1
|
Lavallée É, Roulet-Matton M, Giang V, Cardona Hurtado R, Chaput D, Gravel SP. Mitochondrial signatures shape phenotype switching and apoptosis in response to PLK1 inhibitors. Life Sci Alliance 2025; 8:e202402912. [PMID: 39658088 PMCID: PMC11632064 DOI: 10.26508/lsa.202402912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/12/2024] Open
Abstract
PLK1 inhibitors are emerging anticancer agents that are being tested as monotherapy and combination therapies for various cancers. Although PLK1 inhibition in experimental models has shown potent antitumor effects, translation to the clinic has been hampered by low antitumor activity and tumor relapse. Here, we report the identification of mitochondrial protein signatures that determine the sensitivity to approaches targeting PLK1 in human melanoma cell lines. In response to PLK1 inhibition or gene silencing, resistant cells adopt a pro-inflammatory and dedifferentiated phenotype, whereas sensitive cells undergo apoptosis. Mitochondrial DNA depletion and silencing of the ABCD1 transporter sensitize cells to PLK1 inhibition and attenuate the associated pro-inflammatory response. We also found that nonselective inhibitors of the p90 ribosomal S6 kinase (RSK) exert their antiproliferative and pro-inflammatory effects via PLK1 inhibition. Specific inhibition of RSK, on the other hand, is anti-inflammatory and promotes a program of antigen presentation. This study reveals the overlooked effects of PLK1 on phenotype switching and suggests that mitochondrial precision medicine can help improve the response to targeted therapies.
Collapse
Affiliation(s)
- Émilie Lavallée
- Faculté de Pharmacie, Université de Montréal, Montréal, Canada
| | | | - Viviane Giang
- Faculté de Pharmacie, Université de Montréal, Montréal, Canada
| | | | - Dominic Chaput
- Faculté de Pharmacie, Université de Montréal, Montréal, Canada
| | | |
Collapse
|
2
|
Fernández-Sainz J, Herrera-Ochoa D, Pacheco-Liñán PJ, Darder M, Albaladejo J, Bravo I, Garzón-Ruiz A. Spectroscopic study on volasertib: Highly stable complexes with albumin and encapsulation into alginate/montmorillonite bionanocomposites. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124823. [PMID: 39033609 DOI: 10.1016/j.saa.2024.124823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/05/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
In the present work, we study different physicochemical properties related to LADME processes of volasertib, a Polo-like kinase 1 inhibitor in advanced clinical trials. Firstly, the protonation equilibria, the extent of ionization at the physiological pH and pKa values of this drug are studied combining spectroscopic techniques and computational calculations. Secondly, the binding process of volasertib to the human serum albumin (HSA) protein is analyzed by fluorescence spectroscopy. We report a high binding constant to HSA (Ka = 4.10 × 106 M-1) and their pharmacokinetic implications are discussed accordingly. The negative enthalpy and entropy (ΔH0 = -54.49 kJ/mol; ΔS0 = -58.90 J K-1 mol-1) determined for the binding process suggests the implication of hydrogen bonds and van der Waals interactions in the formation of the HSA-volasertib complex. Additionally, volasertib is encapsulated in an alginate/montmorillonite bionanocomposite as a proof of concept for an oral delivery nanocarrier. The physical properties of that nanocomposite as well as volasertib delivery kinetics are analyzed.
Collapse
Affiliation(s)
- Jesús Fernández-Sainz
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr. José María Sánchez Ibáñez, s/n, 02071 Albacete, Spain
| | - Diego Herrera-Ochoa
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr. José María Sánchez Ibáñez, s/n, 02071 Albacete, Spain
| | - Pedro J Pacheco-Liñán
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr. José María Sánchez Ibáñez, s/n, 02071 Albacete, Spain
| | - Margarita Darder
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Cantoblanco, 28049 Madrid, Spain
| | - José Albaladejo
- Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avenida Camilo José Cela, 10, 13071 Ciudad Real, Spain
| | - Iván Bravo
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr. José María Sánchez Ibáñez, s/n, 02071 Albacete, Spain
| | - Andrés Garzón-Ruiz
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr. José María Sánchez Ibáñez, s/n, 02071 Albacete, Spain.
| |
Collapse
|
3
|
Herrera-Ochoa D, Bravo I, Garzón-Ruiz A. Monitoring cancer treatments in melanoma cells using a fluorescence lifetime nanoprobe based on a CdSe/ZnS quantum dot functionalized with a peptide containing D-penicillamine and histidine. Colloids Surf B Biointerfaces 2024; 245:114265. [PMID: 39321721 DOI: 10.1016/j.colsurfb.2024.114265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/12/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
Anticancer therapies with cisplatin and volasertib (BI-6727) were monitored by fluorescence lifetime imaging microscopy (FLIM) in live SK-Mel-2 melanoma cells. A CdSe/ZnS quantum dot functionalized with a peptide containing D-penicillamine and histidine (CdSe/ZnS-PH) was used as intracellular pH fluorescent probe. A faster cytosol acidification was observed for cells treated with cisplatin when compared to volasertib. The first changes in the intracellular pH were found after 2 hours of treatment with cisplatin and 8 hours with volasertib. Additionally, the relationship between cytosol acidification and apoptosis was investigated using an innovative methodology based on time-resolved fluorescence measurements. Similar low percentages of apoptotic cells were observed after short incubation periods (2 - 8 hours) with both drugs. In contrast, late apoptosis and death were found for a large fraction of cells during 24-hour incubation with cisplatin but not volasertib. Thus, the early acidification observed in cisplatin treatment could accelerate apoptosis and cell death. Despite volasertib treatment shows slower mechanism of action than cisplatin, similar inhibitory effects were found for both drugs at longer incubation periods (72 hours). This study proves the potential of CdSe/ZnS-PH nanoparticle as a fluorescence lifetime probe in the study of the mechanism of action of antitumor drugs.
Collapse
Affiliation(s)
- Diego Herrera-Ochoa
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr. José María Sánchez Ibáñez, s/n, Albacete 02071, Spain
| | - Iván Bravo
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr. José María Sánchez Ibáñez, s/n, Albacete 02071, Spain; Centro Regional de Investigaciones Biomédicas (CRIB), Unidad Asociada de Biomedicina (UCLM-CSIC), C/ Almansa, 14, Albacete 02008, Spain
| | - Andrés Garzón-Ruiz
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr. José María Sánchez Ibáñez, s/n, Albacete 02071, Spain.
| |
Collapse
|
4
|
Williams I, DeHart H, O'Malley M, Walker B, Ulhaskumar V, Ray H, Delaney JR, Nephew KP, Carpenter RL. MYC and HSF1 Cooperate to Drive PLK1 inhibitor Sensitivity in High Grade Serous Ovarian Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598486. [PMID: 38915574 PMCID: PMC11195273 DOI: 10.1101/2024.06.11.598486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Ovarian cancer is a deadly female cancer with high rates of recurrence. The primary treatment strategy for patients is platinum-based therapy regimens that almost universally develop resistance. Consequently, new therapeutic avenues are needed to overcome the plateau that current therapies have on patient outcomes. We describe a gene amplification involving both HSF1 and MYC, wherein these two genes on chromosome 8q are co-amplified in over 7% of human tumors that is enriched to over 30% of patients with ovarian cancer. We further found that HSF1 and MYC transcriptional activity is correlated in human tumors and ovarian cancer cell lines, suggesting they may cooperate in ovarian cancer cells. CUT&RUN for HSF1 and MYC in co-amplified ovarian cancer cells revealed that HSF1 and MYC have overlapping binding at a substantial number of locations throughout the genome where their binding peaks are near identical. Consistent with these data, a protein-protein interaction between HSF1 and MYC was detected in ovarian cancer cells, implying these two transcription factors have a molecular cooperation. Further supporting their cooperation, growth of HSF1-MYC co-amplified ovarian cancer cells were found to be dependent on both HSF1 and MYC. In an attempt to identify a therapeutic target that could take advantage of this dependency on both HSF1 and MYC, PLK1 was identified as being correlated with HSF1 and MYC in primary human tumor specimens, consistent with a previously established effect of PLK1 on HSF1 and MYC protein levels. Targeting PLK1 with the compound volasertib (BI-6727) revealed a greater than 200-fold increased potency of volasertib in HSF1-MYC co-amplified ovarian cancer cells compared to ovarian cancer cells wild-type HSF1 and MYC copy number, which extended to several growth assays, including spheroid growth. Volasertib, and other PLK1 inhibitors, have not shown great success in clinical trials and this study suggests that targeting PLK1 may be viable in a precision medicine approach using HSF1-MYC co-amplification as a biomarker for response.
Collapse
|
5
|
Hosea R, Hillary S, Naqvi S, Wu S, Kasim V. The two sides of chromosomal instability: drivers and brakes in cancer. Signal Transduct Target Ther 2024; 9:75. [PMID: 38553459 PMCID: PMC10980778 DOI: 10.1038/s41392-024-01767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/18/2024] [Accepted: 02/06/2024] [Indexed: 04/02/2024] Open
Abstract
Chromosomal instability (CIN) is a hallmark of cancer and is associated with tumor cell malignancy. CIN triggers a chain reaction in cells leading to chromosomal abnormalities, including deviations from the normal chromosome number or structural changes in chromosomes. CIN arises from errors in DNA replication and chromosome segregation during cell division, leading to the formation of cells with abnormal number and/or structure of chromosomes. Errors in DNA replication result from abnormal replication licensing as well as replication stress, such as double-strand breaks and stalled replication forks; meanwhile, errors in chromosome segregation stem from defects in chromosome segregation machinery, including centrosome amplification, erroneous microtubule-kinetochore attachments, spindle assembly checkpoint, or defective sister chromatids cohesion. In normal cells, CIN is deleterious and is associated with DNA damage, proteotoxic stress, metabolic alteration, cell cycle arrest, and senescence. Paradoxically, despite these negative consequences, CIN is one of the hallmarks of cancer found in over 90% of solid tumors and in blood cancers. Furthermore, CIN could endow tumors with enhanced adaptation capabilities due to increased intratumor heterogeneity, thereby facilitating adaptive resistance to therapies; however, excessive CIN could induce tumor cells death, leading to the "just-right" model for CIN in tumors. Elucidating the complex nature of CIN is crucial for understanding the dynamics of tumorigenesis and for developing effective anti-tumor treatments. This review provides an overview of causes and consequences of CIN, as well as the paradox of CIN, a phenomenon that continues to perplex researchers. Finally, this review explores the potential of CIN-based anti-tumor therapy.
Collapse
Affiliation(s)
- Rendy Hosea
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Sharon Hillary
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Sumera Naqvi
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
6
|
Wallbillich NJ, Lu H. Role of c-Myc in lung cancer: Progress, challenges, and prospects. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2023; 1:129-138. [PMID: 37920609 PMCID: PMC10621893 DOI: 10.1016/j.pccm.2023.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Lung cancer remains the leading cause of cancer-related deaths worldwide. Despite the recent advances in cancer therapies, the 5-year survival of non-small cell lung cancer (NSCLC) patients hovers around 20%. Inherent and acquired resistance to therapies (including radiation, chemotherapies, targeted drugs, and combination therapies) has become a significant obstacle in the successful treatment of NSCLC. c-Myc, one of the critical oncoproteins, has been shown to be heavily associated with the malignant cancer phenotype, including rapid proliferation, metastasis, and chemoresistance across multiple cancer types. The c-Myc proto-oncogene is amplified in small cell lung cancers (SCLCs) and overexpressed in over 50% of NSCLCs. c-Myc is known to actively regulate the transcription of cancer stemness genes that are recognized as major contributors to tumor progression and therapeutic resistance; thus, targeting c-Myc either directly or indirectly in mitigation of the cancer stemness phenotype becomes a promising approach for development of a new strategy against drug resistant lung cancers. This review will summarize what is currently known about the mechanisms underlying c-Myc regulation of cancer stemness and its involvement in drug resistance and offer an overview on the current progress and future prospects in therapeutically targeting c-Myc in both SCLC and NSCLC.
Collapse
Affiliation(s)
- Nicholas J. Wallbillich
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| | - Hua Lu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| |
Collapse
|
7
|
Wullich B, Taubert H, Goebell PJ, Kuwert T, Beck M, Schott C, Baur AS, Eckstein M, Wach S. [Individualized precision medicine]. UROLOGIE (HEIDELBERG, GERMANY) 2023; 62:879-888. [PMID: 37526710 DOI: 10.1007/s00120-023-02151-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/30/2023] [Indexed: 08/02/2023]
Abstract
Spectacular advances have been made in personalized medicine , which has rapidly revolutionized our traditional understanding of disease diagnosis and treatment. Molecular testing of tissue and liquid samples using next generation sequencing has developed into a key technology in this scenario. It can be used for both the determination of biomarkers for diagnostic, prognostic and predictive purposes, as well as the possible improvement of treatment outcome through the use of targeted therapies and the avoidance of therapies in the event of special resistance situations. In addition to drugs that have already been approved, which among other things intervene in cellular DNA repair, many new drugs have been developed and are in clinical testing. Furthermore, new possibilities in molecular imaging have dramatically expanded our understanding of tumor spread and created new approaches for targeted therapies.
Collapse
Affiliation(s)
- Bernd Wullich
- Klinik für Urologie und Kinderurologie, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Krankenhausstraße 12, 91054, Erlangen, Deutschland.
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Deutschland.
| | - Helge Taubert
- Klinik für Urologie und Kinderurologie, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Krankenhausstraße 12, 91054, Erlangen, Deutschland
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Deutschland
| | - Peter J Goebell
- Klinik für Urologie und Kinderurologie, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Krankenhausstraße 12, 91054, Erlangen, Deutschland
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Deutschland
| | - Torsten Kuwert
- Nuklearmedizinische Klinik, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Deutschland
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Deutschland
| | - Michael Beck
- Nuklearmedizinische Klinik, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Deutschland
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Deutschland
| | - Christian Schott
- Labor für Experimentelle Dermatologie, Hautklinik, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Deutschland
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Deutschland
| | - Andreas S Baur
- Labor für Experimentelle Dermatologie, Hautklinik, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Deutschland
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Deutschland
| | - Markus Eckstein
- Pathologisches Institut, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Deutschland
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Deutschland
| | - Sven Wach
- Klinik für Urologie und Kinderurologie, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Krankenhausstraße 12, 91054, Erlangen, Deutschland
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Deutschland
| |
Collapse
|
8
|
Ansari WA, Rab SO, Saquib M, Sarfraz A, Hussain MK, Akhtar MS, Ahmad I, Khan MF. Pentafuhalol-B, a Phlorotannin from Brown Algae, Strongly Inhibits the PLK-1 Overexpression in Cancer Cells as Revealed by Computational Analysis. Molecules 2023; 28:5853. [PMID: 37570823 PMCID: PMC10421442 DOI: 10.3390/molecules28155853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Polo-like kinase-1 (PLK-1) is an essential mitotic serine/threonine (Ser/Thr) kinase that belongs to the Polo-like kinase (PLK) family and is overexpressed in non-small cell lung cancer (NSCLC) via promotion of cell division. Therefore, PLK-1 may act as a promising target for the therapeutic cure of various cancers. Although a variety of anti-cancer drugs, both synthetic and naturally occurring, such as volasertib, onvansertib, thymoquinone, and quercetin, are available either alone or in combination with other therapies, they have limited efficacy, especially in the advanced stages of cancer. To the best of our knowledge, no anticancer agent has been reported from marine algae or microorganisms to date. Thus, the aim of the present study is a high-throughput virtual screening of phlorotannins, obtained from edible brown algae, using molecular docking and molecular dynamic simulation analysis. Among these, Pentafuhalol-B (PtB) showed the lowest binding energy (best of triplicate runs) against the target protein PLK-1 as compared to the reference drug volasertib. Further, in MD simulation (best of triplicate runs), the PtB-PLK-1 complex displayed stability in an implicit water system through the formation of strong molecular interactions. Additionally, MMGBSA calculation (best of triplicate runs) was also performed to validate the PtB-PLK-1 complex binding affinities and stability. Moreover, the chemical reactivity of PtB towards the PLK-1 target was also optimised using density functional theory (DFT) calculations, which exhibited a lower HOMO-LUMO energy gap. Overall, these studies suggest that PtB binds strongly within the pocket sites of PLK-1 through the formation of a stable complex, and also shows higher chemical reactivity than the reference drug volasertib. The present study demonstrated the inhibitory nature of PtB against the PLK-1 protein, establishing its potential usefulness as a small molecule inhibitor for the treatment of different types of cancer.
Collapse
Affiliation(s)
- Waseem Ahmad Ansari
- Department of Biotechnology, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow 226003, India; (W.A.A.)
- Department of Chemistry, Era University, Sarfarazganj, Hardoi Road, Lucknow 226003, India
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62529, Saudi Arabia; (S.O.R.)
| | - Mohammad Saquib
- Department of Chemistry, University of Allahabad, Prayagraj 211002, India;
| | - Aqib Sarfraz
- Department of Biotechnology, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow 226003, India; (W.A.A.)
| | - Mohd Kamil Hussain
- Department of Chemistry, Government Raza P.G. College, Rampur, M. J. P. Rohilkhand University, Bareilly 244901, India;
| | - Mohd Sayeed Akhtar
- Department of Botany, Gandhi Faiz-e-Aam College, Shahjahanpur 242001, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62529, Saudi Arabia; (S.O.R.)
| | - Mohammad Faheem Khan
- Department of Biotechnology, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow 226003, India; (W.A.A.)
- Department of Chemistry, Era University, Sarfarazganj, Hardoi Road, Lucknow 226003, India
| |
Collapse
|
9
|
Eggermont C, Gutierrez GJ, De Grève J, Giron P. Inhibition of PLK1 Destabilizes EGFR and Sensitizes EGFR-Mutated Lung Cancer Cells to Small Molecule Inhibitor Osimertinib. Cancers (Basel) 2023; 15:cancers15092589. [PMID: 37174055 PMCID: PMC10177332 DOI: 10.3390/cancers15092589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Tyrosine kinase inhibitors (TKI) targeting the epidermal growth factor receptor (EGFR) have significantly prolonged survival in EGFR-mutant non-small cell lung cancer patients. However, the development of resistance mechanisms prohibits the curative potential of EGFR TKIs. Combination therapies emerge as a valuable approach to preventing or delaying disease progression. Here, we investigated the combined inhibition of polo-like kinase 1 (PLK1) and EGFR in TKI-sensitive EGFR-mutant NSCLC cells. The pharmacological inhibition of PLK1 destabilized EGFR levels and sensitized NSCLC cells to Osimertinib through induction of apoptosis. In addition, we found that c-Cbl, a ubiquitin ligase of EGFR, is a direct phosphorylation target of PLK1 and PLK1 impacts the stability of c-Cbl in a kinase-dependent manner. In conclusion, we describe a novel interaction between mutant EGFR and PLK1 that may be exploited in the clinic. Co-targeting PLK1 and EGFR may improve and prolong the clinical response to EGFR TKI in patients with an EGFR-mutated NSCLC.
Collapse
Affiliation(s)
- Carolien Eggermont
- Laboratory of Medical and Molecular Oncology, Oncology Research Center, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Gustavo J Gutierrez
- Laboratory of Pathophysiological Cell Signaling, Department of Biology, Faculty of Science and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Jacques De Grève
- Laboratory of Medical and Molecular Oncology, Oncology Research Center, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
- Centre for Medical Genetics, Research Group Reproduction and Genetics, Clinical Sciences, UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Philippe Giron
- Laboratory of Medical and Molecular Oncology, Oncology Research Center, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
- Centre for Medical Genetics, Research Group Reproduction and Genetics, Clinical Sciences, UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| |
Collapse
|
10
|
Boi D, Rubini E, Breccia S, Guarguaglini G, Paiardini A. When Just One Phosphate Is One Too Many: The Multifaceted Interplay between Myc and Kinases. Int J Mol Sci 2023; 24:4746. [PMID: 36902175 PMCID: PMC10003727 DOI: 10.3390/ijms24054746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Myc transcription factors are key regulators of many cellular processes, with Myc target genes crucially implicated in the management of cell proliferation and stem pluripotency, energy metabolism, protein synthesis, angiogenesis, DNA damage response, and apoptosis. Given the wide involvement of Myc in cellular dynamics, it is not surprising that its overexpression is frequently associated with cancer. Noteworthy, in cancer cells where high Myc levels are maintained, the overexpression of Myc-associated kinases is often observed and required to foster tumour cells' proliferation. A mutual interplay exists between Myc and kinases: the latter, which are Myc transcriptional targets, phosphorylate Myc, allowing its transcriptional activity, highlighting a clear regulatory loop. At the protein level, Myc activity and turnover is also tightly regulated by kinases, with a finely tuned balance between translation and rapid protein degradation. In this perspective, we focus on the cross-regulation of Myc and its associated protein kinases underlying similar and redundant mechanisms of regulation at different levels, from transcriptional to post-translational events. Furthermore, a review of the indirect effects of known kinase inhibitors on Myc provides an opportunity to identify alternative and combined therapeutic approaches for cancer treatment.
Collapse
Affiliation(s)
- Dalila Boi
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Elisabetta Rubini
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Sara Breccia
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, National Research Council of Italy, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessandro Paiardini
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
11
|
Wei X, Song M, Huang C, Yu Q, Jiang G, Jin G, Jia X, Shi Z. Effectiveness, safety and pharmacokinetics of Polo-like kinase 1 inhibitors in tumor therapy: A systematic review and meta-analysis. Front Oncol 2023; 13:1062885. [PMID: 36845678 PMCID: PMC9947705 DOI: 10.3389/fonc.2023.1062885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
Objective To provide a systematic review of existing meta-analysis on the efficacy, safety and pharmacokinetics of the novel Polo-like kinase-1 (Plk1) inhibitors in various tumor treatments, and assess the methodological quality and the strength of evidence of the included meta-analysis. Methods The Medline, PubMed, Embase, etc. were searched and updated on 30 June 2022. 22 eligible clinical trials involving a total of 1256 patients were included for analyses. Randomised controlled trials (RCTs) compared the efficacy or safety, or both of any Plk1 inhibitors with placebo (active or inert) in participants. To be included, studies had to be RCTs, quasi-RCTs, and nonrandomized comparative studies. Results A meta-analysis of two trials reported progression-free survival (PFS) of the overall population (effect size (ES), 1.01; 95% confidence intervals (CIs), 0.73-1.30, I2 =0.0%, P<0.001) and overall survival (OS) of the overall population (ES, 0.91; 95% CIs, 0.31-1.50, I2 =77.6%, P=0.003). 18 adverse events (AEs) reflected that the possibility of occurrence of AEs in the Plk1 inhibitors group was 1.28 times higher than in the control group (odds ratios (ORs), 1.28; 95% CIs,1.02-1.61). The results of meta-analysis showed that the incidence of AEs in the nervous system was the highest (ES, 0.202; 95% CIs, 0.161-0.244), followed by blood system (ES, 0.190; 95% CIs, 0.178-0.201) and digestive system (ES, 0.181; 95% CIs, 0.150-0.213). Rigosertib (ON 01910.Na) was associated with a decreased risk of AEs in digestive system (ES, 0.103; 95% CIs, 0.059-0.147), but BI 2536 and Volasertib (BI 6727) increased risk of AEs in blood system (ES, 0.399; 95% CIs, 0.294-0.504). Five eligible studies reported the pharmacokinetic parameters of the low dosage (100 mg) cohort and the high dosage (200 mg) cohort, and there was no statistical difference in the total plasma clearance, terminal half-life and apparent volume of distribution at steady state. Conclusions Plk1 inhibitors work better in improving OS and they are well tolerated, effective and safe in reducing the severity of illness while improving the quality of life, especially in patients with non-specific tumors, respiratory system tumors, musculoskeletal system tumors, and urinary system tumors. However, they fail to prolong the PFS. From the vertical whole level analysis, compared to other systems in the body, Plk1 inhibitors should be avoided as far as possible for the treatment of tumors related to the blood circulatory system, digestive system and nervous system, which were attributed to the intervention of Plk1 inhibitors associated with an increased risk of AEs in these systems. The toxicity caused by immunotherapy should be carefully considered. Conversely, a horizontal comparison of three different types of Plk1 inhibitors suggested that Rigosertib (ON 01910.Na) might be relatively suitable for the treatment of tumors associated with the digestive system, while Volasertib (BI 6727) might be even less suitable for the treatment of tumors associated with the blood circulation system. Additionally, in the dose selection of Plk1 inhibitors, the low dose of 100 mg should be preferred, and meanwhile, it can also ensure the pharmacokinetic efficacy that is indistinguishable from the high dose of 200 mg. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42022343507.
Collapse
Affiliation(s)
- Xiao Wei
- School of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Mingzhu Song
- School of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Chan Huang
- School of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Qiao Yu
- School of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Guirong Jiang
- School of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Guanghao Jin
- School of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Xibiao Jia
- Key Laboratory of Ministry of Education of Birth Defects and Related Maternal and Child Diseases, West China Second Hospital, Sichuan University, Chengdu, China
| | - Zheng Shi
- Clinical Genetics Laboratory, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, China
| |
Collapse
|
12
|
Wilson J, Loizou JI. Exploring the genetic space of the DNA damage response for cancer therapy through CRISPR-based screens. Mol Oncol 2022; 16:3778-3791. [PMID: 35708734 PMCID: PMC9627789 DOI: 10.1002/1878-0261.13272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/11/2022] [Accepted: 06/14/2022] [Indexed: 12/24/2022] Open
Abstract
The concepts of synthetic lethality and viability have emerged as powerful approaches to identify vulnerabilities and resistances within the DNA damage response for the treatment of cancer. Historically, interactions between two genes have had a longstanding presence in genetics and have been identified through forward genetic screens that rely on the molecular basis of the characterized phenotypes, typically caused by mutations in single genes. While such complex genetic interactions between genes have been studied extensively in model organisms, they have only recently been prioritized as therapeutic strategies due to technological advancements in genetic screens. Here, we discuss synthetic lethal and viable interactions within the DNA damage response and present how CRISPR-based genetic screens and chemical compounds have allowed for the systematic identification and targeting of such interactions for the treatment of cancer.
Collapse
Affiliation(s)
- Jordan Wilson
- Center for Cancer Research, Comprehensive Cancer CentreMedical University of ViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Joanna I. Loizou
- Center for Cancer Research, Comprehensive Cancer CentreMedical University of ViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| |
Collapse
|
13
|
Chiappa M, Petrella S, Damia G, Broggini M, Guffanti F, Ricci F. Present and Future Perspective on PLK1 Inhibition in Cancer Treatment. Front Oncol 2022; 12:903016. [PMID: 35719948 PMCID: PMC9201472 DOI: 10.3389/fonc.2022.903016] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
Polo-like kinase 1 (PLK1) is the principle member of the well conserved serine/threonine kinase family. PLK1 has a key role in the progression of mitosis and recent evidence suggest its important involvement in regulating the G2/M checkpoint, in DNA damage and replication stress response, and in cell death pathways. PLK1 expression is tightly spatially and temporally regulated to ensure its nuclear activation at the late S-phase, until the peak of expression at the G2/M-phase. Recently, new roles of PLK1 have been reported in literature on its implication in the regulation of inflammation and immunological responses. All these biological processes are altered in tumors and, considering that PLK1 is often found overexpressed in several tumor types, its targeting has emerged as a promising anti-cancer therapeutic strategy. In this review, we will summarize the evidence suggesting the role of PLK1 in response to DNA damage, including DNA repair, cell cycle progression, epithelial to mesenchymal transition, cell death pathways and cancer-related immunity. An update of PLK1 inhibitors currently investigated in preclinical and clinical studies, in monotherapy and in combination with existing chemotherapeutic drugs and targeted therapies will be discussed.
Collapse
Affiliation(s)
- Michela Chiappa
- Laboratory of Experimental Oncology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| | - Serena Petrella
- Laboratory of Experimental Oncology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| | - Giovanna Damia
- Laboratory of Experimental Oncology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| | - Massimo Broggini
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| | - Federica Guffanti
- Laboratory of Experimental Oncology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| | - Francesca Ricci
- Laboratory of Experimental Oncology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| |
Collapse
|
14
|
Daniel Humberto Pozza, Ramon Bezerra Andrade de Mello. Treatment Sequencing Strategies in Lung Cancer. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2022; 25:323-336. [PMID: 35599008 PMCID: PMC9127753 DOI: 10.3779/j.issn.1009-3419.2022.104.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
BACKGROUND The advances in the lung cancer screening methods and therapeutics, together with awareness towards deleterious habits, such as smoking, is increasing the overall survival with better quality of life for the patients. However, lung cancer is still one of the most common and fatal neoplasm with a high incidence and consequently burden to public health worldwide. Thus, based on guidelines and recent phases II and III clinical trials studies, this manuscript summarizes the current treatment sequencing strategies in lung cancer. METHODS A comprehensive search of related articles was performed focused on phases II and III clinical trials studies. RESULTS The lung cancer management should take into consideration the tumor characteristics, histology, molecular pathology and be discussed in a multidisciplinary team. Lung cancer treatment options comprises surgery whenever possible, radiotherapy associate with/or chemotherapy and immunotherapy as monotherapy, or combined with chemotherapy and best palliative care. CONCLUSIONS The screening predictability in more patients, smoking reduction, early diagnosis, better disease understanding and individualized, more effective and tolerable therapeutics are related to an increasing in overall survival and quality of life. In the near future improvement of personalized therapy in precision medicine is expected, enhancing new predictive biomarkers, optimal doses and optimal treatment sequencing as well as anti-cancer vaccines development.
Collapse
Affiliation(s)
- Daniel Humberto Pozza
- Department of Biomedicine, Faculty of Medicine and i3s, University of Porto, 4200-319 Porto, Portugal,Daniel Humberto Pozza, E-mail:
| | - Ramon Bezerra Andrade de Mello
- Discipline of Medical Oncology, Post-graduation Program in Medicine, Nine of July University (UNINOVE), São Paulo, Brazil./Nine of July Hospital, São Paulo, Brazil
| |
Collapse
|
15
|
Yoshida K, Yokoi A, Yamamoto T, Hayashi Y, Nakayama J, Yokoi T, Yoshida H, Kato T, Kajiyama H, Yamamoto Y. Aberrant Activation of Cell-Cycle-Related Kinases and the Potential Therapeutic Impact of PLK1 or CHEK1 Inhibition in Uterine Leiomyosarcoma. Clin Cancer Res 2022; 28:2147-2159. [PMID: 35302600 PMCID: PMC9365385 DOI: 10.1158/1078-0432.ccr-22-0100] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/02/2022] [Accepted: 03/10/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE Uterine leiomyosarcoma is among the most aggressive gynecological malignancies. No effective treatment strategies have been established. This study aimed to identify novel therapeutic targets for uterine leiomyosarcoma based on transcriptome analysis and assess the preclinical efficacy of novel drug candidates. EXPERIMENTAL DESIGN Transcriptome analysis was performed using fresh-frozen samples of six uterine leiomyosarcomas and three myomas. The Ingenuity Pathway Analysis (IPA) was used to identify potential therapeutic target genes for uterine leiomyosarcoma. Afterward, our results were validated using three independent datasets, including 40 uterine leiomyosarcomas. Then, the inhibitory effects of several selective inhibitors for the candidate genes were examined using SK-UT-1, SK-LMS-1, and SKN cell lines. RESULTS We identified 512 considerably dysregulated genes in uterine leiomyosarcoma compared with myoma. The IPA revealed that the function of several genes, including CHEK1 and PLK1, were predicted to be activated in uterine leiomyosarcoma. Through an in vitro drug screening, PLK1 or CHEK1 inhibitors (BI-2536 or prexasertib) were found to exert a superior anticancer effect against cell lines at low nanomolar concentrations and induce cell-cycle arrest. In SK-UT-1 tumor-bearing mice, BI-2536 monotherapy remarkably suppressed tumorigenicity. Moreover, the prexasertib and cisplatin combination therapy inhibited tumor proliferation and prolonged the time to tumor progression. CONCLUSIONS We identified upregulated expressions of PLK1 and CHEK1; their kinase activity was activated in uterine leiomyosarcoma. BI-2536 and prexasertib demonstrated a significant anticancer effect. Therefore, cell-cycle-related kinases may present a promising therapeutic strategy for the treatment of uterine leiomyosarcoma.
Collapse
Affiliation(s)
- Kosuke Yoshida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Japan
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Akira Yokoi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | - Tomofumi Yamamoto
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Yusuke Hayashi
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Jun Nakayama
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Tsuyoshi Yokoi
- Division of Clinical Pharmacology, Department of Drug Safety Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Tomoyasu Kato
- Department of Gynecology, National Cancer Center Hospital, Tokyo, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Yamamoto
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
16
|
Su S, Chhabra G, Singh CK, Ndiaye MA, Ahmad N. PLK1 inhibition-based combination therapies for cancer management. Transl Oncol 2022; 16:101332. [PMID: 34973570 PMCID: PMC8728518 DOI: 10.1016/j.tranon.2021.101332] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/01/2021] [Accepted: 12/23/2021] [Indexed: 02/07/2023] Open
Abstract
Polo-like kinase I (PLK1), a cell cycle regulating kinase, has been shown to have oncogenic function in several cancers. Although PLK1 inhibitors, such as BI2536, BI6727 (volasertib) and NMS-1286937 (onvansertib) are generally well-tolerated with a favorable pharmacokinetic profile, clinical successes are limited due to partial responses in cancer patients, especially those in advanced stages. Recently, combination therapies targeting multiple pathways are being tested for cancer management. In this review, we first discuss structure and function of PLK1, role of PLK1 in cancers, PLK1 specific inhibitors, and advantages of using combination therapy versus monotherapy followed by a critical account on PLK1-based combination therapies in cancer treatments, especially highlighting recent advancements and challenges. PLK1 inhibitors in combination with chemotherapy drugs and targeted small molecules have shown superior effects against cancer both in vitro and in vivo. PLK1-based combination therapies have shown increased apoptosis, disrupted cell cycle, and potential to overcome resistance in cancer cells/tissues over monotherapies. Further, with successes in preclinical experiments, researchers are validating such approaches in clinical trials. Although PLK1-based combination therapies have achieved initial success in clinical studies, there are examples where they have failed to improve patient survival. Therefore, further research is needed to identify and validate novel biologically informed co-targets for PLK1-based combinatorial therapies. Employing a network-based analysis, we identified potential PLK1 co-targets that could be examined further. In addition, understanding the mechanisms of synergism between PLK1 inhibitors and other agents may lead to a better approach on which agents to pair with PLK1 inhibition for optimum cancer treatment.
Collapse
Affiliation(s)
- Shengqin Su
- Department of Dermatology, University of Wisconsin, Wisconsin Institutes for Medical Research, 1111 Highland Avenue, Room 7045, Madison, WI 53705, USA
| | - Gagan Chhabra
- Department of Dermatology, University of Wisconsin, Wisconsin Institutes for Medical Research, 1111 Highland Avenue, Room 7045, Madison, WI 53705, USA
| | - Chandra K Singh
- Department of Dermatology, University of Wisconsin, Wisconsin Institutes for Medical Research, 1111 Highland Avenue, Room 7045, Madison, WI 53705, USA
| | - Mary A Ndiaye
- Department of Dermatology, University of Wisconsin, Wisconsin Institutes for Medical Research, 1111 Highland Avenue, Room 7045, Madison, WI 53705, USA
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, Wisconsin Institutes for Medical Research, 1111 Highland Avenue, Room 7045, Madison, WI 53705, USA; William S. Middleton VA Medical Center, Madison, WI 53705, USA.
| |
Collapse
|
17
|
Choi W, Lee ES. Therapeutic Targeting of DNA Damage Response in Cancer. Int J Mol Sci 2022; 23:ijms23031701. [PMID: 35163621 PMCID: PMC8836062 DOI: 10.3390/ijms23031701] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/25/2022] [Accepted: 01/29/2022] [Indexed: 02/07/2023] Open
Abstract
DNA damage response (DDR) is critical to ensure genome stability, and defects in this signaling pathway are highly associated with carcinogenesis and tumor progression. Nevertheless, this also provides therapeutic opportunities, as cells with defective DDR signaling are directed to rely on compensatory survival pathways, and these vulnerabilities have been exploited for anticancer treatments. Following the impressive success of PARP inhibitors in the treatment of BRCA-mutated breast and ovarian cancers, extensive research has been conducted toward the development of pharmacologic inhibitors of the key components of the DDR signaling pathway. In this review, we discuss the key elements of the DDR pathway and how these molecular components may serve as anticancer treatment targets. We also summarize the recent promising developments in the field of DDR pathway inhibitors, focusing on novel agents beyond PARP inhibitors. Furthermore, we discuss biomarker studies to identify target patients expected to derive maximal clinical benefits as well as combination strategies with other classes of anticancer agents to synergize and optimize the clinical benefits.
Collapse
Affiliation(s)
- Wonyoung Choi
- Research Institute, National Cancer Center, Goyang 10408, Korea;
- Center for Clinical Trials, National Cancer Center, Goyang 10408, Korea
| | - Eun Sook Lee
- Research Institute, National Cancer Center, Goyang 10408, Korea;
- Center for Breast Cancer, National Cancer Center, Goyang 10408, Korea
- Correspondence: ; Tel.: +82-31-920-1633
| |
Collapse
|
18
|
Maegawa S, Gopalakrishnan V. PLK inhibitors come of age in pediatric brain tumors. Neuro Oncol 2022; 24:427-428. [PMID: 35015893 PMCID: PMC8917393 DOI: 10.1093/neuonc/noab298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Shinji Maegawa
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Vidya Gopalakrishnan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA,Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA,Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA,Corresponding Author: Vidya Gopalakrishnan, PhD, 1515 Holcombe Blvd, Unit 853, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 ()
| |
Collapse
|
19
|
Iliaki S, Beyaert R, Afonina IS. Polo-like kinase 1 (PLK1) signaling in cancer and beyond. Biochem Pharmacol 2021; 193:114747. [PMID: 34454931 DOI: 10.1016/j.bcp.2021.114747] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023]
Abstract
PLK1 is an evolutionary conserved Ser/Thr kinase that is best known for its role in cell cycle regulation and is expressed predominantly during the G2/S and M phase of the cell cycle. PLK1-mediated phosphorylation of specific substrates controls cell entry into mitosis, centrosome maturation, spindle assembly, sister chromatid cohesion and cytokinesis. In addition, a growing body of evidence describes additional roles of PLK1 beyond the cell cycle, more specifically in the DNA damage response, autophagy, apoptosis and cytokine signaling. PLK1 has an indisputable role in cancer as it controls several key transcription factors and promotes cell proliferation, transformation and epithelial-to-mesenchymal transition. Furthermore, deregulation of PLK1 results in chromosome instability and aneuploidy. PLK1 is overexpressed in many cancers, which is associated with poor prognosis, making PLK1 an attractive target for cancer treatment. Additionally, PLK1 is involved in immune and neurological disorders including Graft versus Host Disease, Huntington's disease and Alzheimer's disease. Unfortunately, newly developed small compound PLK1 inhibitors have only had limited success so far, due to low therapeutic response rates and toxicity. In this review we will highlight the current knowledge about the established roles of PLK1 in mitosis regulation and beyond. In addition, we will discuss its tumor promoting but also tumor suppressing capacities, as well as the available PLK1 inhibitors, elaborating on their efficacy and limitations.
Collapse
Affiliation(s)
- Styliani Iliaki
- Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Rudi Beyaert
- Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium.
| | - Inna S Afonina
- Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| |
Collapse
|
20
|
Qiao N, Insinga R, de Lima Lopes Junior G, Cook J, Sénécal M. A Review of Cost-Effectiveness Studies of Pembrolizumab Regimens for the Treatment of Advanced Non-small Cell Lung Cancer. PHARMACOECONOMICS - OPEN 2021; 5:365-383. [PMID: 33469803 PMCID: PMC8333166 DOI: 10.1007/s41669-020-00255-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/27/2020] [Indexed: 05/20/2023]
Abstract
Pembrolizumab monotherapy or combination therapy is an approved treatment for various advanced non-small cell lung cancer (NSCLC) indications. We review published cost-effectiveness analyses (CEAs) of pembrolizumab as treatment for NSCLC and provide in-depth assessment of their methodologies. Fourteen studies were selected through searches of the PubMed database. Modeling approaches, survival and cost estimation, and utility analyses were compared and evaluated. These publications covered regulatory-approved pembrolizumab NSCLC indications based on the following randomized clinical trials: KEYNOTE-010 (one publication), KEYNOTE-024 (six), KEYNOTE-042 (four), KEYNOTE-189 (two), and KEYNOTE-407 (one). Differences were observed in health states (progression free, progressed disease, and death vs stable disease, progressed disease, death, and treatment discontinuation), modeling approaches (partitioned survival vs Markov), survival extrapolation/transition probability estimation, inclusion of additional costs to drug, disease management and adverse event costs (e.g., programmed death-ligand 1 [PD-L1] testing, subsequent treatment, terminal care), treatment duration approaches (trial-based time on treatment vs treat to progression), utility sources (trial data vs literature), and utility analyses (time to death vs progression status). Certain aspects of variability across models were problematic, including deviation from observed treatment utilization within trials and predicted long-term mortality risks for pembrolizumab higher than historical real-world NSCLC mortality data prior to the availability of pembrolizumab. Consequently, results differed even among studies examining the same population and comparator within similar time intervals. Differences in methodology across CEAs may lead to distinct results and conclusions. Payers and policy makers should carefully examine study designs and assumptions and choose CEAs with greater validity and accuracy for evidence-based decision-making.
Collapse
Affiliation(s)
- Nan Qiao
- Center for Observational and Real-World Evidence, Merck & Co., Inc., Kenilworth, NJ 07033 USA
| | - Ralph Insinga
- Center for Observational and Real-World Evidence, Merck & Co., Inc., Kenilworth, NJ 07033 USA
| | | | - John Cook
- Complete HEOR Solutions, 1120 Welsh Rd #205, North Wales, PA 19454 USA
| | - Martin Sénécal
- Complete HEOR Solutions, 1120 Welsh Rd #205, North Wales, PA 19454 USA
| |
Collapse
|
21
|
Novais P, Silva PMA, Amorim I, Bousbaa H. Second-Generation Antimitotics in Cancer Clinical Trials. Pharmaceutics 2021; 13:1011. [PMID: 34371703 PMCID: PMC8309102 DOI: 10.3390/pharmaceutics13071011] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 12/17/2022] Open
Abstract
Mitosis represents a promising target to block cancer cell proliferation. Classical antimitotics, mainly microtubule-targeting agents (MTAs), such as taxanes and vinca alkaloids, are amongst the most successful anticancer drugs. By disrupting microtubules, they activate the spindle assembly checkpoint (SAC), which induces a prolonged delay in mitosis, expected to induce cell death. However, resistance, toxicity, and slippage limit the MTA's effectiveness. With the desire to overcome some of the MTA's limitations, mitotic and SAC components have attracted great interest as promising microtubule-independent targets, leading to the so-called second-generation antimitotics (SGAs). The identification of inhibitors against most of these targets, and the promising outcomes achieved in preclinical assays, has sparked the interest of academia and industry. Many of these inhibitors have entered clinical trials; however, they exhibited limited efficacy as monotherapy, and failed to go beyond phase II trials. Combination therapies are emerging as promising strategies to give a second chance to these SGAs. Here, an updated view of the SGAs that reached clinical trials is here provided, together with future research directions, focusing on inhibitors that target the SAC components.
Collapse
Affiliation(s)
- Pedro Novais
- CESPU, Institute of Research and Advanced Training in Health Sciences and Technologies (IINFACTS), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (P.N.); (P.M.A.S.)
- Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Patrícia M. A. Silva
- CESPU, Institute of Research and Advanced Training in Health Sciences and Technologies (IINFACTS), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (P.N.); (P.M.A.S.)
| | - Isabel Amorim
- GreenUPorto (Sustainable Agrifood Production) Research Center, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal;
| | - Hassan Bousbaa
- CESPU, Institute of Research and Advanced Training in Health Sciences and Technologies (IINFACTS), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (P.N.); (P.M.A.S.)
| |
Collapse
|
22
|
Chang L, Ruiz P, Ito T, Sellers WR. Targeting pan-essential genes in cancer: Challenges and opportunities. Cancer Cell 2021; 39:466-479. [PMID: 33450197 PMCID: PMC8157671 DOI: 10.1016/j.ccell.2020.12.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/02/2020] [Accepted: 12/09/2020] [Indexed: 12/22/2022]
Abstract
Despite remarkable successes in the clinic, cancer targeted therapy development remains challenging and the failure rate is disappointingly high. This problem is partly due to the misapplication of the targeted therapy paradigm to therapeutics targeting pan-essential genes, which can result in therapeutics whereby efficacy is attenuated by dose-limiting toxicity. Here we summarize the key features of successful chemotherapy and targeted therapy agents, and use case studies to outline recurrent challenges to drug development efforts targeting pan-essential genes. Finally, we suggest strategies to avoid previous pitfalls for ongoing and future development of pan-essential therapeutics.
Collapse
Affiliation(s)
- Liang Chang
- Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Paloma Ruiz
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Takahiro Ito
- Broad Institute of Harvard and MIT, Cambridge, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - William R Sellers
- Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
23
|
Cunningham CE, MacAuley MJ, Vizeacoumar FS, Abuhussein O, Freywald A, Vizeacoumar FJ. The CINs of Polo-Like Kinase 1 in Cancer. Cancers (Basel) 2020; 12:cancers12102953. [PMID: 33066048 PMCID: PMC7599805 DOI: 10.3390/cancers12102953] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Many alterations specific to cancer cells have been investigated as targets for targeted therapies. Chromosomal instability is a characteristic of nearly all cancers that can limit response to targeted therapies by ensuring the tumor population is not genetically homogenous. Polo-like Kinase 1 (PLK1) is often up regulated in cancers and it regulates chromosomal instability extensively. PLK1 has been the subject of much pre-clinical and clinical studies, but thus far, PLK1 inhibitors have not shown significant improvement in cancer patients. We discuss the numerous roles and interactions of PLK1 in regulating chromosomal instability, and how these may provide an avenue for identifying targets for targeted therapies. As selective inhibitors of PLK1 showed limited clinical success, we also highlight how genetic interactions of PLK1 may be exploited to tackle these challenges. Abstract Polo-like kinase 1 (PLK1) is overexpressed near ubiquitously across all cancer types and dysregulation of this enzyme is closely tied to increased chromosomal instability and tumor heterogeneity. PLK1 is a mitotic kinase with a critical role in maintaining chromosomal integrity through its function in processes ranging from the mitotic checkpoint, centrosome biogenesis, bipolar spindle formation, chromosome segregation, DNA replication licensing, DNA damage repair, and cytokinesis. The relation between dysregulated PLK1 and chromosomal instability (CIN) makes it an attractive target for cancer therapy. However, clinical trials with PLK1 inhibitors as cancer drugs have generally displayed poor responses or adverse side-effects. This is in part because targeting CIN regulators, including PLK1, can elevate CIN to lethal levels in normal cells, affecting normal physiology. Nevertheless, aiming at related genetic interactions, such as synthetic dosage lethal (SDL) interactions of PLK1 instead of PLK1 itself, can help to avoid the detrimental side effects associated with increased levels of CIN. Since PLK1 overexpression contributes to tumor heterogeneity, targeting SDL interactions may also provide an effective strategy to suppressing this malignant phenotype in a personalized fashion.
Collapse
Affiliation(s)
- Chelsea E. Cunningham
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (M.J.M.); (F.S.V.)
- Correspondence: (C.E.C.); (A.F.); (F.J.V.); Tel.: +1-(306)-327-7864 (C.E.C.); +1-(306)-966-5248 (A.F.); +1-(306)-966-7010 (F.J.V.)
| | - Mackenzie J. MacAuley
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (M.J.M.); (F.S.V.)
| | - Frederick S. Vizeacoumar
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (M.J.M.); (F.S.V.)
| | - Omar Abuhussein
- College of Pharmacy, University of Saskatchewan, 104 Clinic Place, Saskatoon, SK S7N 2Z4, Canada;
| | - Andrew Freywald
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (M.J.M.); (F.S.V.)
- Correspondence: (C.E.C.); (A.F.); (F.J.V.); Tel.: +1-(306)-327-7864 (C.E.C.); +1-(306)-966-5248 (A.F.); +1-(306)-966-7010 (F.J.V.)
| | - Franco J. Vizeacoumar
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (M.J.M.); (F.S.V.)
- College of Pharmacy, University of Saskatchewan, 104 Clinic Place, Saskatoon, SK S7N 2Z4, Canada;
- Cancer Research, Saskatchewan Cancer Agency, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
- Correspondence: (C.E.C.); (A.F.); (F.J.V.); Tel.: +1-(306)-327-7864 (C.E.C.); +1-(306)-966-5248 (A.F.); +1-(306)-966-7010 (F.J.V.)
| |
Collapse
|
24
|
A Cereblon Modulator CC-885 Induces CRBN- and p97-Dependent PLK1 Degradation and Synergizes with Volasertib to Suppress Lung Cancer. MOLECULAR THERAPY-ONCOLYTICS 2020; 18:215-225. [PMID: 32728610 PMCID: PMC7369516 DOI: 10.1016/j.omto.2020.06.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/19/2020] [Indexed: 01/24/2023]
Abstract
Therapeutic targeting of advanced or metastatic non-small-cell lung cancer (NSCLC) represents a major goal of clinical treatment. Polo-like kinase 1 (PLK1) is an essential mitotic kinase in cell cycle progression and is associated with oncogenesis in a large spectrum of cancer types, including NSCLC. Volasertib (BI 6727) is a potent, selective, PLK1 inhibitor that is currently under phase 2 clinical trials with modest antitumor activity against solid tumors. As the combination of volasertib with pemetrexed does not improve efficacy for NSCLC treatment, it is crucial to identify compounds that could enhance efficacy with volasertib. Immunomodulatory drugs (IMiDs) bind to E3 ligase CRBN and repurposes it to ubiquitinate other proteins as neo-substrates, representing an effective treatment for hematologic malignancies. In this study, by screening IMiDs, we found that a novel CRBN modulator, CC-885, can synergistically inhibit NSCLC with volasertib both in vitro and in vivo. This synergistic effect overcomes volasertib resistance caused by PLK1 mutations and is compromised in CRBN-or p97-depleted cells. Mechanistically, CC-885 selectively promotes CRBN- and p97-dependent PLK1 ubiquitination and degradation, thereby enhancing the sensitivity of NSCLC to volasertib. In conclusion, our findings reveal that PLK1 is a neo-substrate of CUL4-CRBN induced by CC-885 and represent a combinational approach for treating NSCLC.
Collapse
|
25
|
García IA, Garro C, Fernandez E, Soria G. Therapeutic opportunities for PLK1 inhibitors: Spotlight on BRCA1-deficiency and triple negative breast cancers. Mutat Res 2020; 821:111693. [PMID: 32172132 DOI: 10.1016/j.mrfmmm.2020.111693] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 02/07/2023]
Abstract
Polo-Like Kinases (PLKs) are central players of mitotic progression in Eukaryotes. Given the intimate relationship between cell cycle progression and cancer development, PLKs in general and PLK1 in particular have been thoroughly studied as biomarkers and potential therapeutic targets in oncology. The oncogenic properties of PLK1 overexpression across different types of human cancers are attributed to its roles in promoting mitotic entry, centrosome maturation, spindle assembly and cytokinesis. While several academic labs and pharmaceutical companies were able to develop potent and selective inhibitors of PLK1 (PLK1i) for preclinical research, such compounds have reached only limited success in clinical trials despite their great pharmacokinetics. Even though this could be attributed to multiple causes, the housekeeping roles of PLK1 in both normal and cancer cells are most likely the main reason for clinical trials failure and withdraw due to toxicities issues. Therefore, great efforts are being invested to position PLK1i in the treatment of specific types of cancers with revised dosages schemes. In this mini review we focus on two potential niches for PLK1i that are supported by recent evidence: triple negative breast cancers (TNBCs) and BRCA1-deficient cancers. On the one hand, we recollect several lines of strong evidence indicating that TNBCs are among the cancers with highest PLK1 expression and sensitivity to PLK1i. These findings are encouraging because of the limited therapeutics options available for TNBC patients, which rely mainly on classic chemotherapy. On the other hand, we discuss recent evidence that unveils synthetic lethality induction by PLK1 inhibition in BRCA1-deficient cancers cells. This previously unforeseen therapeutic link between PLK1 and BRCA1 is promising because it defines novel therapeutic opportunities for PLK1i not only for breast cancer (i.e. TNBCs with BRCA1 deficiencies), but also for other types of cancers with BRCA1-deficiencies, such as pancreatic and prostate cancers.
Collapse
Affiliation(s)
- Iris Alejandra García
- Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas, CIDIE-CONICET. Universidad Católica de Córdoba, Córdoba, Argentina; Departamento de Bioquímica Clínica. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Cintia Garro
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina; Departamento de Bioquímica Clínica. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Elmer Fernandez
- Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas, CIDIE-CONICET. Universidad Católica de Córdoba, Córdoba, Argentina; Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Gastón Soria
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina; Departamento de Bioquímica Clínica. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
26
|
Weng X, Luo S, Lin S, Zhong L, Li M, Xin R, Huang P, Xu X. Cost-Utility Analysis of Pembrolizumab Versus Chemotherapy as First-Line Treatment for Metastatic Non-Small Cell Lung Cancer With Different PD-L1 Expression Levels. Oncol Res 2020; 28:117-125. [PMID: 31610828 PMCID: PMC7851532 DOI: 10.3727/096504019x15707883083132] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
To evaluate the cost-utility of pembrolizumab versus chemotherapy as the first-line setting for metastatic non-small cell lung cancer (NSCLC) from the US health care system perspective, a Markov model was developed to compare the lifetime cost and effectiveness of pembrolizumab versus chemotherapy for untreated metastatic NSCLC, based on the clinical data derived from phase III randomized controlled trial (KEYNOTE-042; ClinicalTrials.gov; NCT02220894). Weibull distribution was fitted to simulate the parametric survival functions. Drug costs were collected from official websites, and utility values were obtained from published literature. Total costs, quality-adjusted life years (QALYs), and incremental cost-effectiveness ratios (ICERs) were computed as primary output indicators. The impact of different PD-L1 expression levels on ICER was also evaluated. One-way and probabilistic sensitivity analyses were performed to assess the model uncertainty. Compared with chemotherapy, patients treated with pembrolizumab provided an additional 1.13, 1.01, and 0.59 QALYs in patients with PD-L1 expression levels of ≥50%, ≥20%, and ≥1%, with corresponding incremental cost of 53,784, 47,479, and 39,827, respectively. The resultant ICERs of pembrolizumab versus chemotherapy were 47,596, 47,184, and 68,061/QALY, in three expression levels of PD-L1, respectively, all of which did not exceed the WTP threshold of 180,000/QALY. Probability sensitivity analysis outcome supported that pembrolizumab exhibited evident advantage over chemotherapy to be cost-effective. One-way sensitivity analysis found that ICERs were most sensitive to utility value of pembrolizumab in progression survival state. All the adjustment of parameters did not qualitatively change the result. For treatment-naive, metastatic NSCLC patients with PD-L1+, pembrolizumab was estimated to be cost-effective compared with chemotherapy for all PD-L1 expression levels at a WTP threshold of 180,000/QALY in the context of the US health care system.
Collapse
MESH Headings
- Aged
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols
- B7-H1 Antigen/genetics
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/economics
- Carcinoma, Non-Small-Cell Lung/epidemiology
- Carcinoma, Non-Small-Cell Lung/genetics
- Clinical Trials, Phase III as Topic
- Cost-Benefit Analysis
- Disease-Free Survival
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Male
- Markov Chains
- Middle Aged
- Neoplasm Metastasis
- Quality-Adjusted Life Years
- Randomized Controlled Trials as Topic
Collapse
Affiliation(s)
- Xiuhua Weng
- *Department of Pharmacy, First Affiliated Hospital of Fujian Medical University, Taijiang, Fuzhou, P.R. China
| | - Shaohong Luo
- *Department of Pharmacy, First Affiliated Hospital of Fujian Medical University, Taijiang, Fuzhou, P.R. China
| | - Shen Lin
- *Department of Pharmacy, First Affiliated Hospital of Fujian Medical University, Taijiang, Fuzhou, P.R. China
| | - Lixian Zhong
- †College of Pharmacy, Texas A&M University, College Station, TX, USA
| | - Meiyue Li
- *Department of Pharmacy, First Affiliated Hospital of Fujian Medical University, Taijiang, Fuzhou, P.R. China
| | - Rao Xin
- *Department of Pharmacy, First Affiliated Hospital of Fujian Medical University, Taijiang, Fuzhou, P.R. China
| | - Pinfang Huang
- *Department of Pharmacy, First Affiliated Hospital of Fujian Medical University, Taijiang, Fuzhou, P.R. China
| | - Xiongwei Xu
- *Department of Pharmacy, First Affiliated Hospital of Fujian Medical University, Taijiang, Fuzhou, P.R. China
| |
Collapse
|
27
|
Reda M, Ngamcherdtrakul W, Gu S, Bejan DS, Siriwon N, Gray JW, Yantasee W. PLK1 and EGFR targeted nanoparticle as a radiation sensitizer for non-small cell lung cancer. Cancer Lett 2019; 467:9-18. [PMID: 31563561 PMCID: PMC6927399 DOI: 10.1016/j.canlet.2019.09.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/31/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023]
Abstract
Radiation sensitizers that can selectively act on cancer cells hold great promise to patients who receive radiation therapy. We developed a novel targeted therapy and radiation sensitizer for non-small cell lung cancer (NSCLC) based on cetuximab conjugated nanoparticle that targets epidermal growth factor receptor (EGFR) and delivers small interfering RNA (siRNA) against polo-like kinase 1 (PLK1). EGFR is overexpressed in 50% of lung cancer patients and a mediator of DNA repair, while PLK1 is a key mitotic regulator whose inhibition enhances radiation sensitivity. The nanoparticle construct (C-siPLK1-NP) effectively targets EGFR + NSCLC cells and reduces PLK1 expression, leading to G2/M arrest and cell death. Furthermore, we show a synergistic combination between C-siPLK1-NP and radiation, which was confirmed in vivo in A549 flank tumors. We also demonstrate the translational potential of C-siPLK1-NP as a systemic therapeutic in an orthotopic lung tumor model, where administration of C-siPLK1-NP reduced tumor growth and led to prolonged survival. Our findings demonstrate that C-siPLK1-NP is effective as a targeted therapy and as a potent radiation sensitizer for NSCLC. Potential application to other EGFR + cancer types such as colorectal and breast cancer is also demonstrated.
Collapse
Affiliation(s)
- Moataz Reda
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, 97239, USA
| | | | - Shenda Gu
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, 97239, USA
| | | | - Natnaree Siriwon
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Joe W Gray
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Wassana Yantasee
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, 97239, USA; PDX Pharmaceuticals, LLC, Portland, OR, 97239, USA.
| |
Collapse
|
28
|
Wang H, Zhang Z, Liu F, Zhou M, Lv H. Pemetrexed versus Gefitinib as Second-line Treatment for Advanced Non-small Cell Lung Cancer: A Meta-analysis Based on Randomized Controlled Trials. Pteridines 2019. [DOI: 10.1515/pteridines-2019-0022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Abstract
Objective To investigate the clinical efficacy and toxicity of Pemetrexed versus Gefitinib as second-line treatment for advanced non-small cell lung cancer (NSCLC).
Methods By systematically searching the electronic databases of Pubmed, CENTRAL, Cochrane, EMBASE, ASCO, and CBM, open published randomized clinical trials (RCTs) relevant to clinical efficacy and toxicity of Pemetrexed versus Gefitinib as second-line treatment of advanced NSCLC were included in the meta-analysis. Data of objective response rate (ORR) and drug related toxicity were extracted from the original publications and pooled by random or fixed effect method.
Results Fourteen clinical trials related to Pemetrexed versus Gefitinib as second-line treatment for advanced NSCLC fulfilled the inclusion criteria and were included in the meta-analysis. The pooled results show that the ORR (RR=0.81, 95% CI:0.56–1.16, p=0.25) and DCR (RR=1.11, 95% CI:0.94–1.31, p=0.24) were not statistical different for Pemetrexed versus Gefitinib as second-line treatment of advanced NSCLC. However, the pooled data demonstrated the risk of developing skin rash (RR=0.10, 95% CI:0.03–0.30, p=0.00) and diarrhea (RR=0.31, 95% CI:0.15–0.67, p=0.003) in patients with Pemetrexed was significantly lower than that of Gefitinib through random effect model analysis, but the incidence of neutropenia in Pemetrexed group was significantly higher than that of Gefitinib with statistical difference (RR=7.62, 95% CI:3.71–15.66, p=0.00).
Conclusion Pemetrexed was not inferior as second-line treatment for advanced NSCLC compared to Gefitinib for tumor response. However, Pemetrexed had higher incidence of neutropenia but lower risk of developing skin rash and diarrhea.
Collapse
Affiliation(s)
- Huiyu Wang
- Department of Pharmacy, Traditional Chinese Medicine Hospital of Lishui , Zhejiang Province, 323000 PR China
| | - Zunjing Zhang
- Department of Infection, Traditional Chinese Medicine Hospital of Lishui , Zhejiang Province, 323000 PR China
| | - Feng Liu
- Department of Pharmacy, Traditional Chinese Medicine Hospital of Lishui , Zhejiang Province, 323000 PR China
| | - Miaoying Zhou
- Department of Pharmacy , Longquan People’s Hospital , Zhejiang Province, 323700 PR China
| | - Handi Lv
- Department of Respiratory , Zhuji Affiliated Hospital of Shaoxing University , Zhejiang Province 311800 PR China
| |
Collapse
|
29
|
Giordano A, Liu Y, Armeson K, Park Y, Ridinger M, Erlander M, Reuben J, Britten C, Kappler C, Yeh E, Ethier S. Polo-like kinase 1 (Plk1) inhibition synergizes with taxanes in triple negative breast cancer. PLoS One 2019; 14:e0224420. [PMID: 31751384 PMCID: PMC6872222 DOI: 10.1371/journal.pone.0224420] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 10/14/2019] [Indexed: 12/13/2022] Open
Abstract
Within triple negative breast cancer, several molecular subtypes have been identified, underlying the heterogeneity of such an aggressive disease. The basal-like subtype is characterized by mutations in the TP53 gene, and is associated with a low pathologic complete response rate following neoadjuvant chemotherapy. In a genome-scale short hairpin RNA (shRNA) screen of breast cancer cells, polo-like kinase 1 (Plk1) was a frequent and strong hit in the basal breast cancer cell lines indicating its importance for growth and survival of these breast cancer cells. Plk1 regulates progression of cells through the G2-M phase of the cell cycle. We assessed the activity of two ATP-competitive Plk1 inhibitors, GSK461364 and onvansertib, alone and with a taxane in a set of triple negative breast cancer cell lines and in vivo. GSK461364 showed synergism with docetaxel in SUM149 (Combination Index 0.70) and SUM159 (CI, 0.62). GSK461364 in combination with docetaxel decreased the clonogenic potential (interaction test for SUM149 and SUM159, p<0.001 and p = 0.01, respectively) and the tumorsphere formation of SUM149 and SUM159 (interaction test, p = 0.01 and p< 0.001). In the SUM159 xenograft model, onvansertib plus paclitaxel significantly decreased tumor volume compared to single agent paclitaxel (p<0.0001). Inhibition of Plk1 in combination with taxanes shows promising results in a subset of triple negative breast cancer intrinsically resistant to chemotherapy. Onvansertib showed significant tumor volume shrinkage when combined with paclitaxel in vivo and should be considered in clinical trials for the treatment of triple negative cancers.
Collapse
Affiliation(s)
- Antonio Giordano
- Department of Medicine, Division of Hematology & Oncology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Yueying Liu
- Department of Medicine, Division of Hematology & Oncology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Kent Armeson
- Department of Public Health Sciences, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Yeonhee Park
- Department of Public Health Sciences, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Maya Ridinger
- Trovagene Oncology, San Diego, California, United States of America
| | - Mark Erlander
- Trovagene Oncology, San Diego, California, United States of America
| | - James Reuben
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Carolyn Britten
- Department of Medicine, Division of Hematology & Oncology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Christiana Kappler
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Elizabeth Yeh
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indianapolis, United States of America
| | - Stephen Ethier
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| |
Collapse
|
30
|
de Jong Y, Bennani F, van Oosterwijk JG, Alberti G, Baranski Z, Wijers-Koster P, Venneker S, Briaire-de Bruijn IH, van de Akker BE, Baelde H, Cleton-Jansen AM, van de Water B, Danen EH, Bovée JV. A screening-based approach identifies cell cycle regulators AURKA, CHK1 and PLK1 as targetable regulators of chondrosarcoma cell survival. J Bone Oncol 2019; 19:100268. [PMID: 31832331 PMCID: PMC6889735 DOI: 10.1016/j.jbo.2019.100268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 11/09/2019] [Accepted: 11/13/2019] [Indexed: 01/06/2023] Open
Abstract
Chondrosarcomas are malignant cartilage tumors that are relatively resistant towards conventional therapeutic approaches. Kinase inhibitors have been investigated and shown successful for several different cancer types. In this study we aimed at identifying kinase inhibitors that inhibit the survival of chondrosarcoma cells and thereby serve as new potential therapeutic strategies to treat chondrosarcoma patients. An siRNA screen targeting 779 different kinases was conducted in JJ012 chondrosarcoma cells in parallel with a compound screen consisting of 273 kinase inhibitors in JJ012, SW1353 and CH2879 chondrosarcoma cell lines. AURKA, CHK1 and PLK1 were identified as most promising targets and validated further in a more comprehensive panel of chondrosarcoma cell lines. Dose response curves were performed using tyrosine kinase inhibitors: MK-5108 (AURKA), LY2603618 (CHK1) and Volasertib (PLK1) using viability assays and cell cycle analysis. Apoptosis was measured at 24 h after treatment using a caspase 3/7 assay. Finally, chondrosarcoma patient samples (N = =34) were used to examine the correlation between AURKA, CHK1 and PLK1 RNA expression and documented patient survival. Dose dependent decreases in viability were observed in chondrosarcoma cell lines after treatment with MK-5108, LY2603618 and volasertib, with cell lines showing highest sensitivity to PLK1 inhibition. In addition increased sensitivity to conventional chemotherapy was observed after CHK1 inhibition in a subset of the cell lines. Interestingly, whereas AURKA and CHK1 were both expressed in chondrosarcoma patient samples, PLK1 expression was found to be low compared to normal cartilage. Analysis of patient samples revealed that high CHK1 RNA expression correlated with a worse overall survival. AURKA, CHK1 and PLK1 are identified as important survival genes in chondrosarcoma cell lines. Although further research is needed to validate these findings, inhibiting CHK1 seems to be the most promising potential therapeutic target for patients with chondrosarcoma.
Collapse
Affiliation(s)
- Yvonne de Jong
- Department of Pathology, Leiden University Medical Centre, P.O. Box 9600, L1-Q, 2300 RC Leiden, the Netherlands
| | - Fairuz Bennani
- Department of Pathology, Leiden University Medical Centre, P.O. Box 9600, L1-Q, 2300 RC Leiden, the Netherlands
| | - Jolieke G. van Oosterwijk
- Department of Pathology, Leiden University Medical Centre, P.O. Box 9600, L1-Q, 2300 RC Leiden, the Netherlands
| | - Gaia Alberti
- Department of Pathology, Leiden University Medical Centre, P.O. Box 9600, L1-Q, 2300 RC Leiden, the Netherlands
| | - Zuzanna Baranski
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, the Netherlands
| | - Pauline Wijers-Koster
- Department of Pathology, Leiden University Medical Centre, P.O. Box 9600, L1-Q, 2300 RC Leiden, the Netherlands
| | - Sanne Venneker
- Department of Pathology, Leiden University Medical Centre, P.O. Box 9600, L1-Q, 2300 RC Leiden, the Netherlands
| | - Inge H. Briaire-de Bruijn
- Department of Pathology, Leiden University Medical Centre, P.O. Box 9600, L1-Q, 2300 RC Leiden, the Netherlands
| | - Brendy E. van de Akker
- Department of Pathology, Leiden University Medical Centre, P.O. Box 9600, L1-Q, 2300 RC Leiden, the Netherlands
| | - Hans Baelde
- Department of Pathology, Leiden University Medical Centre, P.O. Box 9600, L1-Q, 2300 RC Leiden, the Netherlands
| | - Anne-Marie Cleton-Jansen
- Department of Pathology, Leiden University Medical Centre, P.O. Box 9600, L1-Q, 2300 RC Leiden, the Netherlands
| | - Bob van de Water
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, the Netherlands
| | - Erik H.J. Danen
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, the Netherlands
| | - Judith V.M.G. Bovée
- Department of Pathology, Leiden University Medical Centre, P.O. Box 9600, L1-Q, 2300 RC Leiden, the Netherlands
- Corresponding author.
| |
Collapse
|
31
|
Doz F, Locatelli F, Baruchel A, Blin N, De Moerloose B, Frappaz D, Dworzak M, Fischer M, Stary J, Fuertig R, Riemann K, Taube T, Reinhardt D. Phase I dose-escalation study of volasertib in pediatric patients with acute leukemia or advanced solid tumors. Pediatr Blood Cancer 2019; 66:e27900. [PMID: 31276318 DOI: 10.1002/pbc.27900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 05/17/2019] [Accepted: 05/29/2019] [Indexed: 11/10/2022]
Abstract
BACKGROUND Volasertib induces mitotic arrest and apoptosis by targeting Polo-like kinases. In this phase I dose-escalation study, the maximum tolerated dose (MTD), pharmacokinetics (PK), and preliminary efficacy of volasertib were determined in pediatric patients. METHODS Patients aged 2 to <18 years with relapsed/refractory acute leukemia/advanced solid tumors (ST) without available effective treatments were enrolled-cohort C1 (aged 2 to <12 years); cohort C2 (aged 12 to <18 years). The patients received volasertib intravenously (starting dose: 200 mg/m2 body surface area on day 1, every 14 days). The primary endpoint was the pediatric MTD for further development. RESULTS Twenty-two patients received treatment (C1: leukemia, n = 4; ST, n = 8; C2: leukemia, n = 3; ST, n = 7). No dose-limiting toxicities (DLTs) occurred up to 300 mg/m2 volasertib in C1; two patients in C2, at 250 mg/m2 volasertib, had DLTs in cycle 1, one of which led to death; therefore, the MTD of volasertib in C2 was 200 mg/m2 . The most common grade 3/4 adverse events (all patients) were febrile neutropenia, thrombocytopenia, and neutropenia (41% each). Stable disease (SD) was the best objective response (leukemia, n = 5; ST, n = 2); the duration of SD was short in all patients, except in one with an ST. PK profiles were generally comparable across dose groups and were consistent with those in adults. CONCLUSION The pediatric MTD/dose for further development was identified. There were no unexpected safety or PK findings; limited antitumor/antileukemic activity was demonstrated.
Collapse
Affiliation(s)
- François Doz
- Oncology Center SIREDO (Care Innovation and Research for Children, Adolescents and Young Adults with Cancer), Institute Curie and University Paris Descartes, Paris, France
| | - Franco Locatelli
- Department of Paediatric Haematology and Oncology, IRCCS (Istituto di Recovero e Cura a Carattere Scientifico), Bambino Gesù Children's Hospital, Sapienza University of Rome, Rome, Italy
| | - André Baruchel
- Department of Paediatric Haemato-immunology, Hôpital Robert Debré (APHP), University Paris Diderot, Paris, France
| | - Nicolas Blin
- Paediatric Haematology and Oncology, Hôpital Mère-Enfant, CHU de Nantes, Nantes, France
| | - Barbara De Moerloose
- Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Didier Frappaz
- Paediatric Oncology Department, Léon Bérard Centre, Lyon, France
| | - Michael Dworzak
- St. Anna Children's Hospital, Department of Paediatrics, Medical University of Vienna, Vienna, Austria
| | - Matthias Fischer
- Department of Experimental Paediatric Oncology, University Children's Hospital Cologne, Centre of Molecular Medicine, Medical Faculty, University of Cologne, Cologne, Germany
| | - Jan Stary
- Department of Paediatric Haematology and Oncology, University Hospital Motol, Prague, Czech Republic
| | - Rene Fuertig
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Kathrin Riemann
- Clinical Operations, Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim, Germany
| | - Tillmann Taube
- Medical Oncology, Boehringer Ingelheim International GmbH, Biberach, Germany
| | - Dirk Reinhardt
- Department of Paediatrics, University Hospital Essen, Essen, Germany
| |
Collapse
|
32
|
Liu X, Chen Y, Li Y, Petersen RB, Huang K. Targeting mitosis exit: A brake for cancer cell proliferation. Biochim Biophys Acta Rev Cancer 2019; 1871:179-191. [PMID: 30611728 DOI: 10.1016/j.bbcan.2018.12.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 12/16/2022]
Abstract
The transition from mitosis to interphase, referred to as mitotic exit, is a critical mitotic process which involves activation and inactivation of multiple mitotic kinases and counteracting protein phosphatases. Loss of mitotic exit checkpoints is a common feature of cancer cells, leading to mitotic dysregulation and confers cancer cells with oncogenic characteristics, such as aberrant proliferation and microtubule-targeting agent (MTA) resistance. Since MTA resistance results from cancer cells prematurely exiting mitosis (mitotic slippage), blocking mitotic exit is believed to be a promising anticancer strategy. Moreover, based on this theory, simultaneous inhibition of mitotic exit and additional cell cycle phases would likely achieve synergistic antitumor effects. In this review, we divide the molecular regulators of mitotic exit into four categories based on their different regulatory functions: 1) the anaphase-promoting complex/cyclosome (APC/C, a ubiquitin ligase), 2) cyclin B, 3) mitotic kinases and phosphatases, 4) kinesins and microtubule-binding proteins. We also review the regulators of mitotic exit and propose prospective anticancer strategies targeting mitotic exit, including their strengths and possible challenges to their use.
Collapse
Affiliation(s)
- Xinran Liu
- Tongji School of Pharmacy, Huazhong University of Science & Technology, Wuhan, Hubei 430030, China
| | - Yuchen Chen
- Tongji School of Pharmacy, Huazhong University of Science & Technology, Wuhan, Hubei 430030, China
| | - Yangkai Li
- Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Robert B Petersen
- Foundational Sciences, Central Michigan University College of Medicine, Mt. Pleasant, MI 48858, USA
| | - Kun Huang
- Tongji School of Pharmacy, Huazhong University of Science & Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
33
|
Wang Y, Wu L, Yao Y, Lu G, Xu L, Zhou J. Polo-like kinase 1 inhibitor BI 6727 induces DNA damage and exerts strong antitumor activity in small cell lung cancer. Cancer Lett 2018; 436:1-9. [PMID: 30118839 DOI: 10.1016/j.canlet.2018.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/14/2018] [Accepted: 08/09/2018] [Indexed: 11/29/2022]
Abstract
The prognosis of small cell lung cancer (SCLC) is poor despite its good initial response to chemotherapy. Polo-like kinase 1 (PLK1) is a crucial mitotic regulator that is overexpressed in many tumors, and its overexpression is associated with tumor aggressiveness and a poor prognosis. However, its role in SCLC is still poorly characterized. Based on immunohistochemistry findings, the PLK1 protein is expressed at higher levels in SCLC tumor samples than in normal lung tissue samples. The selective PLK1 inhibitor BI 6727 significantly induced the inhibition of proliferation and apoptosis in a dose-dependent manner in SCLC cell lines. FACS analysis showed an increase in the population of cells in the G2/M phase, followed by DNA damage and the consequent activation of the ataxia telangiectasia and Rad3-related (ATR)/ataxia telangiectasia mutated (ATM)-Chk1/Chk2 checkpoint pathway. In addition, BI 6727 treatment resulted in clearly attenuated growth and apoptosis in NCI-H446 xenografts. The level of histone H2AX phosphorylation at serine-139 (γH2AX) was markedly increased both in vitro and in vivo. Our findings indicate that BI 6727 has therapeutic potential for SCLC patients.
Collapse
Affiliation(s)
- Yuehong Wang
- Department of Respiratory Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Linying Wu
- Department of Respiratory Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yinan Yao
- Department of Respiratory Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Guohua Lu
- Department of Respiratory Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Liming Xu
- Department of Pathology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jianying Zhou
- Department of Respiratory Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
34
|
Carmona-Martínez V, Ruiz-Alcaraz AJ, Vera M, Guirado A, Martínez-Esparza M, García-Peñarrubia P. Therapeutic potential of pteridine derivatives: A comprehensive review. Med Res Rev 2018; 39:461-516. [PMID: 30341778 DOI: 10.1002/med.21529] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 07/07/2018] [Accepted: 07/10/2018] [Indexed: 12/19/2022]
Abstract
Pteridines are aromatic compounds formed by fused pyrazine and pyrimidine rings. Many living organisms synthesize pteridines, where they act as pigments, enzymatic cofactors, or immune system activation molecules. This variety of biological functions has motivated the synthesis of a huge number of pteridine derivatives with the aim of studying their therapeutic potential. This review gathers the state-of-the-art of pteridine derivatives, describing their biological activities and molecular targets. The antitumor activity of pteridine-based compounds is one of the most studied and advanced therapeutic potentials, for which several molecular targets have been identified. Nevertheless, pteridines are also considered as very promising therapeutics for the treatment of chronic inflammation-related diseases. On the other hand, many pteridine derivatives have been tested for antimicrobial activities but, although some of them resulted to be active in preliminary assays, a deeper research is needed in this area. Moreover, pteridines may be of use in the treatment of many other diseases, such as diabetes, osteoporosis, ischemia, or neurodegeneration, among others. Thus, the diversity of the biological activities shown by these compounds highlights the promising therapeutic use of pteridine derivatives. Indeed, methotrexate, pralatrexate, and triamterene are Food and Drug Administration approved pteridines, while many others are currently under study in clinical trials.
Collapse
Affiliation(s)
- Violeta Carmona-Martínez
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología, Facultad de Medicina, IMIB and Regional Campus of International Excellence "Campus Mare Nostrum," Universidad de Murcia, Murcia, Spain
| | - Antonio J Ruiz-Alcaraz
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología, Facultad de Medicina, IMIB and Regional Campus of International Excellence "Campus Mare Nostrum," Universidad de Murcia, Murcia, Spain
| | - María Vera
- Departamento de Química Orgánica, Universidad de Murcia, Campus de Espinardo, Murcia, Spain
| | - Antonio Guirado
- Departamento de Química Orgánica, Universidad de Murcia, Campus de Espinardo, Murcia, Spain
| | - María Martínez-Esparza
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología, Facultad de Medicina, IMIB and Regional Campus of International Excellence "Campus Mare Nostrum," Universidad de Murcia, Murcia, Spain
| | - Pilar García-Peñarrubia
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología, Facultad de Medicina, IMIB and Regional Campus of International Excellence "Campus Mare Nostrum," Universidad de Murcia, Murcia, Spain
| |
Collapse
|
35
|
Sacco PC, Gridelli C. An update on the developing mitotic inhibitors for the treatment of non-small cell carcinoma. Expert Opin Emerg Drugs 2017; 22:213-222. [PMID: 28836854 DOI: 10.1080/14728214.2017.1369952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Mitosis is necessary to sustain life and is followed immediately by cell division into two daughter cells. Microtubules play a key role in the formation of the mitotic spindle apparatus and cytokinesis at the end of mitosis. Various anti-microtubule agents such as taxanes and vinca alkaloids are widely used in the treatment of advanced non-small cell lung cancer (NSCLC) but their use is associated with hematologic toxicity profile, acquired resistance and hypersensitivity reactions. Areas covered: The Nab-paclitaxels are the more recent antimitotic agents approved in NSCLC showing a better tolerability and activity when compared to previous ones. Despite this, the outcome of patients with advanced non-small cell lung cancer is poor. Due to the key role of mitosis, research is focused on the identification of new mitotic drug targets other than microtubule inhibitors, such as cell cycle targets, aurora kinases and Polo-like kinases. Expert opinion: Despite improvements in chemotherapeutic choices and supportive care, the majority of patients experience a deteriorating quality of life and significant toxicities associated to a poor outcome. Thus, the therapeutic management of patients with advanced NSCLC represents an ongoing challenge and novel agents targeting mitosis are under investigation.
Collapse
Affiliation(s)
| | - Cesare Gridelli
- a Division of Medical Oncology , 'S.G. Moscati' Hospital , Avellino , Italy
| |
Collapse
|
36
|
Second-Line Treatment of Non-Small Cell Lung Cancer: New Developments for Tumours Not Harbouring Targetable Oncogenic Driver Mutations. Drugs 2017; 76:1321-36. [PMID: 27557830 DOI: 10.1007/s40265-016-0628-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Platinum-based doublet chemotherapy with or without bevacizumab is the standard of care for the initial management of advanced and metastatic non-small cell lung cancer (NSCLC) without a targetable molecular abnormality. However, the majority of patients with NSCLC will ultimately develop resistance to initial platinum-based chemotherapy, and many remain candidates for subsequent lines of therapy. Randomised trials over the past 10-15 years have established pemetrexed (non-squamous histology), docetaxel, erlotinib and gefitinib as approved second-line agents in NSCLC without targetable driver mutations or rearrangements. Trials comparing these agents with other chemotherapy, evaluating the addition of an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) to chemotherapy or the addition of another targeted agent to erlotinib or gefitinib have all failed to demonstrate an improvement in overall survival for patients with NSCLC. In contrast, recent data comparing therapy with novel monoclonal antibodies against programmed cell death 1 (PD-1) or PD ligand (PD-L1) pathway versus standard chemotherapy following platinum failure have demonstrated significant improvements in overall survival. Therapy with nivolumab or pembrolizumab would now be considered standard second-line therapy in patients without contraindication to immune checkpoint inhibitors. Atezolizumab also appears promising in this setting.
Collapse
|
37
|
Abstract
Cancer is characterized by uncontrolled tumour cell proliferation resulting from aberrant activity of various cell cycle proteins. Therefore, cell cycle regulators are considered attractive targets in cancer therapy. Intriguingly, animal models demonstrate that some of these proteins are not essential for proliferation of non-transformed cells and development of most tissues. By contrast, many cancers are uniquely dependent on these proteins and hence are selectively sensitive to their inhibition. After decades of research on the physiological functions of cell cycle proteins and their relevance for cancer, this knowledge recently translated into the first approved cancer therapeutic targeting of a direct regulator of the cell cycle. In this Review, we focus on proteins that directly regulate cell cycle progression (such as cyclin-dependent kinases (CDKs)), as well as checkpoint kinases, Aurora kinases and Polo-like kinases (PLKs). We discuss the role of cell cycle proteins in cancer, the rationale for targeting them in cancer treatment and results of clinical trials, as well as the future therapeutic potential of various cell cycle inhibitors.
Collapse
Affiliation(s)
- Tobias Otto
- Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02215, USA
- Department of Internal Medicine III, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02215, USA
| |
Collapse
|
38
|
Chen Y, Zhang J, Li D, Jiang J, Wang Y, Si S. Identification of a novel Polo-like kinase 1 inhibitor that specifically blocks the functions of Polo-Box domain. Oncotarget 2017; 8:1234-1246. [PMID: 27902479 PMCID: PMC5352051 DOI: 10.18632/oncotarget.13603] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/11/2016] [Indexed: 12/21/2022] Open
Abstract
Polo-like kinase 1 (Plk1) is a promising target for cancer therapy due to its essential role in cell division. In addition to a highly conserved kinase domain, Plk1 also contains a Polo-Box domain (PBD), which is essential for Plk1's subcellular localization and mitotic functions. We adopted a fluorescence polarization assay and identified a new Plk1 PBD inhibitor T521 from a small-molecule compound library. T521 specifically inhibits the PBD of Plk1, but not those of Plk2-3. T521 exhibits covalent binding to some lysine residues of Plk1 PBD, which causes significant changes in the secondary structure of Plk1 PBD. Using a cell-based assay, we showed that T521 impedes the interaction between Plk1 and Bub1, a mitotic checkpoint protein. Moreover, HeLa cells treated with T521 exhibited dramatic mitotic defects. Importantly, T521 suppresses the growth of A549 cells in xenograft nude mice. Taken together, we have identified a novel Plk1 inhibitor that specifically disrupts the functions of Plk1 PBD and shows anticancer activity.
Collapse
Affiliation(s)
- Yunyu Chen
- Institute of Medicinal Biotechnology, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Jing Zhang
- Institute of Medicinal Biotechnology, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Dongsheng Li
- Institute of Medicinal Biotechnology, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Jiandong Jiang
- Institute of Medicinal Biotechnology, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Yanchang Wang
- Institute of Medicinal Biotechnology, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, China
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Shuyi Si
- Institute of Medicinal Biotechnology, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, China
| |
Collapse
|
39
|
Nonomiya Y, Noguchi K, Tanaka N, Kasagaki T, Katayama K, Sugimoto Y. Effect of AKT3 expression on MYC- and caspase-8-dependent apoptosis caused by polo-like kinase inhibitors in HCT 116 cells. Cancer Sci 2016; 107:1877-1887. [PMID: 27699933 PMCID: PMC5198950 DOI: 10.1111/cas.13093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/28/2016] [Accepted: 09/29/2016] [Indexed: 11/28/2022] Open
Abstract
Polo-like kinase (PLK) is a cell-cycle regulator that is overexpressed in several cancer cell types. Polo-like kinase is considered a novel target for cancer therapies, and several PLK inhibitors (PLKis), including BI 2536, BI 6727, and GSK461364, have been developed. In this study, we established five BI 2536-resistant cell lines from human colorectal cancer HCT 116 cells, to explore the resistance mechanism and identify predictable biomarkers of PLKis. We showed that PLKi-induced caspase-8 activation was attenuated in the BI 2536-resistant cell lines. We also showed that the expression of P-glycoprotein (P-GP) and AKT3 was upregulated, whereas that of MYC was downregulated in some BI 2536-resistant cell lines. Expression of P-GP conferred resistance to PLKis, and PLKi-induced apoptosis was dependent on MYC and caspase-8 in HCT 116 cells. We also showed for the first time that AKT3 suppressed BI 6727-induced caspase-8 activation and conferred resistance to PLKis. Collectively, these results indicate that MYC, caspase-8, P-GP, and AKT3 play critical roles in PLKi-induced apoptosis. Therefore, they are candidate biomarkers of the pharmacological efficacy of PLKis.
Collapse
Affiliation(s)
- Yuma Nonomiya
- Division of ChemotherapyFaculty of PharmacyKeio UniversityTokyoJapan
| | - Kohji Noguchi
- Division of ChemotherapyFaculty of PharmacyKeio UniversityTokyoJapan
| | - Noritaka Tanaka
- Division of ChemotherapyFaculty of PharmacyKeio UniversityTokyoJapan
| | - Takahiro Kasagaki
- Division of ChemotherapyFaculty of PharmacyKeio UniversityTokyoJapan
| | - Kazuhiro Katayama
- Division of ChemotherapyFaculty of PharmacyKeio UniversityTokyoJapan
| | | |
Collapse
|
40
|
Van den Bossche J, Lardon F, Deschoolmeester V, De Pauw I, Vermorken JB, Specenier P, Pauwels P, Peeters M, Wouters A. Spotlight on Volasertib: Preclinical and Clinical Evaluation of a Promising Plk1 Inhibitor. Med Res Rev 2016; 36:749-86. [PMID: 27140825 DOI: 10.1002/med.21392] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 02/05/2016] [Accepted: 03/10/2016] [Indexed: 12/20/2022]
Abstract
Considering the important side effects of conventional microtubule targeting agents, more and more research focuses on regulatory proteins for the development of mitosis-specific agents. Polo-like kinase 1 (Plk1), a master regulator of several cell cycle events, has arisen as an intriguing target in this research field. The observed overexpression of Plk1 in a broad range of human malignancies has given rise to the development of several potent and specific small molecule inhibitors targeting the kinase. In this review, we focus on volasertib (BI6727), the lead agent in category of Plk1 inhibitors at the moment. Numerous preclinical experiments have demonstrated that BI6727 is highly active across a variety of carcinoma cell lines, and the inhibitor has been reported to induce tumor regression in several xenograft models. Moreover, volasertib has shown clinical efficacy in multiple tumor types. As a result, Food and Drug Administration (FDA) has recently awarded volasertib the Breakthrough Therapy status after significant benefit was observed in acute myeloid leukemia (AML) patients treated with the Plk1 inhibitor. Here, we discuss both preclinical and clinical data available for volasertib administered as monotherapy or in combination with other anticancer therapies in a broad range of tumor types.
Collapse
Affiliation(s)
- J Van den Bossche
- Center for Oncological Research (CORE) Antwerp, University of Antwerp, Antwerp, Belgium
| | - F Lardon
- Center for Oncological Research (CORE) Antwerp, University of Antwerp, Antwerp, Belgium
| | - V Deschoolmeester
- Center for Oncological Research (CORE) Antwerp, University of Antwerp, Antwerp, Belgium
- Department of Pathology, Antwerp University Hospital, Edegem, Belgium
| | - I De Pauw
- Center for Oncological Research (CORE) Antwerp, University of Antwerp, Antwerp, Belgium
| | - J B Vermorken
- Center for Oncological Research (CORE) Antwerp, University of Antwerp, Antwerp, Belgium
- Department of Oncology, Antwerp University Hospital, Edegem, Belgium
| | - P Specenier
- Center for Oncological Research (CORE) Antwerp, University of Antwerp, Antwerp, Belgium
- Department of Oncology, Antwerp University Hospital, Edegem, Belgium
| | - P Pauwels
- Center for Oncological Research (CORE) Antwerp, University of Antwerp, Antwerp, Belgium
- Department of Pathology, Antwerp University Hospital, Edegem, Belgium
| | - M Peeters
- Center for Oncological Research (CORE) Antwerp, University of Antwerp, Antwerp, Belgium
- Department of Oncology, Antwerp University Hospital, Edegem, Belgium
| | - A Wouters
- Center for Oncological Research (CORE) Antwerp, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
41
|
Gjertsen BT, Schöffski P. Discovery and development of the Polo-like kinase inhibitor volasertib in cancer therapy. Leukemia 2015; 29:11-9. [PMID: 25027517 PMCID: PMC4335352 DOI: 10.1038/leu.2014.222] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 06/05/2014] [Accepted: 07/02/2014] [Indexed: 11/09/2022]
Abstract
Owing to their integral involvement in cell cycle regulation, the Polo-like kinase (Plk) family, particularly Plk1, has emerged as an attractive therapeutic target in oncology. In recent years, several Plk1 inhibitors have been developed, with some agents showing encouraging results in early-phase clinical trials. This review focuses on volasertib (BI 6727; an investigational agent), a potent and selective Plk inhibitor. Volasertib has shown promising activity in various cancer cell lines and xenograft models of human cancer. Trials performed to date suggest that volasertib has clinical efficacy in a range of malignancies, with the most promising results seen in patients with acute myeloid leukemia (AML). Encouragingly, recent phase II data have demonstrated that volasertib combined with low-dose cytarabine (LDAC) was associated with higher response rates and improved event-free survival than LDAC alone in patients with previously untreated AML. Based on these observations, and its presumably manageable safety profile, volasertib is currently in phase III development as a potential treatment for patients with AML who are ineligible for intensive remission induction therapy. Given that many patients with AML are of an older age and frail, this constitutes an area of major unmet need. In this review, we discuss the biologic rationale for Plk1 inhibitors in cancer, the clinical development of volasertib to date in solid tumors and AML, and the future identification of biomarkers that might predict response to volasertib and help determine the role of this agent in the clinic.
Collapse
Affiliation(s)
- B T Gjertsen
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Internal Medicine, Haematology Section, Haukeland University Hospital, Bergen, Norway
| | - P Schöffski
- Department of General Medical Oncology, Leuven Cancer Institute, University Hospitals Leuven, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|