1
|
Wang H, Shen L, Chen L, Gao Y, Ma L, Lian W, Zhang Z, Liu H, Yang H, Wang J, Zhao D, Cheng M. Design, synthesis, pharmacological evaluation, and computational study of benzo[d] isothiazol-based small molecule inhibitors targeting PD-1/PD-l1 interaction. Eur J Med Chem 2024; 275:116622. [PMID: 38959727 DOI: 10.1016/j.ejmech.2024.116622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/05/2024] [Accepted: 06/22/2024] [Indexed: 07/05/2024]
Abstract
Blockade of the programmed cell death-1 (PD-1)/programmed cell death ligand 1 (PD-L1) pathway is an attractive strategy for immunotherapy, but the clinical application of small molecule PD-1/PD-L1 inhibitors remains unclear. In this work, based on BMS-202 and our previous work YLW-106, a series of compounds with benzo[d]isothiazol structure as scaffold were designed and synthesized. Their inhibitory activity against PD-1/PD-L1 interaction was evaluated by a homogeneous time-resolved fluorescence (HTRF) assay. Among them, LLW-018 (27c) exhibited the most potent inhibitory activity with an IC50 value of 2.61 nM. The cellular level assays demonstrated that LLW-018 exhibited low cytotoxicity against Jurkat T and MDA-MB-231. Further cell-based PD-1/PD-L1 blockade bioassays based on PD-1 NFAT-Luc Jurkat cells and PD-L1 TCR Activator CHO cells indicated that LLW-018 could interrupt PD-1/PD-L1 interaction with an IC50 value of 0.88 μM. Multi-computational methods, including molecular docking, molecular dynamics, MM/GBSA, MM/PBSA, Metadynamics, and QM/MM MD were utilized on PD-L1 dimer complexes, which revealed the binding modes and dissociation process of LLW-018 and C2-symmetric small molecule inhibitor LCH1307. These results suggested that LLW-018 exhibited promising potency as a PD-1/PD-L1 inhibitor for further investigation.
Collapse
Affiliation(s)
- Hanxun Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Lanlan Shen
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Lu Chen
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Yinli Gao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Lanyan Ma
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Wenxiong Lian
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Zhihao Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Haihan Liu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Huali Yang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.
| | - Dongmei Zhao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.
| |
Collapse
|
2
|
Xing Y, Qin F, Han L, Yang J, Zhang H, Qi Y, Tu S, Zhai Y. Multi‑omics approach to improve patient‑tailored therapy using immune checkpoint blockade and cytokine‑induced killer cell infusion in an elderly patient with lung cancer: A case report and literature review. Oncol Lett 2024; 27:203. [PMID: 38516684 PMCID: PMC10955685 DOI: 10.3892/ol.2024.14334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/06/2024] [Indexed: 03/23/2024] Open
Abstract
The 5-year survival rate of patients with advanced non-small cell lung cancer (NSCLC) remains low, despite recent advances in targeted therapy and immunotherapy. Therefore, there is a need to identify alternative strategies to improve treatment outcomes. Modern diagnostics can significantly facilitate the selection of treatment plans to improve patient outcomes. In the present study, multi-form diagnostic methodologies were adopted, including next-generation sequencing-based actionable gene sequencing, programmed death ligand 1 (PD-L1) immunohistochemistry, a circulating tumor cell (CTC) assay, flow cytometric analysis of lymphocyte subsets and computed tomography, to improve disease management in an 86-year-old female patient with relapsed metastatic NSCLC. High expression of PD-L1, elevated CTC tmutations, were observed. Based on these results, the patient was initially treated with the programmed death protein 1 blocking antibody sintilimab for two cycles, resulting in the stabilization of their condition, although the patient still exhibited severe pain and other symptoms, including fatigue, malaise, a loss of appetite and poor mental state. Informed by dynamic monitoring of the patient's response to treatment, the treatment plan was subsequently adjusted to a combination therapy with sintilimab and autologous cytokine-induced killer cell infusion, which eventually led to improved outcomes in both the management of the cancer and quality of life. In conclusion, multi-omics analysis may be used to establish patient-tailored therapies to improve clinical outcomes in hard-to-treat elderly patients with metastatic NSCLC.
Collapse
Affiliation(s)
- Yasi Xing
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Fangyuan Qin
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Lei Han
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Jingwen Yang
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Hongrui Zhang
- Zhengzhou Shenyou Biotechnology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Yong Qi
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Shichun Tu
- Zhengzhou Shenyou Biotechnology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
- Scintillon Institute for Biomedical and Bioenergy Research, San Diego, CA 92121, USA
| | - Yaping Zhai
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| |
Collapse
|
3
|
Jin K, Li Y, Wei R, Liu Y, Wang S, Tian H. BZW2 promotes malignant progression in lung adenocarcinoma through enhancing the ubiquitination and degradation of GSK3β. Cell Death Discov 2024; 10:105. [PMID: 38424042 PMCID: PMC10904796 DOI: 10.1038/s41420-024-01879-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024] Open
Abstract
The role of Basic leucine zipper and W2 domains 2 (BZW2) in the advancement of different types of tumors is noteworthy, but its involvement and molecular mechanisms in lung adenocarcinoma (LUAD) remain uncertain. Through this investigation, it was found that the upregulation of BZW2 was observed in LUAD tissues, which was associated with an unfavorable prognosis for individuals diagnosed with LUAD, as indicated by data from Gene Expression Omnibus and The Cancer Genome Atlas databases. Based on the clinicopathologic characteristics of LUAD patients from the tissue microarray, both univariate and multivariate analyses indicated that BZW2 functioned as an independent prognostic factor for LUAD. In terms of mechanism, BZW2 interacted with glycogen synthase kinase-3 beta (GSK3β) and enhanced the ubiquitination-mediated degradation of GSK3β through slowing down of the dissociation of the ubiquitin ligase complex, which consists of GSK3β and TNF receptor-associated factor 6. Moreover, BZW2 stimulated Wnt/β-catenin signaling pathway through GSK3β, thereby facilitating the advancement of LUAD. In conclusion, BZW2 was a significant promoter of LUAD. The research we conducted identified a promising diagnostic and therapeutic target for LUAD.
Collapse
Affiliation(s)
- Kai Jin
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yongmeng Li
- Department of Thoracic Surgery, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Ruyuan Wei
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yanfei Liu
- Department of Anesthesiology, Qilu Children's Hospital of Shandong University, Jinan, China
| | - Shuai Wang
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Hui Tian
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
4
|
Brock BA, Mir H, Flenaugh EL, Oprea-Ilies G, Singh R, Singh S. Social and Biological Determinants in Lung Cancer Disparity. Cancers (Basel) 2024; 16:612. [PMID: 38339362 PMCID: PMC10854636 DOI: 10.3390/cancers16030612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Lung cancer remains a leading cause of death in the United States and globally, despite progress in treatment and screening efforts. While mortality rates have decreased in recent years, long-term survival of patients with lung cancer continues to be a challenge. Notably, African American (AA) men experience significant disparities in lung cancer compared to European Americans (EA) in terms of incidence, treatment, and survival. Previous studies have explored factors such as smoking patterns and complex social determinants, including socioeconomic status, personal beliefs, and systemic racism, indicating their role in these disparities. In addition to social factors, emerging evidence points to variations in tumor biology, immunity, and comorbid conditions contributing to racial disparities in this disease. This review emphasizes differences in smoking patterns, screening, and early detection and the intricate interplay of social, biological, and environmental conditions that make African Americans more susceptible to developing lung cancer and experiencing poorer outcomes.
Collapse
Affiliation(s)
- Briana A. Brock
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (B.A.B.); (H.M.); (R.S.)
| | - Hina Mir
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (B.A.B.); (H.M.); (R.S.)
| | - Eric L. Flenaugh
- Division of Pulmonary Medicine, Morehouse School of Medicine, Atlanta, GA 30310, USA;
| | - Gabriela Oprea-Ilies
- Department of Pathology & Laboratory Medicine, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Rajesh Singh
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (B.A.B.); (H.M.); (R.S.)
| | - Shailesh Singh
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (B.A.B.); (H.M.); (R.S.)
- Cell and Molecular Biology Program, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
5
|
Li W, Zhao Y, Zhang H, Zheng W, Wang R, Gu X. Predictive value of tumor mutational burden for PD-1/PD-L1 inhibitors in NSCLC: A meta-analysis. Medicine (Baltimore) 2023; 102:e34990. [PMID: 37800825 PMCID: PMC10553067 DOI: 10.1097/md.0000000000034990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/08/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND To investigate the association between tumor mutational burden (TMB) and the therapeutic effect of Programmed Death 1/Programmed Death Ligand 1 inhibitors in non-small cell lung cancer. METHODS Four electronic databases, PubMed, Embase, Web of Science, and Cochrane Library, were searched on May 10, 2023, and no time limitation was applied. Analyses were performed using STATA17.0. We assessed the methodological quality of each randomized controlled trial using the Newcastle-Ottawa scale. RESULTS After exhaustive database search and rigorous screening, 10 studies were included in the meta-analysis. Our findings indicate that high TMB significantly improves progression-free survival but reduces overall response rate. The overall survival was not significantly different between the high and low TMB groups. No significant publication bias was observed. CONCLUSION High TMB serves as a potential predictive biomarker for improved progression-free survival and reduced overall response rate in patients with non-small cell lung cancer treated with programmed death 1/programmed death ligand 1 inhibitors. However, its predictive value in overall survival requires further investigation.
Collapse
Affiliation(s)
- Wenjie Li
- Department of Respiratory and Critical Care Medicine, Xi’an Chest Hospital, Chang’an District, Xi’an, Shanxi, China
| | - Yanjun Zhao
- Department of Respiratory and Critical Care Medicine, Xi’an Chest Hospital, Chang’an District, Xi’an, Shanxi, China
| | - Hongjun Zhang
- Department of Respiratory and Critical Care Medicine, Xi’an Chest Hospital, Chang’an District, Xi’an, Shanxi, China
| | - Wenying Zheng
- Department of Respiratory and Critical Care Medicine, Xi’an Chest Hospital, Chang’an District, Xi’an, Shanxi, China
| | - Ruixuan Wang
- Department of Respiratory and Critical Care Medicine, Xi’an Chest Hospital, Chang’an District, Xi’an, Shanxi, China
| | - Xing Gu
- Department of Respiratory and Critical Care Medicine, Xi’an Chest Hospital, Chang’an District, Xi’an, Shanxi, China
| |
Collapse
|
6
|
van Niekerk A, Wrzesinski K, Steyn D, Gouws C. A Novel NCI-H69AR Drug-Resistant Small-Cell Lung Cancer Mini-Tumor Model for Anti-Cancer Treatment Screening. Cells 2023; 12:1980. [PMID: 37566059 PMCID: PMC10416941 DOI: 10.3390/cells12151980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023] Open
Abstract
Small-cell lung cancer is a fast-growing carcinoma with a poor prognosis and a high level of relapse due to multi-drug resistance (MDR). Genetic mutations that lead to the overexpression of efflux transporter proteins can contribute to MDR. In vitro cancer models play a tremendous role in chemotherapy development and the screening of possible anti-cancer molecules. Low-cost and simple in vitro models are normally used. Traditional two-dimensional (2D) models have numerous shortcomings when considering the physiological resemblance of an in vivo setting. Three-dimensional (3D) models aim to bridge the gap between conventional 2D models and the in vivo setting. Some of the advantages of functional 3D spheroids include better representation of the in vivo physiology and tumor characteristics when compared to traditional 2D cultures. During this study, an NCI-H69AR drug-resistant mini-tumor model (MRP1 hyperexpressive) was developed by making use of a rotating clinostat bioreactor system (ClinoStar®; CelVivo ApS, Odense, Denmark). Spheroid growth and viability were assessed over a 25-day period to determine the ideal experimental period with mature and metabolically stable constructs. The applicability of this model for anti-cancer research was evaluated through treatment with irinotecan, paclitaxel and cisplatin for 96 h, followed by a 96 h recovery period. Parameters measured included planar surface area measurements, estimated glucose consumption, soluble protein content, intracellular adenosine triphosphate levels, extracellular adenylate kinase levels, histology and efflux transporter gene expression. The established functional spheroid model proved viable and stable during the treatment period, with retained relative hyperexpression of the MRP1 efflux transporter gene but increased expression of the P-gp transporter gene compared to the cells cultured in 2D. As expected, treatment with the abovementioned anti-cancer drugs at clinical doses (100 mg/m2 irinotecan, 80 mg/m2 paclitaxel and 75 mg/m2 cisplatin) had minimal impact on the drug-resistant mini-tumors, and the functional spheroid models were able to recover following the removal of treatment.
Collapse
Affiliation(s)
- Alandi van Niekerk
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom 2520, South Africa; (A.v.N.); (K.W.); (D.S.)
| | - Krzysztof Wrzesinski
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom 2520, South Africa; (A.v.N.); (K.W.); (D.S.)
- CelVivo ApS, 5491 Blommenslyst, Denmark
| | - Dewald Steyn
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom 2520, South Africa; (A.v.N.); (K.W.); (D.S.)
| | - Chrisna Gouws
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom 2520, South Africa; (A.v.N.); (K.W.); (D.S.)
| |
Collapse
|
7
|
Lahiri A, Maji A, Potdar PD, Singh N, Parikh P, Bisht B, Mukherjee A, Paul MK. Lung cancer immunotherapy: progress, pitfalls, and promises. Mol Cancer 2023; 22:40. [PMID: 36810079 PMCID: PMC9942077 DOI: 10.1186/s12943-023-01740-y] [Citation(s) in RCA: 316] [Impact Index Per Article: 158.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/22/2022] [Indexed: 02/23/2023] Open
Abstract
Lung cancer is the primary cause of mortality in the United States and around the globe. Therapeutic options for lung cancer treatment include surgery, radiation therapy, chemotherapy, and targeted drug therapy. Medical management is often associated with the development of treatment resistance leading to relapse. Immunotherapy is profoundly altering the approach to cancer treatment owing to its tolerable safety profile, sustained therapeutic response due to immunological memory generation, and effectiveness across a broad patient population. Different tumor-specific vaccination strategies are gaining ground in the treatment of lung cancer. Recent advances in adoptive cell therapy (CAR T, TCR, TIL), the associated clinical trials on lung cancer, and associated hurdles are discussed in this review. Recent trials on lung cancer patients (without a targetable oncogenic driver alteration) reveal significant and sustained responses when treated with programmed death-1/programmed death-ligand 1 (PD-1/PD-L1) checkpoint blockade immunotherapies. Accumulating evidence indicates that a loss of effective anti-tumor immunity is associated with lung tumor evolution. Therapeutic cancer vaccines combined with immune checkpoint inhibitors (ICI) can achieve better therapeutic effects. To this end, the present article encompasses a detailed overview of the recent developments in the immunotherapeutic landscape in targeting small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). Additionally, the review also explores the implication of nanomedicine in lung cancer immunotherapy as well as the combinatorial application of traditional therapy along with immunotherapy regimens. Finally, ongoing clinical trials, significant obstacles, and the future outlook of this treatment strategy are also highlighted to boost further research in the field.
Collapse
Affiliation(s)
- Aritraa Lahiri
- grid.417960.d0000 0004 0614 7855Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246 India
| | - Avik Maji
- grid.416241.4Department of Radiation Oncology, N. R. S. Medical College & Hospital, 138 A.J.C. Bose Road, Kolkata, 700014 India
| | - Pravin D. Potdar
- grid.414939.20000 0004 1766 8488Department of Molecular Medicine and Stem Cell Biology, Jaslok Hospital and Research Centre, Mumbai, 400026 India
| | - Navneet Singh
- grid.415131.30000 0004 1767 2903Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012 India
| | - Purvish Parikh
- Department of Clinical Hematology, Mahatma Gandhi Medical College and Hospital, Jaipur, Rajasthan 302022 India ,grid.410871.b0000 0004 1769 5793Department of Medical Oncology, Tata Memorial Hospital, Mumbai, Maharashtra 400012 India
| | - Bharti Bisht
- grid.19006.3e0000 0000 9632 6718Division of Thoracic Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Anubhab Mukherjee
- Esperer Onco Nutrition Pvt Ltd, 4BA, 4Th Floor, B Wing, Gundecha Onclave, Khairani Road, Sakinaka, Andheri East, Mumbai, Maharashtra, 400072, India.
| | - Manash K. Paul
- grid.19006.3e0000 0000 9632 6718Department of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA ,grid.411639.80000 0001 0571 5193Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| |
Collapse
|
8
|
Wang F, Ye W, He Y, Zhong H, Zhu Y, Han J, Gong X, Tian Y, Wang Y, Wang S, Ji S, Liu H, Yao X. Identification of CBPA as a New Inhibitor of PD-1/PD-L1 Interaction. Int J Mol Sci 2023; 24:ijms24043971. [PMID: 36835382 PMCID: PMC9964281 DOI: 10.3390/ijms24043971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 02/18/2023] Open
Abstract
Targeting of the PD-1/PD-L1 immunologic checkpoint is believed to have provided a real breakthrough in the field of cancer therapy in recent years. Due to the intrinsic limitations of antibodies, the discovery of small-molecule inhibitors blocking PD-1/PD-L1 interaction has gradually opened valuable new avenues in the past decades. In an effort to discover new PD-L1 small molecular inhibitors, we carried out a structure-based virtual screening strategy to rapidly identify the candidate compounds. Ultimately, CBPA was identified as a PD-L1 inhibitor with a KD value at the micromolar level. It exhibited effective PD-1/PD-L1 blocking activity and T-cell-reinvigoration potency in cell-based assays. CBPA could dose-dependently elevate secretion levels of IFN-γ and TNF-α in primary CD4+ T cells in vitro. Notably, CBPA exhibited significant in vivo antitumor efficacy in two different mouse tumor models (a MC38 colon adenocarcinoma model and a melanoma B16F10 tumor model) without the induction of observable liver or renal toxicity. Moreover, analyses of the CBPA-treated mice further showed remarkably increased levels of tumor-infiltrating CD4+ and CD8+ T cells and cytokine secretion in the tumor microenvironment. A molecular docking study suggested that CBPA embedded relatively well into the hydrophobic cleft formed by dimeric PD-L1, occluding the PD-1 interaction surface of PD-L1. This study suggests that CBPA could work as a hit compound for the further design of potent inhibitors targeting the PD-1/PD-L1 pathway in cancer immunotherapy.
Collapse
Affiliation(s)
- Fengling Wang
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Wenling Ye
- Henan International Joint Laboratory for Nuclear Protein Regulation, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yongxing He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Haiyang Zhong
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yongchang Zhu
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jianting Han
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiaoqing Gong
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yanan Tian
- Faculty of Applied Science, Macao Polytechnic University, Macao 999078, China
| | - Yuwei Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Shuang Wang
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Shaoping Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Huanxiang Liu
- Faculty of Applied Science, Macao Polytechnic University, Macao 999078, China
- Correspondence: (H.L.); (X.Y.); Tel.: +853-8599-6874 (H.L.); +86-0931-891-2578 (X.Y.)
| | - Xiaojun Yao
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
- Correspondence: (H.L.); (X.Y.); Tel.: +853-8599-6874 (H.L.); +86-0931-891-2578 (X.Y.)
| |
Collapse
|
9
|
High Expression of DLGAP5 Indicates Poor Prognosis and Immunotherapy in Lung Adenocarcinoma and Promotes Proliferation through Regulation of the Cell Cycle. DISEASE MARKERS 2023; 2023:9292536. [PMID: 36712920 PMCID: PMC9879687 DOI: 10.1155/2023/9292536] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 01/21/2023]
Abstract
Background Lung adenocarcinoma (LUAD) is one of the most common types of cancer in the respiratory system, with a high mortality and recurrence rate. The role of disc large-associated protein 5 (DLGAP5) in LUAD progression and tumor microenvironment (TME) remains unclear. This study is aimed at revealing the functional role of DLGAP5 in LUAD based on bioinformatics analysis and experimental validation. Methods Differential expression analysis, protein-protein interaction (PPI) network, and Cox regression analysis were applied to screen potential prognostic biomarkers. The mRNA and protein levels of DLGAP5 were analyzed using The Cancer Genome Atlas (TCGA) and the Human Protein Atlas (HPA) databases. The CCK-8 and colony formation assays were performed to assess the effect of DLGAP5 on cell proliferation. RNA sequencing (RNA-seq) and enrichment analyses were utilized to explore the biological functions of DLGAP5. Furthermore, flow cytometry was used to explore the role of DLGAP5 on the cell cycle. The ssGSEA algorithm in the R package "GSVA" was applied to quantify immune infiltrating cells, and the tumor immune dysfunction and exclusion (TIDE) algorithm was used to predict the efficacy of immunotherapy. Moreover, analyses using the cBioPortal and MethSurv databases were performed to evaluate the mutation and methylation of DLGAP5, respectively. Finally, the prognostic value of DLGAP5 was estimated using the TCGA and the Gene Expression Omnibus (GEO) databases. The nomogram model was constructed using the TCGA-LUAD cohort and evaluated by adopting calibration curves, time-dependent receiver operating characteristic (ROC) curves, and decision curve analysis (DCA). Results DLGAP5 mRNA and protein abundance were significantly elevated in LUAD, and knockdown of DLGAP5 remarkably suppressed lung cancer cell proliferation through induction of cell cycle G1 arrest. In addition, DLGAP5 expression was positively correlated with Th2 cells and negatively correlated with B cells, T follicular helper cells, and mast cells. LUAD patients with high DLGAP5 expression may be resistant to immunotherapy. Hypermethylation levels of the cg23678254 site of DLGAP5 or its enhanced expression were unfavorable for the survival of LUAD patients. Meanwhile, DLGAP5 expression was associated with TNM stages, tumor status, and therapy outcome. Notably, the prognostic model constructed based on DLGAP5 expression exhibited great predictive capability, which was promising for clinical applications. Conclusion DLGAP5 promotes lung cancer cell proliferation through regulation of the cell cycle and is associated with multiple immune infiltrating cells. Furthermore, DLGAP5 predicts poor prognosis and response to immunotherapy in lung adenocarcinoma.
Collapse
|
10
|
Khadela A, Chavda VP, Postwala H, Ephraim R, Apostolopoulos V, Shah Y. Configuring Therapeutic Aspects of Immune Checkpoints in Lung Cancer. Cancers (Basel) 2023; 15:543. [PMID: 36672492 PMCID: PMC9856297 DOI: 10.3390/cancers15020543] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/25/2022] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Immune checkpoints are unique components of the body's defense mechanism that safeguard the body from immune responses that are potent enough to harm healthy body cells. When proteins present on the surface of T cells recognize and bind to the proteins present on other tumor cells, immune checkpoints are triggered. These proteins are called immunological checkpoints. The T cells receive an on/off signal when the checkpoints interact with companion proteins. This might avert the host's immune system from eliminating cancer cells. The standard care plan for the treatment of non-small cell lung cancer (NSCLC) has been revolutionized with the use of drugs targeting immune checkpoints, in particular programmed cell death protein 1. These drugs are now extended for their potential to manage SCLC. However, it is acknowledged that these drugs have specific immune related adverse effects. Herein, we discuss the use of immune checkpoint inhibitors in patients with NSCLC and SCLC, their outcomes, and future perspectives.
Collapse
Affiliation(s)
- Avinash Khadela
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Humzah Postwala
- Pharm. D Section, L. M. College of Pharmacy, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Ramya Ephraim
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Australian Institute for Musculoskeletal Science, Melbourne, VIC 3021, Australia
| | - Yesha Shah
- Pharm. D Section, L. M. College of Pharmacy, Navrangpura, Ahmedabad 380009, Gujarat, India
| |
Collapse
|
11
|
Rahman MM, Masum MHU, Talukder A, Akter R. An in silico reverse vaccinology approach to design a novel multiepitope peptide vaccine for non-small cell lung cancers. INFORMATICS IN MEDICINE UNLOCKED 2023. [DOI: 10.1016/j.imu.2023.101169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
12
|
Guo H, Zhang J, Qin C, Yan H, Liu T, Hu H, Tang S, Tang S, Zhou H. Biomarker-Targeted Therapies in Non-Small Cell Lung Cancer: Current Status and Perspectives. Cells 2022; 11:3200. [PMID: 36291069 PMCID: PMC9600447 DOI: 10.3390/cells11203200] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/06/2022] [Indexed: 07/25/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) is one of the most common malignancies and the leading causes of cancer-related death worldwide. Despite many therapeutic advances in the past decade, NSCLC remains an incurable disease for the majority of patients. Molecular targeted therapies and immunotherapies have significantly improved the prognosis of NSCLC. However, the vast majority of advanced NSCLC develop resistance to current therapies and eventually progress. In this review, we discuss current and potential therapies for NSCLC, focusing on targeted therapies and immunotherapies. We highlight the future role of metabolic therapies and combination therapies in NSCLC.
Collapse
Affiliation(s)
- Haiyang Guo
- Department of Thoracic Surgery, Suining Central Hospital, Suining 629099, China
- Institute of Surgery, Graduate School, Chengdu University of TCM, Chengdu 610075, China
| | - Jun Zhang
- Department of Thoracic Surgery, Suining Central Hospital, Suining 629099, China
- Institute of Surgery, Graduate School, Zunyi Medical University, Zunyi 563003, China
| | - Chao Qin
- Department of Thoracic Surgery, Suining Central Hospital, Suining 629099, China
- Institute of Surgery, Graduate School, Zunyi Medical University, Zunyi 563003, China
| | - Hang Yan
- Department of Thoracic Surgery, Suining Central Hospital, Suining 629099, China
- Institute of Surgery, Graduate School, Zunyi Medical University, Zunyi 563003, China
| | - Tao Liu
- Department of Thoracic Surgery, Suining Central Hospital, Suining 629099, China
- Institute of Surgery, Graduate School, Zunyi Medical University, Zunyi 563003, China
| | - Haiyang Hu
- Department of Thoracic Surgery, Suining Central Hospital, Suining 629099, China
- Institute of Surgery, Graduate School, Zunyi Medical University, Zunyi 563003, China
| | - Shengjie Tang
- Department of Thoracic Surgery, Suining Central Hospital, Suining 629099, China
| | - Shoujun Tang
- Department of Thoracic Surgery, Suining Central Hospital, Suining 629099, China
| | - Haining Zhou
- Department of Thoracic Surgery, Suining Central Hospital, Suining 629099, China
- Institute of Surgery, Graduate School, Chengdu University of TCM, Chengdu 610075, China
- Institute of Surgery, Graduate School, Zunyi Medical University, Zunyi 563003, China
| |
Collapse
|
13
|
Molecular subtyping for lung adenocarcinoma and a novel prognostic model based on ligand-receptor pairs. Adv Med Sci 2022; 67:316-327. [DOI: 10.1016/j.advms.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/22/2022]
|
14
|
Quaquarini E, Sottotetti F, Agustoni F, Pozzi E, Malovini A, Teragni CM, Palumbo R, Saltalamacchia G, Tagliaferri B, Balletti E, Rinaldi P, Canino C, Pedrazzoli P, Bernardo A. Clinical and Biological Variables Influencing Outcome in Patients with Advanced Non-Small Cell Lung Cancer (NSCLC) Treated with Anti-PD-1/PD-L1 Antibodies: A Prospective Multicentre Study. J Pers Med 2022; 12:jpm12050679. [PMID: 35629102 PMCID: PMC9144987 DOI: 10.3390/jpm12050679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/10/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
Introduction: Immune checkpoint inhibitors (ICIs) have become the standard of treatment for patients with non-small cell lung cancer (NSCLC). However, there are still many uncertainties regarding the selection of the patient who could benefit more from this treatment. This study aims to evaluate the prognostic and predictive role of clinical and biological variables in unselected patients with advanced NSCLC candidates to receive ICIs. Methods: This is an observational and prospective study. The primary objective is the evaluation of the relationship between clinical and biological variables and the response to ICIs. Secondary objectives included: safety; assessment of the relationship between clinical and biological parameters/concomitant treatments and progression-free survival at 6 months and overall survival at 6 and 12 months. Nomograms to predict these outcomes have been generated. Results: A total of 166 patients were included. An association with response was found in the presence of the high immunohistochemical PD-L1 expression, squamous cell histotype, and early line of treatment, whereas a higher probability of progression was seen in the presence of anemia, high LDH values and neutrophil/lymphocyte ratio (NLR), pleural involvement, and thrombosis before treatment. The nomogram showed that anemia, PD-L1 expression, NLR, and LDH represented the most informative predictor as regards the three parameters of interest. Conclusions: In the era of personalized medicine, the results are useful for stratifying the patients and tailoring the treatments, considering both the histological findings and the clinical features of the patients.
Collapse
Affiliation(s)
- Erica Quaquarini
- Medical Oncology Unit, ICS Maugeri-IRCCS SpA SB, 27100 Pavia, Italy; (F.S.); (C.M.T.); (R.P.); (G.S.); (B.T.); (E.B.); (A.B.)
- Correspondence: ; Tel.: +39-0382-592202
| | - Federico Sottotetti
- Medical Oncology Unit, ICS Maugeri-IRCCS SpA SB, 27100 Pavia, Italy; (F.S.); (C.M.T.); (R.P.); (G.S.); (B.T.); (E.B.); (A.B.)
| | - Francesco Agustoni
- Medical Oncology Unit, IRCCS San Matteo Hospital Foundation, 27100 Pavia, Italy; (F.A.); (C.C.); (P.P.)
| | - Emma Pozzi
- Oncology Unit, Ospedale Civile, 27058 Voghera, Italy;
| | - Alberto Malovini
- Laboratory of Informatics and System Engineering for Clinical Research, ICS Maugeri-IRCCS SpA SB, Via Maugeri 10, 27100 Pavia, Italy;
| | - Cristina Maria Teragni
- Medical Oncology Unit, ICS Maugeri-IRCCS SpA SB, 27100 Pavia, Italy; (F.S.); (C.M.T.); (R.P.); (G.S.); (B.T.); (E.B.); (A.B.)
| | - Raffaella Palumbo
- Medical Oncology Unit, ICS Maugeri-IRCCS SpA SB, 27100 Pavia, Italy; (F.S.); (C.M.T.); (R.P.); (G.S.); (B.T.); (E.B.); (A.B.)
| | - Giuseppe Saltalamacchia
- Medical Oncology Unit, ICS Maugeri-IRCCS SpA SB, 27100 Pavia, Italy; (F.S.); (C.M.T.); (R.P.); (G.S.); (B.T.); (E.B.); (A.B.)
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Barbara Tagliaferri
- Medical Oncology Unit, ICS Maugeri-IRCCS SpA SB, 27100 Pavia, Italy; (F.S.); (C.M.T.); (R.P.); (G.S.); (B.T.); (E.B.); (A.B.)
| | - Emanuela Balletti
- Medical Oncology Unit, ICS Maugeri-IRCCS SpA SB, 27100 Pavia, Italy; (F.S.); (C.M.T.); (R.P.); (G.S.); (B.T.); (E.B.); (A.B.)
| | - Pietro Rinaldi
- Unit of Thoracic Surgery, IRCCS San Matteo Hospital Foundation, 27100 Pavia, Italy;
| | - Costanza Canino
- Medical Oncology Unit, IRCCS San Matteo Hospital Foundation, 27100 Pavia, Italy; (F.A.); (C.C.); (P.P.)
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Paolo Pedrazzoli
- Medical Oncology Unit, IRCCS San Matteo Hospital Foundation, 27100 Pavia, Italy; (F.A.); (C.C.); (P.P.)
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Antonio Bernardo
- Medical Oncology Unit, ICS Maugeri-IRCCS SpA SB, 27100 Pavia, Italy; (F.S.); (C.M.T.); (R.P.); (G.S.); (B.T.); (E.B.); (A.B.)
| |
Collapse
|
15
|
Rizzo A, Cusmai A, Giovannelli F, Acquafredda S, Rinaldi L, Misino A, Montagna ES, Ungaro V, Lorusso M, Palmiotti G. Impact of Proton Pump Inhibitors and Histamine-2-Receptor Antagonists on Non-Small Cell Lung Cancer Immunotherapy: A Systematic Review and Meta-Analysis. Cancers (Basel) 2022; 14:cancers14061404. [PMID: 35326555 PMCID: PMC8945985 DOI: 10.3390/cancers14061404] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The current meta-analysis highlighted that proton pump inhibitors (PPIs) and histamine-2-receptor antagonists (H2RAs) could impact immune checkpoint inhibitors (ICIs) efficacy in NSCLC patients, highlighting the need for a deeper comprehension of factors involved in treatment response or resistance. Since the number of indications and NSCLC patients receiving ICIs is supposed to increase further soon, identifying the impact of these agents on NSCLC immunotherapy represents a compelling and urgent need regarding NSCLC. Abstract (1) Background: In recent years, immunotherapy has revolutionized the treatment landscape of non-small cell lung cancer (NSCLC), representing a therapeutic breakthrough in this field. Antacid agents such as proton pump inhibitors (PPIs) and histamine-2-receptor antagonists (H2RAs) are commonly prescribed for extended periods in NSCLC patients, and these drugs have the potential to modify the efficacy of immune checkpoint inhibitors (ICIs). (2) Materials and Methods: Herein, we conducted a systematic review and meta-analysis to investigate the impact of PPIs and H2RAs on progression-free survival (PFS) and overall survival (OS) among patients receiving immunotherapy for metastatic NSCLC. Effect measures for OS were Hazard Ratios (HRs) and 95% Confidence Intervals (CIs), which were extracted from available studies. Forest plots were used to assess HRs to describe the relationship between treatment and OS in the specified cohorts of patients. (3) Results: Six studies were included in the analysis, involving 2267 patients. The pooled HRs for OS and PFS were 1.4 (95% CI, 1.25–1.58) and 1.29 (95% CI, 1.17–1.43), respectively, suggesting that PPIs and H2RAs administration was negatively associated with PFS and OS. (4) Conclusion: Concomitant antacid use could modify the activity of ICIs in NSCLC patients.
Collapse
Affiliation(s)
- Alessandro Rizzo
- Struttura Semplice Dipartimentale di Oncologia Medica per la Presa in Carico Globale del Paziente Oncologico “Don Tonino Bello”, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (A.C.); (F.G.); (S.A.); (L.R.); (A.M.); (E.S.M.); (G.P.)
- Correspondence: ; Tel.: +39-0-512-144-078
| | - Antonio Cusmai
- Struttura Semplice Dipartimentale di Oncologia Medica per la Presa in Carico Globale del Paziente Oncologico “Don Tonino Bello”, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (A.C.); (F.G.); (S.A.); (L.R.); (A.M.); (E.S.M.); (G.P.)
| | - Francesco Giovannelli
- Struttura Semplice Dipartimentale di Oncologia Medica per la Presa in Carico Globale del Paziente Oncologico “Don Tonino Bello”, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (A.C.); (F.G.); (S.A.); (L.R.); (A.M.); (E.S.M.); (G.P.)
| | - Silvana Acquafredda
- Struttura Semplice Dipartimentale di Oncologia Medica per la Presa in Carico Globale del Paziente Oncologico “Don Tonino Bello”, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (A.C.); (F.G.); (S.A.); (L.R.); (A.M.); (E.S.M.); (G.P.)
| | - Lucia Rinaldi
- Struttura Semplice Dipartimentale di Oncologia Medica per la Presa in Carico Globale del Paziente Oncologico “Don Tonino Bello”, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (A.C.); (F.G.); (S.A.); (L.R.); (A.M.); (E.S.M.); (G.P.)
| | - Andrea Misino
- Struttura Semplice Dipartimentale di Oncologia Medica per la Presa in Carico Globale del Paziente Oncologico “Don Tonino Bello”, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (A.C.); (F.G.); (S.A.); (L.R.); (A.M.); (E.S.M.); (G.P.)
| | - Elisabetta Sara Montagna
- Struttura Semplice Dipartimentale di Oncologia Medica per la Presa in Carico Globale del Paziente Oncologico “Don Tonino Bello”, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (A.C.); (F.G.); (S.A.); (L.R.); (A.M.); (E.S.M.); (G.P.)
| | - Valentina Ungaro
- S.C. Farmacia e U.Ma.C.A., Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Istituto Tumori Giovanni Paolo II-Bari, 70124 Bari, Italy;
| | - Mariagrazia Lorusso
- Unità Operativa Complessa Chirurgia Toracica, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Istituto Tumori Giovanni Paolo II-Bari, 70124 Bari, Italy;
| | - Gennaro Palmiotti
- Struttura Semplice Dipartimentale di Oncologia Medica per la Presa in Carico Globale del Paziente Oncologico “Don Tonino Bello”, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (A.C.); (F.G.); (S.A.); (L.R.); (A.M.); (E.S.M.); (G.P.)
| |
Collapse
|
16
|
Tang S, Qin C, Hu H, Liu T, He Y, Guo H, Yan H, Zhang J, Tang S, Zhou H. Immune Checkpoint Inhibitors in Non-Small Cell Lung Cancer: Progress, Challenges, and Prospects. Cells 2022; 11:cells11030320. [PMID: 35159131 PMCID: PMC8834198 DOI: 10.3390/cells11030320] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/29/2021] [Accepted: 01/14/2022] [Indexed: 02/04/2023] Open
Abstract
Non-small cell lung cancer is one of the most common types of malignances worldwide and the main cause of cancer-related deaths. Current treatment for NSCLC is based on surgical resection, chemotherapy, radiotherapy, and targeted therapy, with poor therapeutic effectiveness. In recent years, immune checkpoint inhibitors have applied in NSCLC treatment. A large number of experimental studies have shown that immune checkpoint inhibitors are safer and more effective than traditional therapeutic modalities and have allowed for the development of better guidance in the clinical treatment of advanced NSCLC patients. In this review, we describe clinical trials using ICI immunotherapies for NSCLC treatment, the available data on clinical efficacy, and the emerging evidence regarding biomarkers.
Collapse
Affiliation(s)
- Shengjie Tang
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining 629099, China
| | - Chao Qin
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining 629099, China
- Institute of Surgery, Graduate School, Zunyi Medical University, Zunyi 563002, China
| | - Haiyang Hu
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining 629099, China
- Institute of Surgery, Graduate School, Zunyi Medical University, Zunyi 563002, China
| | - Tao Liu
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining 629099, China
- Institute of Surgery, Graduate School, Zunyi Medical University, Zunyi 563002, China
| | - Yiwei He
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining 629099, China
| | - Haiyang Guo
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining 629099, China
- Institute of Surgery, Graduate School, Chengdu University of TCM, Chengdu 610075, China
| | - Hang Yan
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining 629099, China
- Institute of Surgery, Graduate School, Zunyi Medical University, Zunyi 563002, China
| | - Jun Zhang
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining 629099, China
- Institute of Surgery, Graduate School, Zunyi Medical University, Zunyi 563002, China
| | - Shoujun Tang
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining 629099, China
| | - Haining Zhou
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining 629099, China
- Institute of Surgery, Graduate School, Zunyi Medical University, Zunyi 563002, China
- Institute of Surgery, Graduate School, Chengdu University of TCM, Chengdu 610075, China
| |
Collapse
|
17
|
Kumar S, Pandey M, Mir IA, Mukhopadhyay A, Sharawat SK, Jain D, Saikia J, Malik PS, Kumar S, Mohan A. Evaluation of the programmed death-ligand 1 mRNA expression and immunopositivity and their correlation with survival outcomes in Indian lung cancer patients. Hum Cell 2021; 35:286-298. [PMID: 34786661 DOI: 10.1007/s13577-021-00647-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/11/2021] [Indexed: 11/26/2022]
Abstract
The presence of membranous immunopositivity of programmed death-ligand 1 (PD-L1) in tumors serves as a key determinant of response to immune checkpoint inhibitors. However, there are very limited studies on the evaluation of the PD-L1 mRNA expression and immunopositivity and their correlation with therapeutic response and survival outcomes, especially in Indian lung cancer patients. In this prospective study, conducted between 2017 and 2020, we collected biopsies and surgically resected tumors from 173 lung cancer patients. PD-L1 immunopositivity and mRNA expression were determined by immunohistochemistry using SP263 assay and qRT-PCR, respectively. PD-L1 expression was correlated with various clinicopathological variables, response to therapy, and survival outcomes using appropriate statistical methods. The median age was 60 years (range 33-81 years) with the majority of patients being male (86.5%) and smokers (83%). Histologically, the majority of patients were non-small cell lung cancer (89.4%) and of squamous cell carcinoma histology (64.3%). PD-L1 immunopositivity in tumor cells (tumor proportion score (TPS) ≥ 1%) was detected in 37.6%, while high immunopositivity (TPS ≥ 50%) was detected in 16.8% of lung cancer patients. Almost 76% of lung cancer patients with PD-L1 TPS ≥ 50% belonged to PD-L1 mRNA high-expression group. PD-L1 mRNA expression and immunopositivity did not correlate with response to therapy and survival outcomes. We conclude that PD-L1 immunopositivity and mRNA expression do not seem to serve as a prognostic biomarker for lung cancer patients treated with chemotherapy. More prospective studies should be planned to evaluate the predictive and prognostic relevance of PD-L1 expression in Indian lung cancer patients being treated with immune checkpoint inhibitors.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- B7-H1 Antigen/genetics
- B7-H1 Antigen/metabolism
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/mortality
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/mortality
- Female
- Gene Expression
- Humans
- Immune Checkpoint Inhibitors/therapeutic use
- Immunohistochemistry
- India/epidemiology
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/mortality
- Male
- Middle Aged
- Prospective Studies
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Survival Rate
- Time Factors
Collapse
Affiliation(s)
- Sachin Kumar
- Department of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| | - Monu Pandey
- Department of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Ishfaq A Mir
- Department of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Abhirup Mukhopadhyay
- Department of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Surender K Sharawat
- Department of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Deepali Jain
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Jyoutishman Saikia
- Department of Surgical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Prabhat S Malik
- Department of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Sunil Kumar
- Department of Surgical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Anant Mohan
- Department of Pulmonary Critical Care and Sleep Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| |
Collapse
|
18
|
Russomanno P, Assoni G, Amato J, D'Amore VM, Scaglia R, Brancaccio D, Pedrini M, Polcaro G, La Pietra V, Orlando P, Falzoni M, Cerofolini L, Giuntini S, Fragai M, Pagano B, Donati G, Novellino E, Quintavalle C, Condorelli G, Sabbatino F, Seneci P, Arosio D, Pepe S, Marinelli L. Interfering with the Tumor-Immune Interface: Making Way for Triazine-Based Small Molecules as Novel PD-L1 Inhibitors. J Med Chem 2021; 64:16020-16045. [PMID: 34670084 DOI: 10.1021/acs.jmedchem.1c01409] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The inhibition of the PD-1/PD-L1 axis by monoclonal antibodies has achieved remarkable success in treating a growing number of cancers. However, a novel class of small organic molecules, with BMS-202 (1) as the lead, is emerging as direct PD-L1 inhibitors. Herein, we report a series of 2,4,6-tri- and 2,4-disubstituted 1,3,5-triazines, which were synthesized and assayed for their PD-L1 binding by NMR and homogeneous time-resolved fluorescence. Among them, compound 10 demonstrated to strongly bind with the PD-L1 protein and challenged it in a co-culture of PD-L1 expressing cancer cells (PC9 and HCC827 cells) and peripheral blood mononuclear cells enhanced antitumor immune activity of the latter. Compound 10 significantly increased interferon γ release and apoptotic induction of cancer cells, with low cytotoxicity in healthy cells when compared to 1, thus paving the way for subsequent preclinical optimization and medical applications.
Collapse
Affiliation(s)
- Pasquale Russomanno
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, Napoli 80131, Italy
| | - Giulia Assoni
- Department of Cellular, Computational and Integrative Biology, (CIBIO), Università degli Studi di Trento, Via Sommarive 9, Povo I-38123, Trento, Italy.,Chemistry Department, Università degli Studi di Milano, Via C. Golgi 19, Milan 20133, Italy
| | - Jussara Amato
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, Napoli 80131, Italy
| | - Vincenzo Maria D'Amore
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, Napoli 80131, Italy
| | - Riccardo Scaglia
- Chemistry Department, Università degli Studi di Milano, Via C. Golgi 19, Milan 20133, Italy
| | - Diego Brancaccio
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, Napoli 80131, Italy
| | - Martina Pedrini
- Chemistry Department, Università degli Studi di Milano, Via C. Golgi 19, Milan 20133, Italy
| | - Giovanna Polcaro
- Dipartimento di Medicina e Chirurgia, Ospedale "San Giovanni di Dio e Ruggi d'Aragona", Università di Salerno, Salerno 84131, Italy
| | - Valeria La Pietra
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, Napoli 80131, Italy
| | - Paolo Orlando
- Chemistry Department, Università degli Studi di Milano, Via C. Golgi 19, Milan 20133, Italy
| | - Marianna Falzoni
- Chemistry Department, Università degli Studi di Milano, Via C. Golgi 19, Milan 20133, Italy
| | - Linda Cerofolini
- Centro di Risonanza Magnetica, CERM, Università di Firenze, Firenze 50019, Italy
| | - Stefano Giuntini
- Centro di Risonanza Magnetica, CERM, Università di Firenze, Firenze 50019, Italy
| | - Marco Fragai
- Centro di Risonanza Magnetica, CERM, Università di Firenze, Firenze 50019, Italy
| | - Bruno Pagano
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, Napoli 80131, Italy
| | - Greta Donati
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, Napoli 80131, Italy
| | | | - Cristina Quintavalle
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University, Naples, Italy; Institute for Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), Naples 80131, Italy
| | - Gerolama Condorelli
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University, Naples, Italy; Institute for Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), Naples 80131, Italy.,Department of Molecular Medicine and Medical Biotechnology, "Federico II" University, Naples 80131, Italy
| | - Francesco Sabbatino
- Dipartimento di Medicina e Chirurgia, Ospedale "San Giovanni di Dio e Ruggi d'Aragona", Università di Salerno, Salerno 84131, Italy
| | - Pierfausto Seneci
- Chemistry Department, Università degli Studi di Milano, Via C. Golgi 19, Milan 20133, Italy
| | - Daniela Arosio
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), Consiglio Nazionale delle Ricerche (CNR), Via C. Golgi 19, Milan 20133, Italy
| | - Stefano Pepe
- Dipartimento di Medicina e Chirurgia, Ospedale "San Giovanni di Dio e Ruggi d'Aragona", Università di Salerno, Salerno 84131, Italy
| | - Luciana Marinelli
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, Napoli 80131, Italy
| |
Collapse
|
19
|
Tian Y, Komolafe TE, Zheng J, Zhou G, Chen T, Zhou B, Yang X. Assessing PD-L1 Expression Level via Preoperative MRI in HCC Based on Integrating Deep Learning and Radiomics Features. Diagnostics (Basel) 2021; 11:1875. [PMID: 34679573 PMCID: PMC8534850 DOI: 10.3390/diagnostics11101875] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 12/30/2022] Open
Abstract
To assess if quantitative integrated deep learning and radiomics features can predict the PD-L1 expression level in preoperative MRI of hepatocellular carcinoma (HCC) patients. The data in this study consist of 103 hepatocellular carcinoma patients who received immunotherapy in a single center. These patients were divided into a high PD-L1 expression group (30 patients) and a low PD-L1 expression group (73 patients). Both radiomics and deep learning features were extracted from their MRI sequence of T2-WI, which were merged into an integrative feature space for machine learning for the prediction of PD-L1 expression. The five-fold cross-validation was adopted to validate the performance of the model, while the AUC was used to assess the predictive ability of the model. Based on the five-fold cross-validation, the integrated model achieved the best prediction performance, with an AUC score of 0.897 ± 0.084, followed by the deep learning-based model with an AUC of 0.852 ± 0.043 then the radiomics-based model with AUC of 0.794 ± 0.035. The feature set integrating radiomics and deep learning features is more effective in predicting PD-L1 expression level than only one feature type. The integrated model can achieve fast and accurate prediction of PD-L1 expression status in preoperative MRI of HCC patients.
Collapse
Affiliation(s)
- Yuchi Tian
- Academy of Engineering and Technology, Fudan University, Shanghai 200433, China;
| | | | - Jian Zheng
- Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China;
| | - Guofeng Zhou
- Department of Radiology, Zhongshan Hospital, Shanghai 200032, China;
| | - Tao Chen
- School of Information Science and Technology, Fudan University, Shanghai 200433, China;
| | - Bo Zhou
- Department of Interventional Radiology, Zhongshan Hospital, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Xiaodong Yang
- Academy of Engineering and Technology, Fudan University, Shanghai 200433, China;
- Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China;
| |
Collapse
|
20
|
Zhang Y, Su H, Wudu M, Ren H, Xu Y, Zhang Q, Jiang J, Wang Q, Jiang X, Zhang B, Liu Z, Zou Z, Qiu X. TBC1 domain family member 23 interacts with Ras-related protein Rab-11A to promote poor prognosis of non-small-cell lung cancer via β1-integrin. J Cell Mol Med 2021; 25:8821-8835. [PMID: 34363324 PMCID: PMC8435452 DOI: 10.1111/jcmm.16841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/09/2021] [Accepted: 07/26/2021] [Indexed: 11/27/2022] Open
Abstract
Non‐small‐cell lung cancer (NSCLC) accounts for approximately 80% of lung cancer cases. TBC1D23, a member of the TBC/RABGAP family, is widely expressed in human tissues; however, its role in NSCLC is currently unknown. Immunohistochemical analysis was conducted on 173 paraffin‐embedded lung tissue sections from patients with NSCLC from 2014 to 2018 at the First Affiliated Hospital of China Medical University. MTT, colony formation assay, cell cycle assay, scratch assay, transwell assay, Western blotting and real‐time PCR were employed on multiple NSCLC cell lines modified to knock down or overexpress TBC1D23/RAB11A. Immunoprecipitation, immunoprecipitation‐mass spectrometry, immunofluorescence and flow cytometry were performed to explore the interaction between TBC1D23 and RAB11A and TBC1D23 involvement in the interaction between RAB11A and β1 integrin in the para‐nucleus. TBC1D23 was correlated with tumour size, differentiation degree, metastasis, TNM stage and poor prognosis. TBC1D23 was involved in the interaction between RAB11A and β1 integrin in the para‐nucleus, thus activating the β1 integrin/FAK/ERK signalling pathway to promote NSCLC. Furthermore, TBC1D23 promoted NSCLC progression by inducing cell proliferation, migration and invasion. This study indicated the relationship between TBC1D23 expression and the adverse clinicopathological characteristics of patients with NSCLC, suggesting that TBC1D23 may be an important target for NSCLC treatment.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Pathology, First Affiliated Hospital College and of Basic Medical Sciences China Medical University, Shenyang, China
| | - Hongbo Su
- Department of Pathology, First Affiliated Hospital College and of Basic Medical Sciences China Medical University, Shenyang, China
| | - Muli Wudu
- Department of Pathology, Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Hongjiu Ren
- Department of Pathology, First Affiliated Hospital College and of Basic Medical Sciences China Medical University, Shenyang, China
| | - Yitong Xu
- Department of Pathology, First Affiliated Hospital College and of Basic Medical Sciences China Medical University, Shenyang, China
| | - Qingfu Zhang
- Department of Pathology, First Affiliated Hospital College and of Basic Medical Sciences China Medical University, Shenyang, China
| | - Jun Jiang
- Department of Pathology, First Affiliated Hospital College and of Basic Medical Sciences China Medical University, Shenyang, China
| | - Qiongzi Wang
- Department of Pathology, First Affiliated Hospital College and of Basic Medical Sciences China Medical University, Shenyang, China
| | - Xizi Jiang
- Department of Pathology, First Affiliated Hospital College and of Basic Medical Sciences China Medical University, Shenyang, China
| | - Bo Zhang
- Department of Pathology, First Affiliated Hospital College and of Basic Medical Sciences China Medical University, Shenyang, China
| | - Zongang Liu
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Zifang Zou
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xueshan Qiu
- Department of Pathology, First Affiliated Hospital College and of Basic Medical Sciences China Medical University, Shenyang, China
| |
Collapse
|
21
|
Discovery of phenyl-linked symmetric small molecules as inhibitors of the programmed cell death-1/programmed cell death-ligand 1 interaction. Eur J Med Chem 2021; 223:113637. [PMID: 34147746 DOI: 10.1016/j.ejmech.2021.113637] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/01/2021] [Accepted: 06/05/2021] [Indexed: 11/21/2022]
Abstract
Programmed cell death-1/programmed cell death ligand 1 (PD-1/PD-L1) is one of the most promising targets in the field of immune checkpoint blockade therapy. Beginning with our exploration of linkers and structure-activity relationship research, we found that the aromatic ring could replace the linker and aryl group to maintain the satisfactory activity of classic triaryl scaffold inhibitor. Based on previous studies, we designed and synthesized a series of C2-symmetric phenyl-linked compounds, and further tail optimization afforded the inhibitors, which displayed promising inhibitory activity against the PD-1/PD-L1 interaction with IC50 value at the single nanomolar range (C13-C15). Further cell-based PD-1/PD-L1 blockade bioassays indicated that these C2-symmetric molecules could significantly inhibit the PD-1/PD-L1 interaction at the cellular level and restore T cells' immune function at the safety concentrations. The discovery of these phenyl-linked symmetric small molecules showed the potential of simplified-linker and C2-symmetric strategy and provided a basis for developing symmetric small molecule inhibitors of PD-1/PD-L1 interaction. Moreover, C13 and C15 performed stable binding modes to PD-L1 dimeric after computational docking and dynamic simulation, which may serve as a good starting point for further development.
Collapse
|
22
|
KLHL38 involvement in non-small cell lung cancer progression via activation of the Akt signaling pathway. Cell Death Dis 2021; 12:556. [PMID: 34050138 PMCID: PMC8163838 DOI: 10.1038/s41419-021-03835-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 12/14/2022]
Abstract
Lung cancer is the leading cause of cancer-related death worldwide. KLHL38 has been reported to be upregulated during diapause but downregulated after androgen treatment during the reversal of androgen-dependent skeletal muscle atrophy. This study aimed to clarify the role of KLHL38 in non-small cell lung cancer (NSCLC). KLHL38 expression was evaluated in tumor and adjacent normal tissues from 241 patients with NSCLC using immunohistochemistry and real-time PCR, and its association with clinicopathological parameters was analyzed. KLHL38 levels positively correlated with tumor size, lymph node metastasis, and pathological tumor-node-metastasis stage (all P < 0.001). In NSCLC cell lines, KLHL38 overexpression promoted PTEN ubiquitination, thereby activating Akt signaling. It also promoted cell proliferation, migration, and invasion by upregulating the expression of genes encoding cyclin D1, cyclin B, c-myc, RhoA, and MMP9, while downregulating the expression of p21 and E-cadherin. In vivo experiments in nude mice further confirmed that KLHL38 promotes NSCLC progression through Akt signaling pathway activation. Together, these results indicate that KLHL38 is a valuable candidate prognostic biomarker and potential therapeutic target for NSCLC.
Collapse
|
23
|
Synthesis and pharmacological evaluation of novel resorcinol biphenyl ether analogs as small molecule inhibitors of PD-1/PD-L1 with benign toxicity profiles for cancer treatment. Biochem Pharmacol 2021; 188:114522. [PMID: 33741334 DOI: 10.1016/j.bcp.2021.114522] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 11/20/2022]
Abstract
Programmed death protein 1 (PD-1)/programmed death protein ligand 1 (PD-L1) pathway is one of the most actively pursued targets in cancer immunotherapy. In a continuation of our research interest in this pathway, we synthesized and evaluated the pharmacological activities of a series of resorcinol biphenyl ether analogs as small molecule PD-1/PD-L1 inhibitors for cancer treatment. Among the 27 newly synthesized compounds, CH1 was found to have the highest inhibitory effect against PD-1/PDL-1 with an IC50 value of 56.58 nM in the HTRF (homogenous time-resolved fluorescence) assay. In addition, CH1 dose-dependently promoted HepG2 cell death in a co-culture model of HepG2/hPD-L1 and Jurkat T cells. Furthermore, molecular modeling study indicated that CH1 binds with high affinity to the binding interface of PD-L1. Moreover, CH1 effectively inhibited tumor growth (TGI of 76.4% at 90 mg/kg) in an immune checkpoint humanized mouse model with no obvious toxicity. Finally, CH1 did not cause in vivo cardiotoxicity and bone marrow suppression (myelosuppression) to BALB/c mice. Taken together, these results suggest that CH1 deserves further investigation as a potent and safe PD-1/PDL-1 inhibitor for cancer treatment.
Collapse
|
24
|
Garon EB, Aerts J, Kim JS, Muehlenbein CE, Peterson P, Rizzo MT, Gadgeel SM. Safety of pemetrexed plus platinum in combination with pembrolizumab for metastatic nonsquamous non-small cell lung cancer: A post hoc analysis of KEYNOTE-189. Lung Cancer 2021; 155:53-60. [PMID: 33730652 DOI: 10.1016/j.lungcan.2021.02.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVES This post hoc analysis assessed the safety of pemetrexed and platinum in combination with pembrolizumab, including time-to-onset and time-to-resolution of all-cause any-grade and grade ≥3 adverse events (AEs) and renal AEs. MATERIALS AND METHODS Patient-level data from KEYNOTE-189 were analyzed in the all-subjects-as-treated population (pembrolizumab arm, n = 405; placebo arm, n = 202), and among patients who received ≥5 cycles of pemetrexed (pemetrexed/pembrolizumab/platinum arm, n = 310; pemetrexed/placebo/platinum arm, n = 135). All-cause AEs were selected based on ≥2 % incidence from previously reported KEYNOTE-189 data and included neutropenia, febrile neutropenia, anemia, thrombocytopenia, asthenia, fatigue, dyspnea, diarrhea, nausea, vomiting, pneumonitis, and renal events. Descriptive statistics summarized all-cause AEs. Medians and interquartile ranges were used to examine time-to-onset and time-to-resolution. The data cutoff was November 8, 2017. RESULTS In both treatment arms, most non-hematologic (nausea, vomiting, diarrhea, and asthenia), and hematologic (febrile neutropenia, thrombocytopenia, and neutropenia) grade ≥3 AEs with ≥2 % incidence had a median time-to-onset within the first 4 cycles, and a median time-to-resolution of within 2 weeks from onset. A small number of AEs had longer median time-to-onset (pneumonitis and fatigue) and median time-to-resolution (pneumonitis, fatigue, acute kidney injury, and anemia). Among patients who received ≥5 cycles of pemetrexed, the incidence of any-grade renal toxicity in the pemetrexed/pembrolizumab/platinum arm was 2.3 % in Cycles 1-4, 4.8 % in Cycles 5-8, 2.6 % in Cycles 9-12, and 2.5 % in Cycles ≥13; and, in the pemetrexed/placebo/platinum arm, 0.7 % in Cycles 1-4, 1.5 % in Cycles 5-8, 1.3 % in Cycles 9-12, and 2.0 % in Cycles ≥13. CONCLUSION Pemetrexed/pembrolizumab/platinum has manageable toxicity with longer duration of treatment. While the incidence of renal toxicity was slightly higher in the pembrolizumab combination as compared to pemetrexed, the incidence did not increase in later treatment cycles. These results support the safe use of the KEYNOTE-189 regimen in clinical practice. CLINICAL TRIAL REGISTRATION NUMBER NCT02578680 (clinicaltrials.gov).
Collapse
Affiliation(s)
- Edward B Garon
- David Geffen School of Medicine, University of California Los Angeles, 2825 Santa Monica Blvd, Santa Monica, CA, 90404, USA.
| | - Joachim Aerts
- Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, the Netherlands.
| | - Jong Seok Kim
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA.
| | | | - Patrick Peterson
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA.
| | - Maria Teresa Rizzo
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA.
| | - Shirish M Gadgeel
- Henry Ford Cancer Institute/Henry Ford Health System, 2799 W Grand Blvd K13, Detroit, MI, 48202, USA.
| |
Collapse
|
25
|
Wang P, Yang M, Wang X, Zhao Z, Li M, Yu J. A nomogram for the predicting of survival in patients with esophageal squamous cell carcinoma undergoing definitive chemoradiotherapy. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:233. [PMID: 33708860 PMCID: PMC7940874 DOI: 10.21037/atm-20-1460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Definitive chemoradiotherapy (dCRT) is widely accepted for esophageal squamous cell carcinoma (ESCC), although the outcomes can vary. Therefore, we aimed to develop a nomogram for the pre-treatment prediction of survival after dCRT for ESCC. Methods This retrospective study evaluated 204 patients (169 patients in a primary cohort and 35 patients in a validation cohort) who received dCRT for ESCC between July 2013 and June 2017. Results Pre-treatment parameters that predicted long-term survival in this setting were body mass index (BMI), absolute lymphocyte count (ALC), neutrophil-to-lymphocyte ratio (NLR), wall thickness, concurrent chemoradiotherapy, radiotherapy modality, and American Joint Committee on Cancer (AJCC) stage. The nomogram incorporated these factors and provided C-index values of 0.691 [95% confidence interval (CI): 0.641-0.740] in the primary cohort and 0.816 (95% CI: 0.700-0.932) in the validation cohort. The calibration curve analysis revealed that the nomogram had good ability to predict 2-year progression-free survival (PFS). The nomogram also performed better than the AJCC staging system by the C-index values (0.691 vs. 0.560) and the area under the curve values (0.702 vs. 0.576). Decision curve analysis (DCA) also indicated that the nomogram had better clinical utility. Conclusions These results suggest that pre-treatment parameters may help predict the efficacy of dCRT for ESCC. Furthermore, as the nomogram provided better prognostic accuracy than the AJCC staging system, the nomogram may be useful in clinical practice for prognostication among patients who are going to receive dCRT for ESCC.
Collapse
Affiliation(s)
- Peiliang Wang
- Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Maoqi Yang
- School of Pharmacy, Yantai University, Yantai, China
| | - Xin Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.,Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Zongxing Zhao
- Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Minghuan Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jinming Yu
- Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
26
|
Sun Z, Wang S, Du H, Shen H, Zhu J, Li Y. Immunotherapy-induced pneumonitis in non-small cell lung cancer patients: current concern in treatment with immune-check-point inhibitors. Invest New Drugs 2021; 39:891-898. [PMID: 33428078 DOI: 10.1007/s10637-020-01051-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/10/2020] [Indexed: 12/22/2022]
Abstract
Purpose Immune-related adverse events (IrAEs) are auto-immune reactions associated with immune checkpoint inhibitor-based therapy (ICI). To date, little is known about immunotherapy-induced pneumonitis (IIP). In this study, we investigated the clinical and CT features of IIP in non-small cell lung cancer (NSCLC) patients treated with ICI. Methods CT images and clinical data of 98 NSCLC patients in our hospital were retrospectively analyzed after ICI therapy, and the incidence, onset time, CT findings, grade, treatment and prognosis of IIP were recorded. Results Nineteen patients developed IIP, which occurred 42∼210 days after ICI therapy, and the median time was 97 days. The CT findings for IIP showed multifocal ground-glass opacity (GGO) in 5 cases, patchy shadows in 6 cases, mixed distribution of patchy and strip-like shadows in 4 cases, and patchy shadows with honeycomb lung in 4 cases. The mean age and proportions of smokers, CD3+ and CD4+ of T lymphocyte subset in patients with IIP were significantly higher than those in patients without IIP (all p < 0.05). Among 19 patients with IIP, there were 10 patients with grade 1 ~ 2 and 9 patients with grade 3 ~ 4; 13 patients received hormone therapy, 12 of them were improved or stable, and 1 patient got worse after hormone therapy. No deaths from IIP were found. Conclusion IIP is a relatively rare but serious adverse event, and it is sensitive to hormone therapy. Its CT manifestations are diverse, and timely detection and treatment are the keys to reduce IIP.
Collapse
Affiliation(s)
- Zongqiong Sun
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, 215006, China
- Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi City, 214000, Jiangsu Province, China
| | - Sheng Wang
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, 215006, China
| | - Hongdi Du
- Department of Radiology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou City, Jiangsu Province, 215028, China
| | - Hailin Shen
- Department of Radiology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou City, Jiangsu Province, 215028, China.
| | - Jingfen Zhu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, 215006, China.
| | - Yonggang Li
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, 215006, China.
| |
Collapse
|
27
|
Cheng B, Ren Y, Niu X, Wang W, Wang S, Tu Y, Liu S, Wang J, Yang D, Liao G, Chen J. Discovery of Novel Resorcinol Dibenzyl Ethers Targeting the Programmed Cell Death-1/Programmed Cell Death–Ligand 1 Interaction as Potential Anticancer Agents. J Med Chem 2020; 63:8338-8358. [DOI: 10.1021/acs.jmedchem.0c00574] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Binbin Cheng
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Yichang Ren
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Xiaoge Niu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Wei Wang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Shuanghu Wang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Yingfeng Tu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Shuwen Liu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Jin Wang
- AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Deying Yang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Guochao Liao
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
28
|
Hu B, Shi X, Du X, Xu M, Wang Q, Zhao H. Pattern of immune infiltration in lung cancer and its clinical implication. Clin Chim Acta 2020; 508:47-53. [PMID: 32371218 DOI: 10.1016/j.cca.2020.04.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/17/2020] [Accepted: 04/29/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Tumor-infiltrating immune cells play an essential role in prognosis and survival after therapy. However, previous works have not made clear about the diversity of distinct cell types that participate in the immune response. We determined the composition of tumor-infiltrating immune cells and their correlation with prognosis in lung cancer based on a metagene approach (known as CIBERSORT) and online databases. METHODS A total of 22 tumor-infiltrating immune cells were estimated to confirm the associations between the immune infiltration pattern and survival. As a result, the proportions of activated NK cell, monocytes, M0 macrophages and M1 macrophages in 56 cancer samples were significantly higher than those in 56 paracancerous samples. RESULTS Univariate Cox regression analysis displayed that the proportions of NK cell and monocytes were significantly associated with prognosis. Hierarchical clustering analysis predicted five clusters by the method of within sum of squares errors (wss), which exhibited different infiltrating immune cell composition and prognosis. CONCLUSIONS The proportions of tumor-infiltrating immune cells as well as cluster patterns were associated with the prognosis, which provided potential therapeutic targets for lung cancer.
Collapse
Affiliation(s)
- Bin Hu
- Ultrasound Department, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, PR China
| | - Xiaohua Shi
- Pathology Department, Peking Union Medical College Hospital, Beijing 100730, PR China
| | - Xiaohui Du
- Departments of Scientific Research Center, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, PR China
| | - Mingxin Xu
- Departments of Respiratory Medicine, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, PR China
| | - Qi Wang
- Departments of Respiratory Medicine, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, PR China
| | - Hui Zhao
- Departments of Health Check-up Center, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, PR China.
| |
Collapse
|
29
|
Bi KW, Wei XG, Qin XX, Li B. BTK Has Potential to Be a Prognostic Factor for Lung Adenocarcinoma and an Indicator for Tumor Microenvironment Remodeling: A Study Based on TCGA Data Mining. Front Oncol 2020; 10:424. [PMID: 32351880 PMCID: PMC7175916 DOI: 10.3389/fonc.2020.00424] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/10/2020] [Indexed: 01/25/2023] Open
Abstract
Tumor microenvironment (TME) plays a crucial role in the initiation and progression of lung adenocarcinoma (LUAD); however, there is still a challenge in understanding the dynamic modulation of the immune and stromal components in TME. In the presented study, we applied CIBERSORT and ESTIMATE computational methods to calculate the proportion of tumor-infiltrating immune cell (TIC) and the amount of immune and stromal components in 551 LUAD cases from The Cancer Genome Atlas (TCGA) database. The differentially expressed genes (DEGs) were analyzed by COX regression analysis and protein–protein interaction (PPI) network construction. Then, Bruton tyrosine kinase (BTK) was determined as a predictive factor by the intersection analysis of univariate COX and PPI. Further analysis revealed that BTK expression was negatively correlated with the clinical pathologic characteristics (clinical stage, distant metastasis) and positively correlated with the survival of LUAD patients. Gene Set Enrichment Analysis (GSEA) showed that the genes in the high-expression BTK group were mainly enriched in immune-related activities. In the low-expression BTK group, the genes were enriched in metabolic pathways. CIBERSORT analysis for the proportion of TICs revealed that B-cell memory and CD8+ T cells were positively correlated with BTK expression, suggesting that BTK might be responsible for the preservation of immune-dominant status for TME. Thus, the levels of BTK might be useful for outlining the prognosis of LUAD patients and especially be a clue that the status of TME transition from immune-dominant to metabolic activity, which offered an extra insight for therapeutics of LUAD.
Collapse
Affiliation(s)
- Ke-Wei Bi
- Key Laboratory of Cell Biology, Department of Developmental Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Xu-Ge Wei
- Key Laboratory of Cell Biology, Department of Developmental Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Xiao-Xue Qin
- Key Laboratory of Cell Biology, Department of Developmental Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Bo Li
- Key Laboratory of Cell Biology, Department of Developmental Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
30
|
Domvri K, Petanidis S, Anestakis D, Porpodis K, Bai C, Zarogoulidis P, Freitag L, Hohenforst-Schmidt W, Katopodi T. Dual photothermal MDSCs-targeted immunotherapy inhibits lung immunosuppressive metastasis by enhancing T-cell recruitment. NANOSCALE 2020; 12:7051-7062. [PMID: 32186564 DOI: 10.1039/d0nr00080a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Immunosuppressive chemoresistance is a major barrier in lung cancer treatment. However, the immunosuppressive mechanisms responsible for lung cancer cell chemoresistance and tumor relapse are still unknown. In this study, we introduce a model of precise immunosuppressive-based nanotherapy by designing and delivering biocompatible MDSC-targeted nanocarriers (NCs) into the lung tumor microenvironment. This is accomplished by conjugating l-Norvaline and Sunitinib integrated into biodegradable nanosomes in order to facilitate inhibition of tumor-supporting immunosuppression. Findings show that treatment with NCs increased apoptosis and significantly reduced tumor volume and Ki-67 antigen expression respectively. Biodistribution analysis revealed an increase in drug circulation time, as well as a greater accumulation in lung and peripheral tissues. Furthermore, an upregulation of tumor infiltrating lymphocytes expression was observed, especially CD8+ T cells by 27%, and CD4+ T cells by 7% compared to PBS treatment. The presence of CD161+ (NK1.1) cells revealed NK cell activation followed by decreased MDSC infiltration and MDSC subsets were characterized by the reduction of Gr/CD11b cell population in blood and tissue samples. In addition, these nanospheres, showed increased PTT efficiency and tumour targeting ability as evidenced by highly efficient tumour ablation under near infrared (NIR) exposure. Significant tumor reduction was observed due to recruitment of cytotoxic T-lymphocytes, followed by downregulation of immunosuppressive Foxp3+ Treg cells. Taken together, our findings provide a novel nanodrug delivery strategy for the inhibition of MDSC-related immunosuppression in lung tumor microenvironment and provide a new approach for the efficient treatment of metastatic cancer.
Collapse
Affiliation(s)
- Kalliopi Domvri
- Pulmonary Department-Oncology Unit, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, 57010, Greece
| | - Savvas Petanidis
- Department of Medicine, Laboratory of Medical Biology and Genetics, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece. and Department of Pulmonology, I.M. Sechenov First Moscow State Medical University, Moscow, 119992, Russian Federation
| | - Doxakis Anestakis
- Department of Medicine, Laboratory of Medical Biology and Genetics, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece. and Department of Pulmonology, I.M. Sechenov First Moscow State Medical University, Moscow, 119992, Russian Federation and Department of Medicine, Laboratory of Forensic Medicine and Toxicology, Aristotle University of Thessaloniki, 54124, Greece
| | - Konstantinos Porpodis
- Pulmonary Department-Oncology Unit, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, 57010, Greece
| | - Chong Bai
- Department of Respiratory & Critical Care Medicine, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Paul Zarogoulidis
- Third Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, 55236 Thessaloniki, Greece
| | - Lutz Freitag
- Department of Pulmonology, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | | | - Theodora Katopodi
- Department of Medicine, Laboratory of Medical Biology and Genetics, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece.
| |
Collapse
|
31
|
Xia L, Liu Y, Wang Y. PD-1/PD-L1 Blockade Therapy in Advanced Non-Small-Cell Lung Cancer: Current Status and Future Directions. Oncologist 2020; 24:S31-S41. [PMID: 30819829 PMCID: PMC6394772 DOI: 10.1634/theoncologist.2019-io-s1-s05] [Citation(s) in RCA: 235] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 11/09/2018] [Indexed: 12/26/2022] Open
Abstract
This article summarizes the latest clinical applications of PD‐1/PD‐L1 blockade therapy in advanced non‐small cell lung cancer (NSCLC) worldwide and in China, reporting the bottlenecks related to the use of this therapy in clinic. An exploration of the underlying mechanism of PD‐1/PD‐L1 blockade therapy and biomarker identification will maximize the application of immune checkpoint inhibitors in advanced NSCLC and facilitate bedside‐to‐bench studies in cancer immunotherapy. The use of immune checkpoint inhibitors (ICIs) has become one of the most promising approaches in the field of cancer therapy. Unlike the current therapies that target tumor cells, such as chemotherapy, radiotherapy, or targeted therapy, ICIs directly restore the exhausted host antitumor immune responses mediated by the tumors. Among multiple immune modulators identified, the programmed cell death protein 1 (PD‐1)/programmed cell death protein ligand 1 (PD‐L1) axis leading to the exhaustion of T‐cell immunity in chronic infections and tumors has been widely investigated. Therefore, blocking antibodies targeting PD‐1 or PD‐L1 have been developed and approved for the treatment of various advanced cancers, including non‐small‐cell lung cancer (NSCLC), making them the most successful ICIs. Compared with chemotherapy or radiotherapy, PD‐1/PD‐L1 blockade therapy significantly improves the durable response rate and prolongs long‐term survival with limited adverse effects in both monotherapy and combination therapy for advanced NSCLC. However, extensive challenges exist for further clinical applications, such as a small fraction of benefit population, primary and acquired resistance, the lack of predictive and prognostic biomarkers, and treatment‐related adverse effects. In this article, we summarize the latest clinical applications of PD‐1/PD‐L1 blockade therapy in advanced NSCLC worldwide, as well as in China, and discuss the bottlenecks related to the use of this therapy in clinical practice. An exploration of the underlying mechanism of PD‐1/PD‐L1 blockade therapy and biomarker identification will maximize the application of ICIs in advanced NSCLC and facilitate bedside‐to‐bench studies in cancer immunotherapy as well. Implications for Practice. Immune checkpoint inhibitors (ICIs) targeting programmed cell death protein 1 (PD‐1) and programmed cell death protein ligand 1 (PD‐L1) display apparent benefits for the treatment of advanced non‐small‐cell lung cancer (NSCLC). However, the clinical applications of these therapies are challenged by the limited benefit population with additional high economic burden and adverse events. This review discusses the bottlenecks of ICI therapy in clinical practice and provides appropriate guidance in the development of predictive biomarkers, the establishment of the criteria for combining PD‐1/PD‐L1 blockade therapy with the existing therapies, and the management of adverse events observed both in monotherapy and combination therapy, which will help maximize the applications of ICIs in advanced NSCLC.
Collapse
Affiliation(s)
- Liliang Xia
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Yuanyong Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun, People's Republic of China
| | - Ying Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, People's Republic of China
| |
Collapse
|
32
|
Sun Z, Hu S, Ge Y, Wang J, Duan S, Song J, Hu C, Li Y. Radiomics study for predicting the expression of PD-L1 in non-small cell lung cancer based on CT images and clinicopathologic features. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2020; 28:449-459. [PMID: 32176676 DOI: 10.3233/xst-200642] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
PURPOSE To predict programmed death-ligand 1 (PD-L1) expression of tumor cells in non-small cell lung cancer (NSCLC) patients by using a radiomics study based on CT images and clinicopathologic features. MATERIALS AND METHODS A total of 390 confirmed NSCLC patients who performed chest CT scan and immunohistochemistry (IHC) examination of PD-L1 of lung tumors with clinic data were collected in this retrospective study, which were divided into two cohorts namely, training (n = 260) and validation (n = 130) cohort. Clinicopathologic features were compared between two cohorts. Lung tumors were segmented by using ITK-snap kit on CT images. Total 200 radiomic features in the segmented images were calculated using in-house texture analysis software, then filtered and minimized by least absolute shrinkage and selection operator (LASSO) regression to select optimal radiomic features based on its relevance of PD-L1 expression status in IHC results and develop radiomics signature. Radiomics signature and clinicopathologic risk factors were incorporated to develop prediction model by using multivariable logistic regression analysis. The receiver operating characteristic (ROC) curves were generated and the areas under the curves (AUC) were reckoned to predict PD-L1 expression in both training and validation cohorts. RESULTS In 200 extracted radiomic features, 9 were selected to develop radiomics signature. In univariate analysis, PD-L1 expression of lung tumors was significantly correlated with radiomics signature, histologic type, and histologic grade (p < 0.05, respectively). However, PD-L1 expression was not correlated with gender, age, tumor location, CEA level, TNM stage, and smoking (p > 0.05). For prediction of PD-L1 expression, the prediction model that combines radiomics signature and clinicopathologic features resulted in AUCs of 0.829 and 0.848 in the training and validation cohort, respectively. CONCLUSION The prediction model that incorporates the radiomics signature and clinical risk factors has potential to facilitate the individualized prediction of PD-L1 expression in NSCLC patients and identify patients who can benefit from anti-PD-L1 immunotherapy.
Collapse
Affiliation(s)
- Zongqiong Sun
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, China
- Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi City, Jiangsu Province, China
| | - Shudong Hu
- Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi City, Jiangsu Province, China
| | - Yuxi Ge
- Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi City, Jiangsu Province, China
| | - Jun Wang
- Shanghai Institute for Advanced Communication and Data Science, School of Communication and Information Engineering, Shanghai University, Shanghai, China
| | - Shaofeng Duan
- General Electric (GE) Healthcare China, Shanghai, China
| | - Jiayang Song
- General Electric (GE) Healthcare China, Shanghai, China
| | - Chunhong Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, China
| | - Yonggang Li
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, China
| |
Collapse
|
33
|
Hauber B, Penrod JR, Gebben D, Musallam L. The Value of Hope: Patients' and Physicians' Preferences for Survival in Advanced Non-Small Cell Lung Cancer. Patient Prefer Adherence 2020; 14:2093-2104. [PMID: 33154633 PMCID: PMC7608144 DOI: 10.2147/ppa.s248295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 09/19/2020] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Immuno-oncology treatments offer patients with advanced non-small cell lung cancer (NSCLC) treatment options with greater probability of durable survival and a different toxicity profile compared with traditional chemotherapy. The objective of this study was to explore the importance of increases in the probability of long-term survival versus changes in expected (median) survival and treatment toxicities among patients with advanced NSCLC and physicians. PATIENTS AND METHODS In a discrete-choice experiment, oncologists and patients diagnosed with NSCLC chose between profiles of treatments for advanced NSCLC offering different combinations of benefits (expected, best-case, and worst-case survival) and risks. We analyzed preference data from each sample using a random-parameters logit model that controls for preference heterogeneity and the panel nature of the data. RESULTS Both patients and physicians expressed a strong preference for improving the probability of best-case survival; however, patients viewed increases in the probability of long-term survival as more important than increases in expected survival, while the opposite was true for physicians. Both patients and physicians weighted survival to be more important than toxicities. CONCLUSION This study identified a potentially important divergence between physician and patient perspectives on survival statistics. Physicians placed more importance on increases in expected survival than did patients with NSCLC. The importance patients placed on long-term survival reinforce previous research identifying the primacy of hope as a value among seriously ill patients. The findings underscore the importance of considering patients' priorities and in shared decision-making when choosing treatment.
Collapse
Affiliation(s)
- Brett Hauber
- RTI Health Solutions, Research Triangle Park, NC, USA
- Correspondence: Brett Hauber Email
| | | | - David Gebben
- RTI Health Solutions, Research Triangle Park, NC, USA
| | | |
Collapse
|
34
|
Wang Q, Ren H, Xu Y, Jiang J, Wudu M, Liu Z, Su H, Jiang X, Zhang Y, Zhang B, Qiu X. GRWD1 promotes cell proliferation and migration in non-small cell lung cancer by activating the Notch pathway. Exp Cell Res 2019; 387:111806. [PMID: 31891681 DOI: 10.1016/j.yexcr.2019.111806] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 12/22/2022]
Abstract
GRWD1 is a member of the WD repeat protein family that is over-expressed in various cancer cell lines and associated with poor prognosis in patients with cancer. However, its biological function and mechanism in non-small cell lung cancer (NSCLC) remain unclear. In this study, we aimed to elucidate the role of GRWD1 in NSCLC. Immunohistochemistry on tumor specimens from 170 patients showed that GRWD1 is highly expressed in NSCLC tissues and positively correlated with tumor size, lymph node metastasis, and P-TNM stage, but negatively correlated with differentiation and prognosis. We found that GRWD1 promotes cell colony formation by affecting the expression of Cyclin B1, CDK1, and p27 and inducing G2/M transition. GRWD1 was also found to stimulate cell migration through RhoA, RhoC, and CDC42, and induce epithelial-mesenchymal transition by affecting the expression of E-cadherin, N-cadherin, Vimentin, Snail, Zeb1, and ZO-1. Our results indicated that the GRWD1 can activate the Notch signaling pathway by affecting the Notch intracellular domain and promoting the expression of Hes1. Our use of DAPT to suppress Notch signaling confirmed that GRWD1 promotes the progression of NSCLC through the Notch signaling pathway and may be a potential prognostic biomarker and therapeutic target for this disease.
Collapse
Affiliation(s)
- Qiongzi Wang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Hongjiu Ren
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yitong Xu
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Jun Jiang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Muli Wudu
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Zongang Liu
- Department of Thoracic Surgery, Shengjing Hospital, China Medical University, No.36 Sanhao St., Heping District, Shenyang, China
| | - Hongbo Su
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xizi Jiang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yao Zhang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Bo Zhang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xueshan Qiu
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China.
| |
Collapse
|
35
|
Zhang D, Huang J, Zhang C, Guan Y, Guo Q. [Progress on PD-1/PD-L1 Checkpoint Inhibitors in Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2019; 22:369-379. [PMID: 31196371 PMCID: PMC6580087 DOI: 10.3779/j.issn.1009-3419.2019.06.07] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In recent years, research on immunotherapy has made great progress. Currently, immunotherapy has made significant breakthrough, especially programmed death 1/programmed death-ligand 1 (PD-1/PD-L1) checkpoint inhibitors (e.g, Nivolumab, Pembrolizumab, Atezolizumab, Durvalumab and Avelumab, etc.) have brought clinical benefits to patients with various pathological types of lung cancer, including squamous cell carcinoma, adenocarcinoma and small cell lung cancer. In this paper, the application value and current status of PD-1/PD-L1 checkpoint inhibitors in lung cancer were comprehensively analyzed by reviewing and interpreting representative clinical studies. Based on the results of various large-scale clinical trials results, the indications of immunotherapy in lung cancer have been continuously broadened, and the details of immunotherapy have also been constantly optimized. However, immunotherapy still faces many challenges, such as the selection of immune combination strategies, the exploration of biomarkers, the management of adverse events, the feasibility of application of driver gene mutation population and so on. In this article, we made a systematic review about the latest progress of PD-1/PD-L1 checkpoint inhibitors in lung cancer, in order to provide cutting-edge reference for the clinical workers.
.
Collapse
Affiliation(s)
- Di Zhang
- Department of Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong University, Jinan 250100, China.,Department of Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jinan 250117, China
| | - Jiaqi Huang
- Department of Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong University, Jinan 250100, China.,Department of Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jinan 250117, China
| | - Chufeng Zhang
- Department of Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jinan 250117, China
| | - Yan Guan
- Department of Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jinan 250117, China
| | - Qisen Guo
- Department of Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jinan 250117, China
| |
Collapse
|
36
|
Neo-antigen specific T cell responses indicate the presence of metastases before imaging. Sci Rep 2019; 9:14640. [PMID: 31601975 PMCID: PMC6787183 DOI: 10.1038/s41598-019-51317-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 09/24/2019] [Indexed: 12/03/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) causes 19% of all Australian cancer deaths, with a 5-year survival post-resection of around 60%. Post-operative recurrence is due to metastases that were undetectable pre-operatively, or growth of microscopic locoregional residual disease. However, post-operative imaging modalities typically only detect more advanced tumours; where PET-CT has a detection limit of 6–7 mm. Detection of small deposits of lung metastatic disease is of importance in order to facilitate early and potentially more effective treatment. In this study, in a murine model of lung metastatic disease, we explore whether neo-antigen specific T cells are a sensitive marker for the detection of lung cancer after primary tumour resection. We determine lung metastatic disease by histology, and then compare detection by PET-CT and neo-antigen specific T cell frequency. Detection of lung metastatic disease within the histology positive group by PET-CT and neo-antigen specific T cell frequency were 22.9% and 92.2%, respectively. Notably, neo-antigen specific T cells in the lung draining lymph node were indicative of metastatic disease (82.8 ± 12.9 spots/105 cells; mean ± SE), compared to healthy lung control (28.5 ± 8.6 spots/105 cells; mean ± SE). Potentially, monitoring tumour neo-antigen specific T cell profiles is a highly sensitive method for determining disease recurrence.
Collapse
|
37
|
Zeng D, Lin H, Cui J, Liang W. TOX3 is a favorable prognostic indicator and potential immunomodulatory factor in lung adenocarcinoma. Oncol Lett 2019; 18:4144-4152. [PMID: 31516613 PMCID: PMC6732997 DOI: 10.3892/ol.2019.10748] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 01/14/2019] [Indexed: 02/06/2023] Open
Abstract
Thymocyte selection-associated high mobility group box (TOX) genes represent a novel family of genes. Deregulated expression of TOXs has been reported in a variety of cancer types, including lung cancer. It has also been reported that TOXs are crucial regulators of the immune system. The present study systematically evaluated the prognostic values of TOX family members using a set of publicly accessible databases, including Oncomine, Kaplan-Meier plotter and cBioPortal. It was revealed that TOX expression profiles differed between lung cancer and normal tissues, and high expression of TOX mRNAs generally predicted improved survival outcomes. Notably, TOX3 expression was significantly increased in lung adenocarcinoma, compared with other pathological subtypes of lung cancer. Survival analysis demonstrated that elevated TOX3 expression was significantly associated with improved progression-free and overall survival in patients with lung adenocarcinoma. Furthermore, correlation analysis indicated that TOX3 expression was negatively correlated with the expression of programmed death-1 receptor (PD-1), PD-ligand 1 and Hepatitis A virus cellular receptor 2 in lung adenocarcinoma. These results indicated that TOX3 is a prognostic indicator and promising immunomodulatory factor in lung adenocarcinoma. Future studies investigating the role of TOX3 in lung cancer immunity are warranted.
Collapse
Affiliation(s)
- De Zeng
- Department of Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515000, P.R. China
- Correspondence to: Dr De Zeng, Department of Medical Oncology, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, Guangdong 515000, P.R. China, E-mail:
| | - Haoyu Lin
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, P.R. China
| | - Jianxiong Cui
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, P.R. China
| | - Weiquan Liang
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, P.R. China
| |
Collapse
|
38
|
Mohsenzadegan M, Peng RW, Roudi R. Dendritic cell/cytokine-induced killer cell-based immunotherapy in lung cancer: What we know and future landscape. J Cell Physiol 2019; 235:74-86. [PMID: 31222740 DOI: 10.1002/jcp.28977] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 12/11/2022]
Abstract
Multiple modalities for lung cancer therapy have emerged in the past decade, whereas their clinical applications and survival-beneficiary is little known. Vaccination with dendritic cells (DCs) or DCs/cytokine-induced killer (CIK) cells has shown limited success in the treatment of patients with advanced non-small-cell lung cancer. To evaluate and overcome these limitations in further studies, in the present review, we sum up recent progress about DCs or DCs/CIKs-based approaches for preclinical and clinical trials in patients with lung cancer and discuss some of the limited therapeutic success. Moreover, this review highlights the need to focus future studies on the development of new approaches for successful immunotherapy in patients with lung cancer.
Collapse
Affiliation(s)
- Monireh Mohsenzadegan
- Department of Medical Laboratory Science, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Ren-Wang Peng
- Division of General Thoracic Surgery, Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Raheleh Roudi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
Programmed Cell Death Ligand 1 Immunohistochemistry: A Concordance Study Between Surgical Specimen, Biopsy, and Tissue Microarray. Clin Lung Cancer 2019; 20:258-262.e1. [PMID: 30926355 DOI: 10.1016/j.cllc.2019.02.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 02/14/2019] [Accepted: 02/16/2019] [Indexed: 11/23/2022]
Abstract
BACKGROUND The immunohistochemical analysis of programmed cell death ligand 1 (PD-L1) expression in tumor tissue of non-small-cell lung cancer patients has now been integrated in the diagnostic workup. Analysis is commonly done on small tissue biopsy samples representing a minimal fraction of the whole tumor. The aim of the study was to evaluate the correlation of PD-L1 expression on biopsy specimens with corresponding resection specimens. MATERIALS AND METHODS In total, 58 consecutive cases with preoperative biopsy and resected tumor specimens were selected. From each resection specimen 2 tumor cores were compiled into a tissue microarray (TMA). Immunohistochemical staining with the antibody SP263 was performed on biopsy specimens, resection specimens (whole sections), as well as on the TMA. RESULTS The proportion of PD-L1-positive stainings were comparable between the resection specimens (48% and 19%), the biopsies (43% and 17%), and the TMAs (47% and 14%), using cutoffs of 1% and 50%, respectively (P > .39 all comparisons). When the resection specimens were considered as reference, PD-L1 status differed in 16%/5% for biopsies and in 9%/9% for TMAs (1%/50% cutoff). The sensitivity of the biopsy analysis was 79%/82% and the specificity was 90%/98% at the 1%/50% cutoff. The Cohens κ value for the agreement between biopsy and tumor. was 0.70 at the 1% cutoff and 0.83 at the 50% cutoff. CONCLUSION The results indicate a moderate concordance between the analysis of biopsy and whole tumor tissue, resulting in misclassification of samples in particular when the lower 1% cutoff was used. Clinicians should be aware of this uncertainty when interpreting PD-L1 reports for treatment decisions.
Collapse
|
40
|
Wu Q, Wang Q, Tang X, Xu R, Zhang L, Chen X, Xue Q, Wang Z, Shi R, Wang F, Ju F, Zhang B, Zhou YL. Correlation between patients' age and cancer immunotherapy efficacy. Oncoimmunology 2019; 8:e1568810. [PMID: 30906662 DOI: 10.1080/2162402x.2019.1568810] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/20/2018] [Accepted: 01/03/2019] [Indexed: 12/14/2022] Open
Abstract
Background: Although immunosenescence-induced difference on overall immune function and immune cell subsets between younger and older populations has been well characterized, the potential effect of patients' age on the efficacy of immune checkpoint inhibitors (ICIs) remains little known. We performed a meta-analysis to investigate whether age differences play a role in cancer immunotherapy efficacy based on a large amount of clinical data. Methods: We conducted a systematic search of PubMed, Embase and MEDLINE for relevant randomized controlled trials. The primary outcome was overall survival (OS) and progression-free survival (PFS) was secondary outcome. The interaction test was used to assess the heterogeneity of HR between younger and older groups. Results: In total, 19 clinical randomized trials involving 11157 patients were included. The pooled HR for OS was 0.73 (95% CI 0.69-0.78) and 0.63 (95% CI 0.52-0.73) for PFS in younger patients receiving ICIs treatments, when compared with younger patients treated with controls. For older patients treated with ICIs, the pooled HR for OS compared with controls was 0.64 (95% CI 0.59-0.69) and 0.66 (95% CI 0.58-0.74) for PFS. The difference on OS efficacy between younger and older patients treated with ICIs was significant (Pheterogeneity = 0.025). Conclusions: Immune checkpoint inhibitors significantly improved OS and PFS in both younger and older patients compared with controls, but the magnitude of benefit was clinically age-dependent. Patients ≥65 y can benefit more from immunotherapy than younger patients. Future research should take age difference into consideration in trials and focus on tolerance and toxicity of ICIs in older patients.
Collapse
Affiliation(s)
- Qiong Wu
- Medical school, Nantong university, Nantong, P.R. China.,The Hand Surgery Research Center, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - Qiuhong Wang
- The Hand Surgery Research Center, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - Xin Tang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, P.R. China
| | - Ran Xu
- Medical school, Nantong university, Nantong, P.R. China
| | - Luzhong Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, P.R. China
| | - Xinming Chen
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - Qun Xue
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - Ziheng Wang
- Department of Medicine, Nantong University Xinling college, Nantong, Jiangsu, P.R. China.,Department of anesthesiology, The First people's Hospital of Taicang City, Taicang Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | - Rongfeng Shi
- Department of Interventional, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - Feiran Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - Fei Ju
- The Hand Surgery Research Center, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - Bo Zhang
- The Hand Surgery Research Center, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - You Lang Zhou
- The Hand Surgery Research Center, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong, P.R. China
| |
Collapse
|
41
|
|
42
|
Kim SA, Kang OH, Kwon DY. Cryptotanshinone Induces Cell Cycle Arrest and Apoptosis of NSCLC Cells through the PI3K/Akt/GSK-3β Pathway. Int J Mol Sci 2018; 19:E2739. [PMID: 30217003 PMCID: PMC6163873 DOI: 10.3390/ijms19092739] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/06/2018] [Accepted: 09/06/2018] [Indexed: 12/18/2022] Open
Abstract
Cryptotanshinone (CTT) is a natural product and a quinoid diterpene isolated from the root of the Asian medicinal plant, Salvia miltiorrhizabunge. Notably, CTT has a variety of anti-cancer actions, including the activation of apoptosis, anti-proliferation, and reduction in angiogenesis. We further investigated the anti-cancer effects of CTT using MTS, LDH, and Annexin V assay, DAPI staining, cell cycle arrest, and Western blot analysis in NSCLC cell lines. NSCLC cells treated with CTT reduced cell growth through PI3K/Akt/GSK3β pathway inhibition, G0/G1 cell cycle arrest, and the activation of apoptosis. CTT induced an increase of caspase-3, caspase-9, poly-ADP-ribose polymerase (PARP), and Bax, as well as inhibition of Bcl-2, survivin, and cellular-inhibitor of apoptosis protein 1 and 2 (cIAP-1 and -2). It also induced G0/G1 phase cell cycle arrest by decreasing the expression of the cyclin A, cyclin D, cyclin E, Cdk 2, and Cdk 4. These results highlight anti-proliferation the latent of CTT as natural therapeutic agent for NSCLC. Therefore, we investigated the possibility of CTT as an anti-cancer agent by comparing with GF, which is a representative anti-cancer drug.
Collapse
Affiliation(s)
- Sang-A Kim
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk 570-749, Korea.
| | - Ok-Hwa Kang
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk 570-749, Korea.
| | - Dong-Yeul Kwon
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk 570-749, Korea.
| |
Collapse
|
43
|
Kanwal B, Biswas S, Seminara RS, Jeet C. Immunotherapy in Advanced Non-small Cell Lung Cancer Patients: Ushering Chemotherapy Through the Checkpoint Inhibitors? Cureus 2018; 10:e3254. [PMID: 30416904 PMCID: PMC6217867 DOI: 10.7759/cureus.3254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
New ways of exploiting the immune system for cancer treatment have been tested for decades with moderate outcomes. Based on previous immunotherapy knowledge, agents targeting immune checkpoints seem to be remarkably effective in a wide range of tumors. Immune checkpoint inhibitors in metastatic non-small cell lung cancer (NSCLC) provide longlasting responses in specific patients. Nevertheless, with overall response rates ≤ 20%, combinational protocols for various patient subgroups are needed. A good partner treatment to immunotherapy could be chemotherapy, as it successfully modulates the immune response either by controlling or enhancing the antitumor immune activity. Primary research provides promising results in metastatic NSCLC patients using this approach, but further large-scale trials are needed. The implementation of immunotherapy in nonmetastatic cases is also appealing. We review the potential clinical benefits of immunotherapy alone or in concert with chemotherapy in NSCLC.
Collapse
Affiliation(s)
- Bushra Kanwal
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Sharmi Biswas
- Pediatric, California Institute of Behavioral Neurosciences & Psychology, Fairfield, California , USA
| | - Robert S Seminara
- Neuroscience, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Charan Jeet
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
44
|
Avci FG, Akbulut BS, Ozkirimli E. Membrane Active Peptides and Their Biophysical Characterization. Biomolecules 2018; 8:biom8030077. [PMID: 30135402 PMCID: PMC6164437 DOI: 10.3390/biom8030077] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 12/12/2022] Open
Abstract
In the last 20 years, an increasing number of studies have been reported on membrane active peptides. These peptides exert their biological activity by interacting with the cell membrane, either to disrupt it and lead to cell lysis or to translocate through it to deliver cargos into the cell and reach their target. Membrane active peptides are attractive alternatives to currently used pharmaceuticals and the number of antimicrobial peptides (AMPs) and peptides designed for drug and gene delivery in the drug pipeline is increasing. Here, we focus on two most prominent classes of membrane active peptides; AMPs and cell-penetrating peptides (CPPs). Antimicrobial peptides are a group of membrane active peptides that disrupt the membrane integrity or inhibit the cellular functions of bacteria, virus, and fungi. Cell penetrating peptides are another group of membrane active peptides that mainly function as cargo-carriers even though they may also show antimicrobial activity. Biophysical techniques shed light on peptide–membrane interactions at higher resolution due to the advances in optics, image processing, and computational resources. Structural investigation of membrane active peptides in the presence of the membrane provides important clues on the effect of the membrane environment on peptide conformations. Live imaging techniques allow examination of peptide action at a single cell or single molecule level. In addition to these experimental biophysical techniques, molecular dynamics simulations provide clues on the peptide–lipid interactions and dynamics of the cell entry process at atomic detail. In this review, we summarize the recent advances in experimental and computational investigation of membrane active peptides with particular emphasis on two amphipathic membrane active peptides, the AMP melittin and the CPP pVEC.
Collapse
Affiliation(s)
- Fatma Gizem Avci
- Bioengineering Department, Marmara University, Kadikoy, 34722 Istanbul, Turkey.
| | | | - Elif Ozkirimli
- Chemical Engineering Department, Bogazici University, Bebek, 34342 Istanbul, Turkey.
| |
Collapse
|
45
|
Cheng B, Yuan WE, Su J, Liu Y, Chen J. Recent advances in small molecule based cancer immunotherapy. Eur J Med Chem 2018; 157:582-598. [PMID: 30125720 DOI: 10.1016/j.ejmech.2018.08.028] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 07/29/2018] [Accepted: 08/10/2018] [Indexed: 02/07/2023]
Abstract
Immunotherapy has been increasingly utilized for the treatment of cancer. Currently available cancer immunotherapies mainly involve the use of antibodies, which have advantages in terms of pharmacodynamics such as efficacy and specificity, however, they exhibit disadvantages in regard to the pharmacokinetics including but not limited to poor tissue and tumor penetration, very long half-life, and the lack of oral bioavailability. Also they are immunogenic and may cause undesired side effects. In addition, they are difficult and expensive to produce. In contrast to therapeutic antibodies, small molecule immuno-oncology agents generally have favorable pharmacokinetics, for example, better oral bioavailability, higher tissue and tumor penetration, reasonable half-lives etc. Furthermore, some small molecules are highly selective and efficacious with benign toxicity profiles. Therefore, small molecule immuno-oncology agents have the potential to overcome the drawbacks of therapeutic antibodies, and they can complement existing therapeutic antibodies and may also be used in combination with antibodies to achieve synergistic effects. In this article, we summarize the current advances in the field of small molecule approaches in tumor immunology which include the small molecules in clinical trials and preclinical studies, and the reported crystal structures of small molecules and their target proteins as well as the binding interactions between small molecules and the targets. The tumorigenesis mechanism of different targets (the programmed cell death 1/programmed cell death ligand 1(PD1/PD-L1), retinoic acid-related orphan receptor-gamma t (RORγt), Chemokine receptor, Stimulator of Interferon Genes (Sting), Indoleamine 2,3-dioxygenase (IDO), toll-like receptors (TLR) etc.) are also elucidated.
Collapse
Affiliation(s)
- Binbin Cheng
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wei-En Yuan
- School of Pharmacy, Shanghai Jiao Tong Univerisity, Shanghai, 200240, China
| | - Jing Su
- School of Pharmacy, Shanghai Jiao Tong Univerisity, Shanghai, 200240, China
| | - Yao Liu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
46
|
Zhu HF, Li Y. Small-Molecule Targets in Tumor Immunotherapy. NATURAL PRODUCTS AND BIOPROSPECTING 2018; 8:297-301. [PMID: 29974338 PMCID: PMC6102179 DOI: 10.1007/s13659-018-0177-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/02/2018] [Indexed: 06/08/2023]
Abstract
Cancer immunotherapy has been widely recognized as a powerful approach to fight cancers. To date, over 50 phase III trials in cancer immunotherapy are in progress. Among the many immunotherapy approaches, immune checkpoint therapy has attracted considerable attention. The reported clinical success of targeting the T cell immune checkpoint receptors PD-1 or CTLA4 by antibodies blockade in advanced stages of cancers has demonstrated the importance of immune modulation. But antibodies-based immunotherapy confronted with some disadvantages, such as immunogenicity, stability, membrane permeability, and production cost. Therefore, alternative approaches including small-molecule-regulated immune response are being introduced. In this review, we focused on some of the key intracellular pathways where small-molecule therapeutic is potential and attractive, which highlights the great potential of natural products in this field.
Collapse
Affiliation(s)
- Hui-Fang Zhu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132# Lanhei Road, Kunming, 650201, Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yan Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132# Lanhei Road, Kunming, 650201, Yunnan, People's Republic of China.
| |
Collapse
|
47
|
Okuma Y, Wakui H, Utsumi H, Sagawa Y, Hosomi Y, Kuwano K, Homma S. Soluble Programmed Cell Death Ligand 1 as a Novel Biomarker for Nivolumab Therapy for Non-Small-cell Lung Cancer. Clin Lung Cancer 2018; 19:410-417.e1. [PMID: 29859759 DOI: 10.1016/j.cllc.2018.04.014] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/06/2018] [Accepted: 04/24/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Biomarkers for predicting the effect of anti-programmed cell death 1 (PD-1) monoclonal antibody against non-small-cell lung cancer (NSCLC) are urgently required. Although it is known that the blood levels of soluble programmed cell death ligand 1 (sPD-L1) are elevated in various malignancies, the nature of sPD-L1 has not been thoroughly elucidated. We investigated the significance of plasma sPD-L1 levels as a biomarker for anti-PD-1 monoclonal antibody, nivolumab therapy. PATIENTS AND METHODS The present prospective study included 39 NSCLC patients. The patients were treated with nivolumab at the dose of 3 mg/kg every 2 weeks, and the effects of nivolumab on NSCLC were assessed according to the change in tumor size, time to treatment failure (TTF), and overall survival (OS). The baseline plasma sPD-L1 concentration was determined using an enzyme-linked immunosorbent assay. RESULTS The area under the curve of the receiver operating characteristic curve was 0.761. The calculated optimal cutoff point for sPD-L1 in the plasma samples was 3.357 ng/mL. Of the 39 patients, 59% with low plasma sPD-L1 levels achieved a complete response or partial response and 25% of those with high plasma sPD-L1 levels did so. In addition, 22% of the patients with low plasma sPD-L1 levels developed progressive disease compared with 75% of those with high plasma sPD-L1 levels. The TTF and OS were significantly longer for those patients with low plasma sPD-L1 levels compared with the TTF and OS for those with high plasma sPD-L1 levels. CONCLUSION The clinical benefit from nivolumab therapy was significantly associated with the baseline plasma sPD-L1 levels. Plasma sPD-L1 levels might represent a novel biomarker for the prediction of the efficacy of nivolumab therapy against NSCLC.
Collapse
Affiliation(s)
- Yusuke Okuma
- Division of Oncology, Research Center for Medical Sciences, Jikei University School of Medicine, Tokyo, Japan; Department of Thoracic Oncology and Respiratory Medicine, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Hiroshi Wakui
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Hirofumi Utsumi
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Yukiko Sagawa
- Division of Oncology, Research Center for Medical Sciences, Jikei University School of Medicine, Tokyo, Japan
| | - Yukio Hosomi
- Department of Thoracic Oncology and Respiratory Medicine, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Kazuyoshi Kuwano
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Sadamu Homma
- Division of Oncology, Research Center for Medical Sciences, Jikei University School of Medicine, Tokyo, Japan.
| |
Collapse
|
48
|
Xu Y, Ren H, Jiang J, Wang Q, Wudu M, Zhang Q, Su H, Wang C, Jiang L, Qiu X. KIAA0247 inhibits growth, migration, invasion of non-small-cell lung cancer through regulating the Notch pathway. Cancer Sci 2018; 109:1055-1065. [PMID: 29451718 PMCID: PMC5891195 DOI: 10.1111/cas.13539] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/06/2018] [Accepted: 02/11/2018] [Indexed: 12/11/2022] Open
Abstract
Lung cancer remains the leading cause of cancer-related death worldwide. Previous studies have shown that the novel KIAA0247 gene potentially targeted by the tumor suppressor p53 may inhibit the development of several cancers. However, the exact function of KIAA0247 in non-small-cell lung cancer (NSCLC) is unknown. The purpose of the present study was to clarify the role of KIAA0247 in NSCLC. KIAA0247 expression was evaluated in tumors and adjacent normal tissues of 197 NSCLC patients by immunohistochemistry and real-time PCR and analyzed for association with clinicopathological parameters. Results indicated that KIAA0247 levels positively correlated with cell differentiation (P < .001) and patient survival (P < .0001) and negatively correlated with lymph node metastasis (P < .001) and advanced p-TNM stage (P < .001). In cultured NSCLC cell lines, KIAA0247 overexpression inhibited cell migration, invasion, and proliferation and downregulated the expression of Jagged1, Notch1 intracellular domain (NICD), Snail, cyclin D1, RhoA, RhoC, and MMP9, while upregulating that of E-cadherin and p21. The Notch inhibitor DAPT reduced the biological effects of KIAA0247 knockdown, suggesting that KIAA0247 decreased the carcinogenic activity of NSCLC cells through downregulation of Notch signaling. Our results indicate that KIAA0247 inhibits NSCLC progression by reducing the metastatic potential of cancer cells through downregulation of the Notch pathway, which may underlie the association of KIAA0247 expression with favorable clinicopathological characteristics of NSCLC patients. These findings suggest that KIAA0247 is a candidate prognostic biomarker and potential therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Yitong Xu
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, China
| | - Hongjiu Ren
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, China
| | - Jun Jiang
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, China
| | - Qiongzi Wang
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, China
| | - Muli Wudu
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, China
| | - Qingfu Zhang
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, China
| | - Hongbo Su
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, China
| | - Chenglong Wang
- Department of Pain Medicine, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Lihong Jiang
- Department of Pathology, The General Hospital of Liaohe Oil Field, Panjin, China
| | - Xueshan Qiu
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
49
|
Wu Y, Wu X, Wu L, Wang X, Liu Z. The anticancer functions of RIG-I-like receptors, RIG-I and MDA5, and their applications in cancer therapy. Transl Res 2017; 190:51-60. [PMID: 28917654 DOI: 10.1016/j.trsl.2017.08.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 08/14/2017] [Accepted: 08/22/2017] [Indexed: 12/25/2022]
Abstract
Cancer is a major cause of death worldwide, and its incidence and mortality continuously increase in China. Nowadays, cancer heavily influences our health and constitutes enormous burden on society and families. Although there are many tools for cancer treatment, but the overall therapeutic effect is poor. In addition, cancer cells often develop resistance to therapy due to defective cell death or immune escape mechanisms. Therefore, it is a promising way for cancer treatment to effectively activate apoptosis and conquer immunosuppression. RIG-I-like receptors (RLRs) belong to RNA-sensing pattern recognition receptors (PRRs), one of the major subsets of PRRs, and play a critical role in sensing RNA viruses and initiate host antiviral responses such as the production of type I interferons (IFNs), proinflammatory cytokines, and other immune response molecules. Recent studies have demonstrated that tumor cells could mimic viral infection to activate viral recognition of immune system and the activation of interferon response pathway. RIG-I and MDA5, two members of RLRs family, could induce growth inhibition or apoptosis of multiple types of cancer cells on the activation by RNA ligands in IFN-dependent or IFN-independent approach. Previous studies have reviewed PRRs as promising immunotherapy targets for colorectal cancer and pancreatic cancer. However, until now, a comprehensive review on the role of RLRs in the development and treatment of various cancers is still lacking. In this article, we reviewed the latest studies on the roles as well as the mechanisms of RIG-I and MDA5 in the development of various cancers and therapeutic potentials of targeting RIG-I and MDA5 for cancer treatment.
Collapse
Affiliation(s)
- Yuanbing Wu
- Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xinqiang Wu
- Gannan Medical University, Ganzhou, Jiangxi, China
| | - Longhuo Wu
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xiangcai Wang
- The First-Affiliated Hospital, Gannan Medical University, Ganzhou, Jiangxi, China.
| | - Zhiping Liu
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China; Ganzhou Cancer Precision Medicine Engineering Research Center, Ganzhou, Jiangxi, China.
| |
Collapse
|
50
|
Cho JH. Immunotherapy for Non-small-cell Lung Cancer: Current Status and Future Obstacles. Immune Netw 2017; 17:378-391. [PMID: 29302251 PMCID: PMC5746608 DOI: 10.4110/in.2017.17.6.378] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/10/2017] [Accepted: 11/14/2017] [Indexed: 12/19/2022] Open
Abstract
Lung cancer is one of the leading causes of death worldwide. There are 2 major subtypes of lung cancer, non-small-cell lung cancer (NSCLC) and small-cell lung cancer (SCLC). Studies show that NSCLC is the more prevalent type of lung cancer that accounts for approximately 80%-85% of cases. Although, various treatment methods, such as chemotherapy, surgery, and radiation therapy have been used to treat lung cancer patients, there is an emergent need to develop more effective approaches to deal with advanced stages of tumors. Recently, immunotherapy has emerged as a new approach to combat with such tumors. The development and success of programmed cell death 1 (PD-1)/program death-ligand 1 (PD-L1) inhibitors and cytotoxic T-lymphocyte antigen 4 (CTLA-4) blockades in treating metastatic cancers opens a new pavement for the future research. The current mini review discusses the significance of immune checkpoint inhibitors in promoting the death of tumor cells. Additionally, this review also addresses the importance of tumor-specific antigens (neoantigens) in the development of cancer vaccines and major challenges associated with this therapy. Immunotherapy can be a promising approach to treat NSCLC because it stimulates host's own immune system to recognize cancer cells. Therefore, future research should focus on the development of new methodologies to identify novel checkpoint inhibitors and potential neoantigens.
Collapse
Affiliation(s)
- Ju Hwan Cho
- Arthur G. James Cancer Hospital Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|