1
|
Escobar A, Diab-Liu A, Bosland K, Xu CQ. Microfluidic Device-Based Virus Detection and Quantification in Future Diagnostic Research: Lessons from the COVID-19 Pandemic. BIOSENSORS 2023; 13:935. [PMID: 37887128 PMCID: PMC10605122 DOI: 10.3390/bios13100935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/19/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023]
Abstract
The global economic and healthcare crises experienced over the past three years, as a result of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has significantly impacted the commonplace habits of humans around the world. SARS-CoV-2, the virus responsible for the coronavirus 2019 (COVID-19) phenomenon, has contributed to the deaths of millions of people around the world. The potential diagnostic applications of microfluidic devices have previously been demonstrated to effectively detect and quasi-quantify several different well-known viruses such as human immunodeficiency virus (HIV), influenza, and SARS-CoV-2. As a result, microfluidics has been further explored as a potential alternative to our currently available rapid tests for highly virulent diseases to better combat and manage future potential outbreaks. The outbreak management during COVID-19 was initially hindered, in part, by the lack of available quantitative rapid tests capable of confirming a person's active infectiousness status. Therefore, this review will explore the use of microfluidic technology, and more specifically RNA-based virus detection methods, as an integral part of improved diagnostic capabilities and will present methods for carrying the lessons learned from COVID-19 forward, toward improved diagnostic outcomes for future pandemic-level threats. This review will first explore the context of the COVID-19 pandemic and how diagnostic technology was shown to have required even greater advancements to keep pace with the transmission of such a highly infectious virus. Secondly, the historical significance of integrating microfluidic technology in diagnostics and how the different types of genetic-based detection methods may vary in their potential practical applications. Lastly, the review will summarize the past, present, and future potential of RNA-based virus detection/diagnosis and how it might be used to better prepare for a future pandemic.
Collapse
Affiliation(s)
- Andres Escobar
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada;
| | - Alex Diab-Liu
- Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada; (A.D.-L.); (K.B.)
| | - Kamaya Bosland
- Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada; (A.D.-L.); (K.B.)
| | - Chang-qing Xu
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada;
- Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada; (A.D.-L.); (K.B.)
| |
Collapse
|
2
|
Luttikhuis N, Wiebe KS. Analyzing SDG interlinkages: identifying trade-offs and synergies for a responsible innovation. SUSTAINABILITY SCIENCE 2023; 18:1-19. [PMID: 37363308 PMCID: PMC10214325 DOI: 10.1007/s11625-023-01336-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 10/26/2022] [Accepted: 04/17/2023] [Indexed: 06/28/2023]
Abstract
This paper responds to recent calls to address the indivisible nature of the Sustainable Development Goal (SDG) framework and the related knowledge gap on how SDG targets interlink with each other. It examines how SDG targets interact in the context of a specific technology, point of care (PoC) microfluidics, and how this relates to the concept of responsible innovation (RI). The novel SDG interlinkages methodology developed here involves several steps to filter the relevant interlinkages and a focus group of experts for discussing these interlinkages. The main findings indicate that several social synergies occur when deploying PoC microfluidics, but that the environmental trade-offs may jeopardize the total progress toward the SDGs. More specifically, the environmental sacrifices (use of plastics and lack of recyclability) resulted in the product being cheaper and, thus, better accessible. This work suggests that attention should be given (and prioritized) to the use of renewable and recyclable materials without jeopardizing the accessibility of the product. This should minimize the identified trade-offs. These findings inform how analyzing SDG interlinkages relates to the responsibilities and dimensions of RI in several ways. First, analyzing SDG interlinkages helps to execute the governance responsibility by using the RI dimensions (anticipation, reflexivity, inclusion and responsiveness). Second, analyzing SDG interlinkages gives insights into if and how a technology relates to the do-good and avoid-harm responsibility. This is important to assess the responsiveness of the technology to ensure that the technology can become truly sustainable and leaves no one behind.
Collapse
Affiliation(s)
- Nikki Luttikhuis
- Sustainable Energy Technology, SINTEF, Torgarden, P.O. Box 4760, 7465 Trondheim, Norway
- Department of Industrial Economics and Technology Management, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Kirsten S. Wiebe
- Sustainable Energy Technology, SINTEF, Torgarden, P.O. Box 4760, 7465 Trondheim, Norway
| |
Collapse
|
3
|
de Olazarra AS, Wang SX. Advances in point-of-care genetic testing for personalized medicine applications. BIOMICROFLUIDICS 2023; 17:031501. [PMID: 37159750 PMCID: PMC10163839 DOI: 10.1063/5.0143311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/21/2023] [Accepted: 04/12/2023] [Indexed: 05/11/2023]
Abstract
Breakthroughs within the fields of genomics and bioinformatics have enabled the identification of numerous genetic biomarkers that reflect an individual's disease susceptibility, disease progression, and therapy responsiveness. The personalized medicine paradigm capitalizes on these breakthroughs by utilizing an individual's genetic profile to guide treatment selection, dosing, and preventative care. However, integration of personalized medicine into routine clinical practice has been limited-in part-by a dearth of widely deployable, timely, and cost-effective genetic analysis tools. Fortunately, the last several decades have been characterized by tremendous progress with respect to the development of molecular point-of-care tests (POCTs). Advances in microfluidic technologies, accompanied by improvements and innovations in amplification methods, have opened new doors to health monitoring at the point-of-care. While many of these technologies were developed with rapid infectious disease diagnostics in mind, they are well-suited for deployment as genetic testing platforms for personalized medicine applications. In the coming years, we expect that these innovations in molecular POCT technology will play a critical role in enabling widespread adoption of personalized medicine methods. In this work, we review the current and emerging generations of point-of-care molecular testing platforms and assess their applicability toward accelerating the personalized medicine paradigm.
Collapse
Affiliation(s)
- A. S. de Olazarra
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA
| | - S. X. Wang
- Author to whom correspondence should be addressed:
| |
Collapse
|
4
|
Duah E, Mathebula EM, Mashamba-Thompson T. Quality Assurance for Hepatitis C Virus Point-of-Care Diagnostics in Sub-Saharan Africa. Diagnostics (Basel) 2023; 13:684. [PMID: 36832172 PMCID: PMC9955859 DOI: 10.3390/diagnostics13040684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/01/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
As part of a multinational study to evaluate the Bioline Hepatitis C virus (HCV) point-of-care (POC) testing in sub-Saharan Africa (SSA), this narrative review summarises regulatory standards and quality indicators for validating and approving HCV clinical diagnostics. In addition, this review also provides a summary of their diagnostic evaluations using the REASSURED criteria as the benchmark and its implications on the WHO HCV elimination goals 2030.
Collapse
Affiliation(s)
- Evans Duah
- Faculty of Health Science, School of Health Systems and Public Health, University of Pretoria, Pretoria 0002, South Africa
| | | | | |
Collapse
|
5
|
Fung AWS. Utilizing connectivity and data management system for effective quality management and regulatory compliance in point of care testing. Pract Lab Med 2020; 22:e00187. [PMID: 33204792 PMCID: PMC7649638 DOI: 10.1016/j.plabm.2020.e00187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/25/2020] [Accepted: 10/30/2020] [Indexed: 12/13/2022] Open
Abstract
Point of care testing (POCT) is one of the fastest growing disciplines in clinical laboratory medicine. POCT devices are widely used in both acute and chronic patient management in the hospital and primary physician office settings. As demands for POCT in various healthcare settings increase, managing the quality and regulatory compliance are continually challenging. Despite technological advances in applying automatic system checks and built-in quality control to prevent analytical and operator errors, poor planning for POCT connectivity and informatics can limit data accessibility and management efficiency which impedes the utilization of POCT to its full potential. This article will summarize how connectivity and data management system can improve timely access to POCT results, effective management of POCT programs, and ensure regulatory compliance.
Collapse
Affiliation(s)
- Angela W S Fung
- Department of Pathology and Laboratory Medicine, St. Paul's Hospital, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Abstract
INTRODUCTION Just as technology was the underlying driver of the sequencing of the human genome and subsequent generation of volumes of genome sequence data from healthy and affected individuals, animal, plant, and microbial species alike, so too will technology revolutionize diagnostic testing. One area of intense interest is the use of genetic data to inform decisions regarding drug selection and drug dosing, known as pharmacogenetic (PGx) testing, to improve likelihood of successful treatment outcomes with minimal risks. AREAS COVERED This commentary will provide an overview of implementation research of PGx testing, the benefits of point-of-care (POC) testing and overview of POC testing platforms, available PGx tests, and barriers and facilitators to the development and integration of POC-PGx testing into clinical settings. Sources include the published literature, and databases from the Centers for Medicaid and Medicare Services, Food and Drug Administration. Expert commentary: The utilization of POC PGx testing may enable more routine test use, but the development and implementation of such tests will face some barriers before personalized medicine is available to every patient. In particular, provider training, availability of clinical decision supports, and connectivity will be key areas to facilitate routine use.
Collapse
Affiliation(s)
- Susanne B Haga
- a Department of Medicine, Center for Applied Genomics and Precision Medicine , Duke University School of Medicine , Durham , NC , USA
| |
Collapse
|
7
|
Implementation and Operational Research: Implementation of Multiple Point-of-Care Testing in 2 HIV Antiretroviral Treatment Clinics in South Africa. J Acquir Immune Defic Syndr 2016; 71:e34-43. [PMID: 26484742 DOI: 10.1097/qai.0000000000000872] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND A plethora of point-of-care (POC) tests exist in the HIV and tuberculosis diagnostic pipeline which require rigorous evaluation to ensure performance in the field. The accuracy and feasibility of nurse-operated multidisciplinary-POC testing for HIV antiretroviral therapy (ART) initiation/monitoring was evaluated. METHODS Random HIV-positive adult patients presenting at 2 treatment clinics in South Africa for ART initiation/monitoring were consented and enrolled. POCT was performed by a dedicated nurse on a venipuncture specimen; Pima (CD4), HemoCue (hemoglobin), Reflotron (alanine aminotransferase, creatinine), Accutrend (lactate) and compared with laboratory testing. External quality assessment, training, workflow, and errors were assessed. RESULTS n = 324 enrolled at site1; n = 469 enrolled at site 2. Clinical data on n = 305 participants: 65% (n = 198) female with a mean age of 39.8 (21-61) years; mean age of males 43.2 (26-61) years; 70% of patients required 3 or more POC tests/visit. External quality assessment material was suitable for POCT. CD4, hemoglobin and alanine aminotransferase testing showed good agreement with predicate methodology; creatinine and lactate had increased variability. Pima CD4 misclassified up to 11.6% of patients at 500 cells per microliter and reported 4.3%-6% error rate. A dedicated nurse could perform POCT on 7 patients/day; inclusion of Pima CD4 increased time for testing from 6 to 110 minutes. Transcription error rate was 1%. CONCLUSIONS Nurses can accurately perform multidisciplinary POCT for HIV ART initiation/monitoring. This will however, require a dedicated nurse as current duties will increase if POC is added to workflow. The use of Pima CD4 will increase patients initiated on ART. Connectivity will be central to ensure quality management of results, but overall impact will need to still be addressed.
Collapse
|
8
|
Rajendran R, Rayman G. Point-of-care blood glucose testing for diabetes care in hospitalized patients: an evidence-based review. J Diabetes Sci Technol 2014; 8:1081-90. [PMID: 25355711 PMCID: PMC4455482 DOI: 10.1177/1932296814538940] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 01/04/2023]
Abstract
Glycemic control in hospitalized patients with diabetes requires accurate near-patient glucose monitoring systems. In the past decade, point-of-care blood glucose monitoring devices have become the mainstay of near-patient glucose monitoring in hospitals across the world. In this article, we focus on its history, accuracy, clinical use, and cost-effectiveness. Point-of-care devices have evolved from 1.2 kg instruments with no informatics to handheld lightweight portable devices with advanced connectivity features. Their accuracy however remains a subject of debate, and new standards for their approval have now been issued by both the International Organization for Standardization and the Clinical and Laboratory Standards Institute. While their cost-effectiveness remains to be proved, their clinical value for managing inpatients with diabetes remains unchallenged. This evidence-based review provides an overall view of its use in the hospital setting.
Collapse
|
9
|
Technical and Clinical Niches for Point of Care Molecular Devices. ADVANCED TECHNIQUES IN DIAGNOSTIC MICROBIOLOGY 2013. [PMCID: PMC7120995 DOI: 10.1007/978-1-4614-3970-7_33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Academic Contribution Register] [Indexed: 11/08/2022]
Abstract
A point of care (POC) device is one that is used outside of a central laboratory environment; generally near , or at the site of the patient/client. Point of care testing (POCT) varies from tests performed in physician’s office labs, or “satellite” or “stat” labs, to tests performed on tabletop instruments in a clinic area, to testing performed with hand-held instruments at the bedside. In peripheral lab settings, POCT may be performed by trained laboratory staff, but clinic and bedside POCT is frequently performed by staff who lack specialized laboratory training and whose primary job is something other than doing lab tests.
Collapse
|
10
|
Gray JW, Milner PJ, Edwards EH, Daniels JP, Khan KS. Feasibility of using microbiology diagnostic tests of moderate or high complexity at the point - of - care in a delivery suite. J OBSTET GYNAECOL 2012; 32:458-60. [PMID: 22663318 DOI: 10.3109/01443615.2012.673034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/13/2022]
Abstract
Point-of-care testing (POCT) is one of the fastest growing sectors of laboratory diagnostics. Most tests in routine use are haematology or biochemistry tests that are of low complexity. Microbiology POCT has been constrained by a lack of tests that are both accurate and of low complexity. We describe our experience of the practical issues around using more complex POCT for detection of Group B streptococci (GBS) in swabs from labouring women. We evaluated two tests for their feasibility in POCT: an optical immune assay (Biostar OIA Strep B, Inverness Medical, Princetown, NJ) and a PCR (IDI-Strep B, Cepheid, Sunnyvale, CA), which have been categorised as being of moderate and high complexity, respectively. A total of 12 unqualified midwifery assistants (MA) were trained to undertake testing on the delivery suite. A systematic approach to the introduction and management of POC testing was used. Modelling showed that the probability of test results being available within a clinically useful timescale was high. However, in the clinical setting, we found it impossible to maintain reliable availability of trained testers. Implementation of more complex POC testing is technically feasible, but it is expensive, and may be difficult to achieve in a busy delivery suite.
Collapse
Affiliation(s)
- J W Gray
- Department of Microbiology, Birmingham Women's Hospital, Edgbaston, Birmingham B15 2TG, UK.
| | | | | | | | | |
Collapse
|
11
|
Gilbertson JR, McClintock DS, Lee RE, Onozato M, Kuo FC, Beckwith BA, Yagi Y, Dighe AS, Gudewicz TM, Le LP, Wilbur DC, Kim JY, Brodsky VB, Black-Schaffer S. Clinical fellowship training in pathology informatics: A program description. J Pathol Inform 2012; 3:11. [PMID: 22530179 PMCID: PMC3327041 DOI: 10.4103/2153-3539.93893] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/29/2011] [Accepted: 01/13/2012] [Indexed: 11/17/2022] Open
Abstract
Background: In 2007, our healthcare system established a clinical fellowship program in pathology informatics. In 2011, the program benchmarked its structure and operations against a 2009 white paper “Program requirements for fellowship education in the subspecialty of clinical informatics”, endorsed by the Board of the American Medical Informatics Association (AMIA) that described a proposal for a general clinical informatics fellowship program. Methods: A group of program faculty members and fellows compared each of the proposed requirements in the white paper with the fellowship program's written charter and operations. The majority of white paper proposals aligned closely with the rules and activities in our program and comparison was straightforward. In some proposals, however, differences in terminology, approach, and philosophy made comparison less direct, and in those cases, the thinking of the group was recorded. After the initial evaluation, the remainder of the faculty reviewed the results and any disagreements were resolved. Results: The most important finding of the study was how closely the white paper proposals for a general clinical informatics fellowship program aligned with the reality of our existing pathology informatics fellowship. The program charter and operations of the program were judged to be concordant with the great majority of specific white paper proposals. However, there were some areas of discrepancy and the reasons for the discrepancies are discussed in the manuscript. Conclusions: After the comparison, we conclude that the existing pathology informatics fellowship could easily meet all substantive proposals put forth in the 2009 clinical informatics program requirements white paper. There was also agreement on a number of philosophical issues, such as the advantages of multiple fellows, the need for core knowledge and skill sets, and the need to maintain clinical skills during informatics training. However, there were other issues, such as a requirement for a 2-year fellowship and for informatics fellowships to be done after primary board certification, that pathology should consider carefully as it moves toward a subspecialty status and board certification.
Collapse
Affiliation(s)
- John R Gilbertson
- Department of Pathology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Lewandrowski K, Gregory K, Macmillan D. Assuring quality in point-of-care testing: evolution of technologies, informatics, and program management. Arch Pathol Lab Med 2011; 135:1405-14. [PMID: 22032566 DOI: 10.5858/arpa.2011-0157-ra] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022]
Abstract
CONTEXT Managing the quality of point-of-care testing (POCT) is a continuing challenge. Advances in testing technologies and the development of specialized informatics for POCT have greatly improved the ability of hospitals to manage their POCT program. OBJECTIVES To present the evolving role of technology improvement, informatics, and program management as the key developments to ensure the quality of POCT. DATA SOURCES This presentation is based on a review of the literature and on our experiences with POCT at the Massachusetts General Hospital (Boston). CONCLUSIONS Federal and state regulations, along with accreditation standards developed by the College of American Pathologists and The Joint Commission, have established guidelines for the performance of POCT and have provided a strong incentive to improve the quality of testing. Many instruments for POCT have incorporated advanced design features to prevent analytic and operator errors. This, along with the development of connectivity standards and specialized data management software, has enabled remote review of test data and electronic flow of information to hospital information systems. However, documentation of manually performed, visually read tests remains problematic and some POCT devices do not have adequate safeguards to prevent significant errors. In the past 2 decades the structure of a successful POCT management program has been defined, emphasizing the role of POCT managers working in conjunction with a pathology-based medical director. The critical skill set of POCT managers has also been identified. The POCT manager is now recognized as a true specialist in laboratory medicine.
Collapse
Affiliation(s)
- Kent Lewandrowski
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
| | | | | |
Collapse
|
13
|
Abstract
Around the world, teams of researchers continue to develop a wide range of systems to capture, store, and analyze data including treatment, patient outcomes, tumor registries, next-generation sequencing, single-nucleotide polymorphism, copy number, gene expression, drug chemistry, drug safety, and toxicity. Scientists mine, curate, and manually annotate growing mountains of data to produce high-quality databases, while clinical information is aggregated in distant systems. Databases are currently scattered, and relationships between variables coded in disparate datasets are frequently invisible. The challenge is to evolve oncology informatics from a "systems" orientation of standalone platforms and silos into an "integrated knowledge environments" that will connect "knowable" research data with patient clinical information. The aim of this article is to review progress toward an integrated knowledge environment to support modern oncology with a focus on supporting scientific discovery and improving cancer care.
Collapse
|
14
|
"Link," the Experience and Future of Point-of-Care Testing Connectivity From Thailand. POINT OF CARE 2010. [DOI: 10.1097/poc.0b013e3181ecca8d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/25/2022]
|
15
|
|