1
|
Teufel LU, Matzaraki V, Folkman L, Ter Horst R, Moorlag SJCFM, Mulders-Manders CM, Netea MG, Krausgruber T, Joosten LAB, Arts RJW. Insights into the multifaceted role of interleukin-37 on human immune cell regulation. Clin Immunol 2024; 268:110368. [PMID: 39307482 DOI: 10.1016/j.clim.2024.110368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
Autoinflammatory diseases, while having a variety of underlying causes, are mediated by dysfunctional innate immune responses. Therefore, standard treatments target innate cytokines or block their receptors. Despite excellent responses in some patients, first-line treatments fail in others, for reasons which remain to be understood. We studied the effects of IL-37, an anti-inflammatory cytokine, on immune cells using multi-omics profiling of 325 healthy adults. Our findings show that IL-37 is associated with inflammation control and generally reduced immune cell activity. Further, genetic variants in IL37 are associated with impaired trained immunity, a memory phenotype of innate immune cells contributing to autoinflammation. To underpin the medical potential of IL-37, an explorative cohort of seven autoinflammatory disorders was built. In vitro stimulation experiments argue for recombinant IL-37 as a potential therapy in IL-6-, and IL-22-driven conditions. Concluding, IL-37 is highlighted as a cytokine with broad anti-inflammatory functions, implicating its potential as therapeutic intervention.
Collapse
Affiliation(s)
- Lisa U Teufel
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Vasiliki Matzaraki
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lukas Folkman
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Medical University of Vienna, Institute of Artificial Intelligence, Center for Medical Data Science, Austria
| | - Rob Ter Horst
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Simone J C F M Moorlag
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Catharina M Mulders-Manders
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Thomas Krausgruber
- Medical University of Vienna, Institute of Artificial Intelligence, Center for Medical Data Science, Austria
| | - Leo A B Joosten
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Rob J W Arts
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
2
|
Rocha PS, Silva AA, Queiroz-Junior CM, Braga AD, Moreira TP, Teixeira MM, Amaral FA. Trained immunity of synovial macrophages is associated with exacerbated joint inflammation and damage after Staphylococcus aureus infection. Inflamm Res 2024; 73:1995-2008. [PMID: 39340660 DOI: 10.1007/s00011-024-01946-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
OBJECTIVES Investigate whether and which synoviocytes would acquire trained immunity characteristics that could exacerbate joint inflammation following a secondary Staphylococcus aureus infection. METHODS Lipopolysaccharide (LPS) and S. aureus were separately or double injected (21 days of interval) into the tibiofemoral joint cavity of male C57BL/6 mice. At different time points after these stimulations, mechanical nociception was analyzed followed by the analysis of signs of inflammation and damage in the affected joints. The trained immunity markers, including the glycolytic and mTOR pathway, were analyzed in whole tissue or isolated synoviocytes. A group of mice was treated with Rapamycin, an mTOR inhibitor before LPS or S. aureus stimulation. RESULTS The double LPS - S. aureus hit promoted intense joint inflammation and damage compared to single joint stimulation, including markers in synoviocyte activation, production of proinflammatory cytokines, persistent nociception, and bone damage, despite not reducing the bacterial clearance. The double LPS - S. aureus hit joints increased the synovial macrophage population expressing CX3CR1 alongside triggering established epigenetic modifications associated with trained immunity events in these cells, such as the upregulation of the mTOR signaling pathway (p-mTOR and HIF1α) and the trimethylation of histone H3. Mice treated with Rapamycin presented reduced CX3CR1+ macrophage activation, joint inflammation, and bone damage. CONCLUSIONS There is a trained immunity phenotype in CX3CR1+ synovial macrophages that contributes to the exacerbation of joint inflammation and damage during septic arthritis caused by S. aureus.
Collapse
Affiliation(s)
- Peter Silva Rocha
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil
| | - Adryan Aparecido Silva
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil
| | - Celso Martins Queiroz-Junior
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil
| | - Amanda Dias Braga
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil
| | - Thaiane Pinto Moreira
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil
| | - Flávio Almeida Amaral
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil.
| |
Collapse
|
3
|
Panduga S, Vasishta S, Subramani R, Vincent S, Mutalik S, Joshi MB. Epidrugs in the clinical management of atherosclerosis: Mechanisms, challenges and promises. Eur J Pharmacol 2024; 980:176827. [PMID: 39038635 DOI: 10.1016/j.ejphar.2024.176827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/03/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Atherosclerosis is a complex and multigenic pathology associated with significant epigenetic reprogramming. Traditional factors (age, sex, obesity, hyperglycaemia, dyslipidaemia, hypertension) and non-traditional factors (foetal indices, microbiome alteration, clonal hematopoiesis, air pollution, sleep disorders) induce endothelial dysfunction, resulting in reduced vascular tone and increased vascular permeability, inflammation and shear stress. These factors induce paracrine and autocrine interactions between several cell types, including vascular smooth muscle cells, endothelial cells, monocytes/macrophages, dendritic cells and T cells. Such cellular interactions lead to tissue-specific epigenetic reprogramming regulated by DNA methylation, histone modifications and microRNAs, which manifests in atherosclerosis. Our review outlines epigenetic signatures during atherosclerosis, which are viewed as potential clinical biomarkers that may be adopted as new therapeutic targets. Additionally, we emphasize epigenetic modifiers referred to as 'epidrugs' as potential therapeutic molecules to correct gene expression patterns and restore vascular homeostasis during atherosclerosis. Further, we suggest nanomedicine-based strategies involving the use of epidrugs, which may selectively target cells in the atherosclerotic microenvironment and reduce off-target effects.
Collapse
Affiliation(s)
- Sushma Panduga
- Department of Biochemistry, Palamur Biosciences Private Limited, Hyderabad, 500026, Telangana, India; PhD Program, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Sampara Vasishta
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Ramamoorthy Subramani
- Department of Biochemistry, Palamur Biosciences Private Limited, Hyderabad, 500026, Telangana, India
| | - Sthevaan Vincent
- Department of Pathology, Palamur Biosciences Private Limited, Hyderabad, 500026, Telangana, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Manjunath B Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
4
|
Robert M, Yatim N, Sacré K, Duffy D. Sarcoidosis immunopathogenesis - a new concept of maladaptive trained immunity. Trends Immunol 2024; 45:406-418. [PMID: 38796404 DOI: 10.1016/j.it.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/28/2024]
Abstract
Sarcoidosis is a chronic immune disease of unknown origin for which we still lack an immunological framework unifying causal agents, host factors, and natural history of disease. Here, we discuss the initial triggers of disease, and how myeloid cells drive granuloma formation and contribute to immunopathogenesis. We highlight recent advances in our understanding of innate immune memory and propose the hypothesis that maladaptive innate immune training connects previous environmental exposure to granuloma maintenance and expansion. Lastly, we consider how this hypothesis may open novel therapeutic avenues, while corticosteroids remain the front-line treatment.
Collapse
Affiliation(s)
- Marie Robert
- Translational Immunology Unit, Institut Pasteur, Université Paris-Cité, Paris, France; Department of Internal Medicine, Hôpital Bichat, Paris, France; Université Paris-Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, Laboratoire d'Excellence Inflamex, Paris, France
| | - Nader Yatim
- Translational Immunology Unit, Institut Pasteur, Université Paris-Cité, Paris, France; Department of Internal Medicine, Hôpital Bichat, Paris, France
| | - Karim Sacré
- Department of Internal Medicine, Hôpital Bichat, Paris, France; Université Paris-Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, Laboratoire d'Excellence Inflamex, Paris, France
| | - Darragh Duffy
- Translational Immunology Unit, Institut Pasteur, Université Paris-Cité, Paris, France; CBUtechS, Institut Pasteur, Université Paris-Cité, Paris, France.
| |
Collapse
|
5
|
Caldwell BA, Li L. Epigenetic regulation of innate immune dynamics during inflammation. J Leukoc Biol 2024; 115:589-606. [PMID: 38301269 PMCID: PMC10980576 DOI: 10.1093/jleuko/qiae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/03/2024] Open
Abstract
Innate immune cells play essential roles in modulating both immune defense and inflammation by expressing a diverse array of cytokines and inflammatory mediators, phagocytizing pathogens to promote immune clearance, and assisting with the adaptive immune processes through antigen presentation. Rudimentary innate immune "memory" states such as training, tolerance, and exhaustion develop based on the nature, strength, and duration of immune challenge, thereby enabling dynamic transcriptional reprogramming to alter present and future cell behavior. Underlying transcriptional reprogramming are broad changes to the epigenome, or chromatin alterations above the level of DNA sequence. These changes include direct modification of DNA through cytosine methylation as well as indirect modifications through alterations to histones that comprise the protein core of nucleosomes. In this review, we will discuss recent advances in our understanding of how these epigenetic changes influence the dynamic behavior of the innate immune system during both acute and chronic inflammation, as well as how stable changes to the epigenome result in long-term alterations of innate cell behavior related to pathophysiology.
Collapse
Affiliation(s)
- Blake A. Caldwell
- Department of Biological Sciences, Virginia Tech, 970 Washington St. SW, Blacksburg, VA 24061-0910, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, 970 Washington St. SW, Blacksburg, VA 24061-0910, USA
| |
Collapse
|
6
|
Caldwell BA, Wu Y, Wang J, Li L. Altered DNA methylation underlies monocyte dysregulation and immune exhaustion memory in sepsis. Cell Rep 2024; 43:113894. [PMID: 38442017 DOI: 10.1016/j.celrep.2024.113894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/12/2024] [Accepted: 02/14/2024] [Indexed: 03/07/2024] Open
Abstract
Monocytes can develop an exhausted memory state characterized by reduced differentiation, pathogenic inflammation, and immune suppression that drives immune dysregulation during sepsis. Chromatin alterations, notably via histone modifications, underlie innate immune memory, but the contribution of DNA methylation remains poorly understood. Using an ex vivo sepsis model, we show altered DNA methylation throughout the genome of exhausted monocytes, including genes implicated in immune dysregulation during sepsis and COVID-19 infection (e.g., Plac8). These changes are recapitulated in septic mice induced by cecal slurry injection. Methylation profiles developed in septic mice are maintained during ex vivo culture, supporting the involvement of DNA methylation in stable monocyte exhaustion memory. Methylome reprogramming is driven in part by Wnt signaling inhibition in exhausted monocytes and can be reversed with DNA methyltransferase inhibitors, Wnt agonists, or immune training molecules. Our study demonstrates the significance of altered DNA methylation in the maintenance of stable monocyte exhaustion memory.
Collapse
Affiliation(s)
- Blake A Caldwell
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061-0910, USA
| | - Yajun Wu
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061-0910, USA
| | - Jing Wang
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061-0910, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061-0910, USA.
| |
Collapse
|
7
|
Bombassaro A, Figueiredo JM, Taborda CP, Joosten LAB, Vicente VA, Queiroz-Telles F, Meis JF, Kischkel B. Skin innate immune response against fungal infections and the potential role of trained immunity. Mycoses 2024; 67. [PMID: 38282360 DOI: 10.1111/myc.13682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 01/30/2024]
Abstract
Fungal skin infections are distributed worldwide and can be associated with economic and social traits. The immune response related to skin cells is complex and its understanding is essential to the comprehension of each cell's role and the discovery of treatment alternatives. The first studies of trained immunity (TI) described the ability of monocytes, macrophages and natural killer (NK) cells to develop a memory-like response. However, the duration of TI does not reflect the shorter lifespan of these cells. These conclusions supported later studies showing that TI can be observed in stem and haematopoietic cells and, more recently, also in non-immune skin cells such as fibroblasts, highlighting the importance of resident cells in response to skin disorders. Besides, the participation of less studied proinflammatory cytokines in the skin immune response, such as IL-36γ, shed light into a new possibility of inflammatory pathway blockade by drugs. In this review, we will discuss the skin immune response associated with fungal infections, the role of TI in skin and clinical evidence supporting opportunities and challenges of TI and other inflammatory responses in the pathogenesis of fungal skin infections.
Collapse
Affiliation(s)
- Amanda Bombassaro
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
- Program in Microbiology, Parasitology and Pathology, Biological Sciences, Department of Basic Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Julia Marcondes Figueiredo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Carlos P Taborda
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Dermatology, LIM53, Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Vania A Vicente
- Program in Microbiology, Parasitology and Pathology, Biological Sciences, Department of Basic Pathology, Federal University of Paraná, Curitiba, Brazil
- Engineering Bioprocess and Biotechnology Post-graduation Program, Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil
| | - Flavio Queiroz-Telles
- Department of Public Health, Hospital de Clínicas, Federal University of Paraná, Curitiba, Brazil
| | - Jacques F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
- Engineering Bioprocess and Biotechnology Post-graduation Program, Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil
- Department I of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Excellence Center for Medical Mycology, Cologne, Germany
| | - Brenda Kischkel
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
8
|
Caldwell BA, Wu Y, Wang J, Li L. Altered DNA methylation underlies monocyte dysregulation and innate exhaustion memory in sepsis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555580. [PMID: 37693554 PMCID: PMC10491170 DOI: 10.1101/2023.08.30.555580] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Innate immune memory is the process by which pathogen exposure elicits cell-intrinsic states to alter the strength of future immune challenges. Such altered memory states drive monocyte dysregulation during sepsis, promoting pathogenic behavior characterized by pro-inflammatory, immunosuppressive gene expression in concert with emergency hematopoiesis. Epigenetic changes, notably in the form of histone modifications, have been shown to underlie innate immune memory, but the contribution of DNA methylation to this process remains poorly understood. Using an ex vivo sepsis model, we discovered broad changes in DNA methylation throughout the genome of exhausted monocytes, including at several genes previously implicated as major drivers of immune dysregulation during sepsis and Covid-19 infection (e.g. Plac8 ). Methylome alterations are driven in part by Wnt signaling inhibition in exhausted monocytes, and can be reversed through treatment with DNA methyltransferase inhibitors, Wnt agonists, or immune training molecules. Importantly, these changes are recapitulated in septic mice following cecal slurry injection, resulting in stable changes at critical immune genes that support the involvement of DNA methylation in acute and long-term monocyte dysregulation during sepsis.
Collapse
|
9
|
Williams H, Mack C, Baraz R, Marimuthu R, Naralashetty S, Li S, Medbury H. Monocyte Differentiation and Heterogeneity: Inter-Subset and Interindividual Differences. Int J Mol Sci 2023; 24:ijms24108757. [PMID: 37240103 DOI: 10.3390/ijms24108757] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
The three subsets of human monocytes, classical, intermediate, and nonclassical, show phenotypic heterogeneity, particularly in their expression of CD14 and CD16. This has enabled researchers to delve into the functions of each subset in the steady state as well as in disease. Studies have revealed that monocyte heterogeneity is multi-dimensional. In addition, that their phenotype and function differ between subsets is well established. However, it is becoming evident that heterogeneity also exists within each subset, between health and disease (current or past) states, and even between individuals. This realisation casts long shadows, impacting how we identify and classify the subsets, the functions we assign to them, and how they are examined for alterations in disease. Perhaps the most fascinating is evidence that, even in relative health, interindividual differences in monocyte subsets exist. It is proposed that the individual's microenvironment could cause long-lasting or irreversible changes to monocyte precursors that echo to monocytes and through to their derived macrophages. Here, we will discuss the types of heterogeneity recognised in monocytes, the implications of these for monocyte research, and most importantly, the relevance of this heterogeneity for health and disease.
Collapse
Affiliation(s)
- Helen Williams
- Vascular Biology Research Centre, Department of Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
- Sydney Medical School, The University of Sydney, Westmead, NSW 2145, Australia
| | - Corinne Mack
- Vascular Biology Research Centre, Department of Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
- Sydney Medical School, The University of Sydney, Westmead, NSW 2145, Australia
| | - Rana Baraz
- Vascular Biology Research Centre, Department of Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
- Sydney Medical School, The University of Sydney, Westmead, NSW 2145, Australia
| | - Rekha Marimuthu
- Vascular Biology Research Centre, Department of Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
- Sydney Medical School, The University of Sydney, Westmead, NSW 2145, Australia
| | - Sravanthi Naralashetty
- Vascular Biology Research Centre, Department of Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
- Sydney Medical School, The University of Sydney, Westmead, NSW 2145, Australia
| | - Stephen Li
- Vascular Biology Research Centre, Department of Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
- Chemical Pathology, NSW Health Pathology, Westmead Hospital and Institute of Clinical Pathology and Medical Research, Westmead, NSW 2145, Australia
- . Blacktown/Mt Druitt Clinical School, Blacktown Hospital, Western Sydney University, Blacktown, NSW 2148, Australia
| | - Heather Medbury
- Vascular Biology Research Centre, Department of Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
- Sydney Medical School, The University of Sydney, Westmead, NSW 2145, Australia
| |
Collapse
|
10
|
Díaz-García E, García-Sánchez A, Sánz-Rubio D, Alfaro E, López-Fernández C, Casitas R, Mañas Baena E, Cano-Pumarega I, Cubero P, Marin-Oto M, López-Collazo E, Marin JM, García-Río F, Cubillos-Zapata C. SMAD4 Expression in Monocytes as a Potential Biomarker for Atherosclerosis Risk in Patients with Obstructive Sleep Apnea. Int J Mol Sci 2023; 24:ijms24097900. [PMID: 37175608 PMCID: PMC10178665 DOI: 10.3390/ijms24097900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/14/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Obstructive sleep apnea (OSA) patients are at special risk of suffering atherosclerosis, leading to major cardiovascular diseases. Notably, the transforming growth factor (TGF-β) plays a crucial role in the development and progression of atherosclerosis. In this context, the central regulator of TGF-β pathway, SMAD4 (small mother against decapentaplegic homolog 4), has been previously reported to be augmented in OSA patients, which levels were even higher in patients with concomitant cardiometabolic diseases. Here, we analyzed soluble and intracellular SMAD4 levels in plasma and monocytes from OSA patients and non-apneic subjects, with or without early subclinical atherosclerosis (eSA). In addition, we used in vitro and ex vivo models to explore the mechanisms underlying SMAD4 upregulation and release. Our study confirmed elevated sSMAD4 levels in OSA patients and identified that its levels were even higher in those OSA patients with eSA. Moreover, we demonstrated that SMAD4 is overexpressed in OSA monocytes and that intermittent hypoxia contributes to SMAD4 upregulation and release in a process mediated by NLRP3. In conclusion, this study highlights the potential role of sSMAD4 as a biomarker for atherosclerosis risk in OSA patients and provides new insights into the mechanisms underlying its upregulation and release to the extracellular space.
Collapse
Affiliation(s)
- Elena Díaz-García
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain
- Respiratory Diseases Group, Respiratory Diseases Department, La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain
| | - Aldara García-Sánchez
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain
- Servicio de Neumología, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - David Sánz-Rubio
- Precision Medicine in Respiratory Diseases Group, Miguel Servet University Hospital-IIS Aragon, 50009 Zaragoza, Spain
| | - Enrique Alfaro
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain
- Respiratory Diseases Group, Respiratory Diseases Department, La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain
| | - Cristina López-Fernández
- Respiratory Diseases Group, Respiratory Diseases Department, La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain
| | - Raquel Casitas
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain
- Respiratory Diseases Group, Respiratory Diseases Department, La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain
| | - Eva Mañas Baena
- Servicio de Neumología, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Irene Cano-Pumarega
- Servicio de Neumología, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Pablo Cubero
- Precision Medicine in Respiratory Diseases Group, Miguel Servet University Hospital-IIS Aragon, 50009 Zaragoza, Spain
| | - Marta Marin-Oto
- Precision Medicine in Respiratory Diseases Group, Miguel Servet University Hospital-IIS Aragon, 50009 Zaragoza, Spain
| | - Eduardo López-Collazo
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain
- The Innate Immune Response Group, La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain
| | - José María Marin
- Precision Medicine in Respiratory Diseases Group, Miguel Servet University Hospital-IIS Aragon, 50009 Zaragoza, Spain
- Department of Medicine, University of Zaragoza School of Medicine, 50009 Zaragoza, Spain
| | - Francisco García-Río
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain
- Respiratory Diseases Group, Respiratory Diseases Department, La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain
- Faculty of Medicine, Autonomous University of Madrid, 28029 Madrid, Spain
| | - Carolina Cubillos-Zapata
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain
- Respiratory Diseases Group, Respiratory Diseases Department, La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain
| |
Collapse
|
11
|
Kloc M, Kubiak JZ, Zdanowski R, Ghobrial RM. Memory Macrophages. Int J Mol Sci 2022; 24:ijms24010038. [PMID: 36613481 PMCID: PMC9819859 DOI: 10.3390/ijms24010038] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/12/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Immunological memory is a crucial part of the immune defense that allows organisms to respond against previously encountered pathogens or other harmful factors. Immunological memory is based on the establishment of epigenetic modifications of the genome. The ability to memorize encounters with pathogens and other harmful factors and mount enhanced defense upon subsequent encounters is an evolutionarily ancient mechanism operating in all animals and plants. However, the term immunological memory is usually restricted to the organisms (invertebrates and vertebrates) possessing the immune system. The mammalian immune system, with innate and adaptive branches, is the most sophisticated among vertebrates. The concept of innate memory and memory macrophages is relatively new and thus understudied. We introduce the concept of immunological memory and describe types of memory in different species and their evolutionary status. We discuss why the traditional view of innate immune cells as the first-line defenders is too restrictive and how the innate immune cells can accumulate and retain immunologic memory. We describe how the initial priming leads to chromatin remodeling and epigenetic changes, which allow memory macrophage formation. We also summarize what is currently known about the mechanisms underlying development of memory macrophages; their molecular and metabolic signature and surface markers; and how they may contribute to immune defense, diseases, and organ transplantation.
Collapse
Affiliation(s)
- Malgorzata Kloc
- The Houston Methodist Research Institute, Transplant Immunology, Houston, TX 77030, USA
- Department of Surgery, The Houston Methodist Hospital, Houston, TX 77030, USA
- Department of Genetics, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA
- Correspondence:
| | - Jacek Z. Kubiak
- Dynamics and Mechanics of Epithelia Group, Faculty of Medicine, Institute of Genetics and Development of Rennes, University of Rennes, CNRS, UMR 6290, 35043 Rennes, France
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine National Research Institute, Szaserow 128, 04-141 Warsaw, Poland
| | - Robert Zdanowski
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine National Research Institute, Szaserow 128, 04-141 Warsaw, Poland
| | - Rafik M. Ghobrial
- The Houston Methodist Research Institute, Transplant Immunology, Houston, TX 77030, USA
- Department of Surgery, The Houston Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|
12
|
Ahmadikhatir S, Ostadrahimi A, Safaiyan A, Ahmadikhatir S, Farrin N. Saffron ( Crocus sativus L.) supplements improve quality of life and appetite in atherosclerosis patients: A randomized clinical trial. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2022; 27:30. [PMID: 35548173 PMCID: PMC9081510 DOI: 10.4103/jrms.jrms_1253_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 10/28/2021] [Accepted: 11/10/2021] [Indexed: 11/04/2022]
Abstract
Background Atherosclerosis is the most common cause of the cardiovascular disease. Saffron is a traditional food that affects many diseases and disorders. Therefore, the aim of this study was to identify the effects of Saffron (Crocus sativus L.) on quality of life (QOL) and appetite in patients with atherosclerosis. Materials and Methods This was a randomized, double-blind, placebo-controlled clinical trial. A total of 63 participants with atherosclerosis were recruited from Emam Sajjad Hospital, Valiasr Hospital, and Zafaranieyh Clinic in Tehran, Iran. The participants were divided randomly into two groups. Participants received 100 mg/d saffron or placebo capsule for 6 weeks. QOL and appetite levels were measured by the McNew QOL questionnaire, and visual analog scale questionnaire, respectively. Furthermore, anthropometric indices of participants were measured before and after the intervention. Results Statistical analysis showed that there was a statistically significant difference between atherosclerosis patients who received placebo and those who consumed saffron in terms of the physical domain (P = 0.008) and social domain (P = 0.012) of QOL. In the saffron group increased score in Total score Macnew (P < 0.001), physical domain (P = 0.025), and social domain (P < 0.001) was significant after the intervention. Moreover, the consumption of saffron did not significantly affect emotional domains of QOL, and appetite levels. Conclusion Saffron may be considered as a novel agent in patients with atherosclerosis to improve the QOL. A great deal of further research will be needed to critically validate the efficacy of saffron and its mechanisms in atherosclerosis.
Collapse
Affiliation(s)
- Shonaz Ahmadikhatir
- Nutrition Research Center, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Ostadrahimi
- Nutrition Research Center, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abdolrasoul Safaiyan
- Department of Vital Statistics and Epidemiology, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shoyar Ahmadikhatir
- Department of Ophthalmology, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Nazila Farrin
- Nutrition Research Center, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
IL-1 family cytokines as drivers and inhibitors of trained immunity. Cytokine 2021; 150:155773. [PMID: 34844039 DOI: 10.1016/j.cyto.2021.155773] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/20/2022]
Abstract
Trained immunity is the long-term memory of innate immune cells, characterised by increased pro-inflammatory responses towards homo- and heterologous secondary stimuli. Interleukin (IL)-1 signalling plays an essential role in the induction of trained immunity, also called innate immune memory. As such, certain anti-inflammatory members of the IL-1 family of cytokines (IL-1F) which interfere with the inflammatory process have the potential to regulate the induction of a trained phenotype. The aim of this review is to provide an update on the role of IL-1F members in the context of trained immunity, emphasising the role of anti-inflammatory cytokines from the IL-1F to inhibit the induction of trained immunity, and touching upon their potential as therapeutics in IL-1-driven inflammatory disorders.
Collapse
|
14
|
Induction of microRNA hsa-let-7d-5p, and repression of HMGA2, contribute protection against lipid accumulation in macrophage 'foam' cells. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:159005. [PMID: 34274506 DOI: 10.1016/j.bbalip.2021.159005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 12/14/2022]
Abstract
Accumulation of excess cholesterol and cholesteryl ester in macrophage 'foam' cells within the arterial intima characterises early 'fatty streak' atherosclerotic lesions, and is accompanied by epigenetic changes, including altered expression of microRNA sequences which determine of gene and protein expression. This study established that exposure to lipoproteins, including acetylated LDL, induced macrophage expression of microRNA hsa-let-7d-5p, a sequence previously linked with tumour suppression, and repressed expression of one of its target genes, high mobility group AT hook 2 (HMGA2). A let-7d-5p mimic repressed expression of HMGA2 (18%; p < 0.05) while a marked increase (2.9-fold; p < 0.05) in expression of HMGA2 was noted in the presence of let-7d-5p inhibitor. Under these conditions, let-7d-5p mimic significantly (p < 0.05) decreased total (10%), free (8%) and cholesteryl ester (21%) mass, while the inhibitor significantly (p < 0.05) increased total (29%) and free cholesterol (29%) mass, compared with the relevant controls. Let-7d-5p inhibition significantly (p < 0.05) increased endogenous biosynthesis of cholesterol (38%) and cholesteryl ester (39%) pools in macrophage 'foam' cells, without altering the cholesterol efflux pathway, or esterification of exogenous radiolabelled oleate. Let-7d-5p inhibition in sterol-loaded cells increased the level of HMGA2 protein (32%; p < 0.05), while SiRNA knockdown of this protein (29%; p < 0.05) resulted in a (21%, p < 0.05) reduction in free cholesterol mass. Thus, induction of let-7d-5p, and repression of its target HMGA2, in macrophages is a protective response to the challenge of increased cholesterol influx into these cells; dysregulation of this response may contribute to atherosclerosis and other disorders such as cancer.
Collapse
|
15
|
Manibalan S, Harison Raj AB, Achary A. Screening of Atherosclerotic Druggable Targets from the Proteome Network of Differentially Expressed Genes. Assay Drug Dev Technol 2021; 19:290-299. [PMID: 34171974 DOI: 10.1089/adt.2021.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Differently expressed genes of atherosclerotic sample analysis are helpful to sort the prominent genes that influence the plaque formation and progression. Scientific evidence-based protein-protein interaction network (PPIN) studies were used to find hub proteins in complex disease conditions. Druggable capacity is one of the important parameters to confirm as a successful drug target. Construction of protein interaction network and principal node analysis (PNA) on atherosclerotic data sets lead to screen the hub proteins. Furthermore, druggable property of protein pocket confirms the targetability of susceptible target candidates and for target selection. Differentially expressed genes are identified through GEO2R analyzer on data sets of various atherosclerotic samples. STRING database and Cytoscape are employed to construct PPIN. Targets were identified by PNA such as centrality measures and clustering algorithm. Gene Ontology enrichment also used as one of the screening parameters to filter the candidates related to atherosclerotic terms. Topological evaluation of target protein was successfully done by ITASSER and GROMACS, respectively. Grid-based principle of DoGSiteScorer is utilized for druggability analysis. Six proteins such as integrin alpha L (ITGAL), metallothionein 1F (MT1F), metallothionein 1X (MT1X), P-selectin glycoprotein ligand-1 (SELPLG), solute carrier family 30 A, zinc transporter protein (SLC30A1), and TNFSF13B are screened as potential biomarkers through network-based analysis. Among the six, ITGAL, SELPLG, SLC30A1, and TNSF13B are identified as better prioritized atherosclerotic targets through druggability efficiency.
Collapse
Affiliation(s)
- Subramaniyan Manibalan
- Centre for Research, Department of Biotechnology, Kamaraj College of Engineering and Technology, Madurai, India
| | | | - Anant Achary
- Centre for Research, Department of Biotechnology, Kamaraj College of Engineering and Technology, Madurai, India
| |
Collapse
|
16
|
Lightbody RJ, Taylor JMW, Dempsie Y, Graham A. MicroRNA sequences modulating inflammation and lipid accumulation in macrophage “foam” cells: Implications for atherosclerosis. World J Cardiol 2020; 12:303-333. [PMID: 32843934 PMCID: PMC7415235 DOI: 10.4330/wjc.v12.i7.303] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/03/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
Accumulation of macrophage “foam” cells, laden with cholesterol and cholesteryl ester, within the intima of large arteries, is a hallmark of early “fatty streak” lesions which can progress to complex, multicellular atheromatous plaques, involving lipoproteins from the bloodstream and cells of the innate and adaptive immune response. Sterol accumulation triggers induction of genes encoding proteins mediating the atheroprotective cholesterol efflux pathway. Within the arterial intima, however, this mechanism is overwhelmed, leading to distinct changes in macrophage phenotype and inflammatory status. Over the last decade marked gains have been made in understanding of the epigenetic landscape which influence macrophage function, and in particular the importance of small non-coding micro-RNA (miRNA) sequences in this context. This review identifies some of the miRNA sequences which play a key role in regulating “foam” cell formation and atherogenesis, highlighting sequences involved in cholesterol accumulation, those influencing inflammation in sterol-loaded cells, and novel sequences and pathways which may offer new strategies to influence macrophage function within atherosclerotic lesions.
Collapse
Affiliation(s)
- Richard James Lightbody
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Janice Marie Walsh Taylor
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Yvonne Dempsie
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Annette Graham
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| |
Collapse
|
17
|
Witkowski JM, Bryl E, Fulop T. Should we Try to Alleviate Immunosenescence and Inflammaging - Why, How and to What Extent? Curr Pharm Des 2020; 25:4154-4162. [PMID: 31713479 DOI: 10.2174/1381612825666191111153016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/07/2019] [Indexed: 12/29/2022]
Abstract
With advancing age, immune responses of human beings to external pathogens, i.e., bacteria, viruses, fungi and parasites, and to internal pathogens - malignant neoplasm cells - become less effective. Two major features in the process of aging of the human immune system are immunosenescence and inflammaging. The immune systems of our predecessors co-evolved with pathogens, which led to the occurrence of effective immunity. However, the otherwise beneficial activity may pose problems to the organism of the host and so it has builtin brakes (regulatory immune cells) and - with age - it undergoes adaptations and modifications, examples of which are the mentioned inflammaging and immunosenescence. Here we describe the mechanisms that first created our immune systems, then the consequences of their changes associated with aging, and the mechanisms of inflammaging and immunosenescence. Finally, we discuss to what extent both processes are detrimental and to what extent they might be beneficial and propose some therapeutic approaches for their wise control.
Collapse
Affiliation(s)
- Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| | - Ewa Bryl
- Department of Pathology and Experimental Rheumatology, Medical University of Gdansk, Gdansk, Poland
| | - Tamas Fulop
- Research Center on Aging, Faculty of Medicine and Health Sciences, Department of Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
18
|
Zhong C, Yang X, Feng Y, Yu J. Trained Immunity: An Underlying Driver of Inflammatory Atherosclerosis. Front Immunol 2020; 11:284. [PMID: 32153588 PMCID: PMC7046758 DOI: 10.3389/fimmu.2020.00284] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/04/2020] [Indexed: 02/03/2023] Open
Abstract
Atherosclerosis, a chronic inflammatory disease of the arterial wall, is among the leading causes of morbidity and mortality worldwide. The persistence of low-grade vascular inflammation has been considered to fuel the development of atherosclerosis. However, fundamental mechanistic understanding of the establishment of non-resolving low-grade inflammation is lacking, and a large number of atherosclerosis-related cardiovascular complications cannot be prevented by current therapeutic regimens. Trained immunity is an emerging new concept describing a prolonged hyperactivation of the innate immune system after exposure to certain stimuli, leading to an augmented immune response to a secondary stimulus. While it exerts beneficial effects for host defense against invading pathogens, uncontrolled persistent innate immune activation causes chronic inflammatory diseases. In light of the above, the long-term over-activation of the innate immune system conferred by trained immunity has been recently hypothesized to serve as a link between non-resolving vascular inflammation and atherosclerosis. Here, we provide an overview of current knowledge on trained immunity triggered by various exogenous and endogenous inducers, with particular emphasis on its pro-atherogenic effects and the underlying intracellular mechanisms that act at both the cellular level and systems level. We also discuss how trained immunity could be mechanistically linked to atherosclerosis from both preclinical and clinical perspectives. This review details the mechanisms underlying the induction of trained immunity by different stimuli, and highlights that the intracellular training programs can be different, though partly overlapping, depending on the stimulus and the biological system. Thus, clinical investigation of risk factor specific innate immune memory is necessary for future use of trained immunity-based therapy in atherosclerosis.
Collapse
Affiliation(s)
- Chao Zhong
- Key Laboratory for Pharmacology and Translational Research of Traditional Chinese Medicine of Nanchang, Center for Translational Medicine, School of Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China.,Center for Metabolic Disease Research, Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Center for Metabolic Disease Research, Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Yulin Feng
- National Pharmaceutical Engineering Center, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jun Yu
- Center for Metabolic Disease Research, Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
19
|
Mulder WJM, Ochando J, Joosten LAB, Fayad ZA, Netea MG. Therapeutic targeting of trained immunity. Nat Rev Drug Discov 2020; 18:553-566. [PMID: 30967658 DOI: 10.1038/s41573-019-0025-4] [Citation(s) in RCA: 263] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Immunotherapy is revolutionizing the treatment of diseases in which dysregulated immune responses have an important role. However, most of the immunotherapy strategies currently being developed engage the adaptive immune system. In the past decade, both myeloid (monocytes, macrophages and dendritic cells) and lymphoid (natural killer cells and innate lymphoid cells) cell populations of the innate immune system have been shown to display long-term changes in their functional programme through metabolic and epigenetic programming. Such reprogramming causes these cells to be either hyperresponsive or hyporesponsive, resulting in a changed immune response to secondary stimuli. This de facto innate immune memory, which has been termed 'trained immunity', provides a powerful 'targeting framework' to regulate the delicate balance of immune homeostasis, priming, training and tolerance. In this Opinion article, we set out our vision of how to target innate immune cells and regulate trained immunity to achieve long-term therapeutic benefits in a range of immune-related diseases. These include conditions characterized by excessive trained immunity, such as inflammatory and autoimmune disorders, allergies and cardiovascular disease and conditions driven by defective trained immunity, such as cancer and certain infections.
Collapse
Affiliation(s)
- Willem J M Mulder
- Translational and Molecular Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands. .,Department of Medical Biochemistry, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, Netherlands.
| | - Jordi Ochando
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Transplant Immunology Unit, National Centre of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Medical Genetics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Zahi A Fayad
- Translational and Molecular Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands. .,Department for Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany.
| |
Collapse
|
20
|
Rundgren IM, Ersvær E, Ahmed AB, Ryningen A, Bruserud Ø. Circulating monocyte subsets in multiple myeloma patients receiving autologous stem cell transplantation - a study of the preconditioning status and the course until posttransplant reconstitution for a consecutive group of patients. BMC Immunol 2019; 20:39. [PMID: 31703617 PMCID: PMC6842166 DOI: 10.1186/s12865-019-0323-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 10/22/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Induction therapy of multiple myeloma patients prior to autologous stem cell transplantation has changed from conventional chemotherapy to treatment based on proteasome inhibitors or immunomodulatory drugs. We used flow cytometry to analyze total monocyte and monocyte subset (classical, intermediate and non-classical monocytes) peripheral blood levels before and following auto-transplantation for a consecutive group of myeloma patients who had received the presently used induction therapy. RESULTS The patients showed normal total monocyte concentrations after induction/stem cell mobilization, but the concentrations of classical monocytes were increased compared with healthy controls. Melphalan conditioning reduced the levels of total CD14+ as well as classical and non-classical monocytes, whereas intermediate monocytes were not affected. Thus, melphalan has a non-random effect on monocyte subsets. Melphalan had a stronger effect on total and classical monocyte concentrations for those patients who had received induction therapy including immunomodulatory drugs. Total monocytes and monocyte subset concentrations decreased during the period of pancytopenia, but monocyte reconstitution occurred before hematopoietic reconstitution. However, the fractions of various monocyte subsets varied considerably between patients. CONCLUSIONS The total level of circulating monocytes is normalized early after auto-transplantation for multiple myeloma, but pre- and post-transplant levels of various monocyte subsets show considerable variation between patients.
Collapse
Affiliation(s)
- Ida Marie Rundgren
- Department of Biomedical Laboratory Scientist Education and Chemical Engineering Faculty of Engineering and Natural Sciences, Western Norway University of Applied Sciences, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Elisabeth Ersvær
- Department of Biomedical Laboratory Scientist Education and Chemical Engineering Faculty of Engineering and Natural Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | - Aymen Bushra Ahmed
- Section for Hematology, Department of Medicine, Haukeland University Hospital, N-5021, Bergen, Norway
| | - Anita Ryningen
- Department of Biomedical Laboratory Scientist Education and Chemical Engineering Faculty of Engineering and Natural Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | - Øystein Bruserud
- Department of Clinical Science, University of Bergen, Bergen, Norway. .,Section for Hematology, Department of Medicine, Haukeland University Hospital, N-5021, Bergen, Norway.
| |
Collapse
|
21
|
Sun P, Zhang SJ, Maksim S, Yao YF, Liu HM, Du J. Epigenetic Modification in Macrophages: A Promising Target for Tumor and Inflammation-associated Disease Therapy. Curr Top Med Chem 2019; 19:1350-1362. [PMID: 31215380 DOI: 10.2174/1568026619666190619143706] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/25/2019] [Accepted: 05/09/2019] [Indexed: 01/13/2023]
Abstract
Macrophages are essential for supporting tissue homeostasis, regulating immune response, and promoting tumor progression. Due to its heterogeneity, macrophages have different phenotypes and functions in various tissues and diseases. It is becoming clear that epigenetic modification playing an essential role in determining the biological behavior of cells. In particular, changes of DNA methylation, histone methylation and acetylation regulated by the corresponding epigenetic enzymes, can directly control macrophages differentiation and change their functions under different conditions. In addition, epigenetic enzymes also have become anti-tumor targets, such as HDAC, LSD1, DNMT, and so on. In this review, we presented an overview of the latest progress in the study of macrophages phenotype and function regulated by epigenetic modifications, including DNA methylation and histone modifications, to better understand how epigenetic modification controls macrophages phenotype and function in inflammation-associated diseases, and the application prospect in anti-tumor.
Collapse
Affiliation(s)
- Pei Sun
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies (Zhengzhou University), Ministry of Education of China, Zhengzhou, China
| | - Shu-Jing Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies (Zhengzhou University), Ministry of Education of China, Zhengzhou, China
| | - Semenov Maksim
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies (Zhengzhou University), Ministry of Education of China, Zhengzhou, China
| | - Yong-Fang Yao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies (Zhengzhou University), Ministry of Education of China, Zhengzhou, China
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies (Zhengzhou University), Ministry of Education of China, Zhengzhou, China
| | - Juan Du
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
22
|
de Sousa JR, Da Costa Vasconcelos PF, Quaresma JAS. Functional aspects, phenotypic heterogeneity, and tissue immune response of macrophages in infectious diseases. Infect Drug Resist 2019; 12:2589-2611. [PMID: 31686866 PMCID: PMC6709804 DOI: 10.2147/idr.s208576] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/05/2019] [Indexed: 12/13/2022] Open
Abstract
Macrophages are a functionally heterogeneous group of cells with specialized functions depending not only on their subgroup but also on the function of the organ or tissue in which the cells are located. The concept of macrophage phenotypic heterogeneity has been investigated since the 1980s, and more recent studies have identified a diverse spectrum of phenotypic subpopulations. Several types of macrophages play a central role in the response to infectious agents and, along with other components of the immune system, determine the clinical outcome of major infectious diseases. Here, we review the functions of various macrophage phenotypic subpopulations, the concept of macrophage polarization, and the influence of these cells on the evolution of infections. In addition, we emphasize their role in the immune response in vivo and in situ, as well as the molecular effectors and signaling mechanisms used by these cells. Furthermore, we highlight the mechanisms of immune evasion triggered by infectious agents to counter the actions of macrophages and their consequences. Our aim here is to provide an overview of the role of macrophages in the pathogenesis of critical transmissible diseases and discuss how elucidation of this relationship could enhance our understanding of the host-pathogen association in organ-specific immune responses.
Collapse
Affiliation(s)
- Jorge Rodrigues de Sousa
- Tropical Medicine Center, Federal University of Pará, Belém, PA, Brazil
- Evandro Chagas Institute, Ministry of Health, Ananindeua, PA, Brazil
| | - Pedro Fernando Da Costa Vasconcelos
- Evandro Chagas Institute, Ministry of Health, Ananindeua, PA, Brazil
- Center of Biological and Health Sciences, State University of Pará, Belém, PA, Brazil
| | - Juarez Antonio Simões Quaresma
- Tropical Medicine Center, Federal University of Pará, Belém, PA, Brazil
- Evandro Chagas Institute, Ministry of Health, Ananindeua, PA, Brazil
- Center of Biological and Health Sciences, State University of Pará, Belém, PA, Brazil
- School of Medicine, São Paulo University, São Paulo, SP, Brazil
| |
Collapse
|
23
|
Arnold KA, Blair JE, Paul JD, Shah AP, Nathan S, Alenghat FJ. Monocyte and macrophage subtypes as paired cell biomarkers for coronary artery disease. Exp Physiol 2019; 104:1343-1352. [PMID: 31264265 DOI: 10.1113/ep087827] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/01/2019] [Indexed: 12/24/2022]
Abstract
NEW FINDINGS What is the central question of this study? Are circulating monocyte markers correlated with their derived macrophage polarization patterns and coronary artery disease severity? What is the main finding and its importance? There was an inverse relationship between circulating CD16+ monocytes (high) and M2 macrophages (low) that marked coronary disease severity, and the differences in polarization of macrophages were seen despite a week of cell culture ex vivo. This study highlights the importance, and potential prognostic implications, of circulating monocyte and descendant macrophage phenotypes in coronary artery disease. ABSTRACT Monocytes and macrophages are central to atherosclerosis, but how they combine to mark progression of human coronary artery disease (CAD) is unclear. We tested whether patients' monocyte subtypes paired with their derived macrophage profiles were correlated with extent of CAD. Peripheral blood was collected from 40 patients undergoing cardiac catheterization, and patients were categorized as having no significant CAD, single vessel disease or multivessel disease according to the number of affected coronary arteries. Mononuclear cells were measured for the monocyte markers CD14 and CD16 by flow cytometry, and separate monocytes were cultured into macrophages over 7 days and measured for the polarization markers CD86 and CD206. At baseline, patients with a greater CAD burden were older, with higher rates of statin, β-blocker and antiplatelet drug use, whereas other characteristics were similar across the spectrum of coronary disease. CD16+ (both intermediate and non-classical) monocytes were elevated in patients with single vessel and multivessel disease compared with those without significant CAD (P < 0.05), whereas regulatory M2 macrophages (CD206+ ) were decreased in patients with single vessel and multivessel disease (P < 0.001). An inverse relationship between paired CD16+ monocytes and M2 macrophages marked CAD severity. On multivariable linear regression, CAD severity was associated, along with age and traditional cardiovascular risk factors, with CD16+ monocytes (directly) and M2 macrophages (inversely). Circulating monocytes may influence downstream polarization of lesional macrophages, and these measures of monocyte and macrophage subtypes hold potential as biomarkers in CAD.
Collapse
Affiliation(s)
- Kathryn A Arnold
- University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| | - John E Blair
- Section of Cardiology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Jonathan D Paul
- Section of Cardiology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Atman P Shah
- Section of Cardiology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Sandeep Nathan
- Section of Cardiology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Francis J Alenghat
- Section of Cardiology, Department of Medicine, University of Chicago, Chicago, IL, USA
| |
Collapse
|
24
|
Du P, Gao K, Cao Y, Yang S, Wang Y, Guo R, Zhao M, Jia S. RFX1 downregulation contributes to TLR4 overexpression in CD14 + monocytes via epigenetic mechanisms in coronary artery disease. Clin Epigenetics 2019; 11:44. [PMID: 30857550 PMCID: PMC6413463 DOI: 10.1186/s13148-019-0646-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/01/2019] [Indexed: 02/07/2023] Open
Abstract
Background Toll-like receptor 4 (TLR4) expression is increased in activated monocytes, which play a critical role in the pathogenesis of coronary artery disease (CAD). However, the mechanism remains unclear. Regulatory factor X1 (RFX1) is a critical transcription factor regulating epigenetic modifications. In this study, we investigated whether RFX1 and epigenetic modifications mediated by RFX1 contributed to the overexpression of TLR4 in activated monocytes. Results Compared with those of the controls, the mRNA and protein expression of RFX1 were downregulated and the mRNA expression of TLR4 was upregulated in CD14+ monocytes obtained from CAD patients and CD14+ monocytes obtained from healthy controls treated with low-density lipoprotein (LDL). The mRNA expression of RFX1 was negatively correlated with the mRNA expression of TLR4 in CD14+ monocytes. RFX1 knockdown led to the overexpression of TLR4 and the activation of CD14+ monocytes. In contrast, the overexpression of RFX1 inhibited TLR4 expression and the activation of CD14+ monocytes stimulated with LDL. Moreover, TLR4 was identified as a target gene of RFX1. The results indicated that RFX1 downregulation contributed to the decreased DNA methylation and histone H3 lysine 9 trimethylation and the increased H3 and H4 acetylation in the TLR4 promoter via the lack of recruitments of DNA methyltransferase 1 (DNMT1), histone deacetylase 1 (HDAC1), and histone-lysine N-methyltransferase SUV39H1 (SUV39H1), which were observed in CD14+ monocytes of CAD patients. Conclusions Our results show that RFX1 expression deficiency leads to the overexpression of TLR4 and the activation of CD14+ monocytes in CAD patients by regulating DNA methylation and histone modifications, which highlights the vital role of RFX1 in the pathogenesis of CAD. Electronic supplementary material The online version of this article (10.1186/s13148-019-0646-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pei Du
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Keqin Gao
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Pharmacy, Weifang People's Hospital, Weifang, China
| | - Yu Cao
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shuang Yang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yang Wang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ren Guo
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ming Zhao
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China.
| | - Sujie Jia
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China. .,Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
25
|
Geng S, Zhang Y, Lee C, Li L. Novel reprogramming of neutrophils modulates inflammation resolution during atherosclerosis. SCIENCE ADVANCES 2019; 5:eaav2309. [PMID: 30775441 PMCID: PMC6365109 DOI: 10.1126/sciadv.aav2309] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/21/2018] [Indexed: 05/04/2023]
Abstract
Nonresolving inflammation perpetuated by innate leukocytes is involved in the pathogenesis of unstable atherosclerosis. However, the role and regulation of neutrophils related to nonresolving inflammation and atherosclerosis are poorly understood. We report herein that chronic subclinical endotoxemia, a risk factor for atherosclerosis, skewed neutrophils into a nonresolving inflammatory state with elevated levels of inflammatory mediators (Dectin-1, MMP9, and LTB4) and reduced levels of homeostatic mediators (LRRC32, TGFβ, and FPN). The polarization of neutrophils was due to ROS-mediated activation of oxCAMKII, caused by altered peroxisome homeostasis and reduced lysosome fusion. Application of 4-phenylbutyrate (4-PBA) enhanced peroxisome homeostasis of neutrophils, reduced oxCAMKII, and rebalanced the expression profiles of pro- and anti-inflammatory mediators. Adoptive transfer of neutrophils programmed by subclinical endotoxemia rendered exacerbated atherosclerosis. In contrast, transfer of ex vivo programmed neutrophils by 4-PBA reduced the pathogenesis of atherosclerosis. Our data define novel neutrophil dynamics associated with the progression and regression of atherosclerosis.
Collapse
|
26
|
Effects of oral butyrate supplementation on inflammatory potential of circulating peripheral blood mononuclear cells in healthy and obese males. Sci Rep 2019; 9:775. [PMID: 30692581 PMCID: PMC6349871 DOI: 10.1038/s41598-018-37246-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 11/30/2018] [Indexed: 12/19/2022] Open
Abstract
Sodium butyrate is well-known for its immune-modulatory properties. Studies until now only focused on the in vitro effects of butyrate or assessed local effects in the gut upon butyrate administration. In this trial, we studied the systemic anti-inflammatory effects induced by sodium butyrate supplementation in humans. Nine healthy (Lean) and ten obese (metabolic syndrome group, MetSyn) males were given 4 grams sodium butyrate daily for 4 weeks. PBMCs were isolated before and after supplementation for direct stimulation experiments and induction of trained immunity by oxidized low-density lipoprotein (oxLDL), β-glucan, or Bacillus Calmette-Guérin vaccine (BCG). Butyrate supplementation moderately affected some of the cytokine responses in the MetSyn group. In the direct stimulation setup, effects of butyrate supplementation were limited. Interestingly, butyrate supplementation decreased oxLDL-induced trained immunity in the MetSyn group for LPS-induced IL-6 responses and Pam3CSK4-induced TNF-α responses. Induction of trained immunity by β-glucan was decreased by butyrate in the MetSyn group for Pam3CSK4-induced IL-10 production. In this study, while having only limited effects on the direct stimulation of cytokine production, butyrate supplementation significantly affected trained immunity in monocytes of obese individuals with metabolic complications. Therefore, oral butyrate supplementation may be beneficial in reducing the overall inflammatory status of circulating monocytes in patients with metabolic syndrome.
Collapse
|
27
|
Hoogeveen RM, Nahrendorf M, Riksen NP, Netea MG, de Winther MPJ, Lutgens E, Nordestgaard BG, Neidhart M, Stroes ESG, Catapano AL, Bekkering S. Monocyte and haematopoietic progenitor reprogramming as common mechanism underlying chronic inflammatory and cardiovascular diseases. Eur Heart J 2018; 39:3521-3527. [PMID: 29069365 PMCID: PMC6174026 DOI: 10.1093/eurheartj/ehx581] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/11/2017] [Accepted: 10/12/2017] [Indexed: 12/19/2022] Open
Abstract
A large number of cardiovascular events are not prevented by current therapeutic regimens. In search for additional, innovative strategies, immune cells have been recognized as key players contributing to atherosclerotic plaque progression and destabilization. Particularly the role of innate immune cells is of major interest, following the recent paradigm shift that innate immunity, long considered to be incapable of learning, does exhibit immunological memory mediated via epigenetic reprogramming. Compelling evidence shows that atherosclerotic risk factors promote immune cell migration by pre-activation of circulating innate immune cells. Innate immune cell activation via metabolic and epigenetic reprogramming perpetuates a systemic low-grade inflammatory state in cardiovascular disease (CVD) that is also common in other chronic inflammatory disorders. This opens a new therapeutic area in which metabolic or epigenetic modulation of innate immune cells may result in decreased systemic chronic inflammation, alleviating CVD, and its co-morbidities.
Collapse
Affiliation(s)
- Renate M Hoogeveen
- Department of Vascular Medicine, Academic Medical Centre, Meibergdreef 9, Amsterdam, The Netherlands
| | - Matthias Nahrendorf
- Center for Systems Biology and Department of Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, 55 Fruit Street Boston, MA, USA
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 8, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 8, Nijmegen, The Netherlands
| | - Menno P J de Winther
- Department of Medical Biochemistry, Academic Medical Centre, Meibergdreef 9, Amsterdam, The Netherlands
| | - Esther Lutgens
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University (LMU), Pettenkoferstraße 9, Munich, Germany
| | - Børge G Nordestgaard
- The Copenhagen General Population Study and Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Ringvej 75, Herlev, Copenhagen, Denmark
| | - Michel Neidhart
- Center of Experimental Rheumatology, University Hospital Zurich, Schlieren, Switzerland
| | - Erik S G Stroes
- Department of Vascular Medicine, Academic Medical Centre, Meibergdreef 9, Amsterdam, The Netherlands
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, University of Milan and IRCCS Multimedica, Via Balzaretti, Milano, Italy
| | - Siroon Bekkering
- Department of Vascular Medicine, Academic Medical Centre, Meibergdreef 9, Amsterdam, The Netherlands
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 8, Nijmegen, The Netherlands
| |
Collapse
|
28
|
Standardization of sampling and sample preparation for analysis of human monocyte subsets in peripheral blood. J Immunol Methods 2018; 461:53-62. [DOI: 10.1016/j.jim.2018.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/09/2018] [Accepted: 06/06/2018] [Indexed: 02/06/2023]
|
29
|
Crowley T, Buckley CD, Clark AR. Stroma: the forgotten cells of innate immune memory. Clin Exp Immunol 2018; 193:24-36. [PMID: 29729109 PMCID: PMC6038004 DOI: 10.1111/cei.13149] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 05/01/2018] [Accepted: 05/01/2018] [Indexed: 12/20/2022] Open
Abstract
All organisms are exposed constantly to a variety of infectious and injurious stimuli. These induce inflammatory responses tailored to the threat posed. While the innate immune system is the front line of response to each stimulant, it has been considered traditionally to lack memory, acting in a generic fashion until the adaptive immune arm can take over. This outmoded simplification of the roles of innate and acquired arms of the immune system has been challenged by evidence of myeloid cells altering their response to subsequent encounters based on earlier exposure. This concept of 'innate immune memory' has been known for nearly a century, and is accepted among myeloid biologists. In recent years other innate immune cells, such as natural killer cells, have been shown to display memory, suggesting that innate immune memory is a trait common to several cell types. During the last 30 years, evidence has slowly accumulated in favour of not only haematopoietic cells, but also stromal cells, being imbued with memory following inflammatory episodes. A recent publication showing this also to be true in epithelial cells suggests innate immune memory to be widespread, if under-appreciated, in non-haematopoietic cells. In this review, we will examine the evidence supporting the existence of innate immune memory in stromal cells. We will also discuss the ramifications of memory in long-lived tissue-resident cells. Finally, we will pose questions we feel to be important in the understanding of these forgotten cells in the field of innate memory.
Collapse
Affiliation(s)
- T. Crowley
- Institute of Inflammation and Ageing, College of Medical and Dental SciencesUniversity of BirminghamBirmingham, UK
| | - C. D. Buckley
- Institute of Inflammation and Ageing, College of Medical and Dental SciencesUniversity of BirminghamBirmingham, UK
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UKUniversity of OxfordOxfordUK
| | - A. R. Clark
- Institute of Inflammation and Ageing, College of Medical and Dental SciencesUniversity of BirminghamBirmingham, UK
| |
Collapse
|
30
|
Abstract
This review introduces recent concepts in innate immunity highlighting some of the latest exciting findings. These include: the discovery of the initiator of pyroptosis, Gasdermin D, and mechanisms of inflammatory caspases in innate immune signaling; the formation of oligomeric signalosomes downstream of innate immune receptors; mechanisms that shape innate immune responses, such as cellular homeostasis, cell metabolism, and pathogen viability; rapid methods of cell-to-cell communication; the interplay between the host and its microbiome and the concept of innate immunological memory. Furthermore, we discuss open questions and illustrate how technological advances, such as CRISPR/Cas9, may provide important answers for outstanding questions in the field of innate immunity.
Collapse
Affiliation(s)
- Karin Pelka
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Dominic De Nardo
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia. .,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
31
|
Cremers NAJ, van den Bosch MHJ, van Dalen S, Di Ceglie I, Ascone G, van de Loo F, Koenders M, van der Kraan P, Sloetjes A, Vogl T, Roth J, Geven EJW, Blom AB, van Lent PLEM. S100A8/A9 increases the mobilization of pro-inflammatory Ly6C high monocytes to the synovium during experimental osteoarthritis. Arthritis Res Ther 2017; 19:217. [PMID: 28969686 PMCID: PMC5623958 DOI: 10.1186/s13075-017-1426-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/11/2017] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Monocytes are dominant cells present within the inflamed synovium during osteoarthritis (OA). In mice, two functionally distinct monocyte subsets are described: pro-inflammatory Ly6Chigh and patrolling Ly6Clow monocytes. Alarmins S100A8/A9 locally released by the synovium during inflammatory OA for prolonged periods may be dominant proteins involved in stimulating recruitment of Ly6Chigh monocytes from the circulation to the joint. Our objective was to investigate the role of S100A8/A9 in the mobilization of Ly6Chigh and Ly6Clow monocytic populations to the inflamed joint in collagenase-induced OA (CiOA). METHOD S100A8 was injected intra-articularly to investigate monocyte influx. CiOA was induced by injection of collagenase into knee joints of wild-type C57BL/6 (WT), and S100a9-/- mice. Mice were sacrificed together with age-matched saline-injected control mice (n = 6/group), and expression of monocyte markers, pro-inflammatory cytokines, and chemokines was determined in the synovium using ELISA and RT-qPCR. Cells were isolated from the bone marrow (BM), spleen, blood, and synovium and monocytes were identified using FACS. RESULTS S100A8/A9 was highly expressed during CiOA. Intra-articular injection of S100A8 leads to elevated expression of monocyte markers and the monocyte-attracting chemokines CCL2 and CX3CL1 in the synovium. At day 7 (d7) after CiOA induction in WT mice, numbers of Ly6Chigh, but not Ly6Clow monocytes, were strongly increased (7.6-fold) in the synovium compared to saline-injected controls. This coincided with strong upregulation of CCL2, which preferentially attracts Ly6Chigh monocytes. In contrast, S100a9-/- mice showed a significant increase in Ly6Clow monocytes (twofold) within the synovium at CiOA d7, whereas the number of Ly6Chigh monocytes remained unaffected. In agreement with this finding, the Ly6Clow mobilization marker CX3CL1 was significantly higher within the synovium of S100a9-/- mice. Next, we studied the effect of S100A8/A9 on release of Ly6Chigh monocytes from the BM into the circulation. A 14% decrease in myeloid cells was found in WT BM at CiOA d7. No decrease in myeloid cells in S100a9-/- BM was found, suggesting that S100A8/A9 promotes the release of myeloid populations from the BM. CONCLUSION Induction of OA locally leads to strongly elevated S100A8/A9 expression and an elevated influx of Ly6Chigh monocytes from the BM to the synovium.
Collapse
Affiliation(s)
- Niels A J Cremers
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, PO Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - Martijn H J van den Bosch
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, PO Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - Stephanie van Dalen
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, PO Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - Irene Di Ceglie
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, PO Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - Giuliana Ascone
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, PO Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - Fons van de Loo
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, PO Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - Marije Koenders
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, PO Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - Peter van der Kraan
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, PO Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - Annet Sloetjes
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, PO Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - Thomas Vogl
- Institute of Immunology, University of Munster, Munster, Germany
| | - Johannes Roth
- Institute of Immunology, University of Munster, Munster, Germany
| | - Edwin J W Geven
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, PO Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - Arjen B Blom
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, PO Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - Peter L E M van Lent
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, PO Box 9101, Nijmegen, 6500 HB, The Netherlands.
| |
Collapse
|
32
|
Activation of the Innate Immune Receptors: Guardians of the Micro Galaxy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1024:1-35. [DOI: 10.1007/978-981-10-5987-2_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Wu J, Hu W, Gong Y, Wang P, Tong L, Chen X, Chen Z, Xu X, Yao W, Zhang W, Huang C. Current pharmacological developments in 2,3,4',5-tetrahydroxystilbene 2-O-β-D-glucoside (TSG). Eur J Pharmacol 2017; 811:21-29. [PMID: 28545778 DOI: 10.1016/j.ejphar.2017.05.037] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 05/11/2017] [Accepted: 05/17/2017] [Indexed: 12/18/2022]
Abstract
2,3,4',5-tetrahydroxystilbene 2-O-β-D-glucoside (TSG), a resveratrol analog with glucoside, is purified from a traditional Chinese herbal medicine polygonum multiflorum. It has been extensively studied in last decade and known to exert strong anti-inflammatory, anti-oxidative, anti-apoptotic, and free radical scavenging activities, and therefore has been listed as a potential agent for disease therapies. Recent studies extend well-beyond effects of TSG on the injury of neurons, cardiomyocytes and endothelial cells, and report important functions of TSG in a lot of pathophysiological conditions. For example, TSG has been shown to prevent the production of pro-inflammatory cytokines in microglia and macrophages in vitro, and ameliorate pro-inflammatory responses in animal models with neurodegeneration, atherosclerosis, and rat paw or ear oedema. TSG can prevent the proliferation of vascular smooth cells, gastrointestinal dysfunctions, platelet aggregation, osteoblastic injury, diabetic nephropathy and melanogenesis. TSG is also indicated to facilitate long-term potentiation and learning and memory in both normal and pathological conditions. These effects to some extent enrich the understanding about the role of TSG in disease prevention and therapy. However, to date, we still have no outlined knowledges about the pharmacological effects of TSG, though the role of TSG in aging and Alzheimer's disease has been reviewed in recent years. Here, we summarize the current pharmacological developments of TSG as well as its possible mechanisms in disease prevention and therapy, aiming to push the understanding about the protective role of TSG as well as its preclinical assessment of novel applications.
Collapse
Affiliation(s)
- Jingjing Wu
- Department of Cardiology, Suzhou Kowloon Hospital of Shanghai Jiaotong University School of Medicine, #118 Wansheng Street, Suzhou 215021, Jiangsu, China
| | - Wenfeng Hu
- Department of Pharmacology, School of Pharmacy, Nantong University,#19 Qixiu Road, Nantong 226001, Jiangsu, China; Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Yu Gong
- Department of Pharmacology, School of Pharmacy, Nantong University,#19 Qixiu Road, Nantong 226001, Jiangsu, China; Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Peng Wang
- Department of Pharmacology, School of Pharmacy, Nantong University,#19 Qixiu Road, Nantong 226001, Jiangsu, China; Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Lijuan Tong
- Department of Pharmacology, School of Pharmacy, Nantong University,#19 Qixiu Road, Nantong 226001, Jiangsu, China; Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Xiangfan Chen
- Department of Pharmacology, School of Pharmacy, Nantong University,#19 Qixiu Road, Nantong 226001, Jiangsu, China; Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Zhuo Chen
- Invasive Technology Department, Nantong First People's Hospital, the Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong 226001, Jiangsu, China
| | - Xiaole Xu
- Department of Pharmacology, School of Pharmacy, Nantong University,#19 Qixiu Road, Nantong 226001, Jiangsu, China; Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Wenjuan Yao
- Department of Pharmacology, School of Pharmacy, Nantong University,#19 Qixiu Road, Nantong 226001, Jiangsu, China; Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Wei Zhang
- Department of Pharmacology, School of Pharmacy, Nantong University,#19 Qixiu Road, Nantong 226001, Jiangsu, China; Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University,#19 Qixiu Road, Nantong 226001, Jiangsu, China; Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, #19 Qixiu Road, Nantong 226001, Jiangsu, China.
| |
Collapse
|
34
|
Keating ST, Plutzky J, El-Osta A. Epigenetic Changes in Diabetes and Cardiovascular Risk. Circ Res 2017; 118:1706-22. [PMID: 27230637 DOI: 10.1161/circresaha.116.306819] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 04/30/2016] [Indexed: 01/03/2023]
Abstract
Cardiovascular complications remain the leading causes of morbidity and premature mortality in patients with diabetes mellitus. Studies in humans and preclinical models demonstrate lasting gene expression changes in the vasculopathies initiated by previous exposure to high glucose concentrations and the associated overproduction of reactive oxygen species. The molecular signatures of chromatin architectures that sensitize the genome to these and other cardiometabolic risk factors of the diabetic milieu are increasingly implicated in the biological memory underlying cardiovascular complications and now widely considered as promising therapeutic targets. Atherosclerosis is a complex heterocellular disease where the contributing cell types possess distinct epigenomes shaping diverse gene expression. Although the extent that pathological chromatin changes can be manipulated in human cardiovascular disease remains to be established, the clinical applicability of epigenetic interventions will be greatly advanced by a deeper understanding of the cell type-specific roles played by writers, erasers, and readers of chromatin modifications in the diabetic vasculature. This review details a current perspective of epigenetic mechanisms of macrovascular disease in diabetes mellitus and highlights recent key descriptions of chromatinized changes associated with persistent gene expression in endothelial, smooth muscle, and circulating immune cells relevant to atherosclerosis. Furthermore, we discuss the challenges associated with pharmacological targeting of epigenetic networks to correct abnormal or deregulated gene expression as a strategy to alleviate the clinical burden of diabetic cardiovascular disease.
Collapse
Affiliation(s)
- Samuel T Keating
- From the Epigenetics in Human Health and Disease Laboratory (S.T.K., A.E.-O.) and Epigenomics Profiling Facility (A.E.-O.), Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia; Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (J.P.); Department of Pathology, The University of Melbourne, Victoria, Australia (A.E.-O.); and Central Clinical School, Department of Medicine, Monash University, Victoria, Australia (A.E.-O.)
| | - Jorge Plutzky
- From the Epigenetics in Human Health and Disease Laboratory (S.T.K., A.E.-O.) and Epigenomics Profiling Facility (A.E.-O.), Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia; Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (J.P.); Department of Pathology, The University of Melbourne, Victoria, Australia (A.E.-O.); and Central Clinical School, Department of Medicine, Monash University, Victoria, Australia (A.E.-O.)
| | - Assam El-Osta
- From the Epigenetics in Human Health and Disease Laboratory (S.T.K., A.E.-O.) and Epigenomics Profiling Facility (A.E.-O.), Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia; Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (J.P.); Department of Pathology, The University of Melbourne, Victoria, Australia (A.E.-O.); and Central Clinical School, Department of Medicine, Monash University, Victoria, Australia (A.E.-O.).
| |
Collapse
|
35
|
Ferrari E, Lutgens E, Weber C, Gerdes N. Atherosclerosis: cell biology and lipoproteins focus on epigenetic modification and macrophage biology. Curr Opin Lipidol 2017; 28:220-221. [PMID: 28272157 DOI: 10.1097/mol.0000000000000405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Elena Ferrari
- aInstitute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany bDepartment of Medical Biochemistry, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands cDZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliances, Munich dCardiovascular Research Laboratory, Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | | | | | | |
Collapse
|
36
|
He H, Ghosh S, Yang H. Nanomedicines for dysfunctional macrophage-associated diseases. J Control Release 2017; 247:106-126. [PMID: 28057522 PMCID: PMC5360184 DOI: 10.1016/j.jconrel.2016.12.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/28/2016] [Indexed: 12/13/2022]
Abstract
Macrophages play vital functions in host inflammatory reaction, tissue repair, homeostasis and immunity. Dysfunctional macrophages have significant pathophysiological impacts on diseases such as cancer, inflammatory diseases (rheumatoid arthritis and inflammatory bowel disease), metabolic diseases (atherosclerosis, diabetes and obesity) and major infections like human immunodeficiency virus infection. In view of this common etiology in these diseases, targeting the recruitment, activation and regulation of dysfunctional macrophages represents a promising therapeutic strategy. With the advancement of nanotechnology, development of nanomedicines to efficiently target dysfunctional macrophages can strengthen the effectiveness of therapeutics and improve clinical outcomes. This review discusses the specific roles of dysfunctional macrophages in various diseases and summarizes the latest advances in nanomedicine-based therapeutics and theranostics for treating diseases associated with dysfunctional macrophages.
Collapse
Affiliation(s)
- Hongliang He
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23219, United States
| | - Shobha Ghosh
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States.
| | - Hu Yang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23219, United States; Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, United States; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, United States.
| |
Collapse
|
37
|
The persistence of low-grade inflammatory monocytes contributes to aggravated atherosclerosis. Nat Commun 2016; 7:13436. [PMID: 27824038 PMCID: PMC5105176 DOI: 10.1038/ncomms13436] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 10/04/2016] [Indexed: 02/06/2023] Open
Abstract
Sustained low-grade inflammation mediated by non-resolving inflammatory monocytes has long been suspected in the pathogenesis of atherosclerosis; however, the molecular mechanisms responsible for the sustainment of non-resolving inflammatory monocytes during atherosclerosis are poorly understood. Here we observe that subclinical endotoxemia, often seen in humans with chronic inflammation, aggravates murine atherosclerosis through programming monocytes into a non-resolving inflammatory state with elevated Ly6C, CCR5, MCP-1 and reduced SR-B1. The sustainment of inflammatory monocytes is due to the disruption of homeostatic tolerance through the elevation of miR-24 and reduction of the key negative-feedback regulator IRAK-M. miR-24 reduces the levels of Smad4 required for the expression of IRAK-M and also downregulates key lipid-processing molecule SR-B1. IRAK-M deficiency in turn leads to elevated miR-24 levels, sustains disruption of monocyte homeostasis and aggravates atherosclerosis. Our data define an integrated feedback circuit in monocytes and its disruption may lead to non-resolving low-grade inflammation conducive to atherosclerosis.
Collapse
|
38
|
From inflamm-aging to immune-paralysis: a slippery slope during aging for immune-adaptation. Biogerontology 2016; 17:147-57. [PMID: 26472173 DOI: 10.1007/s10522-015-9615-7] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 10/05/2015] [Indexed: 12/19/2022]
Abstract
Aging is accompanied by many physiological changes including those in the immune system. These changes are designated as immunosenescence indicating that age induces a decrease in immune functions. However, since many years we know that some aspects are not decreasing but instead are increasing like the pro-inflammatory activity by the innate immune cells, especially by monocytes/macrophages. Recently it became evident that these cells may possess a sort of memory called trained memory sustained by epigenetic changes occurring long after even in the absence of the initiator aggressor. In this review we are reviewing evidences that such changes may occur in aging and describe the relationship between inflamm-aging and immunosenescence as an adaptation/remodelling process leading on one hand to increased inflammation and on the other to decreased immune response (immune-paralysis) mastered by the innate immune system. These changes may collectively induce a state of alertness which assure an immune response even if ultimately resulting in age-related deleterious inflammatory diseases.
Collapse
|
39
|
Chromatin Remodeling in Monocyte and Macrophage Activation. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 106:1-15. [PMID: 28057208 DOI: 10.1016/bs.apcsb.2016.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Increasing evidence collected during the last years supports the idea that monocyte and macrophage activation is not only associated with transcriptional changes but also changes in the chromatin landscape. Moreover, the introduction of a multidimensional model of macrophage activation allows a more precise description of monocytes and macrophages under homeostatic and pathophysiological conditions. Monocytes and macrophages are masters of integrating microenvironmental signals, thereby reshaping their chromatin landscape and as a consequence their transcriptional and functional programs. Albeit these cells share a large number of epigenetic landmarks, their chromatin is significantly shaped by environmental signals. The chromatin landscape of any given tissue macrophage is a rather specific fingerprint of these cells, which is directly linked to tissue-specific functions of these cells. Moreover, chromatin remodeling in response to stress signals also seems to be an important mechanism of these cells to increase their readiness for future stressors. Understanding this sophisticated epigenetic regulatory network in monocytes and macrophages will open up new avenues toward tissue- and disease-specific therapeutic strategies in many of the chronic inflammatory diseases our societies are currently facing.
Collapse
|
40
|
Patel U, Rajasingh S, Samanta S, Cao T, Dawn B, Rajasingh J. Macrophage polarization in response to epigenetic modifiers during infection and inflammation. Drug Discov Today 2016; 22:186-193. [PMID: 27554801 DOI: 10.1016/j.drudis.2016.08.006] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/14/2016] [Accepted: 08/12/2016] [Indexed: 12/17/2022]
Abstract
Macrophages are a heterogeneous population of phagocytic cells present in all tissues. Recently, several drugs that target the epigenetic machinery have emerged as attractive molecules for treating infection and inflammation by modulating macrophages. Treatment of lipopolysaccharide (LPS)-challenged macrophages with epigenetic modifiers leads to phenotype switching. This could provide stimulatory/destructive (M1) or suppressive/protective (M2) therapeutic strategies, which are crucial in the cytokine milieu in which the macrophages reside. In this review, we provide an overview of macrophage functional diversity during various diseases, including infection, as well as the current status in the development and clinical utility of epigenetic modifiers.
Collapse
Affiliation(s)
- Urmi Patel
- Department of Internal Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sheeja Rajasingh
- Department of Internal Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Saheli Samanta
- Department of Internal Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Thuy Cao
- Department of Internal Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Buddhadeb Dawn
- Department of Internal Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Johnson Rajasingh
- Department of Internal Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
41
|
Brunini F, Page TH, Gallieni M, Pusey CD. The role of monocytes in ANCA-associated vasculitides. Autoimmun Rev 2016; 15:1046-1053. [PMID: 27491570 DOI: 10.1016/j.autrev.2016.07.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 07/12/2016] [Indexed: 12/13/2022]
Abstract
The anti-neutrophil cytoplasm antibody (ANCA)-associated vasculitides (AAV) are a heterogeneous group of diseases causing inflammation in small blood vessels and linked by the presence of circulating ANCA specific for proteinase 3 (PR3) or myeloperoxidase (MPO). These antigens are present both in the cytoplasmic granules and on the surface of neutrophils, and the effect of ANCA on neutrophil biology has been extensively studied. In contrast, less attention has been paid to the role of monocytes in AAV. These cells contain PR3 and MPO in lysosomes and can also express them at the cell surface. Monocytes respond to ANCA by producing pro-inflammatory and chemotactic cytokines, reactive-oxygen-species and by up-regulating CD14. Moreover, soluble and cell surface markers of monocyte activation are raised in AAV patients, suggesting an activated phenotype that may persist even during disease remission. The presence of monocyte-derived macrophages and giant cells within damaged renal and vascular tissue in AAV also attests to their role in pathogenesis. In particular, their presence in the tertiary lymphoid organ-like granulomas of AAV patients may generate an environment predisposed to maintaining autoimmunity. Here we discuss the evidence for a pathogenic role of monocytes in AAV, their role in granuloma formation and tissue damage, and their potential to both direct and maintain autoimmunity. ANCA-activation of monocytes may therefore provide an explanation for the relapsing-remitting course of disease and its links with infections. Monocytes may thus represent a promising target for the treatment of this group of life-threatening diseases.
Collapse
Affiliation(s)
- Francesca Brunini
- Renal and Vascular Inflammation Section, Department of Medicine, Imperial College London, Hammersmith Hospital, London, UK; Nephrology and Dialysis Unit, San Carlo Borromeo Hospital, ASST Santi Paolo e Carlo, University of Milano, Milan, Italy; Specialty School of Nephrology, University of Milan, Milan, Italy
| | - Theresa H Page
- Renal and Vascular Inflammation Section, Department of Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | - Maurizio Gallieni
- Nephrology and Dialysis Unit, San Carlo Borromeo Hospital, ASST Santi Paolo e Carlo, University of Milano, Milan, Italy
| | - Charles D Pusey
- Renal and Vascular Inflammation Section, Department of Medicine, Imperial College London, Hammersmith Hospital, London, UK.
| |
Collapse
|
42
|
Li J, Zhang S. microRNA-150 inhibits the formation of macrophage foam cells through targeting adiponectin receptor 2. Biochem Biophys Res Commun 2016; 476:218-224. [PMID: 27216461 DOI: 10.1016/j.bbrc.2016.05.096] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 05/19/2016] [Indexed: 12/23/2022]
Abstract
Transformation of macrophages into foam cells plays a critical role in the pathogenesis of atherosclerosis. The aim of this study was to determine the expression and biological roles of microRNA (miR)-150 in the formation of macrophage foam cells and to identify its functional target(s). Exposure to 50 μg/ml oxidized low-density lipoprotein (oxLDL) led to a significant upregulation of miR-150 in THP-1 macrophages. Overexpression of miR-150 inhibited oxLDL-induced lipid accumulation in THP-1 macrophages, while knockdown of miR-150 enhanced lipid accumulation. apoA-I- and HDL-mediated cholesterol efflux was increased by 66% and 43%, respectively, in miR-150-overexpressing macrophages relative to control cells. In contrast, downregulation of miR-150 significantly reduced cholesterol efflux from oxLDL-laden macrophages. Bioinformatic analysis and luciferase reporter assay revealed adiponectin receptor 2 (AdipoR2) as a direct target of miR-150. Small interfering RNA-mediated downregulation of AdipoR2 phenocopied the effects of miR-150 overexpression, reducing lipid accumulation and facilitating cholesterol efflux in oxLDL-treated THP-1 macrophages. Knockdown of AdipoR2 induced the expression of proliferator-activated receptor gamma (PPARγ), liver X receptor alpha (LXRα), ABCA1, and ABCG1. Moreover, pharmacological inhibition of PPARγ or LXRα impaired AdipoR2 silencing-induced upregulation of ABCA1 and ABCG1. Taken together, our results indicate that miR-150 can attenuate oxLDL-induced lipid accumulation in macrophages via promotion of cholesterol efflux. The suppressive effects of miR-150 on macrophage foam cell formation are mediated through targeting of AdipoR2. Delivery of miR-150 may represent a potential approach to prevent macrophage foam cell formation in atherosclerosis.
Collapse
Affiliation(s)
- Jing Li
- Department of Geratory, Linzi District People's Hospital of Zibo City, Zibo, Shandong, China
| | - Suhua Zhang
- Department of HealthCare, Qilu Hospital of Shandong University (Qingdao), Qingdao City, Qingdao, China.
| |
Collapse
|
43
|
Maloney B, Lahiri DK. Epigenetics of dementia: understanding the disease as a transformation rather than a state. Lancet Neurol 2016; 15:760-774. [PMID: 27302240 DOI: 10.1016/s1474-4422(16)00065-x] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/22/2016] [Accepted: 02/11/2016] [Indexed: 12/26/2022]
Abstract
Alzheimer's disease and other idiopathic dementias are associated with epigenetic transformations. These transformations connect the environment and genes to pathogenesis, and have led to the investigation of epigenetic-based therapeutic targes for the treatment of these diseases. Epigenetic changes occur over time in response to environmental effects. The epigenome-based latent early-life associated regulation (LEARn) hypothetical model indicates that accumulated environmental hits produce latent epigenetic changes. These hits can alter biochemical pathways until a pathological threshold is reached, which appears clinically as the onset of dementia. The hypotheses posed by LEARn are testable via longitudinal epigenome-wide, envirome-wide, and exposome-wide association studies (LEWAS) of the genome, epigenome, and environment. We posit that the LEWAS design could lead to effective prevention and treatments by identifying potential therapeutic strategies. Epigenetic evidence suggests that dementia is not a suddenly occurring and sharply delineated state, but rather a gradual change in crucial cellular pathways, that transforms an otherwise healthy state, as a result of neurodegeneration, to a dysfunctional state. Evidence from epigenetics could lead to ways to detect, prevent, and reverse such processes before clinical dementia.
Collapse
Affiliation(s)
- Bryan Maloney
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Neuroscience Research Center, Indianapolis, IN, USA
| | - Debomoy K Lahiri
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Neuroscience Research Center, Indianapolis, IN, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
44
|
Christ A, Bekkering S, Latz E, Riksen NP. Long-term activation of the innate immune system in atherosclerosis. Semin Immunol 2016; 28:384-93. [PMID: 27113267 DOI: 10.1016/j.smim.2016.04.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 04/12/2016] [Indexed: 01/05/2023]
Abstract
Efforts to reverse the pathologic consequences of vulnerable plaques are often stymied by the complex treatment resistant pro-inflammatory environment within the plaque. This suggests that pro-atherogenic stimuli, such as LDL cholesterol and high fat diets may impart longer lived signals on (innate) immune cells that persist even after reversing the pro-atherogenic stimuli. Recently, a series of studies challenged the traditional immunological paradigm that innate immune cells cannot display memory characteristics. Epigenetic reprogramming in these myeloid cell subsets, after exposure to certain stimuli, has been shown to alter the expression of genes upon re-exposure. This phenomenon has been termed trained innate immunity or innate immune memory. The changed responses of 'trained' innate immune cells can confer nonspecific protection against secondary infections, suggesting that innate immune memory has likely evolved as an ancient mechanism to protect against pathogens. However, dysregulated processes of immunological imprinting mediated by trained innate immunity may also be detrimental under certain conditions as the resulting exaggerated immune responses could contribute to autoimmune and inflammatory diseases, such as atherosclerosis. Pro-atherogenic stimuli most likely cause epigenetic modifications that persist for prolonged time periods even after the initial stimulus has been removed. In this review we discuss the concept of trained innate immunity in the context of a hyperlipidemic environment and atherosclerosis. According to this idea the epigenome of myeloid (progenitor) cells is presumably modified for prolonged periods of time, which, in turn, could evoke a condition of continuous immune cell over-activation.
Collapse
Affiliation(s)
- Anette Christ
- Institute of Innate Immunity, University Hospitals Bonn, University of Bonn, Bonn, Germany; Department of Infectious Diseases and Immunology, UMass Medical School, Worcester, MA, USA
| | - Siroon Bekkering
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eicke Latz
- Institute of Innate Immunity, University Hospitals Bonn, University of Bonn, Bonn, Germany; Department of Infectious Diseases and Immunology, UMass Medical School, Worcester, MA, USA; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
45
|
Netea MG, Joosten LAB, Latz E, Mills KHG, Natoli G, Stunnenberg HG, O'Neill LAJ, Xavier RJ. Trained immunity: A program of innate immune memory in health and disease. Science 2016; 352:aaf1098. [PMID: 27102489 DOI: 10.1126/science.aaf1098] [Citation(s) in RCA: 1637] [Impact Index Per Article: 204.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The general view that only adaptive immunity can build immunological memory has recently been challenged. In organisms lacking adaptive immunity, as well as in mammals, the innate immune system can mount resistance to reinfection, a phenomenon termed "trained immunity" or "innate immune memory." Trained immunity is orchestrated by epigenetic reprogramming, broadly defined as sustained changes in gene expression and cell physiology that do not involve permanent genetic changes such as mutations and recombination, which are essential for adaptive immunity. The discovery of trained immunity may open the door for novel vaccine approaches, new therapeutic strategies for the treatment of immune deficiency states, and modulation of exaggerated inflammation in autoinflammatory diseases.
Collapse
Affiliation(s)
- Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands.
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Eicke Latz
- Institute of Innate Immunity, Bonn University, Bonn, Germany. Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA. German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | | - Gioacchino Natoli
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Faculties of Science and Medicine, Radboud Institute of Molecular Life Sciences, Radboud University, Nijmegen, Netherlands
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity College, Dublin, Ireland
| | - Ramnik J Xavier
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Center for Computational and Integrative Biology and Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
46
|
Macrophage and Multinucleated Giant Cell Classification. CURRENT TOPICS IN ENVIRONMENTAL HEALTH AND PREVENTIVE MEDICINE 2016. [DOI: 10.1007/978-4-431-55732-6_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
47
|
Schultze JL, Schmidt SV. Molecular features of macrophage activation. Semin Immunol 2015; 27:416-23. [DOI: 10.1016/j.smim.2016.03.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 03/16/2016] [Indexed: 10/22/2022]
|
48
|
Roma-Lavisse C, Tagzirt M, Zawadzki C, Lorenzi R, Vincentelli A, Haulon S, Juthier F, Rauch A, Corseaux D, Staels B, Jude B, Van Belle E, Susen S, Chinetti-Gbaguidi G, Dupont A. M1 and M2 macrophage proteolytic and angiogenic profile analysis in atherosclerotic patients reveals a distinctive profile in type 2 diabetes. Diab Vasc Dis Res 2015; 12:279-89. [PMID: 25966737 DOI: 10.1177/1479164115582351] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This study aimed to investigate atherosclerotic mediators' expression levels in M1 and M2 macrophages and to focus on the influence of diabetes on M1/M2 profiles. Macrophages from 36 atherosclerotic patients (19 diabetics and 17 non-diabetics) were cultured with interleukin-1β (IL-1β) or IL-4 to induce M1 or M2 phenotype, respectively. The atherosclerotic mediators' expression was evaluated by quantitative reverse transcription-polymerase chain reaction (RT-PCR). The results showed that M1 and M2 macrophages differentially expressed mediators involved in proteolysis and angiogenesis processes. The proteolytic balance (matrix metalloproteinase-9 (MMP-9)/tissue inhibitor of metalloproteinase-1 (TIMP-1), MMP-9/plasminogen activator inhibitor-1 (PAI-1) and MMP-9/tissue factor pathway inhibitor-2 (TFPI-2) ratios) was higher in M1 versus M2, whereas M2 macrophages presented higher angiogenesis properties (increased vascular endothelial growth factor/TFPI-2 and tissue factor/TFPI-2 ratios). Moreover, M1 macrophages from diabetics displayed more important proangiogenic and proteolytic activities than non-diabetics. This study reveals that M1 and M2 macrophages could differentially modulate major atherosclerosis-related pathological processes. Moreover, M1 macrophages from diabetics display a deleterious phenotype that could explain the higher plaque vulnerability observed in these subjects.
Collapse
Affiliation(s)
- Charlotte Roma-Lavisse
- INSERM U1011, Laboratoire de Recherche J&K, Institut Pasteur de Lille, Faculté de Médecine - Pôle recherche, University of Lille Nord de France, EGID, Lille, France
| | - Madjid Tagzirt
- INSERM U1011, Laboratoire de Recherche J&K, Institut Pasteur de Lille, Faculté de Médecine - Pôle recherche, University of Lille Nord de France, EGID, Lille, France
| | - Christophe Zawadzki
- INSERM U1011, Laboratoire de Recherche J&K, Institut Pasteur de Lille, Faculté de Médecine - Pôle recherche, University of Lille Nord de France, EGID, Lille, France Cardiovascular and Pulmonary and Haematology Departments, University Hospital, Lille, France
| | - Rodrigo Lorenzi
- INSERM U1011, Laboratoire de Recherche J&K, Institut Pasteur de Lille, Faculté de Médecine - Pôle recherche, University of Lille Nord de France, EGID, Lille, France
| | - André Vincentelli
- INSERM U1011, Laboratoire de Recherche J&K, Institut Pasteur de Lille, Faculté de Médecine - Pôle recherche, University of Lille Nord de France, EGID, Lille, France Cardiovascular and Pulmonary and Haematology Departments, University Hospital, Lille, France
| | - Stephan Haulon
- Cardiovascular and Pulmonary and Haematology Departments, University Hospital, Lille, France
| | - Francis Juthier
- INSERM U1011, Laboratoire de Recherche J&K, Institut Pasteur de Lille, Faculté de Médecine - Pôle recherche, University of Lille Nord de France, EGID, Lille, France Cardiovascular and Pulmonary and Haematology Departments, University Hospital, Lille, France
| | - Antoine Rauch
- INSERM U1011, Laboratoire de Recherche J&K, Institut Pasteur de Lille, Faculté de Médecine - Pôle recherche, University of Lille Nord de France, EGID, Lille, France Cardiovascular and Pulmonary and Haematology Departments, University Hospital, Lille, France
| | - Delphine Corseaux
- INSERM U1011, Laboratoire de Recherche J&K, Institut Pasteur de Lille, Faculté de Médecine - Pôle recherche, University of Lille Nord de France, EGID, Lille, France
| | - Bart Staels
- INSERM U1011, Laboratoire de Recherche J&K, Institut Pasteur de Lille, Faculté de Médecine - Pôle recherche, University of Lille Nord de France, EGID, Lille, France
| | - Brigitte Jude
- INSERM U1011, Laboratoire de Recherche J&K, Institut Pasteur de Lille, Faculté de Médecine - Pôle recherche, University of Lille Nord de France, EGID, Lille, France Cardiovascular and Pulmonary and Haematology Departments, University Hospital, Lille, France
| | - Eric Van Belle
- INSERM U1011, Laboratoire de Recherche J&K, Institut Pasteur de Lille, Faculté de Médecine - Pôle recherche, University of Lille Nord de France, EGID, Lille, France Cardiovascular and Pulmonary and Haematology Departments, University Hospital, Lille, France
| | - Sophie Susen
- INSERM U1011, Laboratoire de Recherche J&K, Institut Pasteur de Lille, Faculté de Médecine - Pôle recherche, University of Lille Nord de France, EGID, Lille, France Cardiovascular and Pulmonary and Haematology Departments, University Hospital, Lille, France
| | - Giulia Chinetti-Gbaguidi
- INSERM U1011, Laboratoire de Recherche J&K, Institut Pasteur de Lille, Faculté de Médecine - Pôle recherche, University of Lille Nord de France, EGID, Lille, France
| | - Annabelle Dupont
- INSERM U1011, Laboratoire de Recherche J&K, Institut Pasteur de Lille, Faculté de Médecine - Pôle recherche, University of Lille Nord de France, EGID, Lille, France Cardiovascular and Pulmonary and Haematology Departments, University Hospital, Lille, France
| |
Collapse
|