard ratios (HR) for pre-specified incident health outcomes, employing propensity scores to adjust for potential confounding. RESULTS The population included 8,219 HIV-infected adults (raltegravir cohort N = 1,757; 4,798 patient-years), with greater years known HIV-infected among raltegravir patients. The raltegravir cohort had increased HR for AIDS-defining (HR 2.69 [1.53-4.71]; HR 1.85 [1.21-2.82]) and non-AIDS-defining malignancies (HR 2.26 [1.29-3.94]; HR 1.88 [1.26-2.78]) relative to both comparison cohorts. Compared to the historical cohort we found no significant difference in all-cause mortality; the raltegravir cohort experienced increased HR for all-cause mortality compared to concurrent (HR 1.53 [1.02-2.31]). Raltegravir appeared protective of lipodystrophy when compared to the historical cohort but associated with increased incidence compared to concurrent. There were no significant differences in the incidence of hepatic, skin, or cardiovascular events. CONCLUSIONS The potentially elevated risk for malignancy and mortality with raltegravir and residual confounding merits further investigation. We demonstrate the value of observational cohorts for monitoring post-licensure medication safety.
Collapse
Affiliation(s)
- Michael A Horberg
- a Mid-Atlantic Permanente Research Institute, Kaiser Permanente Mid-Atlantic States , Rockville , MD , USA
| | - Allison H Oakes
- b Johns Hopkins Bloomberg School of Public Health , Baltimore , MD , USA
| | - Leo B Hurley
- c Division of Research , Kaiser Permanente Northern California , Oakland , CA , USA
| | - William J Towner
- d Department of Research and Evaluation , Kaiser Permanente Southern California , Pasadena , CA , USA
| | - Chun R Chao
- d Department of Research and Evaluation , Kaiser Permanente Southern California , Pasadena , CA , USA
| | - Michael J Silverberg
- c Division of Research , Kaiser Permanente Northern California , Oakland , CA , USA
| | - Jean Q Chantra
- d Department of Research and Evaluation , Kaiser Permanente Southern California , Pasadena , CA , USA
| | - Courtney G Ellis
- c Division of Research , Kaiser Permanente Northern California , Oakland , CA , USA
| | | |
Collapse
|
28
|
Parizadeh N, Alipour E, Soleymani S, Zabihollahi R, Aghasadeghi MR, Hajimahdi Z, Zarghi A. Synthesis of Novel 3-(5-(Alkyl/arylthio)-1,3,4-Oxadiazol-2-yl)-8-Phenylquinolin-4(1H)-One Derivatives as Anti-HIV Agents. PHOSPHORUS SULFUR 2017. [DOI: 10.1080/10426507.2017.1394302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Niloofar Parizadeh
- Department of Organic Chemistry, Azad University, Tehran North Branch, Tehran, Iran
| | - Eskandar Alipour
- Department of Organic Chemistry, Azad University, Tehran North Branch, Tehran, Iran
| | - Sepehr Soleymani
- Hepatitis and AIDS department, Pasteur institute of Iran, Tehran, Iran
| | | | | | - Zahra Hajimahdi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Zarghi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Du W, Zuo K, Sun X, Liu W, Yan X, Liang L, Wan H, Chen F, Hu J. An effective HIV-1 integrase inhibitor screening platform: Rationality validation of drug screening, conformational mobility and molecular recognition analysis for PFV integrase complex with viral DNA. J Mol Graph Model 2017; 78:96-109. [PMID: 29055187 DOI: 10.1016/j.jmgm.2017.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/01/2017] [Accepted: 10/03/2017] [Indexed: 01/26/2023]
Abstract
As an important target for the development of novel anti-AIDS drugs, HIV-1 integrase (IN) has been widely concerned. However, the lack of a complete accurate crystal structure of HIV-1 IN greatly blocks the discovery of novel inhibitors. In this work, an effective HIV-1 IN inhibitor screening platform, namely PFV IN, was filtered from all species of INs. Next, the 40.8% similarity with HIV-1 IN, as well as the high efficiency of virtual screening and the good agreement between calculated binding free energies and experimental ones all proved PFV IN is a promising screening platform for HIV-1 IN inhibitors. Then, the molecular recognition mechanism of PFV IN by its substrate viral DNA and six naphthyridine derivatives (NRDs) inhibitors was investigated through molecular docking, molecular dynamics simulations and water-mediated interactions analyses. The functional partition of NRDs IN inhibitors could be divided into hydrophobic and hydrophilic ones, and the Mg2+ ions, water molecules and conserved DDE motif residues all interacted with the hydrophilic partition, while the bases in viral DNA and residues like Tyr212, Pro214 interacted with the hydrophobic one. Finally, the free energy landscape (FEL) and cluster analyses were performed to explore the molecular motion of PFV IN-DNA system. It is found that the association with NRDs inhibitors would obviously decrease the motion amplitude of PFV IN-DNA, which may be one of the most potential mechanisms of IN inhibitors. This work will provide a theoretical basis for the inhibitor design based on the structure of HIV-1 IN.
Collapse
Affiliation(s)
- Wenyi Du
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development, Chengdu University, Chengdu, China
| | - Ke Zuo
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development, Chengdu University, Chengdu, China
| | - Xin Sun
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development, Chengdu University, Chengdu, China
| | - Wei Liu
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development, Chengdu University, Chengdu, China
| | - Xiao Yan
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development, Chengdu University, Chengdu, China
| | - Li Liang
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development, Chengdu University, Chengdu, China
| | - Hua Wan
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou, China
| | - Fengzheng Chen
- Department of Chemistry, Leshan Normal University, Leshan, China
| | - Jianping Hu
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development, Chengdu University, Chengdu, China.
| |
Collapse
|
30
|
Stathakis CI, Gkizis PL, Alexandraki ES, Trakossas S, Terzidis M, Neokosmidis E, Zacharis CK, Vasiliadou C, Vastardi E, Andreou T, Zitrou A, Varvogli AA, Koftis TV. (Chloromethyl)dimethylchlorosilane–KF: A Two-Step Solution to the Selectivity Problem in the Methylation of a Pyrimidone Intermediate en Route to Raltegravir. Org Process Res Dev 2017. [DOI: 10.1021/acs.oprd.7b00171] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christos I. Stathakis
- Pharmathen S.A., API R&D Operations, ninth km Thessaloniki-Thermi, Thessaloniki 57001, Greece
| | - Petros L. Gkizis
- Pharmathen S.A., API R&D Operations, ninth km Thessaloniki-Thermi, Thessaloniki 57001, Greece
| | - Elli S. Alexandraki
- Pharmathen S.A., API R&D Operations, ninth km Thessaloniki-Thermi, Thessaloniki 57001, Greece
| | - Sakellarios Trakossas
- Pharmathen S.A., API R&D Operations, ninth km Thessaloniki-Thermi, Thessaloniki 57001, Greece
| | - Michael Terzidis
- Pharmathen S.A., API R&D Operations, ninth km Thessaloniki-Thermi, Thessaloniki 57001, Greece
| | - Efstratios Neokosmidis
- Pharmathen S.A., API R&D Operations, ninth km Thessaloniki-Thermi, Thessaloniki 57001, Greece
| | | | - Christina Vasiliadou
- Pharmathen S.A., API R&D Operations, ninth km Thessaloniki-Thermi, Thessaloniki 57001, Greece
| | - Elli Vastardi
- Pharmathen S.A., API R&D Operations, ninth km Thessaloniki-Thermi, Thessaloniki 57001, Greece
| | - Thanos Andreou
- Pharmathen S.A., API R&D Operations, ninth km Thessaloniki-Thermi, Thessaloniki 57001, Greece
| | - Asteria Zitrou
- Pharmathen S.A., API R&D Operations, ninth km Thessaloniki-Thermi, Thessaloniki 57001, Greece
| | | | - Theocharis V. Koftis
- Pharmathen S.A., API R&D Operations, ninth km Thessaloniki-Thermi, Thessaloniki 57001, Greece
| |
Collapse
|
31
|
Barzegar A, Hamidi H. Quantitative structure–activity relationships study of potent pyridinone scaffold derivatives as HIV-1 integrase inhibitors with therapeutic applications. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2017. [DOI: 10.1142/s0219633617500389] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Human immunodeficiency virus-1 (HIV-1) integrase appears to be a crucial target for developing new anti-HIV-1 therapeutic agents. Different quantitative structure–activity relationships (QSARs) algorithms have been used in order to develop efficient model(s) to predict the activity of new pyridinone derivatives against HIV-1 integrase. Multiple linear regression (MLR) and combined principal component analysis (PCA) with MLR have been applied to build QSAR models for a set of new pyridinone derivatives as potent anti-HIV-1 therapeutic agents. Four different approaches based on MLR method including; concrete-MLR, stepwise-MLR, concrete PCA–MLR and stepwise PCA–MLR were utilized for this aim. Twenty two different sets of descriptors containing 1613 descriptors were constructed for each optimized molecule. Comparison between predictability of the “concrete” and “stepwise” procedure in two different algorithms of MLR and PCA models indicated the advantage of the stepwise procedure over that of the simple concrete method. Although the PCA was employed for dimension reduction, using stepwise PCA–MLR model showed that the method has higher ability to predict the compounds’ activity. The stepwise PCA–MLR model showed highly validated statistical results both in fitting and prediction processes ([Formula: see text] and [Formula: see text]). Therefore, using stepwise PCA approach is suitable to remove ineffective descriptors, which results in remaining efficient descriptors for building good predictability stepwise PCA–MLR. The stepwise hybrid approach of PCA–MLR may be useful in derivation of highly predictive and interpretable QSAR models.
Collapse
Affiliation(s)
- Abolfazl Barzegar
- Research Institute for Fundamental Sciences (RIFS), University of Tabriz, Tabriz, Iran
| | - Hossein Hamidi
- Department of Control Engineering, Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
| |
Collapse
|
32
|
A computational model for predicting integrase catalytic domain of retrovirus. J Theor Biol 2017; 423:63-70. [PMID: 28454901 DOI: 10.1016/j.jtbi.2017.04.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/01/2017] [Accepted: 04/21/2017] [Indexed: 11/23/2022]
Abstract
Integrase catalytic domain (ICD) is an essential part in the retrovirus for integration reaction, which enables its newly synthesized DNA to be incorporated into the DNA of infected cells. Owing to the crucial role of ICD for the retroviral replication and the absence of an equivalent of integrase in host cells, it is comprehensible that ICD is a promising drug target for therapeutic intervention. However, annotated ICDs in UniProtKB database have still been insufficient for a good understanding of their statistical characteristics so far. Accordingly, it is of great importance to put forward a computational ICD model in this work to annotate these domains in the retroviruses. The proposed model then discovered 11,660 new putative ICDs after scanning sequences without ICD annotations. Subsequently in order to provide much confidence in ICD prediction, it was tested under different cross-validation methods, compared with other database search tools, and verified on independent datasets. Furthermore, an evolutionary analysis performed on the annotated ICDs of retroviruses revealed a tight connection between ICD and retroviral classification. All the datasets involved in this paper and the application software tool of this model can be available for free download at https://sourceforge.net/projects/icdtool/files/?source=navbar.
Collapse
|
33
|
Mata-Marín JA, Smeke AEW, Rodriguez MR, Chávez-García M, Banda-Lara MI, Rios AMP, Nuñez-Rodríguez N, Domínguez-Hermosillo JC, Sánchez AC, Juarez-Kasusky I, Herrera JEC, Ramírez JLS, Gaytán-Martínez J. Effectiveness and Risk Factors for Virological Outcome of Raltegravir-Based Therapy for Treatment-Experienced HIV-Infected Patients. Drugs R D 2017; 17:225-231. [PMID: 28124232 PMCID: PMC5318342 DOI: 10.1007/s40268-017-0174-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Objective We evaluated the effectiveness of a raltegravir (RAL)-containing regimen plus an optimized background regimen in HIV-1 highly treatment-experienced patients. Design A retrospective cohort, multicentre study was conducted. Methods Adult (>16 years old) HIV treatment-experience patients starting therapy with a RAL-containing regimen were included. Effectiveness was evaluated as the percentage of patients with an undetectable HIV-1 RNA viral load (<50 and <200 copies/mL) after 48 weeks, and changes in CD4+ cell counts. We evaluated the risk factors associated with treatment failure. Results Of the 107 patients in the cohort, 86% were men, the median age was 45 years [interquartile range (IQR) 40–52] and the median number of previous regimens was six (IQR 4–7). After 48 weeks of treatment, 73% (IQR 63–80%) of patients (n = 78) had a viral load of <50 copies/mL and 85% (IQR 77–90%) (n = 91) had <200 copies/mL. In a logistic regression model, risk factors associated with a virological outcome of HIV-1 RNA of <200 copies/mL were age >40 years [odds ratio (OR) 5.61; 95% confidence interval (CI) 1.61–18.84; P = 0.006] and use of tenofovir in the regimen (OR 0.16; 95% CI 0.03–0.80; P = 0.026). Conclusions In this Mexican cohort, RAL achieved high rates of virological suppression and an increase in CD4+ cell count in highly treatment-experienced patients infected with HIV-1. Age >40 years was associated with a good virological outcome, contrary to tenofovir use, which was associated with a poor virological outcome.
Collapse
Affiliation(s)
- José Antonio Mata-Marín
- Infectious Diseases Department, Hospital de Infectología, National Medical Center "La Raza", IMSS, Mexico City, Mexico
| | - Ariane Estrella Weiser Smeke
- Medicine School, Universidad Anáhuac, Campus norte, Av. Universidad Anáhuac 46, Lomas Anahuac, 52786, Naucalpan de Juárez, Mexico City, Mexico.
| | - Mariana Rotzinger Rodriguez
- Medicine School, Universidad Anáhuac, Campus norte, Av. Universidad Anáhuac 46, Lomas Anahuac, 52786, Naucalpan de Juárez, Mexico City, Mexico
| | | | | | | | | | | | - Alberto Chaparro Sánchez
- Infectious Diseases Department, Hospital de Infectología, National Medical Center "La Raza", IMSS, Mexico City, Mexico
| | | | | | - Jorge Luis Sandoval Ramírez
- Infectious Diseases Department, Hospital de Infectología, National Medical Center "La Raza", IMSS, Mexico City, Mexico
| | - Jesús Gaytán-Martínez
- Infectious Diseases Department, Hospital de Infectología, National Medical Center "La Raza", IMSS, Mexico City, Mexico
| |
Collapse
|
34
|
Debnath U, Kumar P, Agarwal A, Kesharwani A, Gupta SK, Katti SB. N-hydroxy-substituted 2-aryl acetamide analogs: A novel class of HIV-1 integrase inhibitors. Chem Biol Drug Des 2017; 90:527-534. [PMID: 28294572 DOI: 10.1111/cbdd.12974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 02/16/2017] [Accepted: 02/19/2017] [Indexed: 12/17/2022]
Abstract
An in silico method has been used to discover N-hydroxy-substituted 2-aryl acetamide analogs as a new class of HIV-1 integrase inhibitors. Based on the molecular requirements of the binding pocket of catalytic active site, two molecules (compounds 2 and 4b) were designed as fragments. These were further synthesized and biologically evaluated. In vitro potency along with docking studies highlighted compound 4b as an active fragment which was further used to synthesize new leads as HIV-1 integrase inhibitors. Finally, six promising compounds (compounds 5b, 5c, 5e, 6-2c, 6-3b, and 6-5b) were identified by integrase inhibition assay (>50% inhibition). Based on in vitro anti-HIV-1 activity in a reporter gene-based cell assay system, compounds 5d, 6s, and 6k were found as novel HIV-1 integrase inhibitors due to its better selectivity index. Additionally, docking study revealed the importance of H-bond as well as hydrophobic interactions with Asn155, Lys156, and Lys159 which were required for their anti-HIV-1 activity.
Collapse
Affiliation(s)
- Utsab Debnath
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Prachi Kumar
- Reproductive Cell Biology Laboratory, National Institute of Immunology, New Delhi, India
| | - Aakanksha Agarwal
- Reproductive Cell Biology Laboratory, National Institute of Immunology, New Delhi, India
| | - Ajay Kesharwani
- Reproductive Cell Biology Laboratory, National Institute of Immunology, New Delhi, India
| | - Satish K Gupta
- Reproductive Cell Biology Laboratory, National Institute of Immunology, New Delhi, India
| | - Seturam B Katti
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
35
|
Wu B, Tang J, Wilson DJ, Huber AD, Casey MC, Ji J, Kankanala J, Xie J, Sarafianos SG, Wang Z. 3-Hydroxypyrimidine-2,4-dione-5-N-benzylcarboxamides Potently Inhibit HIV-1 Integrase and RNase H. J Med Chem 2016; 59:6136-48. [PMID: 27283261 DOI: 10.1021/acs.jmedchem.6b00040] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Resistance selection by human immunodeficiency virus (HIV) toward known drug regimens necessitates the discovery of structurally novel antivirals with a distinct resistance profile. On the basis of our previously reported 3-hydroxypyrimidine-2,4-dione (HPD) core, we have designed and synthesized a new integrase strand transfer (INST) inhibitor type featuring a 5-N-benzylcarboxamide moiety. Significantly, the 6-alkylamino variant of this new chemotype consistently conferred low nanomolar inhibitory activity against HIV-1. Extended antiviral testing against a few raltegravir-resistant HIV-1 clones revealed a resistance profile similar to that of the second generation INST inhibitor (INSTI) dolutegravir. Although biochemical testing and molecular modeling also strongly corroborate the inhibition of INST as the antiviral mechanism of action, selected antiviral analogues also potently inhibited reverse transcriptase (RT) associated RNase H, implying potential dual target inhibition. In vitro ADME assays demonstrated that this novel chemotype possesses largely favorable physicochemical properties suitable for further development.
Collapse
Affiliation(s)
- Bulan Wu
- Center for Drug Design, Academic Health Center, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Jing Tang
- Center for Drug Design, Academic Health Center, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Daniel J Wilson
- Center for Drug Design, Academic Health Center, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Andrew D Huber
- Department of Molecular Microbiology and Immunology and Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri , Columbia, Missouri 65211, United States
| | - Mary C Casey
- Department of Molecular Microbiology and Immunology and Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri , Columbia, Missouri 65211, United States
| | - Juan Ji
- Department of Molecular Microbiology and Immunology and Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri , Columbia, Missouri 65211, United States
| | - Jayakanth Kankanala
- Center for Drug Design, Academic Health Center, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Jiashu Xie
- Center for Drug Design, Academic Health Center, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Stefan G Sarafianos
- Department of Molecular Microbiology and Immunology and Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri , Columbia, Missouri 65211, United States
| | - Zhengqiang Wang
- Center for Drug Design, Academic Health Center, University of Minnesota , Minneapolis, Minnesota 55455, United States
| |
Collapse
|
36
|
Abstract
Viruses are major pathogenic agents causing a variety of serious diseases in humans, other animals, and plants. Drugs that combat viral infections are called antiviral drugs. There are no effective antiviral drugs for many viral infections. However, there are several drugs for influenza, a couple of drugs for herpesviruses, and some new antiviral drugs for treatment of HIV and hepatitis C infections. The arsenal of antivirals is complex. As of March 2014, it consists of approximately 50 drugs approved by the FDA, approximately half of which are directed against HIV. Antiviral drug creation strategies are focused on two different approaches: targeting the viruses themselves or targeting host cell factors. Direct virus-targeting antiviral drugs include attachment inhibitors, entry inhibitors, uncoating inhibitors, protease inhibitors, polymerase inhibitors, nucleoside and nucleotide reverse transcriptase inhibitors, nonnucleoside reverse-transcriptase inhibitors, and integrase inhibitors. Protease inhibitors (darunavir, atazanavir, and ritonavir), viral DNA polymerase inhibitors (acyclovir, valacyclovir, valganciclovir, and tenofovir), and an integrase inhibitor (raltegravir) are included in the list of Top 200 Drugs by sales for the 2010s.
Collapse
|
37
|
Gupta A, Guttikar S, Shah PA, Solanki G, Shrivastav PS, Sanyal M. Selective and rapid determination of raltegravir in human plasma by liquid chromatography-tandem mass spectrometry in the negative ionization mode. J Pharm Anal 2015; 5:101-109. [PMID: 29403921 PMCID: PMC5761471 DOI: 10.1016/j.jpha.2014.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 09/28/2014] [Accepted: 10/11/2014] [Indexed: 11/30/2022] Open
Abstract
A selective and rapid high-performance liquid chromatography-tandem mass spectrometry method was developed and validated for the quantification of raltegravir using raltegravir-d3 as an internal standard (IS). The analyte and IS were extracted with methylene chloride and n-hexane solvent mixture from 100 µL human plasma. The chromatographic separation was achieved on a Chromolith RP-18e endcapped C18 (100 mm×4.6 mm) column in a run time of 2.0 min. Quantitation was performed in the negative ionization mode using the transitions of m/z 443.1→316.1 for raltegravir and m/z 446.1→319.0 for IS. The linearity of the method was established in the concentration range of 2.0-6000 ng/mL. The mean extraction recovery for raltegravir and IS was 92.6% and 91.8%, respectively, and the IS-normalized matrix factors for raltegravir ranged from 0.992 to 0.999. The application of this method was demonstrated by a bioequivalence study on 18 healthy subjects.
Collapse
Affiliation(s)
- Ajay Gupta
- Chemistry Department, Kadi Sarva Vishwavidyalaya, Sarva Vidyalaya Campus, Sector 15/23, Gandhinagar 382015, Gujarat, India
| | - Swati Guttikar
- Bioanalytical Research Department, Veeda Clinical Research, Ambawadi, Ahmedabad 380015, Gujarat, India
| | - Priyanka A Shah
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Gajendra Solanki
- Bioanalytical Research Department, Veeda Clinical Research, Ambawadi, Ahmedabad 380015, Gujarat, India
| | - Pranav S Shrivastav
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Mallika Sanyal
- Chemistry Department, Kadi Sarva Vishwavidyalaya, Sarva Vidyalaya Campus, Sector 15/23, Gandhinagar 382015, Gujarat, India.,Department of Chemistry, St. Xavier׳s College, Navrangpura, Ahmedabad 380009, Gujarat, India
| |
Collapse
|
38
|
Cuzzucoli Crucitti G, Métifiot M, Pescatori L, Messore A, Madia VN, Pupo G, Saccoliti F, Scipione L, Tortorella S, Esposito F, Corona A, Cadeddu M, Marchand C, Pommier Y, Tramontano E, Costi R, Di Santo R. Structure-activity relationship of pyrrolyl diketo acid derivatives as dual inhibitors of HIV-1 integrase and reverse transcriptase ribonuclease H domain. J Med Chem 2015; 58:1915-28. [PMID: 25629256 DOI: 10.1021/jm501799k] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The development of HIV-1 dual inhibitors is a highly innovative approach aimed at reducing drug toxic side effects as well as therapeutic costs. HIV-1 integrase (IN) and reverse transcriptase-associated ribonuclease H (RNase H) are both selective targets for HIV-1 chemotherapy, and the identification of dual IN/RNase H inhibitors is an attractive strategy for new drug development. We newly synthesized pyrrolyl derivatives that exhibited good potency against IN and a moderate inhibition of the RNase H function of RT, confirming the possibility of developing dual HIV-1 IN/RNase H inhibitors and obtaining new information for the further development of more effective dual HIV-1 inhibitors.
Collapse
Affiliation(s)
- Giuliana Cuzzucoli Crucitti
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma , Rome, I-00185, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Pregnancy influences the plasma pharmacokinetics but not the cerebrospinal fluid pharmacokinetics of raltegravir: A preclinical investigation. Eur J Pharm Sci 2014; 65:38-44. [DOI: 10.1016/j.ejps.2014.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 06/30/2014] [Accepted: 08/28/2014] [Indexed: 01/10/2023]
|
40
|
Madeddu G, De Socio GVL, Ricci E, Quirino T, Orofino G, Carenzi L, Franzetti M, Parruti G, Martinelli C, Vichi F, Penco G, Dentone C, Celesia BM, Maggi P, Libertone R, Bagella P, Di Biagio A, Bonfanti P. Muscle symptoms and creatine phosphokinase elevations in patients receiving raltegravir in clinical practice: Results from the SCOLTA project long-term surveillance. Int J Antimicrob Agents 2014; 45:289-94. [PMID: 25476452 DOI: 10.1016/j.ijantimicag.2014.10.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/02/2014] [Accepted: 10/05/2014] [Indexed: 01/11/2023]
Abstract
Muscle alterations ranging from asymptomatic creatine phosphokinase (CPK) increases to rhabdomyolysis and central nervous system (CNS) symptoms have been reported in patients receiving raltegravir. Muscle symptoms and CPK increases were investigated in a cohort of HIV-infected patients receiving raltegravir-based antiretroviral therapy, and possible associated predictors were evaluated. The SCOLTA Project is a prospective, observational, multicentre study created to assess the incidence of adverse events in patients receiving new antiretroviral drugs in clinical practice. In total, 496 HIV-infected patients were enrolled [333 (67.1%) male]. CDC stage was C in 196 patients (39.5%). Mean age at enrolment was 45.9 ± 9.3 years. Median follow-up was 21 months. Twenty-six patients (5.2%) reported muscle symptoms (16 muscle pain and 17 weakness; 7 had both). Of 342 patients with normal baseline CPK values, 72 (21.1%) had a CPK increase. Seven patients (1.4%) discontinued raltegravir because of muscular events (three for muscle pain/weakness and four CPK increases). No cases of rhabdomyolysis were observed. Patients with muscle symptoms were more frequently receiving in their regimen than those not receiving atazanavir (P=0.04) and were more likely to also report CNS symptoms (P<0.0001). Significant predictors of muscle symptoms were CNS symptoms and use of atazanavir. Female sex was associated with a reduced risk of CPK increase. In conclusion, muscle symptoms and CPK elevations occurred frequently and caused most discontinuations due to adverse events. Their monitoring in patients receiving raltegravir should be considered, especially when co-administered with atazanavir or when CNS symptoms are also present.
Collapse
Affiliation(s)
- Giordano Madeddu
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Sassari, Viale San Pietro 8, 07100 Sassari, Italy.
| | | | | | - Tiziana Quirino
- Unit of Infectious Diseases, Busto Arsizio Hospital, Busto Arsizio, Italy
| | - Giancarlo Orofino
- Department of Infectious Diseases, Amedeo di Savoia Hospital, Turin, Italy
| | - Laura Carenzi
- Department of Infectious Diseases, L. Sacco Hospital, Milan, Italy
| | - Marco Franzetti
- Department of Infectious Diseases, L. Sacco Hospital, Milan, Italy
| | - Giustino Parruti
- Department of Infectious Diseases, Pescara Hospital, Pescara, Italy
| | | | - Francesca Vichi
- Unit of Infectious Diseases, Santa Maria Annunziata Hospital, Firenze, Italy
| | - Giovanni Penco
- Unit of Infectious Diseases, Galliera Hospital, Genoa, Italy
| | - Chiara Dentone
- Unit of Infectious Diseases, San Remo Hospital, San Remo, Italy
| | | | - Paolo Maggi
- Infectious Disease Clinic, University of Bari, Bari, Italy
| | | | - Paola Bagella
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Sassari, Viale San Pietro 8, 07100 Sassari, Italy
| | - Antonio Di Biagio
- Infectious Diseases, IRCCS San Martino Hospital, University of Genoa, Genoa, Italy
| | - Paolo Bonfanti
- Unit of Infectious Diseases, A. Manzoni Hospital, Lecco, Italy
| |
Collapse
|
41
|
Gu WG. Newly approved integrase inhibitors for clinical treatment of AIDS. Biomed Pharmacother 2014; 68:917-21. [PMID: 25451165 DOI: 10.1016/j.biopha.2014.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 09/21/2014] [Indexed: 12/23/2022] Open
Abstract
The current therapy for the human immunodeficiency virus (HIV) infection is a combination of anti-HIV drugs targeting multiple steps of virus replication. The drugs for the acquired immunodeficiency syndrome (AIDS) treatment include reverse transcriptase inhibitors, protease inhibitors, fusion inhibitors, co-receptor inhibitor and the newly added integrase inhibitors. Raltegravir, elvitegravir and dolutegravir are the three Food and Drug Administration (FDA) approved integrase strand transfer inhibitors for clinical treatment of HIV infection. The addition of these integrase inhibitors benefits a lot to HIV infected patients. Although it is only seven years from the first integrase inhibitor, which was approved by FDA to now, multiple drug resistant HIV strains have emerged in clinical treatment. Most of the drug resistant virus strains are against raltegravir. Some are cross-resistant to elvitegravir. Dolutegravir is effective for suppression of the current drug resistant viruses. A number of clinical trials have been performed on the three integrase inhibitors. In this study, the application of the three integrase inhibitors in clinical treatment and the findings of drug resistance to integrase inhibitors are summarized.
Collapse
Affiliation(s)
- Wan-Gang Gu
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563003, China.
| |
Collapse
|
42
|
Rijpma SR, van den Heuvel JJMW, van der Velden M, Sauerwein RW, Russel FGM, Koenderink JB. Atovaquone and quinine anti-malarials inhibit ATP binding cassette transporter activity. Malar J 2014; 13:359. [PMID: 25218605 PMCID: PMC4172838 DOI: 10.1186/1475-2875-13-359] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 08/22/2014] [Indexed: 12/21/2022] Open
Abstract
Background Therapeutic blood plasma concentrations of anti-malarial drugs are essential for successful treatment. Pharmacokinetics of pharmaceutical compounds are dependent of adsorption, distribution, metabolism, and excretion. ATP binding cassette (ABC) transport proteins are particularly involved in drug deposition, as they are located at membranes of many uptake and excretory organs and at protective barriers, where they export endogenous and xenobiotic compounds, including pharmaceuticals. In this study, a panel of well-established anti-malarial drugs which may affect drug plasma concentrations was tested for interactions with human ABC transport proteins. Methods The interaction of chloroquine, quinine, artemisinin, mefloquine, lumefantrine, atovaquone, dihydroartemisinin and proguanil, with transport activity of P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), bile salt export pump (BSEP) and multidrug resistance-associated proteins (MRP) 1–4 were analysed. The effect of the anti-malarials on the ATP-dependent uptake of radio-labelled substrates was measured in membrane vesicles isolated from HEK293 cells overexpressing the ABC transport proteins. Results A strong and previously undescribed inhibition of BCRP-mediated transport by atovaquone with a 50% inhibitory concentration (IC50) of 0.23 μM (95% CI 0.17-0.29 μM) and inhibition of P-gp-mediated transport by quinine with an IC50 of 6.8 μM (95% CI 5.9-7.8 μM) was observed. Furthermore, chloroquine and mefloquine were found to significantly inhibit P-gp-mediated transport. BCRP transport activity was significantly inhibited by all anti-malarials tested, whereas BSEP-mediated transport was not inhibited by any of the compounds. Both MRP1- and MRP3-mediated transport were significantly inhibited by mefloquine. Conclusions Atovaquone and quinine significantly inhibit BCRP- and P-gp- mediated transport at concentrations within the clinically relevant prophylactic and therapeutic range. Co-administration of these established anti-malarials with drugs that are BCRP or P-gp substrates may potentially lead to drug-drug interactions.
Collapse
Affiliation(s)
| | | | | | | | | | - Jan B Koenderink
- Department of Pharmacology and Toxicology, Radboud University Medical Centre, Nijmegen, Netherlands.
| |
Collapse
|
43
|
Sketching the historical development of pyrimidones as the inhibitors of the HIV integrase. Eur J Med Chem 2014; 97:649-63. [PMID: 25084622 DOI: 10.1016/j.ejmech.2014.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/02/2014] [Accepted: 07/03/2014] [Indexed: 12/14/2022]
Abstract
Heterocyclic substances perform a very unique role in drug design and discovery. This article provides the primary objectives of the analysis within pyrimidine centered new heterocyclic elements chronologically from their finding focusing on one of the essential enzyme of HIV virus particle that is integrase upon suppressing its strand transfer function. The class of compounds reviewed here includes bicyclic pyrimidines, dihydroxypyrimidines, pyrimidine-2,4-dinones, N-methylpyrimidones, pyranopyrimidine, pyridine-quinoline conjugates, pyrimidine-2-carboxamides, N-3 hydroxylated pyrimidine-2,4-diones as well as their various substituted analogues. Such initiatives released an effective drug Raltegravir as a first FDA approved anti-HIV integrase inhibitor as well as several of its derivatives along with other pyrimidones is under clinical or preclinical growth. Some of the provided scaffolds indicated dual anti-HIV efficacies against HIV reverse transcriptase and integrase enzymes at both cites as 3'-processing and strand transfer, while several scaffolds exhibited potency against Raltegravir resistant HIV mutant strains determining themselves a potent class of compounds having appealing upcoming implementations. Connections of the new compounds' molecular structure and HIV viral target has been overviewed to be able to accomplish further growth of promising anti-HIV agents in future drug discovery process.
Collapse
|
44
|
Diketoacid chelating ligands as dual inhibitors of HIV-1 integration process. Eur J Med Chem 2014; 78:425-30. [DOI: 10.1016/j.ejmech.2014.03.070] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/07/2014] [Accepted: 03/24/2014] [Indexed: 02/07/2023]
|
45
|
Zhang X, Cao R, Liu R, Zhao R, Huang Y, Gurley EC, Hylemon PB, Pandak WM, Wang G, Zhang L, Li X, Zhou H. Reduction of the HIV protease inhibitor-induced ER stress and inflammatory response by raltegravir in macrophages. PLoS One 2014; 9:e90856. [PMID: 24625618 PMCID: PMC3953206 DOI: 10.1371/journal.pone.0090856] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 02/05/2014] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND HIV protease inhibitor (PI), the core component of highly active antiretroviral treatment (HAART) for HIV infection, has been implicated in HAART-associated cardiovascular complications. Our previous studies have demonstrated that activation of endoplasmic reticulum (ER) stress is linked to HIV PI-induced inflammation and foam cell formation in macrophages. Raltegravir is a first-in-its-class HIV integrase inhibitor, the newest class of anti-HIV agents. We have recently reported that raltegravir has less hepatic toxicity and could prevent HIV PI-induced dysregulation of hepatic lipid metabolism by inhibiting ER stress. However, little information is available as to whether raltegravir would also prevent HIV PI-induced inflammatory response and foam cell formation in macrophages. METHODOLOGY AND PRINCIPAL FINDINGS In this study, we examined the effect of raltegravir on ER stress activation and lipid accumulation in cultured mouse macrophages (J774A.1), primary mouse macrophages, and human THP-1-derived macrophages, and further determined whether the combination of raltegravir with existing HIV PIs would potentially exacerbate or prevent the previously observed activation of inflammatory response and foam cell formation. The results indicated that raltegravir did not induce ER stress and inflammatory response in macrophages. Even more interestingly, HIV PI-induced ER stress, oxidative stress, inflammatory response and foam cell formation were significantly reduced by raltegravir. High performance liquid chromatography (HPLC) analysis further demonstrated that raltegravir did not affect the uptake of HIV PIs in macrophages. CONCLUSION AND SIGNIFICANCE Raltegravir could prevent HIV PI-induced inflammatory response and foam cell formation by inhibiting ER stress. These results suggest that incorporation of this HIV integrase inhibitor may reduce the cardiovascular complications associated with current HAART.
Collapse
Affiliation(s)
- Xiaoxuan Zhang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, P.R.China
- Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Risheng Cao
- Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Runping Liu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, P.R.China
- Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Renping Zhao
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, P.R.China
| | - Yi Huang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, P.R.China
- School of Pharmacy, Wenzhou Medical University, Wenzhou, P.R.China
| | - Emily C. Gurley
- Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Phillip B. Hylemon
- Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Internal Medicine/Gastroenterology and McGuire Veterans Affairs Medical Center, Richmond, Virginia, United States of America
| | - William M. Pandak
- Department of Internal Medicine/Gastroenterology and McGuire Veterans Affairs Medical Center, Richmond, Virginia, United States of America
| | - Guangji Wang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, P.R.China
- * E-mail: (GW); (HZ)
| | - Luyong Zhang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, P.R.China
| | - Xiaokun Li
- School of Pharmacy, Wenzhou Medical University, Wenzhou, P.R.China
| | - Huiping Zhou
- Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- School of Pharmacy, Wenzhou Medical University, Wenzhou, P.R.China
- Department of Internal Medicine/Gastroenterology and McGuire Veterans Affairs Medical Center, Richmond, Virginia, United States of America
- * E-mail: (GW); (HZ)
| |
Collapse
|
46
|
Sharma M, Walmsley SL. Raltegravir as antiretroviral therapy in HIV/AIDS. Expert Opin Pharmacother 2013; 15:395-405. [DOI: 10.1517/14656566.2014.868884] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
47
|
Arylsulfone-based HIV-1 non-nucleoside reverse transcriptase inhibitors. Future Med Chem 2013; 5:2141-56. [DOI: 10.4155/fmc.13.174] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) represent one of the most significant classes of drugs for the treatment of AIDS/HIV infection. Over the past two decades several potent arylsulfone-based HIV-1 NNRTIs and related analogs have been developed. This review provides an essential overview of the structure–activity relationships of the arylsulfone-based HIV-1 NNRTIs. Furthermore, structural information useful for the design and development of new sulfur containing NNRTIs with enhanced antiretroviral activity against HIV-1 wild type and clinically relevant drug resistant HIV-1 mutant strains will be discussed.
Collapse
|
48
|
Yamuna TS, Jasinski JP, Anderson BJ, Yathirajan HS, Kaur M. Raltegravir monohydrate. Acta Crystallogr Sect E Struct Rep Online 2013; 69:o1743-4. [PMID: 24454199 PMCID: PMC3885024 DOI: 10.1107/s1600536813029747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 10/30/2013] [Indexed: 11/10/2022]
Abstract
THE HYDRATED TITLE COMPOUND [SYSTEMATIC NAME: N-(4-fluoro-benz-yl)-5-hy-droxy-1-methyl-2-{1-methyl-1-[(5-methyl-1,3,4-oxa-diazol-2-ylcarbon-yl)amino]-eth-yl}-6-oxo-1,6-di-hydro-pyrimidine-4-carb-oxamide monohydrate], C20H21FN6O5·H2O, is recognised as the first HIV integrase inhibitor. In the mol-ecule, the dihedral angles between the mean planes of the pyrimidine ring and the phenyl and oxa-diazole rings are 72.0 (1) and 61.8 (3)°, respectively. The mean plane of the oxa-diazole ring is twisted by 15.6 (3)° from that of the benzene ring, while the mean plane of amide group bound to the oxadiaole ring is twisted by 18.8 (3)° from its mean plane. Intra-molecular O-H⋯O and C-H⋯N hydrogen bonds are observed in the mol-ecule. The crystal packing features O-H⋯O hydrogen bonds, which include bifurcated O-H⋯(O,O) hydrogen bonds from one H atom of the water mol-ecule. In addition, N-H⋯O hydrogen bonds are observed involving the two amide groups. These inter-actions link the mol-ecules into chains along [010].
Collapse
Affiliation(s)
- Thammarse S. Yamuna
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
| | - Jerry P. Jasinski
- Department of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
| | - Brian J. Anderson
- Department of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
| | - H. S. Yathirajan
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
| | - Manpreet Kaur
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
| |
Collapse
|
49
|
Bhatt H, Patel P, Pannecouque C. Discovery of HIV-1 Integrase Inhibitors: Pharmacophore Mapping, Virtual Screening, Molecular Docking, Synthesis, and Biological Evaluation. Chem Biol Drug Des 2013; 83:154-66. [DOI: 10.1111/cbdd.12207] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 07/18/2013] [Accepted: 08/12/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Hardik Bhatt
- Department of Pharmaceutical Chemistry; Institute of Pharmacy; Nirma University; Ahmedabad 382 481 India
| | - Paresh Patel
- Department of Pharmaceutical Chemistry; L.J. Institute of Pharmacy; L.J. Campus, S.G. Highway Ahmedabad 382 210 India
| | | |
Collapse
|
50
|
Computational design of a full-length model of HIV-1 integrase: modeling of new inhibitors and comparison of their calculated binding energies with those previously studied. J Mol Model 2013; 19:4349-68. [PMID: 23907552 DOI: 10.1007/s00894-013-1943-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 07/11/2013] [Indexed: 12/28/2022]
Abstract
A full-length model of integrase (IN) of the human immunodeficiency virus type 1 (HIV-1) was constructed based on the distinctly resolved X-ray crystal structures of its three domains, named N-terminal, catalytic core and C-terminal. Thirty-one already known inhibitors with varieties of structural differences as well as nine newly tested ones were docked into the catalytic core. The molecular dynamic (MD) and binding properties of these complexes were obtained by MD calculations. The binding energies calculated by molecular mechanic/Poisson Boltzmann solvation area were significantly correlationed with available IC50. Four inhibitors including two newly designed were also docked into the full-length model and their MD behaviors and binding properties were calculated. It was found that one of the newly designed compounds forms a better complex with HIV-1 IN compared to the rest including raltegravir. MD calculations were performed with AMBER suite of programs using ff99SB force field for the proteins and the general Amber force field for the ligands. In conclusion, the results have produced a promising standpoint not only in the construction of the full-length model but also in development of new drugs against it. However, the role of multimer formation and the involvement of DNAs, and their subsequent effect on the complexation and inhibition, are required to arrive at a conclusive decision.
Collapse
|