1
|
Hattab S, Ma AH, Tariq Z, Vega Prado I, Drobish I, Lee R, Yee R. Rapid Phenotypic and Genotypic Antimicrobial Susceptibility Testing Approaches for Use in the Clinical Laboratory. Antibiotics (Basel) 2024; 13:786. [PMID: 39200086 PMCID: PMC11351821 DOI: 10.3390/antibiotics13080786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
The rapid rise in increasingly resistant bacteria has become a major threat to public health. Antimicrobial susceptibility testing (AST) is crucial in guiding appropriate therapeutic decisions and infection prevention practices for patient care. However, conventional culture-based AST methods are time-consuming and labor-intensive. Therefore, rapid AST approaches exist to address the delayed gap in time to actionable results. There are two main types of rapid AST technologies- phenotypic and genotypic approaches. In this review, we provide a summary of all commercially available rapid AST platforms for use in clinical microbiology laboratories. We describe the technologies utilized, performance characteristics, acceptable specimen types, types of resistance detected, turnaround times, limitations, and clinical outcomes driven by these rapid tests. We also discuss crucial factors to consider for the implementation of rapid AST technologies in a clinical laboratory and what the future of rapid AST holds.
Collapse
Affiliation(s)
- Siham Hattab
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA; (S.H.); (Z.T.); (I.V.P.)
| | - Adrienne H. Ma
- Department of Pharmacy, Valley View Hospital, Glenwood Springs, CO 81647, USA;
| | - Zoon Tariq
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA; (S.H.); (Z.T.); (I.V.P.)
| | - Ilianne Vega Prado
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA; (S.H.); (Z.T.); (I.V.P.)
| | - Ian Drobish
- Critical Care Medicine Department, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Rachel Lee
- Division of Infectious Diseases, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA;
| | - Rebecca Yee
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA; (S.H.); (Z.T.); (I.V.P.)
| |
Collapse
|
2
|
Alonso-Tarrés C, Benjumea Moreno C, Navarro F, Habison AC, Gonzàlez-Bertran E, Blanco F, Borràs J, Garrigó M, Saker J. Bacteriuria and phenotypic antimicrobial susceptibility testing in 45 min by point-of-care Sysmex PA-100 System: first clinical evaluation. Eur J Clin Microbiol Infect Dis 2024; 43:1533-1543. [PMID: 38825624 PMCID: PMC11271345 DOI: 10.1007/s10096-024-04862-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/23/2024] [Indexed: 06/04/2024]
Abstract
PURPOSE This study compared the results of the new Sysmex PA-100 AST System, a point-of-care analyser, with routine microbiology for the detection of urinary tract infections (UTI) and performance of antimicrobial susceptibility tests (AST) directly from urine. METHODS Native urine samples from 278 female patients with suspected uncomplicated UTI were tested in the Sysmex PA-100 and with reference methods of routine microbiology: urine culture for bacteriuria and disc diffusion for AST. RESULTS The analyser delivered bacteriuria results in 15 min and AST results within 45 min. Sensitivity and specificity for detection of microbiologically confirmed bacteriuria were 84.0% (89/106; 95% CI: 75.6-90.4%) and 99.4% (155/156; 95% CI: 96.5-100%), respectively, for bacterial species within the analyser specifications. These are Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Enterococcus faecalis and Staphylococcus saprophyticus, which are common species causing uncomplicated UTI. Overall categorical agreement (OCA) for AST results for the five antimicrobials tested in the Sysmex PA-100 (amoxicillin/clavulanic acid, ciprofloxacin, fosfomycin, nitrofurantoin and trimethoprim) ranged from 85.4% (70/82; 95%CI: 75.9-92.2%) for ciprofloxacin to 96.4% (81/84; 95% CI: 89.9-99.3%) for trimethoprim. The Sysmex PA-100 provided an optimal treatment recommendation in 218/278 cases (78.4%), against 162/278 (58.3%) of clinical decisions. CONCLUSION This first clinical evaluation of the Sysmex PA-100 in a near-patient setting demonstrated that the analyser delivers phenotypic AST results within 45 min, which could enable rapid initiation of the correct targeted treatment with no further adjustment needed. The Sysmex PA-100 has the potential to significantly reduce ineffective or unnecessary antibiotic prescription in patients with UTI symptoms.
Collapse
Affiliation(s)
- Carles Alonso-Tarrés
- Microbiology Laboratory, Fundació Puigvert, C/Cartagena 340-350, Barcelona, Spain.
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain.
| | | | - Ferran Navarro
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- Microbiology Laboratory, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Aline C Habison
- New Business Development Department, Sysmex Europe SE, Norderstedt, Germany
| | | | | | - Jaume Borràs
- Emergency Unit, Fundació Puigvert, Barcelona, Spain
| | - Montserrat Garrigó
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- Microbiology Laboratory, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Jarob Saker
- Medical Scientific Department, Sysmex Europe SE, Norderstedt, Germany
| |
Collapse
|
3
|
Calvo M, Stefani S, Migliorisi G. Bacterial Infections in Intensive Care Units: Epidemiological and Microbiological Aspects. Antibiotics (Basel) 2024; 13:238. [PMID: 38534673 DOI: 10.3390/antibiotics13030238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/28/2024] Open
Abstract
Intensive care units constitute a critical setting for the management of infections. The patients' fragilities and spread of multidrug-resistant microorganisms lead to relevant difficulties in the patients' care. Recent epidemiological surveys documented the Gram-negative bacteria supremacy among intensive care unit (ICU) infection aetiologies, accounting for numerous multidrug-resistant isolates. Regarding this specific setting, clinical microbiology support holds a crucial role in the definition of diagnostic algorithms. Eventually, the complete patient evaluation requires integrating local epidemiological knowledge into the best practice and the standardization of antimicrobial stewardship programs. Clinical laboratories usually receive respiratory tract and blood samples from ICU patients, which express a significant predisposition to severe infections. Therefore, conventional or rapid diagnostic workflows should be modified depending on patients' urgency and preliminary colonization data. Additionally, it is essential to complete each microbiological report with rapid phenotypic minimum inhibitory concentration (MIC) values and information about resistance markers. Microbiologists also help in the eventual integration of ultimate genome analysis techniques into complicated diagnostic workflows. Herein, we want to emphasize the role of the microbiologist in the decisional process of critical patient management.
Collapse
Affiliation(s)
- Maddalena Calvo
- U.O.C. Laboratory Analysis Unit, A.O.U. "Policlinico-San Marco", Via S. Sofia 78, 95123 Catania, Italy
| | - Stefania Stefani
- U.O.C. Laboratory Analysis Unit, A.O.U. "Policlinico-San Marco", Via S. Sofia 78, 95123 Catania, Italy
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95123 Catania, Italy
| | - Giuseppe Migliorisi
- U.O.C. Laboratory Analysis Unit, A.O. "G.F. Ingrassia", Corso Calatafimi 1002, 90131 Palermo, Italy
| |
Collapse
|
4
|
Kals M, Mancini L, Kotar J, Donald A, Cicuta P. Multipad agarose plate: a rapid and high-throughput approach for antibiotic susceptibility testing. J R Soc Interface 2024; 21:20230730. [PMID: 38531408 PMCID: PMC10973877 DOI: 10.1098/rsif.2023.0730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/27/2024] [Indexed: 03/28/2024] Open
Abstract
We describe a phenotypic antibiotic susceptibility testing (AST) method that can provide an eightfold speed-up in turnaround time compared with the current clinical standard by leveraging advances in microscopy and single-cell imaging. A newly developed growth plate containing 96 agarose pads, termed the multipad agarose plate (MAP), can be assembled at low cost. Pads can be prepared with dilution series of antibiotics. Bacteria are seeded on the pads and automatically imaged using brightfield microscopy, with a fully automated segmentation pipeline quantifying microcolony formation and growth rate. Using a test set of nine antibiotics with very different targets, we demonstrate that accurate minimum inhibitory concentration (MIC) measurements can be performed based on the growth rate of microcolonies within 3 h of incubation with the antibiotic when started from exponential phase. Faster, reliable and high-throughput methods for AST, such as MAP, could improve patient care by expediting treatment initiation and alleviating the burden of antimicrobial resistance.
Collapse
Affiliation(s)
- Morten Kals
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
- Synoptics Ltd, Cambridge CB4 1TF, UK
| | - Leonardo Mancini
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - Jurij Kotar
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | | | - Pietro Cicuta
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| |
Collapse
|
5
|
Martin-Loeches I, Pereira JG, Teoh TK, Barlow G, Dortet L, Carrol ED, Olgemöller U, Boyd SE, Textoris J. Molecular antimicrobial susceptibility testing in sepsis. Future Microbiol 2024; 19:61-72. [PMID: 38180334 DOI: 10.2217/fmb-2023-0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/01/2023] [Indexed: 01/06/2024] Open
Abstract
Rapidly detecting and identifying pathogens is crucial for appropriate antimicrobial therapy in patients with sepsis. Conventional diagnostic methods have been a great asset to medicine, though they are time consuming and labor intensive. This work will enable healthcare professionals to understand the bacterial community better and enhance their diagnostic capacity by using novel molecular methods that make obtaining quicker, more precise results possible. The authors discuss and critically assess the merits and drawbacks of molecular testing and the added value of these tests, including the shift turnaround time, the implication for clinicians' decisions, gaps in knowledge, future research directions and novel insights or innovations. The field of antimicrobial molecular testing has seen several novel insights and innovations to improve the diagnosis and management of infectious diseases.
Collapse
Affiliation(s)
- Ignacio Martin-Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St James' Hospital, D08 NHY1, Dublin, Ireland
- Hospital Clinic, Institut D'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universidad de Barcelona, Ciberes, 08036 Barcelona, Spain
| | | | - Tee Keat Teoh
- Department of Clinical Microbiology, St James' Hospital, Dublin, Ireland
| | - Gavin Barlow
- York Biomedical Research Institute, University of York and Hull York Medical School, UK
- Hull University Teaching Hospitals NHS Trust, Hull, UK
| | - Laurent Dortet
- Department of Bacteriology-Hygiene, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
- INSERM UMR 1184, RESIST Unit, Paris-Saclay University, Le Kremlin-Bicêtre, France
- French National Reference Center for Antimicrobial Resistance, France
| | - Enitan D Carrol
- University of Liverpool, Institute of Infection, Veterinary and Ecological Sciences, Liverpool, UK
- Alder Hey Children's Hospital, Department of Infectious Diseases, Liverpool, UK
| | - Ulrike Olgemöller
- Department of Cardiology and Pneumology, University of Goettingen, Goettingen, Germany
| | - Sara E Boyd
- St George's University Hospital NHS Foundation Trust, London, UK
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
- National Institute for Health Research, Health Protection Research Unit in Healthcare Associated Infection and Antimicrobial Resistance, Imperial College London, London, UK
| | | |
Collapse
|
6
|
Gillespie SH, Hammond RJH. Rapid Drug Susceptibility Testing to Preserve Antibiotics. Methods Mol Biol 2024; 2833:129-143. [PMID: 38949707 DOI: 10.1007/978-1-0716-3981-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Antibiotic resistance is a global challenge likely to cost trillions of dollars in excess costs in the health system and more importantly, millions of lives every year. A major driver of resistance is the absence of susceptibility testing at the time a healthcare worker needs to prescribe an antimicrobial. The effect is that many prescriptions are unintentionally wasted and expose mutable organisms to antibiotics increasing the risk of resistance emerging. Often simplistic solutions are applied to this growing issue, such as a naïve drive to increase the speed of drug susceptibility testing. This puts a spotlight on a technological solution and there is a multiplicity of such candidate DST tests in development. Yet, if we do not define the necessary information and the speed at which it needs to be available in the clinical decision-making progress as well as the necessary integration into clinical pathways, then little progress will be made. In this chapter, we place the technological challenge in a clinical and systems context. Further, we will review the landscape of some promising technologies that are emerging and attempt to place them in the clinic where they will have to succeed.
Collapse
Affiliation(s)
- Stephen H Gillespie
- Division of Infection and Global Health, School of Medicine, University of St Andrews, St Andrews, Scotland, UK.
| | - Robert J H Hammond
- Division of Infection and Global Health, School of Medicine, University of St Andrews, St Andrews, Scotland, UK
| |
Collapse
|
7
|
Del Rio A, Puci M, Muresu N, Sechi I, Saderi L, Cugia L, Sotgiu G, Piana A. Comparison of genotypic and phenotypic antimicrobial profile in carbapenemases producing Klebsiella pneumoniae. ACTA BIO-MEDICA : ATENEI PARMENSIS 2023; 94:e2023201. [PMID: 37850773 PMCID: PMC10644917 DOI: 10.23750/abm.v94i5.14412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/27/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND AND AIM Prompt administration of appropriate antibiotic therapy is crucial in improving outcomes, particularly in cases sustained by multi-drug resistant strains. Although phenotypic antimicrobial susceptibility testing (AST) represents the gold standard to address antibiotics treatment, the long time required to obtained affordable results could negatively affect the prognosis. In contrast, rapid genotypic AST provide essential information for treatment and surveillance program. In order to evaluate the potential adoption of rapid AST in clinical routine, we compared the genotypic and phenotypic antimicrobial profiles of different K.pneumoniae strains, characterized by different expression of carbapenemases-encoding genes. METHODS A set of 109 strains of Cr-Kp were tested for the antimicrobial drugs by the automatized Vitek II system and, in parallel, to the new combination of β-lactams/β-lactamases inhibitors (BL/BLI) by Etest. An antimicrobial resistance index (ARI) was calculated for each strain, assigning each 1 or 0 points based on observed resistance/susceptibility, and dividing the total by the number of antibiotics tested. Kruskal-Wallis test, followed by Dunn's post hoc test (Bonferroni correction), were used to compare quantitative variables among resistance gene subgroups. RESULTS We observed a higher ARI score in KPC/OXA-48 strains, similar profile in KPC alone and KPC/CTX-M groups and a significant lower resistance in no-carbapenemases-producing group. Same trend was observed in AST for BL/BLI. CONCLUSIONS These preliminary results showed a close link between genotypic and phenotypic AST, supporting the adoption of rapid AST in cases of severe infections, ensuring to saving time and providing, the surveillance of MDR strains and improving stewardship programs.
Collapse
|
8
|
Recent Studies on Advance Spectroscopic Techniques for the Identification of Microorganisms: A Review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
9
|
Burg L, Crewe G, DiMeo J, Guo X, Li CG, Mayol M, Tempesta A, Lauzier W, Markham R, Crissy K, Barry C, Walsh B, Kirby JE, Straus D. Rapid pathogen identification and phenotypic antimicrobial susceptibility directly from urine specimens. Sci Rep 2022; 12:18315. [PMID: 36380053 PMCID: PMC9666529 DOI: 10.1038/s41598-022-22792-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
Implementing effective antimicrobial therapy close to the onset of infection lowers morbidity and mortality and attenuates the spread of antimicrobial resistance. Current antimicrobial susceptibility testing (AST) methods, however, require several days to determine optimal therapies. We present technology and an automated platform that identify (ID) Urinary Tract Infection pathogens in 45 min and provide phenotypic AST results in less than 5 h from urine specimens without colony isolation. The ID and AST tests count cells fluorescently labeled with specific rRNA probes using non-magnified digital imaging. The ID test detected five pathogens at ≤ 7,000 CFU/mL and had a linear range of ~ 4 orders of magnitude. For contrived specimens, AST tests gave 93.1% categorical agreement with 1.3% Very Major Errors (VME), 0.3% Major Errors (ME), and 6.3% minor Errors (mE) compared to the broth microdilution (BMD) reference method. For clinical specimens, the ID test had 98.6% agreement and the AST test had 92.3% categorical agreement with 4.2% mE, 3.4% ME and 4.0% VME compared to BMD. Data presented demonstrates that direct-from-specimen AST tests can accurately determine antimicrobial susceptibility/resistance for each pathogen in a specimen containing two pathogens. The method is robust to urine matrix effects and off-target commensal and contaminating bacteria.
Collapse
Affiliation(s)
- Larry Burg
- First Light Diagnostics, 2 Omni Way, Chelmsford, MA, 01824, USA.
| | - Gretel Crewe
- First Light Diagnostics, 2 Omni Way, Chelmsford, MA, 01824, USA
| | - James DiMeo
- First Light Diagnostics, 2 Omni Way, Chelmsford, MA, 01824, USA
| | - Xin Guo
- First Light Diagnostics, 2 Omni Way, Chelmsford, MA, 01824, USA
| | - Carmen G Li
- First Light Diagnostics, 2 Omni Way, Chelmsford, MA, 01824, USA
| | - Melissa Mayol
- First Light Diagnostics, 2 Omni Way, Chelmsford, MA, 01824, USA
| | - Andrew Tempesta
- First Light Diagnostics, 2 Omni Way, Chelmsford, MA, 01824, USA
| | - William Lauzier
- First Light Diagnostics, 2 Omni Way, Chelmsford, MA, 01824, USA
| | | | | | - Colleen Barry
- First Light Diagnostics, 2 Omni Way, Chelmsford, MA, 01824, USA
| | - Bruce Walsh
- First Light Diagnostics, 2 Omni Way, Chelmsford, MA, 01824, USA
| | - James E Kirby
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Don Straus
- First Light Diagnostics, 2 Omni Way, Chelmsford, MA, 01824, USA
| |
Collapse
|
10
|
Purushothaman S, Meola M, Egli A. Combination of Whole Genome Sequencing and Metagenomics for Microbiological Diagnostics. Int J Mol Sci 2022; 23:9834. [PMID: 36077231 PMCID: PMC9456280 DOI: 10.3390/ijms23179834] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 12/21/2022] Open
Abstract
Whole genome sequencing (WGS) provides the highest resolution for genome-based species identification and can provide insight into the antimicrobial resistance and virulence potential of a single microbiological isolate during the diagnostic process. In contrast, metagenomic sequencing allows the analysis of DNA segments from multiple microorganisms within a community, either using an amplicon- or shotgun-based approach. However, WGS and shotgun metagenomic data are rarely combined, although such an approach may generate additive or synergistic information, critical for, e.g., patient management, infection control, and pathogen surveillance. To produce a combined workflow with actionable outputs, we need to understand the pre-to-post analytical process of both technologies. This will require specific databases storing interlinked sequencing and metadata, and also involves customized bioinformatic analytical pipelines. This review article will provide an overview of the critical steps and potential clinical application of combining WGS and metagenomics together for microbiological diagnosis.
Collapse
Affiliation(s)
- Srinithi Purushothaman
- Applied Microbiology Research, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
- Institute of Medical Microbiology, University of Zurich, 8006 Zurich, Switzerland
| | - Marco Meola
- Applied Microbiology Research, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
- Institute of Medical Microbiology, University of Zurich, 8006 Zurich, Switzerland
- Swiss Institute of Bioinformatics, University of Basel, 4031 Basel, Switzerland
| | - Adrian Egli
- Applied Microbiology Research, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
- Institute of Medical Microbiology, University of Zurich, 8006 Zurich, Switzerland
- Clinical Bacteriology and Mycology, University Hospital Basel, 4031 Basel, Switzerland
| |
Collapse
|
11
|
Cao J, Chande C, Köhler JM. Microtoxicology by microfluidic instrumentation: a review. LAB ON A CHIP 2022; 22:2600-2623. [PMID: 35678285 DOI: 10.1039/d2lc00268j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Microtoxicology is concerned with the toxic effects of small amounts of substances. This review paper discusses the application of small amounts of noxious substances for toxicological investigation in small volumes. The vigorous development of miniaturized methods in microfluidics over the last two decades involves chip-based devices, micro droplet-based procedures, and the use of micro-segmented flow for microtoxicological studies. The studies have shown that the microfluidic approach is particularly valuable for highly parallelized and combinatorial dose-response screenings. Accurate dosing and mixing of effector substances in large numbers of microcompartments supplies detailed data of dose-response functions by highly concentration-resolved assays and allows evaluation of stochastic responses in case of small separated cell ensembles and single cell experiments. The investigations demonstrate that very different biological targets can be studied using miniaturized approaches, among them bacteria, eukaryotic microorganisms, cell cultures from tissues of multicellular organisms, stem cells, and early embryonic states. Cultivation and effector exposure tests can be performed in small volumes over weeks and months, confirming that the microfluicial strategy is also applicable for slow-growing organisms. Here, the state of the art of miniaturized toxicology, particularly for studying antibiotic susceptibility, drug toxicity testing in the miniaturized system like organ-on-chip, environmental toxicology, and the characterization of combinatorial effects by two and multi-dimensional screenings, is discussed. Additionally, this review points out the practical limitations of the microtoxicology platform and discusses perspectives on future opportunities and challenges.
Collapse
Affiliation(s)
- Jialan Cao
- Techn. Univ. Ilmenau, Dept. Phys. Chem. and Microreaction Technology, Institute for Micro- und Nanotechnologies/Institute for Chemistry and Biotechnology, Ilmenau, Germany.
| | - Charmi Chande
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| | - J Michael Köhler
- Techn. Univ. Ilmenau, Dept. Phys. Chem. and Microreaction Technology, Institute for Micro- und Nanotechnologies/Institute for Chemistry and Biotechnology, Ilmenau, Germany.
| |
Collapse
|
12
|
Larson EA, Rensner JJ, Larsen KR, Bellaire B, Lee YJ. Rapid Antibiotic Susceptibility Testing by Deuterium Labeling of Bacterial Lipids in On-Target Microdroplet Cultures. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1221-1228. [PMID: 35623100 PMCID: PMC9264383 DOI: 10.1021/jasms.2c00056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Antimicrobial resistance is a serious challenge facing human and veterinary health. Current methods of detecting resistance are limited in turn-around time or universal detection. In this work, a new antimicrobial susceptibility test is developed and validated, which utilizes deuterium labeling of membrane lipids to track the growth of bacterial cells. We hypothesize that deuterium uptake and subsequent labeling of lipids can be detected using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Additionally, bacteria growth is performed on the MALDI target, minimizing sample preparation materials and time. When two Escherichia coli strains are grown in the presence of deuterium oxide, labeling can be detected in as little as 30 min to 2 h. The labeling efficiency, or the ratio of labeled to unlabeled lipid peaks, provides information about the growth rate of bacteria. This growth ratio can differentiate between resistant and susceptible strains of bacteria as a resistant strain will maintain ∼50% labeling efficiency between untreated and treated cultures. In comparison, a susceptible strain will see a decrease in fractional abundance of deuterium from ∼50% in the untreated to ∼10% in the treated. This approach is applied to measure the minimum inhibitory concentration (MIC) of the resistant and susceptible strains from on-target microdroplet culture in a range of antibiotic concentrations. The first antibiotic concentration with a significant decrease in fractional abundance of deuterium correlates well with a traditionally obtained MIC using broth dilution, indicating the clinical relevance of the results.
Collapse
Affiliation(s)
- Evan A. Larson
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Josiah J. Rensner
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Kristina R. Larsen
- Department
of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa 50011, United States
| | - Bryan Bellaire
- Department
of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa 50011, United States
| | - Young Jin Lee
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
13
|
Zhang W, Chen X, Zhang J, Chen X, Zhou L, Wang P, Hong W. Rapid antimicrobial susceptibility testing for mixed bacterial infection in urine by AI-stimulated Raman scattering metabolic imaging. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
14
|
Rousseau AN, Faure N, Rol F, Sedaghat Z, Le Galudec J, Mallard F, Josso Q. Fast Antibiotic Susceptibility Testing via Raman Microspectrometry on Single Bacteria: An MRSA Case Study. ACS OMEGA 2021; 6:16273-16279. [PMID: 34235297 PMCID: PMC8246468 DOI: 10.1021/acsomega.1c00170] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/05/2021] [Indexed: 05/14/2023]
Abstract
Despite recent advances in molecular diagnostics, ultrafast determination of the antibiotic susceptibility phenotype of pathogenic microorganisms is still a major challenge of in vitro diagnostics (IVD) of infectious diseases. Raman microspectroscopy has been proposed as a means to achieve this goal. Previous studies have shown that susceptibility phenotyping could be done through Raman analysis of microbial cells, either in large clusters or down to the single-cell level in the case of Gram-negative rods. Gram-positive cocci such as Staphylococcus aureus pose several challenges due to their size and their different metabolic and chemical characteristics. Using a tailored automated single-cell Raman spectrometer and a previously proposed sample preparation protocol, we acquired and analyzed 9429 S. aureus single cells belonging to three cefoxitin-resistant strains and two susceptible strains during their incubation in the presence of various concentrations of cefoxitin. We observed an effect on S. aureus spectra that is weaker than what was detected on previous bacteria/drug combinations, with a higher cell-to-cell response variability and an important impact of incubation conditions on the phenotypic resistance of a given strain. Overall, the proposed protocol was able to correlate strains' phenotype with a specific modification of the spectra using majority votes. We, hence, confirm that our previous results on single-cell Raman antibiotic susceptibility testing can be extended to the S. aureus case and further clarify potential limitations and development requirements of this approach in the move toward industrial applications.
Collapse
Affiliation(s)
| | - Nicolas Faure
- bioMérieux,
R&D Microbiology, 5 rue des Berges, 38024 Grenoble, France
| | - Fabian Rol
- Bioaster, 40 avenue Tony Garnier, 69007 Lyon, France
| | | | - Joël Le Galudec
- bioMérieux,
R&D Microbiology, 5 rue des Berges, 38024 Grenoble, France
| | - Frédéric Mallard
- bioMérieux,
R&D Microbiology, 5 rue des Berges, 38024 Grenoble, France
| | - Quentin Josso
- bioMérieux,
R&D Microbiology, 376 Chemin de l’Orme, 69280 Marcy-l’Etoile, France
| |
Collapse
|
15
|
Brennan-Krohn T, Manetsch R, O'Doherty GA, Kirby JE. New strategies and structural considerations in development of therapeutics for carbapenem-resistant Enterobacteriaceae. Transl Res 2020; 220:14-32. [PMID: 32201344 PMCID: PMC7293954 DOI: 10.1016/j.trsl.2020.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/12/2022]
Abstract
Antimicrobial resistance poses a significant threat to our ability to treat infections. Especially concerning is the emergence of carbapenem-resistant Enterobacteriaceae (CRE). In the new 2019 United States Centers for Disease Control and Prevention Antibiotic Resistance Report, CRE remain in the most urgent antimicrobial resistance threat category. There is good reason for this concerning designation. In particular, the combination of several resistance elements in CRE can make these pathogens untreatable or effectively untreatable with our current armamentarium of anti-infective agents. This article reviews recently approved agents with activity against CRE and a range of modalities in the pipeline, from early academic investigation to those in clinical trials, with a focus on structural aspects of new antibiotics. Another article in this series addresses the need to incentive pharmaceutical companies to invest in CRE antimicrobial development and to encourage hospitals to make these agents available in their formularies. This article will also consider the need for change in requirements for antimicrobial susceptibility testing implementation in clinical laboratories to address practical roadblocks that impede our efforts to provide even existing CRE antibiotics to our patients.
Collapse
Affiliation(s)
- Thea Brennan-Krohn
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts; Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts
| | - Roman Manetsch
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts; Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts
| | | | - James E Kirby
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts; Beth Israel Deaconess Medical Center, Boston, Massachusetts.
| |
Collapse
|
16
|
Zasowski EJ, Bassetti M, Blasi F, Goossens H, Rello J, Sotgiu G, Tavoschi L, Arber MR, McCool R, Patterson JV, Longshaw CM, Lopes S, Manissero D, Nguyen ST, Tone K, Aliberti S. A Systematic Review of the Effect of Delayed Appropriate Antibiotic Treatment on the Outcomes of Patients With Severe Bacterial Infections. Chest 2020; 158:929-938. [PMID: 32446623 DOI: 10.1016/j.chest.2020.03.087] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/20/2020] [Accepted: 03/30/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Patients with severe bacterial infections often experience delay in receiving appropriate treatment. Consolidated evidence of the impact of delayed appropriate treatment is needed to guide treatment and improve outcomes. RESEARCH QUESTION What is the impact of delayed appropriate antibacterial therapy on clinical outcomes in patients with severe bacterial infections? STUDY DESIGN AND METHODS Literature searches of MEDLINE and Embase, conducted on July 24, 2018, identified studies published after 2007 reporting the impact of delayed appropriate therapy on clinical outcomes for hospitalized adult patients with bacterial infections. Where appropriate, results were pooled and analyzed with delayed therapy modeled three ways: delay vs no delay in receiving appropriate therapy; duration of delay; and inappropriate vs appropriate initial therapy. This article reports meta-analyses on the effect of delay and duration of delay. RESULTS The eligibility criteria were met by 145 studies, of which 37 contributed data to analyses of effect of delay. Mortality was significantly lower in patients receiving appropriate therapy without delay compared with those experiencing delay (OR, 0.57; 95% CI, 0.45-0.72). Mortality was also lower in the no-delay group compared with the delay group in subgroups of studies reporting mortality at 20 to 30 days, during ICU stay, or in patients with bacteremia (OR, 0.57 [95% CI, 0.43-0.76]; OR, 0.47 [95% CI, 0.27-0.80]; and OR, 0.54 [95% CI, 0.40-0.75], respectively). No difference was found in time to appropriate therapy between those who died and those who survived (P = .09), but heterogeneity between studies was high. INTERPRETATION Avoiding delayed appropriate therapy is essential to reduce mortality in patients with severe bacterial infections. CLINICAL TRIAL REGISTRATION PROSPERO; No.: CRD42018104669; URL: www.crd.york.ac.uk/prospero/.
Collapse
Affiliation(s)
- Evan J Zasowski
- Department of Clinical Sciences, Touro University California College of Pharmacy, Vallejo, CA
| | - Matteo Bassetti
- Infectious Diseases Clinic, Department of Health Sciences, University of Genoa and Ospedale Policlinico San Martino-IRCCS per l'Oncologia, Genoa, Italy
| | - Francesco Blasi
- Respiratory Unit and Cystic Fibrosis Adult Center, Internal Medicine Department, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Herman Goossens
- Laboratory of Clinical Microbiology, Antwerp University Hospital, Edegem and Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Jordi Rello
- Centro de Investigación Biomédica en Red-Enfermedades Respiratorias (CIBERES), Barcelona, Spain; Clinical Research and Epidemiology in Pneumonia and Sepsis (CRIPS), Vall d'Hebron Institute of Research, Barcelona, Spain
| | - Giovanni Sotgiu
- Clinical Epidemiology and Medical Statistics Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Lara Tavoschi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Mick R Arber
- York Health Economics Consortium, University of York, York, United Kingdom
| | - Rachael McCool
- York Health Economics Consortium, University of York, York, United Kingdom
| | - Jacoby V Patterson
- York Health Economics Consortium, University of York, York, United Kingdom
| | | | | | | | | | | | - Stefano Aliberti
- Respiratory Unit and Cystic Fibrosis Adult Center, Internal Medicine Department, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
| |
Collapse
|
17
|
Smith KP, Kirby JE. Image analysis and artificial intelligence in infectious disease diagnostics. Clin Microbiol Infect 2020; 26:1318-1323. [PMID: 32213317 DOI: 10.1016/j.cmi.2020.03.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/06/2020] [Accepted: 03/13/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Microbiologists are valued for their time-honed skills in image analysis, including identification of pathogens and inflammatory context in Gram stains, ova and parasite preparations, blood smears and histopathologic slides. They also must classify colony growth on a variety of agar plates for triage and assessment. Recent advances in image analysis, in particular application of artificial intelligence (AI), have the potential to automate these processes and support more timely and accurate diagnoses. OBJECTIVES To review current AI-based image analysis as applied to clinical microbiology; and to discuss future trends in the field. SOURCES Material sourced for this review included peer-reviewed literature annotated in the PubMed or Google Scholar databases and preprint articles from bioRxiv. Articles describing use of AI for analysis of images used in infectious disease diagnostics were reviewed. CONTENT We describe application of machine learning towards analysis of different types of microbiologic image data. Specifically, we outline progress in smear and plate interpretation as well as the potential for AI diagnostic applications in the clinical microbiology laboratory. IMPLICATIONS Combined with automation, we predict that AI algorithms will be used in the future to prescreen and preclassify image data, thereby increasing productivity and enabling more accurate diagnoses through collaboration between the AI and the microbiologist. Once developed, image-based AI analysis is inexpensive and amenable to local and remote diagnostic use.
Collapse
Affiliation(s)
- K P Smith
- Department of Pathology, Beth Israel Deaconess Medical Center, USA; Harvard Medical School, Boston, MA, USA
| | - J E Kirby
- Department of Pathology, Beth Israel Deaconess Medical Center, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
18
|
van Belkum A, Pelegrin AC, Datar R, Goyal M, Palmieri M, Mirande C, Chalansonnet V, Orenga S. Differences and overlaps between Phd studies in diagnostic microbiology in industrial and academic settings. Med Microbiol Immunol 2019; 209:217-223. [PMID: 31784890 PMCID: PMC7248035 DOI: 10.1007/s00430-019-00643-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 11/14/2019] [Indexed: 11/26/2022]
Abstract
Industrial and academic needs for innovation and fundamental research are essential and not widely different. Depending on the industrial setting, research and development (R&D) activities may be more focused on the developmental aspects given the need to ultimately sell useful products. However, one of the biggest differences between academic and industrial R&D will usually be the funding model applied and the priority setting between innovative research and product development. Generalizing, companies usually opt for development using customer- and consumer-derived funds whereas university research is driven by open innovation, mostly funded by taxpayer’s money. Obviously, both approaches require scientific rigor and quality, dedication and perseverance and obtaining a PhD degree can be achieved in both settings. The formal differences between the two settings need to be realized and students should make an educated choice prior to the start of PhD-level research activities. Intrinsic differences in scientific approaches between the two categories of employers are not often discussed in great detail. We will here document our experience in this field and provide insights into the need for purely fundamental research, industrial R&D and current mixed models at the level of European funding of research. The field of diagnostics in clinical bacteriology and infectious diseases will serve as a source of reference.
Collapse
Affiliation(s)
- Alex van Belkum
- Data Analytics Department, Biomérieux, 3 Route de Port Michaud, 38390, La Balme Les Grottes, France.
| | - Andreu Coello Pelegrin
- Data Analytics Department, Biomérieux, 3 Route de Port Michaud, 38390, La Balme Les Grottes, France
| | - Rucha Datar
- Clinical Unit, Biomérieux, 3 Route de Port Michaud, 38390, La Balme Les Grottes, France
| | - Manisha Goyal
- Data Analytics Department, Biomérieux, 3 Route de Port Michaud, 38390, La Balme Les Grottes, France
| | - Mattia Palmieri
- Data Analytics Department, Biomérieux, 3 Route de Port Michaud, 38390, La Balme Les Grottes, France
| | - Caroline Mirande
- Clinical Unit, Biomérieux, 3 Route de Port Michaud, 38390, La Balme Les Grottes, France
| | - Valérie Chalansonnet
- Clinical Unit, Biomérieux, 3 Route de Port Michaud, 38390, La Balme Les Grottes, France
| | - Sylvain Orenga
- Clinical Unit, Biomérieux, 3 Route de Port Michaud, 38390, La Balme Les Grottes, France
| |
Collapse
|
19
|
Bringing Antimicrobial Susceptibility Testing for New Drugs into the Clinical Laboratory: Removing Obstacles in Our Fight against Multidrug-Resistant Pathogens. J Clin Microbiol 2019; 57:JCM.01270-19. [PMID: 31533983 DOI: 10.1128/jcm.01270-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There are now several new antibiotics available to treat multidrug-resistant pathogens, and susceptibility testing methods for these drugs are increasingly available at the time of drug approval. However, lack of clarity regarding verification requirements remains a formidable barrier to introducing such testing in clinical laboratories, making these drugs practically unavailable for patient use. We propose a change in the framework for bringing in testing for new antibiotics, focusing on quality control rather than underpowered verification studies.
Collapse
|