1
|
Kong Y, Su M, Zhu Y, Li X, Zhang J, Gu W, Yang F, Zhou J, Ni J, Yang X, Zhu Z, Huang J. Enhancing the prediction of symptomatic radiation pneumonitis for locally advanced non-small-cell lung cancer by combining 3D deep learning-derived imaging features with dose-volume metrics: a two-center study. Strahlenther Onkol 2025; 201:274-282. [PMID: 38498173 DOI: 10.1007/s00066-024-02221-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/25/2024] [Indexed: 03/20/2024]
Abstract
OBJECTIVE This study aims to examine the ability of deep learning (DL)-derived imaging features for the prediction of radiation pneumonitis (RP) in locally advanced non-small-cell lung cancer (LA-NSCLC) patients. MATERIALS AND METHODS The study cohort consisted of 90 patients from the Fudan University Shanghai Cancer Center and 59 patients from the Affiliated Hospital of Jiangnan University. Occurrences of RP were used as the endpoint event. A total of 512 3D DL-derived features were extracted from two regions of interest (lung-PTV and PTV-GTV) delineated on the pre-radiotherapy planning CT. Feature selection was done using LASSO regression, and the classification models were built using the multilayered perceptron method. Performances of the developed models were evaluated by receiver operating characteristic curve analysis. In addition, the developed models were supplemented with clinical variables and dose-volume metrics of relevance to search for increased predictive value. RESULTS The predictive model using DL features derived from lung-PTV outperformed the one based on features extracted from PTV-GTV, with AUCs of 0.921 and 0.892, respectively, in the internal test dataset. Furthermore, incorporating the dose-volume metric V30Gy into the predictive model using features from lung-PTV resulted in an improvement of AUCs from 0.835 to 0.881 for the training data and from 0.690 to 0.746 for the validation data, respectively (DeLong p < 0.05). CONCLUSION Imaging features extracted from pre-radiotherapy planning CT using 3D DL networks could predict radiation pneumonitis and may be of clinical value for risk stratification and toxicity management in LA-NSCLC patients. CLINICAL RELEVANCE STATEMENT Integrating DL-derived features with dose-volume metrics provides a promising noninvasive method to predict radiation pneumonitis in LA-NSCLC lung cancer radiotherapy, thus improving individualized treatment and patient outcomes.
Collapse
Affiliation(s)
- Yan Kong
- Department of Radiation Oncology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, 214122, Wuxi, Jiangsu, China
| | - Mingming Su
- Department of Radiation Oncology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, 214122, Wuxi, Jiangsu, China
- Department of Medical Oncology, Affiliated Huishan Hospital of Xinglin College, Nantong University, Wuxi Huishan District People's Hospital, 214187, Wuxi, Jiangsu, China
| | - Yan Zhu
- Department of Radiation Oncology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, 214122, Wuxi, Jiangsu, China
| | - Xuan Li
- Department of Radiation Oncology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, 214122, Wuxi, Jiangsu, China
- Department of Medical Oncology, Affiliated Huishan Hospital of Xinglin College, Nantong University, Wuxi Huishan District People's Hospital, 214187, Wuxi, Jiangsu, China
| | - Jinmeng Zhang
- Department of Radiation Oncology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, 214122, Wuxi, Jiangsu, China
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Xuhui, 200032, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China
| | - Wenchao Gu
- Department of Diagnostic and Interventional Radiology, University of Tsukuba, 305-8577, Ibaraki, Japan
| | - Fei Yang
- Department of Radiation Oncology, University of Miami, 33136, Miami, FL, USA
| | - Jialiang Zhou
- Department of Radiation Oncology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, 214122, Wuxi, Jiangsu, China
| | - Jianjiao Ni
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Xuhui, 200032, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China
| | - Xi Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Xuhui, 200032, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China
| | - Zhengfei Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Xuhui, 200032, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China.
| | - Jianfeng Huang
- Department of Radiation Oncology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, 214122, Wuxi, Jiangsu, China.
| |
Collapse
|
2
|
Wang L, Peng J, Wen B, Zhai Z, Yuan S, Zhang Y, Ii L, Li W, Ding Y, Wang Y, Ye F. Contrast-Enhanced Computed Tomography-Based Machine Learning Radiomics Predicts IDH1 Expression and Clinical Prognosis in Head and Neck Squamous Cell Carcinoma. Acad Radiol 2025; 32:976-987. [PMID: 39256086 DOI: 10.1016/j.acra.2024.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/06/2024] [Accepted: 08/17/2024] [Indexed: 09/12/2024]
Abstract
RATIONALE AND OBJECTIVES Isocitrate dehydrogenase 1 (IDH1) is a potential therapeutic target across various tumor types. Here, we aimed to devise a radiomic model capable of predicting the IDH1 expression levels in patients with head and neck squamous cell carcinoma (HNSCC) and examined its prognostic significance. MATERIALS AND METHODS We utilized genomic data, clinicopathological features, and contrast-enhanced computed tomography (CECT) images from The Cancer Genome Atlas and the Cancer Imaging Archive for prognosis analysis and radiomic model construction. The selection of optimal features was conducted using the intraclass correlation coefficient, minimum redundancy maximum relevance, and recursive feature elimination algorithms. A radiomic model for IDH1 prediction and radiomic score (RS) were established using a gradient-boosting machine. Associations between IDH1 expression, RS, clinicopathological variables, and overall survival (OS) were determined using univariate and multivariate Cox proportional hazards regression analyses and Kaplan-Meier curves. RESULTS IDH1 emerged as a distinct predictive factor in patients with HNSCC (hazard ratio [HR] 1.535, 95% confidence interval [CI]: 1.117-2.11, P = 0.008). The radiomic model, built on eight optimal features, demonstrated area under the curve values of 0.848 and 0.779 in the training and validation sets, respectively, for predicting IDH1 expression levels. Calibration and decision curve analyses validated the model's suitability and clinical utility. RS was significantly associated with OS (HR=2.22, 95% CI: 1.026-4.805, P = 0.043). CONCLUSION IDH1 expression is a significant prognostic marker. The developed radiomic model, derived from CECT features, offers a promising approach for diagnosing and prognosticating HNSCC.
Collapse
Affiliation(s)
- Le Wang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Jilin Peng
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Baohong Wen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ziyu Zhai
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Sijie Yuan
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yulin Zhang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ling Ii
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Weijie Li
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yinghui Ding
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yixu Wang
- Department of Otolaryngology, Head and Neck Surgery, People's Hospital, Peking University, Beijing 100044, China
| | - Fanglei Ye
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
3
|
Tavakkoli MB, Abedi I, Abdollahi H, Amouheidari A, Azmoonfar R, Saber K, Hassaninejad H. Comparison prediction models of bladder toxicity based on radiomic features of CT and MRI in patients with prostate cancer undergoing radiotherapy. J Med Imaging Radiat Sci 2024; 55:101765. [PMID: 39306942 DOI: 10.1016/j.jmir.2024.101765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/19/2024] [Accepted: 09/04/2024] [Indexed: 12/02/2024]
Abstract
PURPOSE This study aimed to assess the radiomic features of computed tomography (CT) and magnetic resonance imaging (MRI) of the bladder wall before radiotherapy using machine learning (ML) methods to predict bladder radiotoxicity in patients with prostate cancer. METHODS This study enrolled 70 patients with pathologically confirmed prostate cancer who were candidates for radiation therapy (RT). CT and MRI of the bladder wall before radiotherapy were used to extract radiomic features. The least absolute shrinkage and selection operator (LASSO) was used for feature selection. Algorithms such as Random Forest (RF), Decision Tree (DT), Logistic Regression (LR), and K-Nearest Neighbors (KNN) have been used to develop models based on radiomic, dosimetry, and clinical parameters. The area under the curve (AUC) of the receiver operating characteristic (ROC) curve and accuracy were used to analyze the predictive power of all models. RESULTS The RF and LR models based on the radiomic features of MRI and clinical/dosimetry parameters with an AUC of 0.95 and 0.93, and an accuracy of 86% and 86%, respectively, had the highest performance in the prediction of bladder radiation toxicity. CONCLUSIONS This study showed that, firstly, CT and MRI radiomic features of the bladder wall before treatment could be used to predict bladder radiotoxicity. Second, MRI is better than CT in predicting bladder toxicity caused by radiation. And thirdly, the performance of the predictive models based on the combination of radiomic, clinical, and dosimetry characteristics was improved.
Collapse
Affiliation(s)
- Mohammad Bagher Tavakkoli
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Iraj Abedi
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Abdollahi
- Department of Radiology Technology, Faculty of Allied Medical Sciences, Kerman University of Medical Sciences, Kerman, Iran; Department of Radiology, University of British Columbia, Vancouver, BC, Canada; Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | | | - Rasool Azmoonfar
- Department of Radiology, School of Allied Medical Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Korosh Saber
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Hassaninejad
- Department of Radiology, Faculty of Paramedical, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
4
|
Ramasamy G, Muanza T. Radiomics As Biomarkers for the Treatment of Non-small Cell Lung Cancer With Stereotactic Body Radiation Therapy: A Review of Concepts. Cureus 2024; 16:e73082. [PMID: 39640122 PMCID: PMC11620770 DOI: 10.7759/cureus.73082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2024] [Indexed: 12/07/2024] Open
Abstract
Stereotactic body radiation therapy (SBRT) is currently the alternative for inoperable early-stage and oligometastatic non-small cell lung cancer (NSCLC) patients. While most patients are good responders among this specific group, some patients do not experience the benefits of this treatment. Even though physicians use clinical variables and semantic radiological features to make treatment decisions, medical images contain a wealth of personalized pathophysiological information that can be extracted and used for clinical decision support systems. In the form of radiomics features, details unique to each patient's medical scans can be utilized to create predictive models and to identify biomarking signatures. Then, these tools and indices can predict treatment outcomes and categorize patients to the most optimal treatment regimen. A conceptual review of relevant topics centered around the identification and development of radiomic-based biomarkers for SBRT-treated NSCLC was conducted. To begin with, an overview of the nature and management of non-small cell lung cancer was provided. To continue, biomarkers were defined in the context of cancer care. Then, the uses of stereotactic body radiation therapy in the treatment of NSCLC were further explained. Finally, the study of radiomics was discussed, and the uses and limitations of radiomic features and ML for SBRT-treated NSCLC were expanded upon. Radiomics-based biomarkers and predictive algorithmic models can potentially improve the SBRT treatment of early-stage and oligometastatic NSCLC by providing personalized support systems to healthcare professionals. While many institutions are attempting to optimize their biomarkers and AI-based tools for clinical use, additional prospective studies are needed to properly ensure their efficacy. As such, the improvements made in the field of personalized medicine are promising.
Collapse
Affiliation(s)
| | - Thierry Muanza
- Radiation Oncology, Sir Mortimer B. Davis Jewish General Hospital, Montreal, CAN
| |
Collapse
|
5
|
Drayson OGG, Montay-Gruel P, Limoli CL. Radiomics approach for identifying radiation-induced normal tissue toxicity in the lung. Sci Rep 2024; 14:24256. [PMID: 39415029 PMCID: PMC11484882 DOI: 10.1038/s41598-024-75993-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024] Open
Abstract
The rapidly evolving field of radiomics has shown that radiomic features are able to capture characteristics of both tumor and normal tissue that can be used to make accurate and clinically relevant predictions. In the present study we sought to determine if radiomic features can characterize the adverse effects caused by normal tissue injury as well as identify if human embryonic stem cell (hESC) derived extracellular vesicle (EV) treatment can resolve certain adverse complications. A cohort of 72 mice (n = 12 per treatment group) were exposed to X-ray radiation to the whole lung (3 × 8 Gy) or to the apex of the right lung (3 × 12 Gy), immediately followed by retro-orbital injection of EVs. Cone-Beam Computed Tomography images were acquired before and 2 weeks after treatment. In total, 851 radiomic features were extracted from the whole lungs and < 20 features were selected to train and validate a series of random forest classification models trained to predict radiation status, EV status and treatment group. It was found that all three classification models achieved significantly high prediction accuracies on a validation subset of the dataset (AUCs of 0.91, 0.86 and 0.80 respectively). In the locally irradiated lung, a significant difference between irradiated and unirradiated groups as well as an EV sparing effect were observed in several radiomic features that were not seen in the unirradiated lung (including wavelet-LLH Kurtosis, wavelet HLL Large Area High Gray Level Emphasis, and Gray Level Non-Uniformity). Additionally, a radiation difference was not observed in a secondary comparison cohort, but there was no impact of imaging machine parameters on the radiomic signature of unirradiated mice. Our data demonstrate that radiomics has the potential to identify radiation-induced lung injury and could be applied to predict therapeutic efficacy at early timepoints.
Collapse
Affiliation(s)
- Olivia G G Drayson
- Department of Radiation Oncology, University of California, Irvine, CA, 92697-2695, USA.
- Dept. of Radiation Oncology, University of California, Irvine, CA, 92617-2695, USA.
| | - Pierre Montay-Gruel
- Department of Radiation Oncology, University of California, Irvine, CA, 92697-2695, USA
- Antwerp Research in Radiation Oncology (AReRO), Centre for Oncological Research (CORE), University of Antwerp, Antwerp, Belgium
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, CA, 92697-2695, USA
| |
Collapse
|
6
|
Kamel S, Humbert-Vidan L, Kaffey Z, Abusaif A, Fuentes DTA, Wahid K, Dede C, Naser MA, He R, Moawad AW, Elsayes KM, Chen MM, Otun AO, Rigert J, Chambers M, Hope A, Watson E, Brock KK, Hutcheson K, van Dijk L, Moreno AC, Lai SY, Fuller CD, Mohamed ASR. Computed tomography radiomics-based cross-sectional detection of mandibular osteoradionecrosis in head and neck cancer survivors. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.11.24313485. [PMID: 39314948 PMCID: PMC11419222 DOI: 10.1101/2024.09.11.24313485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Purpose This study aims to identify radiomic features extracted from contrast-enhanced CT scans that differentiate osteoradionecrosis (ORN) from normal mandibular bone in patients with head and neck cancer (HNC) treated with radiotherapy (RT). Materials and Methods Contrast-enhanced CT (CECT) images were collected for 150 patients (80% train, 20% test) with confirmed ORN diagnosis at The University of Texas MD Anderson Cancer Center between 2008 and 2018. Using PyRadiomics, radiomic features were extracted from manually segmented ORN regions and the corresponding automated control regions, the later defined as the contralateral healthy mandible region. A subset of pre-selected features was obtained based on correlation analysis (r > 0.95) and used to train a Random Forest (RF) classifier with Recursive Feature Elimination. Model explainability SHapley Additive exPlanations (SHAP) analysis was performed on the 20 most important features identified by the trained RF classifier. Results From a total of 1316 radiomic features extracted, 810 features were excluded due to high collinearity. From a set of 506 pre-selected radiomic features, the optimal subset resulting on the best discriminative accuracy of the RF classifier consisted of 67 features. The RF classifier was well calibrated (Log Loss 0.296, ECE 0.125) and achieved an accuracy of 88% and a ROC AUC of 0.96. The SHAP analysis revealed that higher values of Wavelet-LLH First-order Mean and Median were associated with ORN of the jaw (ORNJ). Conversely, higher Exponential GLDM Dependence Entropy and lower Square First-order Kurtosis were more characteristic of normal mandibular tissue. Conclusion This study successfully developed a CECT-based radiomics model for differentiating ORNJ from healthy mandibular tissue in HNC patients after RT. Future work will focus on the detection of subclinical ORNJ regions to guide earlier interventions.
Collapse
Affiliation(s)
- Serageldin Kamel
- The University of Texas MD Anderson Cancer Center, Division of Radiation Oncology, Houston, USA
| | - Laia Humbert-Vidan
- The University of Texas MD Anderson Cancer Center, Division of Radiation Oncology, Houston, USA
| | - Zaphanlene Kaffey
- The University of Texas MD Anderson Cancer Center, Division of Radiation Oncology, Houston, USA
| | - Abdulrahman Abusaif
- The University of Texas MD Anderson Cancer Center, Division of Radiation Oncology, Houston, USA
| | - David T A Fuentes
- The University of Texas MD Anderson Cancer Center, Department of Imaging Physics, Houston, USA
| | - Kareem Wahid
- The University of Texas MD Anderson Cancer Center, Division of Radiation Oncology, Houston, USA
- The University of Texas MD Anderson Cancer Center, Department of Imaging Physics, Houston, USA
| | - Cem Dede
- The University of Texas MD Anderson Cancer Center, Division of Radiation Oncology, Houston, USA
| | - Mohamed A Naser
- The University of Texas MD Anderson Cancer Center, Division of Radiation Oncology, Houston, USA
| | - Renjie He
- The University of Texas MD Anderson Cancer Center, Division of Radiation Oncology, Houston, USA
| | - Ahmed W Moawad
- The University of Texas MD Anderson Cancer Center, Division of Radiology, Houston, USA
| | - Khaled M Elsayes
- The University of Texas MD Anderson Cancer Center, Division of Radiology, Houston, USA
| | - Melissa M Chen
- The University of Texas MD Anderson Cancer Center, Division of Radiation Oncology, Houston, USA
| | - Adegbenga O Otun
- The University of Texas MD Anderson Cancer Center, Division of Radiation Oncology, Houston, USA
| | - Jillian Rigert
- The University of Texas MD Anderson Cancer Center, Division of Radiation Oncology, Houston, USA
| | - Mark Chambers
- The University of Texas MD Anderson Cancer Center, Division of Radiation Oncology, Houston, USA
| | - Andrew Hope
- Princess Margaret Cancer Centre, Toronto, Canada
| | - Erin Watson
- Princess Margaret Cancer Centre, Toronto, Canada
- Faculty of Dentistry, University of Toronto, Toronto, Canada
| | - Kristy K Brock
- The University of Texas MD Anderson Cancer Center, Department of Imaging Physics, Houston, USA
| | | | - Lisanne van Dijk
- The University of Texas MD Anderson Cancer Center, Department of Head and Neck Surgery, Houston, USA
| | - Amy C Moreno
- The University of Texas MD Anderson Cancer Center, Division of Radiation Oncology, Houston, USA
| | - Stephen Y Lai
- The University of Texas MD Anderson Cancer Center, Division of Radiation Oncology, Houston, USA
| | - Clifton D Fuller
- The University of Texas MD Anderson Cancer Center, Division of Radiation Oncology, Houston, USA
| | - Abdallah S R Mohamed
- The University of Texas MD Anderson Cancer Center, Division of Radiation Oncology, Houston, USA
- Baylor Medical College, Department of Radiation Oncology, Houston, USA
| |
Collapse
|
7
|
Seol Y, Song JH, Choi KH, Lee YK, Choi BO, Kang YN. Predicting vertebral compression fracture prior to spinal SBRT using radiomics from planning CT. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024; 33:3221-3229. [PMID: 37814013 DOI: 10.1007/s00586-023-07963-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/22/2023] [Accepted: 09/16/2023] [Indexed: 10/11/2023]
Abstract
PURPOSE The purpose of the study was to develop a predictive model for vertebral compression fracture (VCF) prior to spinal stereotactic body radiation therapy (SBRT) using radiomics features extracted from pre-treatment planning CT images. METHODS A retrospective analysis was conducted on 85 patients (114 spinal lesions) who underwent spinal SBRT. Radiomics features were extracted from pre-treatment planning CT images and used to develop a predictive model using a classification algorithm selected from nine different machine learning algorithms. Four different models were trained, including clinical features only, clinical and radiomics features, radiomics and dosimetric features, and all features. Model performance was evaluated using accuracy, precision, recall, F1-score, and area under the curve (AUC). RESULTS The model that used all features (radiomics, clinical, and dosimetric) showed the highest performance with an AUC of 0.871. The radiomics and dosimetric features model had the superior performance in terms of accuracy, precision, recall, and F1-score. CONCLUSION The developed predictive model based on radiomics features extracted from pre-treatment planning CT images can accurately predict the likelihood of VCF prior to spinal SBRT. This model has significant implications for treatment planning and preventive measures for patients undergoing spinal SBRT. Future research can focus on improving model performance by incorporating new data and external validation using independent data sets.
Collapse
Affiliation(s)
- Yunji Seol
- Department of Biomedicine and Health Sciences, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, Korea
- Department of Radiation Oncology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, Korea
| | - Jin Ho Song
- Department of Radiation Oncology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, Korea
| | - Kyu Hye Choi
- Department of Radiation Oncology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, Korea
| | - Young Kyu Lee
- Department of Radiation Oncology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, Korea
| | - Byung-Ock Choi
- Department of Radiation Oncology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, Korea
| | - Young-Nam Kang
- Department of Radiation Oncology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, Korea.
| |
Collapse
|
8
|
Kawahara D, Nishioka R, Murakami Y, Emoto Y, Iwashita K, Sasaki R. A nomogram based on pretreatment radiomics and dosiomics features for predicting overall survival associated with esophageal squamous cell cancer. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2024; 50:108450. [PMID: 38843660 DOI: 10.1016/j.ejso.2024.108450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/12/2024] [Accepted: 05/29/2024] [Indexed: 07/03/2024]
Abstract
OBJECTIVES To propose a nomogram-based survival prediction model for esophageal squamous cell carcinoma (ESCC) treated with definitive chemoradiotherapy using pretreatment computed tomography (CT), positron emission tomography (PET) radiomics and dosiomics features, and common clinical factors. METHODS Radiomics and dosiomics features were extracted from CT and PET images and dose distribution from 2 institutions. The least absolute shrinkage and selection operator (LASSO) with logistic regression was used to select radiomics and dosiomics features by calculating the radiomics and dosiomics scores (Rad-score and Dos-score), respectively, in the training model. The model was trained in 81 patients and validated in 35 patients at Center 1 using 10-fold cross validation. The model was externally tested in 26 patients at Center 2. The predictive clinical factors, Rad-score, and Dos-score were identified to develop a nomogram model. RESULTS Using LASSO Cox regression, 13, 11, and 19 CT, PET-based radiomics, and dosiomics features, respectively, were selected. The clinical factors T-stage, N-stage, and clinical stage were selected as significant prognostic factors by univariate Cox regression. In the external validation cohort, the C-index of the combined model of CT-based radiomics, PET-based radiomics, and dosiomics features with clinical factors were 0.74, 0.82, and 0.92, respectively. Significant differences in overall survival (OS) in the combined model of CT-based radiomics, PET-based radiomics, and dosiomics features with clinical factors were observed between the high- and low-risk groups (P = 0.019, 0.038, and 0.014, respectively). CONCLUSION The dosiomics features have a better predicter for OS than CT- and PET-based radiomics features in ESCC treated with radiotherapy. CLINICAL RELEVANCE STATEMENT The current study predicted the overall survival for esophageal squamous cell carcinoma patients treated with definitive chemoradiotherapy. The dosiomics features have a better predicter for overall survival than CT- and PET-based radiomics features.
Collapse
Affiliation(s)
- Daisuke Kawahara
- Department of Radiation Oncology, Graduate School of Biomedical Health Sciences, Hiroshima University, Hiroshima, 734-8551, Japan.
| | - Riku Nishioka
- School of Medicine, Hiroshima University, Hiroshima, 734-8551, Japan
| | - Yuji Murakami
- Department of Radiation Oncology, Graduate School of Biomedical Health Sciences, Hiroshima University, Hiroshima, 734-8551, Japan
| | - Yuki Emoto
- Department of Radiation Oncology, Hyogo Cancer Center, 70, Kitaoji-cho 13, Akashi-shi, Hyogo, Japan
| | - Kazuma Iwashita
- Division of Radiation Oncology, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe City, Hyogo Prefecture, 650-0017, Japan
| | - Ryohei Sasaki
- Division of Radiation Oncology, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe City, Hyogo Prefecture, 650-0017, Japan
| |
Collapse
|
9
|
Lee JH, Kang MK, Park J, Lee SJ, Kim JC, Park SH. Deep-Learning Model Prediction of Radiation Pneumonitis Using Pretreatment Chest Computed Tomography and Clinical Factors. Technol Cancer Res Treat 2024; 23:15330338241254060. [PMID: 38752262 PMCID: PMC11102700 DOI: 10.1177/15330338241254060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024] Open
Abstract
Objectives: This study aimed to build a comprehensive deep-learning model for the prediction of radiation pneumonitis using chest computed tomography (CT), clinical, dosimetric, and laboratory data. Introduction: Radiation therapy is an effective tool for treating patients with lung cancer. Despite its effectiveness, the risk of radiation pneumonitis limits its application. Although several studies have demonstrated models to predict radiation pneumonitis, no reliable model has been developed yet. Herein, we developed prediction models using pretreatment chest CT and various clinical data to assess the likelihood of radiation pneumonitis in lung cancer patients. Methods: This retrospective study analyzed 3-dimensional (3D) lung volume data from chest CT scans and 27 features including dosimetric, clinical, and laboratory data from 548 patients who were treated at our institution between 2010 and 2021. We developed a neural network, named MergeNet, which processes lung 3D CT, clinical, dosimetric, and laboratory data. The MergeNet integrates a convolutional neural network with subsequent fully connected layers. A support vector machine (SVM) and light gradient boosting machine (LGBM) model were also implemented for comparison. For comparison, the convolution-only neural network was implemented as well. Three-dimensional Resnet-10 network and 4-fold cross-validation were used. Results: Classification performance was quantified by using the area under the receiver operative characteristic curve (AUC) metrics. MergeNet showed the AUC of 0.689. SVM, LGBM, and convolution-only networks showed AUCs of 0.525, 0.541, and 0.550, respectively. Application of DeLong test to pairs of receiver operating characteristic curves respectively yielded P values of .001 for the MergeNet-SVM pair and 0.001 for the MergeNet-LGBM pair. Conclusion: The MergeNet model, which incorporates chest CT, clinical, dosimetric, and laboratory data, demonstrated superior performance compared to other models. However, since its prediction performance has not yet reached an efficient level for clinical application, further research is required. Contribution: This study showed that MergeNet may be an effective means to predict radiation pneumonitis. Various predictive factors can be used together for the radiation pneumonitis prediction task via the MergeNet.
Collapse
Affiliation(s)
- Jang Hyung Lee
- Department of Radiation Oncology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Min Kyu Kang
- Department of Radiation Oncology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jongmoo Park
- Department of Radiation Oncology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seoung-Jun Lee
- Department of Radiation Oncology, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Jae-Chul Kim
- Department of Radiation Oncology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Shin-Hyung Park
- Department of Radiation Oncology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
10
|
Yang T, Wang L, Zhong S, Peng L, Li N, Gui Y, Deng Q, Wang Y, Yuan Q, Li X. Prediction of radiation pneumonia after radiotherapy for esophageal cancer using a unified fractional dosiomics combined model. Br J Radiol 2023; 96:20230495. [PMID: 37750834 PMCID: PMC10646633 DOI: 10.1259/bjr.20230495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/27/2023] Open
Abstract
OBJECTIVE This study aimed to construct an optimal model to predict radiation pneumonia (RP) after radiotherapy for esophageal cancer using unified fractional dosiomics and to investigate the improvements in the prediction efficiency of each model for RP. METHODS The clinical data, DVH, pre-treatment CT, and dose distribution of 182 patients were retrospectively analyzed.The independent risk factors were screened using univariate and multivariate logistic regression. The mutual information (MI),least absolute shrinkage and selection operator (LASSO), and recursive feature elimination (RFE) methods were used to screen the omics features. The AUC values of ROC, calibration curves, and clinical decision curves were calculated to evaluate the efficacy and trends of each model. RESULTS The AUC of dosiomics model were 0.783 and 0.760 in the training and test cohorts, higher than 0.585 and 0.579 in the training and test cohorts of the DVH model. The AUC value of the R + D combination was the highest, reaching 0.833. The combined R + D model had a better calibration degree than the other models (mean absolute error = 0.018) and better net benefit in clinical decision-making. CONCLUSIONS The radiomics combined dosiomics model was the best combined model to predict RP after radiotherapy for esophageal cancer. The dosiomics model could cover the efficiency of the DVH model and significantly improve the efficiency of the combined model.In the future, we will include other centers for further verification. ADVANCES IN KNOWLEDGE For the first time, this study used CT images combined dose distribution to predict the occurrence of radiation pneumonitis after radiotherapy for esophageal cancer.
Collapse
Affiliation(s)
- Tianyue Yang
- Department of Radiation Oncology, Affiliated Hospital of North Sichuan Medical College, Shunqing District, Sichuan, China
| | - Liu Wang
- Department of Radiation Oncology, Affiliated Hospital of North Sichuan Medical College, Shunqing District, Sichuan, China
| | - Shuting Zhong
- Department of Medical Imaging, Affiliated Hospital of North Sichuan Medical College, Shunqing District, Sichuan, China
| | - Lei Peng
- Department of Radiation Oncology, Affiliated Hospital of North Sichuan Medical College, Shunqing District, Sichuan, China
| | - Ningfu Li
- Department of Radiation Oncology, Affiliated Hospital of North Sichuan Medical College, Shunqing District, Sichuan, China
| | - Yan Gui
- Department of Radiation Oncology, Affiliated Hospital of North Sichuan Medical College, Shunqing District, Sichuan, China
| | - Qiao Deng
- Department of Radiation Oncology, Affiliated Hospital of North Sichuan Medical College, Shunqing District, Sichuan, China
| | - Yujia Wang
- Department of Radiation Oncology, Affiliated Hospital of North Sichuan Medical College, Shunqing District, Sichuan, China
| | - Qiang Yuan
- Department of Radiation Oncology, Affiliated Hospital of North Sichuan Medical College, Shunqing District, Sichuan, China
| | - Xianfu Li
- Department of Radiation Oncology, Affiliated Hospital of North Sichuan Medical College, Shunqing District, Sichuan, China
| |
Collapse
|
11
|
Pan F, Feng L, Liu B, Hu Y, Wang Q. Application of radiomics in diagnosis and treatment of lung cancer. Front Pharmacol 2023; 14:1295511. [PMID: 38027000 PMCID: PMC10646419 DOI: 10.3389/fphar.2023.1295511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Radiomics has become a research field that involves the process of converting standard nursing images into quantitative image data, which can be combined with other data sources and subsequently analyzed using traditional biostatistics or artificial intelligence (Al) methods. Due to the capture of biological and pathophysiological information by radiomics features, these quantitative radiomics features have been proven to provide fast and accurate non-invasive biomarkers for lung cancer risk prediction, diagnosis, prognosis, treatment response monitoring, and tumor biology. In this review, radiomics has been emphasized and discussed in lung cancer research, including advantages, challenges, and drawbacks.
Collapse
Affiliation(s)
- Feng Pan
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, China
- Department of CT, Jilin Province FAW General Hospital, Changchun, China
| | - Li Feng
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Baocai Liu
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yue Hu
- Department of Biobank, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qian Wang
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Niu L, Chu X, Yang X, Zhao H, Chen L, Deng F, Liang Z, Jing D, Zhou R. A multiomics approach-based prediction of radiation pneumonia in lung cancer patients: impact on survival outcome. J Cancer Res Clin Oncol 2023; 149:8923-8934. [PMID: 37154927 DOI: 10.1007/s00432-023-04827-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 04/28/2023] [Indexed: 05/10/2023]
Abstract
PURPOSE To predict the risk of radiation pneumonitis (RP), a multiomics model was built to stratify lung cancer patients. Our study also investigated the impact of RP on survival. METHODS This study retrospectively collected 100 RP and 99 matched non-RP lung cancer patients treated with radiotherapy from two independent centres. They were divided into training (n = 175) and validation cohorts (n = 24). The radiomics, dosiomics and clinical features were extracted from planning CT and electronic medical records and were analysed by LASSO Cox regression. A multiomics prediction model was developed by the optimal algorithm. Overall survival (OS) between the RP, non-RP, mild RP, and severe RP groups was analysed by the Kaplan‒Meier method. RESULTS Sixteen radiomics features, two dosiomics features, and one clinical feature were selected to build the best multiomics model. The optimal performance for predicting RP was the area under the receiver operating characteristic curve (AUC) of the testing set (0.94) and validation set (0.92). The RP patients were divided into mild (≤ 2 grade) and severe (> 2 grade) RP groups. The median OS was 31 months for the non-RP group compared with 49 months for the RP group (HR = 0.53, p = 0.0022). Among the RP subgroup, the median OS was 57 months for the mild RP group and 25 months for the severe RP group (HR = 3.72, p < 0.0001). CONCLUSIONS The multiomics model contributed to improving the accuracy of RP prediction. Compared with the non-RP patients, the RP patients displayed longer OS, especially the mild RP patients.
Collapse
Affiliation(s)
- Lishui Niu
- Department of Oncology, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China
| | - Xianjing Chu
- Department of Oncology, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China
| | - Xianghui Yang
- Department of Oncology, The Affiliated Changsha Central Hospital, Henyang Medical School, University of South China, Changsha, 410004, China
| | - Hongxiang Zhao
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100000, China
| | - Liu Chen
- Department of Oncology, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China
| | - Fuxing Deng
- Department of Oncology, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China
| | - Zhan Liang
- Department of Oncology, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China
| | - Di Jing
- Department of Oncology, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China.
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
13
|
Abe K, Kadoya N, Ito K, Tanaka S, Nakajima Y, Hashimoto S, Suda Y, Uno T, Jingu K. Evaluation of the MVCT-based radiomic features as prognostic factor in patients with head and neck squamous cell carcinoma. BMC Med Imaging 2023; 23:102. [PMID: 37528392 PMCID: PMC10391970 DOI: 10.1186/s12880-023-01055-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 07/18/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Megavoltage computed tomography (MVCT) images acquired during each radiotherapy session may be useful for delta radiomics. However, no studies have examined whether the MVCT-based radiomics has prognostic power. Therefore, the purpose of this study was to examine the prognostic power of the MVCT-based radiomics for head and neck squamous cell carcinoma (HNSCC) patients. METHODS 100 HNSCC patients who received definitive radiotherapy were analyzed and divided into two groups: training (n = 70) and test (n = 30) sets. MVCT images obtained using TomoTherapy for the first fraction of radiotherapy and planning kilovoltage CT (kVCT) images obtained using Aquilion LB CT scanner were analyzed. Primary gross tumor volume (GTV) was propagated from kVCT to MVCT images using rigid registration, and 107 radiomic features were extracted from the GTV in MVCT and kVCT images. Least absolute shrinkage and selection operator (LASSO) Cox regression model was used to examine the association between overall survival (OS) and rad score calculated for each patient by weighting the feature value through the coefficient when features were selected. Then, the predictive values of MVCT-based and kVCT-based rad score and patient-, treatment-, and tumor-specific factors were evaluated. RESULTS C-indices of the rad score for MVCT- and kVCT-based radiomics were 0.667 and 0.685, respectively. The C-indices of 6 clinical factors were 0.538-0.622. The 3-year OS was significantly different between high- and low-risk groups according to the MVCT-based rad score (50% vs. 83%; p < 0.01). CONCLUSIONS Our results suggested that MVCT-based radiomics had stronger prognostic power than any single clinical factor and was a useful prognostic factor when predicting OS in HNSCC patients.
Collapse
Affiliation(s)
- Kota Abe
- Department of Radiation Oncology, MR Linac ART Division, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
- Department of Radiation Oncology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo, 113-8677, Japan
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, 1-1 Seiryo- machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Noriyuki Kadoya
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, 1-1 Seiryo- machi, Aoba-ku, Sendai, 980-8574, Japan.
| | - Kei Ito
- Department of Radiation Oncology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo, 113-8677, Japan
| | - Shohei Tanaka
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, 1-1 Seiryo- machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Yujiro Nakajima
- Department of Radiation Oncology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo, 113-8677, Japan
- Department of Radiological Sciences, Komazawa University, 1-23-1 komazawa, Setagaya-ku, Tokyo, 154-8525, Japan
| | - Shimpei Hashimoto
- Saitama Prefectural Cancer Center, 780 large section of a town Omuro, Ina-machi, Kitaadachi- gun, Saitama, 362-0806, Japan
| | - Yuhi Suda
- Department of Radiation Oncology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo, 113-8677, Japan
| | - Takashi Uno
- Diagnostic Radiology and Radiation Oncology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Keiichi Jingu
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, 1-1 Seiryo- machi, Aoba-ku, Sendai, 980-8574, Japan
| |
Collapse
|
14
|
Chen M, Copley SJ, Viola P, Lu H, Aboagye EO. Radiomics and artificial intelligence for precision medicine in lung cancer treatment. Semin Cancer Biol 2023; 93:97-113. [PMID: 37211292 DOI: 10.1016/j.semcancer.2023.05.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/14/2023] [Accepted: 05/17/2023] [Indexed: 05/23/2023]
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. It exhibits, at the mesoscopic scale, phenotypic characteristics that are generally indiscernible to the human eye but can be captured non-invasively on medical imaging as radiomic features, which can form a high dimensional data space amenable to machine learning. Radiomic features can be harnessed and used in an artificial intelligence paradigm to risk stratify patients, and predict for histological and molecular findings, and clinical outcome measures, thereby facilitating precision medicine for improving patient care. Compared to tissue sampling-driven approaches, radiomics-based methods are superior for being non-invasive, reproducible, cheaper, and less susceptible to intra-tumoral heterogeneity. This review focuses on the application of radiomics, combined with artificial intelligence, for delivering precision medicine in lung cancer treatment, with discussion centered on pioneering and groundbreaking works, and future research directions in the area.
Collapse
Affiliation(s)
- Mitchell Chen
- Department of Surgery and Cancer, The Commonwealth Building, Du Cane Road, Hammersmith Campus, Imperial College, London W12 0NN, UK; Imperial College Healthcare NHS Trust, Hammersmith Hospital, Du Cane Road, London W12 0HS, UK
| | - Susan J Copley
- Department of Surgery and Cancer, The Commonwealth Building, Du Cane Road, Hammersmith Campus, Imperial College, London W12 0NN, UK; Imperial College Healthcare NHS Trust, Hammersmith Hospital, Du Cane Road, London W12 0HS, UK
| | - Patrizia Viola
- North West London Pathology, Charing Cross Hospital, Fulham Palace Rd, London W6 8RF, UK
| | - Haonan Lu
- Department of Surgery and Cancer, The Commonwealth Building, Du Cane Road, Hammersmith Campus, Imperial College, London W12 0NN, UK
| | - Eric O Aboagye
- Department of Surgery and Cancer, The Commonwealth Building, Du Cane Road, Hammersmith Campus, Imperial College, London W12 0NN, UK.
| |
Collapse
|
15
|
Chen J, Meng T, Xu J, Ooi JD, Eggenhuizen PJ, Liu W, Li F, Wu X, Sun J, Zhang H, Zhou YO, Luo H, Xiao X, Pei Y, Li W, Zhong Y. Development of a radiomics nomogram to predict the treatment resistance of Chinese MPO-AAV patients with lung involvement: a two-center study. Front Immunol 2023; 14:1084299. [PMID: 37503353 PMCID: PMC10369051 DOI: 10.3389/fimmu.2023.1084299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 06/19/2023] [Indexed: 07/29/2023] Open
Abstract
Background Previous studies from our group and other investigators have shown that lung involvement is one of the independent predictors for treatment resistance in patients with myeloperoxidase (MPO)-anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (MPO-AAV). However, it is unclear which image features of lung involvement can predict the therapeutic response in MPO-AAV patients, which is vital in decision-making for these patients. Our aim was to develop and validate a radiomics nomogram to predict treatment resistance of Chinese MPO-AAV patients based on low-dose multiple slices computed tomography (MSCT) of the involved lung with cohorts from two centers. Methods A total of 151 MPO-AAV patients with lung involvement (MPO-AAV-LI) from two centers were enrolled. Two different models (Model 1: radiomics signature; Model 2: radiomics nomogram) were built based on the clinical and MSCT data to predict the treatment resistance of MPO-AAV with lung involvement in training and test cohorts. The performance of the models was assessed using the area under the curve (AUC). The better model was further validated. A nomogram was constructed and evaluated by DCA and calibration curves, which further tested in all enrolled data and compared with the other model. Results Model 2 had a higher predicting ability than Model 1 both in training (AUC: 0.948 vs. 0.824; p = 0.039) and test cohorts (AUC: 0.913 vs. 0.898; p = 0.043). As a better model, Model 2 obtained an excellent predictive performance (AUC: 0.929; 95% CI: 0.827-1.000) in the validation cohort. The DCA curve demonstrated that Model 2 was clinically feasible. The calibration curves of Model 2 closely aligned with the true treatment resistance rate in the training (p = 0.28) and test sets (p = 0.70). In addition, the predictive performance of Model 2 (AUC: 0.929; 95% CI: 0.875-0.964) was superior to Model 1 (AUC: 0.862; 95% CI: 0.796-0.913) and serum creatinine (AUC: 0.867; 95% CI: 0.802-0.917) in all patients (all p< 0.05). Conclusion The radiomics nomogram (Model 2) is a useful, non-invasive tool for predicting the treatment resistance of MPO-AAV patients with lung involvement, which might aid in individualizing treatment decisions.
Collapse
Affiliation(s)
- Juan Chen
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ting Meng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jia Xu
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Joshua D. Ooi
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Centre for Inflammatory Diseases, Monash University, Clayton, VIC, Australia
| | | | - Wenguang Liu
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fang Li
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xueqin Wu
- Department of Nephrology, The third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Sun
- Department of Nephrology, The third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao Zhang
- Department of Nephrology, The third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ya-Ou Zhou
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Luo
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiangcheng Xiao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yigang Pei
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenzheng Li
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong Zhong
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
16
|
Zhang Z, Wei X. Artificial intelligence-assisted selection and efficacy prediction of antineoplastic strategies for precision cancer therapy. Semin Cancer Biol 2023; 90:57-72. [PMID: 36796530 DOI: 10.1016/j.semcancer.2023.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/12/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
The rapid development of artificial intelligence (AI) technologies in the context of the vast amount of collectable data obtained from high-throughput sequencing has led to an unprecedented understanding of cancer and accelerated the advent of a new era of clinical oncology with a tone of precision treatment and personalized medicine. However, the gains achieved by a variety of AI models in clinical oncology practice are far from what one would expect, and in particular, there are still many uncertainties in the selection of clinical treatment options that pose significant challenges to the application of AI in clinical oncology. In this review, we summarize emerging approaches, relevant datasets and open-source software of AI and show how to integrate them to address problems from clinical oncology and cancer research. We focus on the principles and procedures for identifying different antitumor strategies with the assistance of AI, including targeted cancer therapy, conventional cancer therapy, and cancer immunotherapy. In addition, we also highlight the current challenges and directions of AI in clinical oncology translation. Overall, we hope this article will provide researchers and clinicians with a deeper understanding of the role and implications of AI in precision cancer therapy, and help AI move more quickly into accepted cancer guidelines.
Collapse
Affiliation(s)
- Zhe Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, PR China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
17
|
Kapoor R, Sleeman W, Palta J, Weiss E. 3D deep convolution neural network for radiation pneumonitis prediction following stereotactic body radiotherapy. J Appl Clin Med Phys 2023; 24:e13875. [PMID: 36546583 PMCID: PMC10018674 DOI: 10.1002/acm2.13875] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/11/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
In this study, we investigated 3D convolutional neural networks (CNNs) with input from radiographic and dosimetric datasets of primary lung tumors and surrounding lung volumes to predict the likelihood of radiation pneumonitis (RP). Pre-treatment, 3- and 6-month follow-up computed tomography (CT) and 3D dose datasets from one hundred and ninety-three NSCLC patients treated with stereotactic body radiotherapy (SBRT) were retrospectively collected and analyzed for this study. DenseNet-121 and ResNet-50 models were selected for this study as they are deep neural networks and have been proven to have high accuracy for complex image classification tasks. Both were modified with 3D convolution and max pooling layers to accept 3D datasets. We used a minority class oversampling approach and data augmentation to address the challenges of data imbalance and data scarcity. We built two sets of models for classification of three (No RP, Grade 1 RP, Grade 2 RP) and two (No RP, Yes RP) classes as outputs. The 3D DenseNet-121 models performed better (F1 score [0.81], AUC [0.91] [three class]; F1 score [0.77], AUC [0.84] [two class]) than the 3D ResNet-50 models (F1 score [0.54], AUC [0.72] [three-class]; F1 score [0.68], AUC [0.71] [two-class]) (p = 0.017 for three class predictions). We also attempted to identify salient regions within the input 3D image dataset via integrated gradient (IG) techniques to assess the relevance of the tumor surrounding volume for RP stratification. These techniques appeared to indicate the significance of the tumor and surrounding regions in the prediction of RP. Overall, 3D CNNs performed well to predict clinical RP in our cohort based on the provided image sets and radiotherapy dose information.
Collapse
Affiliation(s)
- Rishabh Kapoor
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - William Sleeman
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jatinder Palta
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Elisabeth Weiss
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
18
|
Thakur P, Olson JD, Dugan GO, Daniel Bourland J, Kock ND, Mark Cline J. Quantitative Assessment and Comparative Analysis of Longitudinal Lung CT Scans of Chest-Irradiated Nonhuman Primates. Radiat Res 2023; 199:39-47. [PMID: 36394559 PMCID: PMC9987082 DOI: 10.1667/rade-21-00225.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 10/24/2022] [Indexed: 11/18/2022]
Abstract
Computed tomography (CT) imaging has been used to diagnose radiation-induced lung injury for decades. However, histogram-based quantitative tools have rarely been applied to assess lung abnormality due to radiation-induced lung injury (RILI). Here, we used first-order summary statistics to derive and assess threshold measures extracted from whole lung histograms of CT radiodensity in rhesus macaques. For the present study, CT scans of animals exposed to 10 Gy of whole thorax irradiation were utilized from a previous study spanning 2-9 months postirradiation. These animals were grouped into survivors and non-survivors based on their clinical and experimental endpoints. We quantified the change in lung attenuation after irradiation relative to baseline using three density parameters; average lung density (ALD), percent change in hyper-dense lung volume (PCHV), hyperdense volume as a percent of total volume (PCHV/TV) at 2-month intervals and compared each parameter between the two irradiated groups (non-survivors and survivors). We also correlated our results with histological findings. All the three indices (ALD, PCHV, PCHV/TV) obtained from density histograms showed a significant increase in lung injury in non-survivors relative to survivors, with PCHV relatively more sensitive to detect early RILI changes. We observed a significant positive correlation between histologic pneumonitis scores and each of the three CT measurements, indicating that CT density is useful as a surrogate for histologic disease severity in RILI. CT-based three density parameters, ALD, PCHV, PCHV/TV, may serve as surrogates for likely histopathology patterns in future studies of RILI disease progression.
Collapse
Affiliation(s)
- Priyanka Thakur
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157-1040
| | - John D. Olson
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157-1040
| | - Gregory O Dugan
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157-1040
| | - J. Daniel Bourland
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157-1040
| | - Nancy D. Kock
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157-1040
| | - J. Mark Cline
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157-1040
| |
Collapse
|
19
|
Radiomics-Based Machine Learning to Predict Recurrence in Glioma Patients Using Magnetic Resonance Imaging. J Comput Assist Tomogr 2023; 47:129-135. [PMID: 36194851 DOI: 10.1097/rct.0000000000001386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Recurrence is a major factor in the poor prognosis of patients with glioma. The aim of this study was to predict glioma recurrence using machine learning based on radiomic features. METHODS We recruited 77 glioma patients, consisting of 57 newly diagnosed patients and 20 patients with recurrence. After extracting the radiomic features from T2-weighted images, the data set was randomly divided into training (58 patients) and testing (19 patients) cohorts. An automated machine learning method (the Tree-based Pipeline Optimization Tool) was applied to generate 10 independent recurrence prediction models. The final model was determined based on the area under the curve (AUC) and average specificity. Moreover, an independent validation set of 20 patients with glioma was used to verify the model performance. RESULTS Recurrence in glioma patients was successfully predicting by machine learning using radiomic features. Among the 10 recurrence prediction models, the best model achieved an accuracy of 0.81, an AUC value of 0.85, and a specificity of 0.69 in the testing cohort, but an accuracy of 0.75 and an AUC value of 0.87 in the independent validation set. CONCLUSIONS Our algorithm that is generated by machine learning exhibits promising power and may predict recurrence noninvasively, thereby offering potential value for the early development of interventions to delay or prevent recurrence in glioma patients.
Collapse
|
20
|
Leary D, Basran PS. The role of artificial intelligence in veterinary radiation oncology. Vet Radiol Ultrasound 2022; 63 Suppl 1:903-912. [PMID: 36514233 DOI: 10.1111/vru.13162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/21/2022] [Accepted: 04/12/2022] [Indexed: 12/15/2022] Open
Abstract
Veterinary radiation oncology regularly deploys sophisticated contouring, image registration, and treatment planning optimization software for patient care. Over the past decade, advances in computing power and the rapid development of neural networks, open-source software packages, and data science have been realized and resulted in new research and clinical applications of artificial intelligent (AI) systems in radiation oncology. These technologies differ from conventional software in their level of complexity and ability to learn from representative and local data. We provide clinical and research application examples of AI in human radiation oncology and their potential applications in veterinary medicine throughout the patient's care-path: from treatment simulation, deformable registration, auto-segmentation, automated treatment planning and plan selection, quality assurance, adaptive radiotherapy, and outcomes modeling. These technologies have the potential to offer significant time and cost savings in the veterinary setting; however, since the range of usefulness of these technologies have not been well studied nor understood, care must be taken if adopting AI technologies in clinical practice. Over the next several years, some practical and realizable applications of AI in veterinary radiation oncology include automated segmentation of normal tissues and tumor volumes, deformable registration, multi-criteria plan optimization, and adaptive radiotherapy. Keys in achieving success in adopting AI in veterinary radiation oncology include: establishing "truth-data"; data harmonization; multi-institutional data and collaborations; standardized dose reporting and taxonomy; adopting an open access philosophy, data collection and curation; open-source algorithm development; and transparent and platform-independent code development.
Collapse
Affiliation(s)
- Del Leary
- Department of Environment and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Parminder S Basran
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
21
|
Thomas HMT, Hippe DS, Forouzannezhad P, Sasidharan BK, Kinahan PE, Miyaoka RS, Vesselle HJ, Rengan R, Zeng J, Bowen SR. Radiation and immune checkpoint inhibitor-mediated pneumonitis risk stratification in patients with locally advanced non-small cell lung cancer: role of functional lung radiomics? Discov Oncol 2022; 13:85. [PMID: 36048266 PMCID: PMC9437196 DOI: 10.1007/s12672-022-00548-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/23/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Patients undergoing chemoradiation and immune checkpoint inhibitor (ICI) therapy for locally advanced non-small cell lung cancer (NSCLC) experience pulmonary toxicity at higher rates than historical reports. Identifying biomarkers beyond conventional clinical factors and radiation dosimetry is especially relevant in the modern cancer immunotherapy era. We investigated the role of novel functional lung radiomics, relative to functional lung dosimetry and clinical characteristics, for pneumonitis risk stratification in locally advanced NSCLC. METHODS Patients with locally advanced NSCLC were prospectively enrolled on the FLARE-RT trial (NCT02773238). All received concurrent chemoradiation using functional lung avoidance planning, while approximately half received consolidation durvalumab ICI. Within tumour-subtracted lung regions, 110 radiomics features (size, shape, intensity, texture) were extracted on pre-treatment [99mTc]MAA SPECT/CT perfusion images using fixed-bin-width discretization. The performance of functional lung radiomics for pneumonitis (CTCAE v4 grade 2 or higher) risk stratification was benchmarked against previously reported lung dosimetric parameters and clinical risk factors. Multivariate least absolute shrinkage and selection operator Cox models of time-varying pneumonitis risk were constructed, and prediction performance was evaluated using optimism-adjusted concordance index (c-index) with 95% confidence interval reporting throughout. RESULTS Thirty-nine patients were included in the study and pneumonitis occurred in 16/39 (41%) patients. Among clinical characteristics and anatomic/functional lung dosimetry variables, only the presence of baseline chronic obstructive pulmonary disease (COPD) was significantly associated with the development of pneumonitis (HR 4.59 [1.69-12.49]) and served as the primary prediction benchmark model (c-index 0.69 [0.59-0.80]). Discrimination of time-varying pneumonitis risk was numerically higher when combining COPD with perfused lung radiomics size (c-index 0.77 [0.65-0.88]) or shape feature classes (c-index 0.79 [0.66-0.91]) but did not reach statistical significance compared to benchmark models (p > 0.26). COPD was associated with perfused lung radiomics size features, including patients with larger lung volumes (AUC 0.75 [0.59-0.91]). Perfused lung radiomic texture features were correlated with lung volume (adj R2 = 0.84-1.00), representing surrogates rather than independent predictors of pneumonitis risk. CONCLUSIONS In patients undergoing chemoradiation with functional lung avoidance therapy and optional consolidative immune checkpoint inhibitor therapy for locally advanced NSCLC, the strongest predictor of pneumonitis was the presence of baseline chronic obstructive pulmonary disease. Results from this novel functional lung radiomics exploratory study can inform future validation studies to refine pneumonitis risk models following combinations of radiation and immunotherapy. Our results support functional lung radiomics as surrogates of COPD for non-invasive monitoring during and after treatment. Further study of clinical, dosimetric, and radiomic feature combinations for radiation and immune-mediated pneumonitis risk stratification in a larger patient population is warranted.
Collapse
Affiliation(s)
- Hannah M T Thomas
- Department of Radiation Oncology, University of Washington School of Medicine, 1959 NE Pacific St, Box 356043, Seattle, WA, 98195, USA
- Department of Radiation Oncology, Christian Medical College Vellore, Vellore, Tamil Nadu, India
| | - Daniel S Hippe
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Parisa Forouzannezhad
- Department of Radiation Oncology, University of Washington School of Medicine, 1959 NE Pacific St, Box 356043, Seattle, WA, 98195, USA
| | - Balu Krishna Sasidharan
- Department of Radiation Oncology, Christian Medical College Vellore, Vellore, Tamil Nadu, India
| | - Paul E Kinahan
- Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Robert S Miyaoka
- Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Hubert J Vesselle
- Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Ramesh Rengan
- Department of Radiation Oncology, University of Washington School of Medicine, 1959 NE Pacific St, Box 356043, Seattle, WA, 98195, USA
| | - Jing Zeng
- Department of Radiation Oncology, University of Washington School of Medicine, 1959 NE Pacific St, Box 356043, Seattle, WA, 98195, USA
| | - Stephen R Bowen
- Department of Radiation Oncology, University of Washington School of Medicine, 1959 NE Pacific St, Box 356043, Seattle, WA, 98195, USA.
- Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
22
|
Abdollahi H, Chin E, Clark H, Hyde DE, Thomas S, Wu J, Uribe CF, Rahmim A. Radiomics-guided radiation therapy: opportunities and challenges. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac6fab] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/13/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Radiomics is an advanced image-processing framework, which extracts image features and considers them as biomarkers towards personalized medicine. Applications include disease detection, diagnosis, prognosis, and therapy response assessment/prediction. As radiation therapy aims for further individualized treatments, radiomics could play a critical role in various steps before, during and after treatment. Elucidation of the concept of radiomics-guided radiation therapy (RGRT) is the aim of this review, attempting to highlight opportunities and challenges underlying the use of radiomics to guide clinicians and physicists towards more effective radiation treatments. This work identifies the value of RGRT in various steps of radiotherapy from patient selection to follow-up, and subsequently provides recommendations to improve future radiotherapy using quantitative imaging features.
Collapse
|
23
|
Puttanawarut C, Sirirutbunkajorn N, Tawong N, Jiarpinitnun C, Khachonkham S, Pattaranutaporn P, Wongsawat Y. Radiomic and Dosiomic Features for the Prediction of Radiation Pneumonitis Across Esophageal Cancer and Lung Cancer. Front Oncol 2022; 12:768152. [PMID: 35251959 PMCID: PMC8889567 DOI: 10.3389/fonc.2022.768152] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/13/2022] [Indexed: 01/13/2023] Open
Abstract
PURPOSE The aim was to investigate the advantages of dosiomic and radiomic features over traditional dose-volume histogram (DVH) features for predicting the development of radiation pneumonitis (RP), to validate the generalizability of dosiomic and radiomic features by using features selected from an esophageal cancer dataset and to use these features with a lung cancer dataset. MATERIALS AND METHODS A dataset containing 101 patients with esophageal cancer and 93 patients with lung cancer was included in this study. DVH and dosiomic features were extracted from 3D dose distributions. Radiomic features were extracted from pretreatment CT images. Feature selection was performed using only the esophageal cancer dataset. Four predictive models for RP (DVH, dosiomic, radiomic and dosiomic + radiomic models) were compared on the esophageal cancer dataset. We further used a lung cancer dataset for the external validation of the selected dosiomic and radiomic features from the esophageal cancer dataset. The performance of the predictive models was evaluated by the area under the curve (AUC) of the receiver operating characteristic curve (ROCAUC) and the AUC of the precision recall curve (PRAUC) metrics. RESULT The ROCAUCs and PRAUCs of the DVH, dosiomic, radiomic and dosiomic + radiomic models on esophageal cancer dataset were 0.67 ± 0.11 and 0.75 ± 0.10, 0.71 ± 0.10 and 0.77 ± 0.09, 0.71 ± 0.11 and 0.79 ± 0.09, and 0.75 ± 0.10 and 0.81 ± 0.09, respectively. The predictive performance of the dosiomic- and radiomic-based models was significantly higher than that of the DVH-based model with respect to esophageal cancer. The ROCAUCs and PRAUCs of the DVH, dosiomic, radiomic and dosiomic + radiomic models on the lung cancer dataset were 0.64 ± 0.18 and 0.37 ± 0.20, 0.67 ± 0.17 and 0.37 ± 0.20, 0.67 ± 0.16 and 0.45 ± 0.23, and 0.68 ± 0.16 and 0.44 ± 0.22, respectively. On the lung cancer dataset, the predictive performance of the radiomic and dosiomic + radiomic models was significantly higher than that of the DVH-based model. However, the PRAUC of the dosiomic-based model showed no significant difference relative to the corresponding RP prediction performance on the lung cancer dataset. CONCLUSION The results suggested that dosiomic and CT radiomic features could improve RP prediction in thoracic radiotherapy. Dosiomic and radiomic feature knowledge might be transferrable from esophageal cancer to lung cancer.
Collapse
Affiliation(s)
- Chanon Puttanawarut
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
- Brain-Computer Interface Laboratory, Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakhorn Pathom, Thailand
| | - Nat Sirirutbunkajorn
- Department of Diagnostic and Therapeutic Radiology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Narisara Tawong
- Department of Diagnostic and Therapeutic Radiology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Chuleeporn Jiarpinitnun
- Department of Diagnostic and Therapeutic Radiology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Suphalak Khachonkham
- Department of Diagnostic and Therapeutic Radiology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Poompis Pattaranutaporn
- Department of Diagnostic and Therapeutic Radiology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Yodchanan Wongsawat
- Brain-Computer Interface Laboratory, Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakhorn Pathom, Thailand
| |
Collapse
|
24
|
Ninomiya K, Arimura H, Yoshitake T, Hirose TA, Shioyama Y. Synergistic combination of a topologically invariant imaging signature and a biomarker for the accurate prediction of symptomatic radiation pneumonitis before stereotactic ablative radiotherapy for lung cancer: A retrospective analysis. PLoS One 2022; 17:e0263292. [PMID: 35100322 PMCID: PMC8803154 DOI: 10.1371/journal.pone.0263292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 01/18/2022] [Indexed: 12/25/2022] Open
Abstract
Objectives We aimed to explore the synergistic combination of a topologically invariant Betti number (BN)-based signature and a biomarker for the accurate prediction of symptomatic (grade ≥2) radiation-induced pneumonitis (RP+) before stereotactic ablative radiotherapy (SABR) for lung cancer. Methods A total of 272 SABR cases with early-stage non-small cell lung cancer were chosen for this study. The occurrence of RP+ was predicted using a support vector machine (SVM) model trained with the combined features of the BN-based signature extracted from planning computed tomography (pCT) images and a pretreatment biomarker, serum Krebs von den Lungen-6 (BN+KL-6 model). In all, 242 (20 RP+ and 222 RP–(grade 1)) and 30 cases (8 RP+ and 22 RP–) were used for training and testing the model, respectively. The BN-based features were extracted from BN maps that characterize topologically invariant heterogeneous traits of potential RP+ lung regions on pCT images by applying histogram- and texture-based feature calculations to the maps. The SVM models were built to predict RP+ patients with a BN signature that was constructed based on the least absolute shrinkage and selection operator logistic regression model. The evaluation of the prediction models was performed based on the area under the receiver operating characteristic curves (AUCs) and accuracy in the test. The performance of the BN+KL-6 model was compared to the performance based on the BN, conventional original pCT, and wavelet decomposition (WD) models. Results The test AUCs obtained for the BN+KL-6, BN, pCT, and WD models were 0.825, 0.807, 0.642, and 0.545, respectively. The accuracies of the BN+KL-6, BN, pCT, and WD models were found to be 0.724, 0.708, 0.591, and 0.534, respectively. Conclusion This study demonstrated the comprehensive performance of the BN+KL-6 model for the prediction of potential RP+ patients before SABR for lung cancer.
Collapse
Affiliation(s)
- Kenta Ninomiya
- Division of Medical Quantum Science, Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Hidetaka Arimura
- Faculty of Medical Sciences, Division of Medical Quantum Science, Department of Health Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
- * E-mail: (HA); (TY)
| | - Tadamasa Yoshitake
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
- * E-mail: (HA); (TY)
| | - Taka-aki Hirose
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Higashi-ku, Fukuoka, Japan
| | | |
Collapse
|
25
|
Luo Y, Li Y, Zhang Y, Zhang J, Liang M, Jiang L, Guo L. Parameter tuning in machine learning based on radiomics biomarkers of lung cancer. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2022; 30:477-490. [PMID: 35342074 DOI: 10.3233/xst-211096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
BACKGROUND Lung cancer is one of the most common cancers, and early diagnosis and intervention can improve cancer cure rate. OBJECTIVE To improve predictive performance of radiomics features for lung cancer by tuning the machine learning model parameters. METHODS Using a dataset involving 263 cases (125 benign and 138 malignant) acquired from our hospital, each classifier model is trained and tested using 237 and 26 cases, respectively. We initially extract 867 radiomics features of CT images for model development and then test 10 feature selections and 7 models to determine the best method. We further tune the parameter of the final model to reach the best performance. The adjusted final model is then validated using 224 cases acquired from Lung Image Database Consortium (LIDC) dataset (64 benign and 160 malignant) with the same set of selected radiomics features. RESULTS During model development, the feature selection via concave minimization method show the best performance of area under ROC curve (AUC = 0.765), followed by l0-norm regularization (AUC = 0.741) and Fisher discrimination criterion (AUC = 0.734). Support vector machine (SVM) and random forest (RF) are the top two machine learning algorithms showing the best performance (AUC = 0.765 and 0.734, respectively), using by the default parameter. After parameter tuning, SVM with linear kernel achieves the best performance (AUC = 0.837), whereas the best tuned RF with the number of trees is 510 and yields a slightly lower performance (AUC = 0.775) in 26 test samples data. During model validation, the SVM and RF models yield AUC = 0.78 and 0.77, respectively. CONCLUSION Appropriate quantitative radiomics features and accurate parameters can improve the model's performance to predict lung cancer.
Collapse
Affiliation(s)
- Yuan Luo
- School of Medical Imaging, Tianjin Medical University, Tianjin, China
| | - Yifan Li
- School of Medical Imaging, Tianjin Medical University, Tianjin, China
| | - Yuwei Zhang
- School of Medical Imaging, Tianjin Medical University, Tianjin, China
| | - Jianwei Zhang
- Department of Radiology, Tianjin Baodi Hospital, Tianjin, China
| | - Meng Liang
- School of Medical Imaging, Tianjin Medical University, Tianjin, China
| | - Lin Jiang
- School of Medical Imaging, Tianjin Medical University, Tianjin, China
| | - Li Guo
- School of Medical Imaging, Tianjin Medical University, Tianjin, China
| |
Collapse
|
26
|
Avanzo M, Gagliardi V, Stancanello J, Blanck O, Pirrone G, El Naqa I, Revelant A, Sartor G. Combining computed tomography and biologically effective dose in radiomics and deep learning improves prediction of tumor response to robotic lung stereotactic body radiation therapy. Med Phys 2021; 48:6257-6269. [PMID: 34415574 DOI: 10.1002/mp.15178] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 07/20/2021] [Accepted: 08/02/2021] [Indexed: 02/06/2023] Open
Abstract
PURPOSE The aim of this study is to improve the performance of machine learning (ML) models in predicting response of non-small cell lung cancer (NSCLC) to stereotactic body radiation therapy (SBRT) by integrating image features from pre-treatment computed tomography (CT) with features from the biologically effective dose (BED) distribution. MATERIALS AND METHODS Image features, consisting of crafted radiomic features or machine-learned features extracted using a convolutional neural network, were calculated from pre-treatment CT data and from dose distributions converted into BED for 80 NSCLC lesions over 76 patients treated with robotic guided SBRT. ML models using different combinations of features were trained to predict complete or partial response according to response criteria in solid tumors, including radiomics CT (RadCT ), radiomics CT and BED (RadCT,BED ), deep learning (DL) CT (DLCT ), and DL CT and BED (DLCT,BED ). Training of ML included feature selection by neighborhood component analysis followed by ensemble ML using robust boosting. A model was considered as acceptable when the sum of average sensitivity and specificity on test data in repeated cross validations was at least 1.5. RESULTS Complete or partial response occurred in 58 out of 80 lesions. The best models to predict the tumor response were those using BED variables, achieving significantly better area under curve (AUC) and accuracy than those using only features from CT, including a RadCT,BED model using three radiomic features from BED, which scored an accuracy of 0.799 (95% confidence intervals (0.75-0.85)) and AUC of 0.773 (0.688-0.846), and a DLCT,BED model also using three variables with an accuracy of 0.798 (0.649-0.829) and AUC of 0.812 (0.755-0.867). CONCLUSION According to our results, the inclusion of BED features improves the response prediction of ML models for lung cancer patients undergoing SBRT, regardless of the use of radiomic or DL features.
Collapse
Affiliation(s)
- Michele Avanzo
- Medical Physics Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, PN, Italy
| | - Vito Gagliardi
- Medical Physics Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, PN, Italy
| | | | - Oliver Blanck
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Giovanni Pirrone
- Medical Physics Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, PN, Italy
| | - Issam El Naqa
- Department of Machine Learning, Moffitt University, Tampa, Florida, USA
| | - Alberto Revelant
- Radiation Oncology Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, PN, Italy
| | - Giovanna Sartor
- Medical Physics Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, PN, Italy
| |
Collapse
|
27
|
Sha S, Dong J, Wang M, Chen Z, Gao P. Risk factors for radiation-induced lung injury in patients with advanced non-small cell lung cancer: implication for treatment strategies. World J Surg Oncol 2021; 19:214. [PMID: 34271911 PMCID: PMC8285849 DOI: 10.1186/s12957-021-02321-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/25/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The radiation-induced lung injury (RILI) in patients with advanced non-small cell lung cancer (NSCLS) is very common in clinical settings; we aimed to evaluate the risk factors of RILI in NSCLS patients, to provide insights into the treatment of NSCLS. METHODS NSCLC patients undergoing three-dimensional conformal radiotherapy (3D-CRT) in our hospital from June 1, 2018, to June 30, 2020, were included. The characteristics and treatments of RILI and non-RILI patients were analyzed. Logistic regression analyses were conducted to assess the risk factors of RILI in patients with NSCLC. RESULTS A total of 126 NSCLC patients were included; the incidence of RILI in NSCLC patients was 35.71%. There were significant differences in diabetes, smoke, chronic obstructive pulmonary disease (COPD), concurrent chemotherapy, radiotherapy dose, and planning target volume (PTV) between the RILI group and the non-RILI group (all P < 0.05). Logistic regression analyses indicated that diabetes (OR 3.076, 95%CI 1.442~5.304), smoke (OR 2.745, 95%CI 1.288~4.613), COPD (OR 3.949, 95%CI 1.067~5.733), concurrent chemotherapy (OR 2.072, 95%CI 1.121~3.498), radiotherapy dose ≥ 60 Gy (OR 3.841, 95%CI 1.932~5.362), and PTV ≥ 396 (OR 1.247, 95%CI 1.107~1.746) were the independent risk factors of RILI in patients with NSCLC (all P < 0.05). CONCLUSIONS RILI is commonly seen in NSCLS patients; early targeted measures are warranted for patients with those risk factors; future studies with larger sample sizes and different areas are needed to further elucidate the influencing factors of RILI in the treatment of NSCLS.
Collapse
Affiliation(s)
- Sha Sha
- Department of Radiotherapy, Jiaozhou Central Hospital, No. 29 Xuzhou Road, Jiaozhou City, Qingdao, 266300, China.
| | - Jigang Dong
- Department of Radiotherapy, Jiaozhou Central Hospital, No. 29 Xuzhou Road, Jiaozhou City, Qingdao, 266300, China
| | - Maoyu Wang
- Department of Radiotherapy, Jiaozhou Central Hospital, No. 29 Xuzhou Road, Jiaozhou City, Qingdao, 266300, China
| | - Ziyu Chen
- Department of Radiotherapy, Jiaozhou Central Hospital, No. 29 Xuzhou Road, Jiaozhou City, Qingdao, 266300, China
| | - Peng Gao
- Department of Radiotherapy, Jiaozhou Central Hospital, No. 29 Xuzhou Road, Jiaozhou City, Qingdao, 266300, China
| |
Collapse
|
28
|
Jiang W, Song Y, Sun Z, Qiu J, Shi L. Dosimetric Factors and Radiomics Features Within Different Regions of Interest in Planning CT Images for Improving the Prediction of Radiation Pneumonitis. Int J Radiat Oncol Biol Phys 2021; 110:1161-1170. [PMID: 33548340 DOI: 10.1016/j.ijrobp.2021.01.049] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 11/21/2020] [Accepted: 01/24/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE This study aimed to establish machine learning models using dosimetric factors and radiomics features within 5 regions of interest (ROIs) in treatment planning computed tomography images to improve the prediction of symptomatic radiation pneumonitis (RP) (grade ≥2). METHODS AND MATERIALS This study retrospectively collected data on 79 patients with lung cancer (25 RP ≥2) who underwent chemoradiotherapy between 2015 and 2018. We defined 5 ROIs in planning computed tomography images: gross tumor volume (GTV), planning tumor volume (PTV), PTV-GTV, total lung (TL)-GTV, and TL-PTV. We calculated the mean dose, V5, V10, V20, and V30 within TL-GTV and TL-PTV and the mean dose within the other ROIs. A total of 1924 radiomics features were extracted from all 5 ROIs. We selected the best predictors for classifying 2 groups of patients using a sequential backward elimination support vector machine model. A permutation test was used to assess its statistical significance (P < .05). RESULTS The best predictors for symptomatic RP were the combination of 11 radiomics features, 5 dosimetric factors, age, and T stage, achieving an area under the curve (AUC) of 0.94 (95% confidence interval [CI], 0.85-1) (accuracy, 90%; sensitivity, 80% [95% CI, 44%-96%]; specificity, 95% [95% CI, 73%-100%]; P = 8 × 10-4). The clinical characteristics, dosimetric factors, and their combination showed limited predictive power (accuracy, 63.3%, 70%, and 70%; AUC [95% CI]: 0.73 [0.54-0.92], 0.53 [0.31-0.75], and 0.72 [0.51-0.92], respectively). The radiomics features of PTV-GTV and TL-PTV outperformed those of the other ROIs (accuracy, 76.7% and 76.7%; AUC [95% CI]: 0.82 [0.65-0.99] and 0.80 [0.59-1], respectively). CONCLUSIONS Combining dosimetric factors and radiomics features within different ROIs can improve the prediction of symptomatic RP. Our results can help physicians adjust the radiation dose distribution of the dose-sensitive lungs and target volumes based on personalized RP estimates.
Collapse
Affiliation(s)
- Wei Jiang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China; Department of Radiotherapy, Yantai Yuhuangding Hospital, Qingdao University School of Medicine, Yantai, China
| | - Yipeng Song
- Department of Radiotherapy, Yantai Yuhuangding Hospital, Qingdao University School of Medicine, Yantai, China
| | - Zhe Sun
- Medical Engineering and Technology Research Center; Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Jianfeng Qiu
- Medical Engineering and Technology Research Center; Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China.
| | - Liting Shi
- Medical Engineering and Technology Research Center; Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China.
| |
Collapse
|
29
|
Chen X, Sheikh K, Nakajima E, Lin CT, Lee J, Hu C, Hales RK, Forde PM, Naidoo J, Voong KR. Radiation Versus Immune Checkpoint Inhibitor Associated Pneumonitis: Distinct Radiologic Morphologies. Oncologist 2021; 26:e1822-e1832. [PMID: 34251728 PMCID: PMC8488797 DOI: 10.1002/onco.13900] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/07/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Patients with non-small cell lung cancer may develop pneumonitis after thoracic radiotherapy (RT) and immune checkpoint inhibitors (ICIs). We hypothesized that distinct morphologic features are associated with different pneumonitis etiologies. MATERIALS AND METHODS We systematically compared computed tomography (CT) features of RT- versus ICI-pneumonitis. Clinical and imaging features were tested for association with pneumonitis severity. Lastly, we constructed an exploratory radiomics-based machine learning (ML) model to discern pneumonitis etiology. RESULTS Between 2009 and 2019, 82 patients developed pneumonitis: 29 after thoracic RT, 23 after ICI, and 30 after RT + ICI. Fifty patients had grade 2 pneumonitis, 22 grade 3, and 7 grade 4. ICI-pneumonitis was more likely bilateral (65% vs. 28%; p = .01) and involved more lobes (66% vs. 45% involving at least three lobes) and was less likely to have sharp border (17% vs. 59%; p = .004) compared with RT-pneumonitis. Pneumonitis morphology after RT + ICI was heterogeneous, with 47% bilateral, 37% involving at least three lobes, and 40% sharp borders. Among all patients, risk factors for severe pneumonitis included poor performance status, smoking history, worse lung function, and bilateral and multifocal involvement on CT. An ML model based on seven radiomic features alone could distinguish ICI- from RT-pneumonitis with an area under the receiver-operating curve of 0.76 and identified the predominant etiology after RT + ICI concordant with multidisciplinary consensus. CONCLUSION RT- and ICI-pneumonitis exhibit distinct spatial features on CT. Bilateral and multifocal lung involvement is associated with severe pneumonitis. Integrating these morphologic features in the clinical management of patients who develop pneumonitis after RT and ICIs may improve treatment decision-making. IMPLICATIONS FOR PRACTICE Patients with non-small cell lung cancer often receive thoracic radiation and immune checkpoint inhibitors (ICIs), both of which can cause pneumonitis. This study identified similarities and differences in pneumonitis morphology on computed tomography (CT) scans among pneumonitis due to radiotherapy (RT) alone, ICI alone, and the combination of both. Patients who have bilateral CT changes involving at least three lobes are more likely to have ICI-pneumonitis, whereas those with unilateral CT changes with sharp borders are more likely to have radiation pneumonitis. After RT and/or ICI, severe pneumonitis is associated with bilateral and multifocal CT changes. These results can help guide clinicians in triaging patients who develop pneumonitis after radiation and during ICI treatment.
Collapse
Affiliation(s)
- Xuguang Chen
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Khadija Sheikh
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Erica Nakajima
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Cheng Ting Lin
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - Junghoon Lee
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chen Hu
- Division of Biostatistics, Department of Oncology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Russell K Hales
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Patrick M Forde
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jarushka Naidoo
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Khinh Ranh Voong
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
30
|
Radiomics Analysis of 3D Dose Distributions to Predict Toxicity of Radiotherapy for Cervical Cancer. J Pers Med 2021; 11:jpm11050398. [PMID: 34064918 PMCID: PMC8151048 DOI: 10.3390/jpm11050398] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 12/20/2022] Open
Abstract
Standard treatment for locally advanced cervical cancer (LACC) is chemoradiotherapy followed by brachytherapy. Despite radiation therapy advances, the toxicity rate remains significant. In this study, we compared the prediction of toxicity events after radiotherapy for locally advanced cervical cancer (LACC), based on either dose-volume histogram (DVH) parameters or the use of a radiomics approach applied to dose maps at the voxel level. Toxicity scores using the Common Terminology Criteria for Adverse Events (CTCAE v4), spatial dose distributions, and usual clinical predictors for the toxicity of 102 patients treated with chemoradiotherapy followed by brachytherapy for LACC were used in this study. In addition to usual DVH parameters, 91 radiomic features were extracted from rectum, bladder and vaginal 3D dose distributions, after discretization into a fixed bin width of 1 Gy. They were evaluated for predictive modelling of rectal, genitourinary (GU) and vaginal toxicities (grade ≥ 2). Logistic Normal Tissue Complication Probability (NTCP) models were derived using clinical parameters only or combinations of clinical, DVH and radiomics. For rectal acute/late toxicities, the area under the curve (AUC) using clinical parameters was 0.53/0.65, which increased to 0.66/0.63, and 0.76/0.87, with the addition of DVH or radiomics parameters, respectively. For GU acute/late toxicities, the AUC increased from 0.55/0.56 (clinical only) to 0.84/0.90 (+DVH) and 0.83/0.96 (clinical + DVH + radiomics). For vaginal acute/late toxicities, the AUC increased from 0.51/0.57 (clinical only) to 0.58/0.72 (+DVH) and 0.82/0.89 (clinical + DVH + radiomics). The predictive performance of NTCP models based on radiomics features was higher than the commonly used clinical and DVH parameters. Dosimetric radiomics analysis is a promising tool for NTCP modelling in radiotherapy.
Collapse
|
31
|
Wang L, Gao Z, Li C, Sun L, Li J, Yu J, Meng X. Computed Tomography-Based Delta-Radiomics Analysis for Discriminating Radiation Pneumonitis in Patients With Esophageal Cancer After Radiation Therapy. Int J Radiat Oncol Biol Phys 2021; 111:443-455. [PMID: 33974887 DOI: 10.1016/j.ijrobp.2021.04.047] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 04/24/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE Our purpose was to construct a computed tomography (CT)-based delta-radiomics nomogram and corresponding risk classification system for individualized and accurate estimation of severe acute radiation pneumonitis (SARP) in patients with esophageal cancer (EC) after radiation therapy. METHODS AND MATERIALS Four hundred patients with EC were enrolled from 2 independent institutions and were divided into the training (n = 200) and validation (n = 200) cohorts. Eight hundred fifty radiomics features of lung were extracted from treatment planning images, including the positioning CT before radiation therapy (CT1) and the resetting CT after receiving 40 to 45 Gy (CT2). The longitudinal net changes in radiomics features from CT1 to CT2 were calculated and defined as delta-radiomics features. Least absolute shrinkage and selection operator algorithm was performed to features selection and delta-radiomics signature building. Integrating the signature with multidimensional clinicopathologic, dosimetric, and hematological predictors of SARP, a novel CT-based delta-radiomics nomogram was established according to multivariate analysis. The clinical application values of nomogram were both evaluated in the training and validation cohorts by concordance index, calibration curves, and decision curve analysis. Recursive partitioning analysis was used to generate a risk classification system. RESULTS The delta-radiomics signature consisting of 24 features was significantly associated with SARP status (P < .001). Incorporating it with other high-risk factors, Subjective Global Assessment score, pulmonary fibrosis score, mean lung dose, and systemic immune inflammation index, the developed delta-radiomics nomogram showed increased improvement in SARP discrimination accuracy with concordance index of 0.975 and 0.921 in the training and validation cohorts, respectively. Calibration curves and decision curve analysis confirmed the satisfactory clinical feasibility and utility of nomogram. The risk classification system displayed excellent performance on identifying SARP occurrence (P < .001). CONCLUSIONS The delta-radiomics nomogram and risk classification system as low-cost and noninvasive means exhibited superior predictive accuracy and provided individualized probability of SARP stratification for patients with EC.
Collapse
Affiliation(s)
- Lu Wang
- Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zhenhua Gao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Chengming Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Liangchao Sun
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jianing Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jinming Yu
- Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xue Meng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
32
|
Michalet M, Azria D, Tardieu M, Tibermacine H, Nougaret S. Radiomics in radiation oncology for gynecological malignancies: a review of literature. Br J Radiol 2021; 94:20210032. [PMID: 33882246 DOI: 10.1259/bjr.20210032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Radiomics is the extraction of a significant number of quantitative imaging features with the aim of detecting information in correlation with useful clinical outcomes. Features are extracted, after delineation of an area of interest, from a single or a combined set of imaging modalities (including X-ray, US, CT, PET/CT and MRI). Given the high dimensionality, the analytical process requires the use of artificial intelligence algorithms. Firstly developed for diagnostic performance in radiology, it has now been translated to radiation oncology mainly to predict tumor response and patient outcome but other applications have been developed such as dose painting, prediction of side-effects, and quality assurance. In gynecological cancers, most studies have focused on outcomes of cervical cancers after chemoradiation. This review highlights the role of this new tool for the radiation oncologists with particular focus on female GU oncology.
Collapse
Affiliation(s)
- Morgan Michalet
- University Federation of Radiation Oncology of Mediterranean Occitanie, Montpellier Cancer Institute, Univ Montpellier, Montpellier, France.,INSERM U1194 IRCM, Montpellier, France
| | - David Azria
- University Federation of Radiation Oncology of Mediterranean Occitanie, Montpellier Cancer Institute, Univ Montpellier, Montpellier, France.,INSERM U1194 IRCM, Montpellier, France
| | | | | | | |
Collapse
|
33
|
El Ayachy R, Giraud N, Giraud P, Durdux C, Giraud P, Burgun A, Bibault JE. The Role of Radiomics in Lung Cancer: From Screening to Treatment and Follow-Up. Front Oncol 2021; 11:603595. [PMID: 34026602 PMCID: PMC8131863 DOI: 10.3389/fonc.2021.603595] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Lung cancer represents the first cause of cancer-related death in the world. Radiomics studies arise rapidly in this late decade. The aim of this review is to identify important recent publications to be synthesized into a comprehensive review of the current status of radiomics in lung cancer at each step of the patients' care. METHODS A literature review was conducted using PubMed/Medline for search of relevant peer-reviewed publications from January 2012 to June 2020. RESULTS We identified several studies at each point of patient's care: detection and classification of lung nodules (n=16), determination of histology and genomic (n=10) and finally treatment outcomes predictions (=23). We reported the methodology of those studies and their results and discuss the limitations and the progress to be made for clinical routine applications. CONCLUSION Promising perspectives arise from machine learning applications and radiomics based models in lung cancers, yet further data are necessary for their implementation in daily care. Multicentric collaboration and attention to quality and reproductivity of radiomics studies should be further consider.
Collapse
Affiliation(s)
- Radouane El Ayachy
- Radiation Oncology Department, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
- Cancer Research and Personalized Medicine-Integrated Cancer Research Center (SIRIC), Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
- INSERM UMR 1138 Team 22: Information Sciences to support Personalized Medicine, Cordeliers Research Centre, Paris Descartes University, Paris, France
| | - Nicolas Giraud
- INSERM UMR 1138 Team 22: Information Sciences to support Personalized Medicine, Cordeliers Research Centre, Paris Descartes University, Paris, France
- Radiation Oncology Department, Haut-Lévêque Hospital, CHU de Bordeaux, Pessac, France
| | - Paul Giraud
- Radiation Oncology Department, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
- Cancer Research and Personalized Medicine-Integrated Cancer Research Center (SIRIC), Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
- INSERM UMR 1138 Team 22: Information Sciences to support Personalized Medicine, Cordeliers Research Centre, Paris Descartes University, Paris, France
| | - Catherine Durdux
- Radiation Oncology Department, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
- Cancer Research and Personalized Medicine-Integrated Cancer Research Center (SIRIC), Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
| | - Philippe Giraud
- Radiation Oncology Department, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
- Cancer Research and Personalized Medicine-Integrated Cancer Research Center (SIRIC), Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
| | - Anita Burgun
- Cancer Research and Personalized Medicine-Integrated Cancer Research Center (SIRIC), Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
- INSERM UMR 1138 Team 22: Information Sciences to support Personalized Medicine, Cordeliers Research Centre, Paris Descartes University, Paris, France
| | - Jean Emmanuel Bibault
- Radiation Oncology Department, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
- Cancer Research and Personalized Medicine-Integrated Cancer Research Center (SIRIC), Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
- INSERM UMR 1138 Team 22: Information Sciences to support Personalized Medicine, Cordeliers Research Centre, Paris Descartes University, Paris, France
| |
Collapse
|
34
|
Avanzo M, Wei L, Stancanello J, Vallières M, Rao A, Morin O, Mattonen SA, El Naqa I. Machine and deep learning methods for radiomics. Med Phys 2021; 47:e185-e202. [PMID: 32418336 DOI: 10.1002/mp.13678] [Citation(s) in RCA: 276] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/22/2019] [Accepted: 06/13/2019] [Indexed: 12/12/2022] Open
Abstract
Radiomics is an emerging area in quantitative image analysis that aims to relate large-scale extracted imaging information to clinical and biological endpoints. The development of quantitative imaging methods along with machine learning has enabled the opportunity to move data science research towards translation for more personalized cancer treatments. Accumulating evidence has indeed demonstrated that noninvasive advanced imaging analytics, that is, radiomics, can reveal key components of tumor phenotype for multiple three-dimensional lesions at multiple time points over and beyond the course of treatment. These developments in the use of CT, PET, US, and MR imaging could augment patient stratification and prognostication buttressing emerging targeted therapeutic approaches. In recent years, deep learning architectures have demonstrated their tremendous potential for image segmentation, reconstruction, recognition, and classification. Many powerful open-source and commercial platforms are currently available to embark in new research areas of radiomics. Quantitative imaging research, however, is complex and key statistical principles should be followed to realize its full potential. The field of radiomics, in particular, requires a renewed focus on optimal study design/reporting practices and standardization of image acquisition, feature calculation, and rigorous statistical analysis for the field to move forward. In this article, the role of machine and deep learning as a major computational vehicle for advanced model building of radiomics-based signatures or classifiers, and diverse clinical applications, working principles, research opportunities, and available computational platforms for radiomics will be reviewed with examples drawn primarily from oncology. We also address issues related to common applications in medical physics, such as standardization, feature extraction, model building, and validation.
Collapse
Affiliation(s)
- Michele Avanzo
- Department of Medical Physics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, PN, 33081, Italy
| | - Lise Wei
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48103, USA
| | | | - Martin Vallières
- Medical Physics Unit, McGill University, Montreal, QC, Canada.,Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Arvind Rao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48103, USA.,Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, 48103, USA
| | - Olivier Morin
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Sarah A Mattonen
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Issam El Naqa
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48103, USA
| |
Collapse
|
35
|
Su X, Chen N, Sun H, Liu Y, Yang X, Wang W, Zhang S, Tan Q, Su J, Gong Q, Yue Q. Automated machine learning based on radiomics features predicts H3 K27M mutation in midline gliomas of the brain. Neuro Oncol 2021; 22:393-401. [PMID: 31563963 DOI: 10.1093/neuonc/noz184] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Conventional MRI cannot be used to identify H3 K27M mutation status. This study aimed to investigate the feasibility of predicting H3 K27M mutation status by applying an automated machine learning (autoML) approach to the MR radiomics features of patients with midline gliomas. METHODS This single-institution retrospective study included 100 patients with midline gliomas, including 40 patients with H3 K27M mutations and 60 wild-type patients. Radiomics features were extracted from fluid-attenuated inversion recovery images. Prior to autoML analysis, the dataset was randomly stratified into separate 75% training and 25% testing cohorts. The Tree-based Pipeline Optimization Tool (TPOT) was applied to optimize the machine learning pipeline and select important radiomics features. We compared the performance of 10 independent TPOT-generated models based on training and testing cohorts using the area under the curve (AUC) and average precision to obtain the final model. An independent cohort of 22 patients was used to validate the best model. RESULTS Ten prediction models were generated by TPOT, and the accuracy obtained with the best pipeline ranged from 0.788 to 0.867 for the training cohort and from 0.60 to 0.84 for the testing cohort. After comparison, the AUC value and average precision of the final model were 0.903 and 0.911 in the testing cohort, respectively. In the validation set, the AUC was 0.85, and the average precision was 0.855 for the best model. CONCLUSIONS The autoML classifier using radiomics features of conventional MR images provides high discriminatory accuracy in predicting the H3 K27M mutation status of midline glioma.
Collapse
Affiliation(s)
- Xiaorui Su
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.,Huaxi Glioma Center, West China Hospital of Sichuan University, Chengdu, China
| | - Ni Chen
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China.,Huaxi Glioma Center, West China Hospital of Sichuan University, Chengdu, China
| | - Huaiqiang Sun
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Yanhui Liu
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, China.,Huaxi Glioma Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xibiao Yang
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Weina Wang
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Simin Zhang
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Qiaoyue Tan
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Jingkai Su
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Qiyong Gong
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Qiang Yue
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.,Huaxi Glioma Center, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
36
|
Radiomic prediction of radiation pneumonitis on pretreatment planning computed tomography images prior to lung cancer stereotactic body radiation therapy. Sci Rep 2020; 10:20424. [PMID: 33235324 PMCID: PMC7686358 DOI: 10.1038/s41598-020-77552-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 11/10/2020] [Indexed: 12/25/2022] Open
Abstract
This study developed a radiomics-based predictive model for radiation-induced pneumonitis (RP) after lung cancer stereotactic body radiation therapy (SBRT) on pretreatment planning computed tomography (CT) images. For the RP prediction models, 275 non-small-cell lung cancer patients consisted of 245 training (22 with grade ≥ 2 RP) and 30 test cases (8 with grade ≥ 2 RP) were selected. A total of 486 radiomic features were calculated to quantify the RP texture patterns reflecting radiation-induced tissue reaction within lung volumes irradiated with more than x Gy, which were defined as LVx. Ten subsets consisting of all 22 RP cases and 22 or 23 randomly selected non-RP cases were created from the imbalanced dataset of 245 training patients. For each subset, signatures were constructed, and predictive models were built using the least absolute shrinkage and selection operator logistic regression. An ensemble averaging model was built by averaging the RP probabilities of the 10 models. The best model areas under the receiver operating characteristic curves (AUCs) calculated on the training and test cohort for LV5 were 0.871 and 0.756, respectively. The radiomic features calculated on pretreatment planning CT images could be predictive imaging biomarkers for RP after lung cancer SBRT.
Collapse
|
37
|
Desideri I, Loi M, Francolini G, Becherini C, Livi L, Bonomo P. Application of Radiomics for the Prediction of Radiation-Induced Toxicity in the IMRT Era: Current State-of-the-Art. Front Oncol 2020; 10:1708. [PMID: 33117669 PMCID: PMC7574641 DOI: 10.3389/fonc.2020.01708] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022] Open
Abstract
Normal tissue complication probability (NTCP) models that were formulated in the Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC) are one of the pillars in support of everyday’s clinical radiation oncology. Because of steady therapeutic refinements and the availability of cutting-edge technical solutions, the ceiling of organs-at-risk-sparing has been reached for photon-based intensity modulated radiotherapy (IMRT). The possibility to capture heterogeneity of patients and tissues in the prediction of toxicity is still an unmet need in modern radiation therapy. Potentially, a major step towards a wider therapeutic index could be obtained from refined assessment of radiation-induced morbidity at an individual level. The rising integration of quantitative imaging and machine learning applications into radiation oncology workflow offers an unprecedented opportunity to further explore the biologic interplay underlying the normal tissue response to radiation. Based on these premises, in this review we focused on the current-state-of-the-art on the use of radiomics for the prediction of toxicity in the field of head and neck, lung, breast and prostate radiotherapy.
Collapse
Affiliation(s)
- Isacco Desideri
- Radiation Oncology, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
| | - Mauro Loi
- Radiation Oncology, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
| | - Giulio Francolini
- Radiation Oncology, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
| | - Carlotta Becherini
- Radiation Oncology, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
| | - Lorenzo Livi
- Radiation Oncology, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
| | - Pierluigi Bonomo
- Radiation Oncology, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
| |
Collapse
|
38
|
Schick U, Lucia F, Bourbonne V, Dissaux G, Pradier O, Jaouen V, Tixier F, Visvikis D, Hatt M. Use of radiomics in the radiation oncology setting: Where do we stand and what do we need? Cancer Radiother 2020; 24:755-761. [DOI: 10.1016/j.canrad.2020.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/14/2022]
|
39
|
Positron Emission Tomography for Response Evaluation in Microenvironment-Targeted Anti-Cancer Therapy. Biomedicines 2020; 8:biomedicines8090371. [PMID: 32972006 PMCID: PMC7556039 DOI: 10.3390/biomedicines8090371] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/31/2022] Open
Abstract
Therapeutic response is evaluated using the diameter of tumors and quantitative parameters of 2-[18F] fluoro-2-deoxy-d-glucose positron emission tomography (FDG-PET). Tumor response to molecular-targeted drugs and immune checkpoint inhibitors is different from conventional chemotherapy in terms of temporal metabolic alteration and morphological change after the therapy. Cancer stem cells, immunologically competent cells, and metabolism of cancer are considered targets of novel therapy. Accumulation of FDG reflects the glucose metabolism of cancer cells as well as immune cells in the tumor microenvironment, which differs among patients according to the individual immune function; however, FDG-PET could evaluate the viability of the tumor as a whole. On the other hand, specific imaging and cell tracking of cancer cell or immunological cell subsets does not elucidate tumor response in a complexed interaction in the tumor microenvironment. Considering tumor heterogeneity and individual variation in therapeutic response, a radiomics approach with quantitative features of multimodal images and deep learning algorithm with reference to pathologic and genetic data has the potential to improve response assessment for emerging cancer therapy.
Collapse
|
40
|
Röhrich S, Hofmanninger J, Prayer F, Müller H, Prosch H, Langs G. Prospects and Challenges of Radiomics by Using Nononcologic Routine Chest CT. Radiol Cardiothorac Imaging 2020; 2:e190190. [PMID: 33778599 DOI: 10.1148/ryct.2020190190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 03/10/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023]
Abstract
Chest CT scans are one of the most common medical imaging procedures. The automatic extraction and quantification of imaging features may help in diagnosis, prognosis of, or treatment decision in cardiovascular, pulmonary, and metabolic diseases. However, an adequate sample size as a statistical necessity for radiomics studies is often difficult to achieve in prospective trials. By exploiting imaging data from clinical routine, a much larger amount of data could be used than in clinical trials. Still, there is only little literature on the implementation of radiomics in clinical routine chest CT scans. Reasons are heterogeneous CT scanning protocols and the resulting technical variability (eg, different slice thicknesses, reconstruction kernels or timings after contrast material administration) in routine CT imaging data. This review summarizes the recent state of the art of studies aiming to develop quantifiable imaging biomarkers at chest CT, such as for osteoporosis, chronic obstructive pulmonary disease, interstitial lung disease, and coronary artery disease. This review explains solutions to overcome heterogeneity in routine data such as the use of imaging repositories, the standardization of radiomic features, algorithmic approaches to improve feature stability, test-retest studies, and the evolution of deep learning for modeling radiomics features. Supplemental material is available for this article. © RSNA, 2020 See also the commentary by Kay in this issue.
Collapse
Affiliation(s)
- Sebastian Röhrich
- Computational Imaging Research Laboratory (J.H., G.L) of the Department of Biomedical Imaging and Image-guided Therapy (S.R., F.P., H.P.), Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; and Department of Information Systems, University of Applied Sciences of Western Switzerland, Sierre, Switzerland (H.M.)
| | - Johannes Hofmanninger
- Computational Imaging Research Laboratory (J.H., G.L) of the Department of Biomedical Imaging and Image-guided Therapy (S.R., F.P., H.P.), Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; and Department of Information Systems, University of Applied Sciences of Western Switzerland, Sierre, Switzerland (H.M.)
| | - Florian Prayer
- Computational Imaging Research Laboratory (J.H., G.L) of the Department of Biomedical Imaging and Image-guided Therapy (S.R., F.P., H.P.), Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; and Department of Information Systems, University of Applied Sciences of Western Switzerland, Sierre, Switzerland (H.M.)
| | - Henning Müller
- Computational Imaging Research Laboratory (J.H., G.L) of the Department of Biomedical Imaging and Image-guided Therapy (S.R., F.P., H.P.), Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; and Department of Information Systems, University of Applied Sciences of Western Switzerland, Sierre, Switzerland (H.M.)
| | - Helmut Prosch
- Computational Imaging Research Laboratory (J.H., G.L) of the Department of Biomedical Imaging and Image-guided Therapy (S.R., F.P., H.P.), Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; and Department of Information Systems, University of Applied Sciences of Western Switzerland, Sierre, Switzerland (H.M.)
| | - Georg Langs
- Computational Imaging Research Laboratory (J.H., G.L) of the Department of Biomedical Imaging and Image-guided Therapy (S.R., F.P., H.P.), Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; and Department of Information Systems, University of Applied Sciences of Western Switzerland, Sierre, Switzerland (H.M.)
| |
Collapse
|
41
|
Abstract
Artificial intelligence (AI) has the potential to fundamentally alter the way medicine is practised. AI platforms excel in recognizing complex patterns in medical data and provide a quantitative, rather than purely qualitative, assessment of clinical conditions. Accordingly, AI could have particularly transformative applications in radiation oncology given the multifaceted and highly technical nature of this field of medicine with a heavy reliance on digital data processing and computer software. Indeed, AI has the potential to improve the accuracy, precision, efficiency and overall quality of radiation therapy for patients with cancer. In this Perspective, we first provide a general description of AI methods, followed by a high-level overview of the radiation therapy workflow with discussion of the implications that AI is likely to have on each step of this process. Finally, we describe the challenges associated with the clinical development and implementation of AI platforms in radiation oncology and provide our perspective on how these platforms might change the roles of radiotherapy medical professionals.
Collapse
|
42
|
Christie JR, Lang P, Zelko LM, Palma DA, Abdelrazek M, Mattonen SA. Artificial Intelligence in Lung Cancer: Bridging the Gap Between Computational Power and Clinical Decision-Making. Can Assoc Radiol J 2020; 72:86-97. [PMID: 32735493 DOI: 10.1177/0846537120941434] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Lung cancer remains the most common cause of cancer death worldwide. Recent advances in lung cancer screening, radiotherapy, surgical techniques, and systemic therapy have led to increasing complexity in diagnosis, treatment decision-making, and assessment of recurrence. Artificial intelligence (AI)-based prediction models are being developed to address these issues and may have a future role in screening, diagnosis, treatment selection, and decision-making around salvage therapy. Imaging plays an essential role in all components of lung cancer management and has the potential to play a key role in AI applications. Artificial intelligence has demonstrated value in prognostic biomarker discovery in lung cancer diagnosis, treatment, and response assessment, putting it at the forefront of the next phase of personalized medicine. However, although exploratory studies demonstrate potential utility, there is a need for rigorous validation and standardization before AI can be utilized in clinical decision-making. In this review, we will provide a summary of the current literature implementing AI for outcome prediction in lung cancer. We will describe the anticipated impact of AI on the management of patients with lung cancer and discuss the challenges of clinical implementation of these techniques.
Collapse
Affiliation(s)
- Jaryd R Christie
- Department of Medical Biophysics, 6221Western University, London, Ontario, Canada
| | - Pencilla Lang
- Division of Radiation Oncology, 6221Western University, London, Ontario, Canada
| | - Lauren M Zelko
- Department of Medical Biophysics, 6221Western University, London, Ontario, Canada
| | - David A Palma
- Division of Radiation Oncology, 6221Western University, London, Ontario, Canada
| | - Mohamed Abdelrazek
- Department of Medical Imaging, 6221Western University, London, Ontario, Canada
| | - Sarah A Mattonen
- Department of Medical Biophysics, 6221Western University, London, Ontario, Canada.,Department of Oncology, 6221Western University, London, Ontario, Canada
| |
Collapse
|
43
|
Yang WC, Hsu FM, Yang PC. Precision radiotherapy for non-small cell lung cancer. J Biomed Sci 2020; 27:82. [PMID: 32693792 PMCID: PMC7374898 DOI: 10.1186/s12929-020-00676-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023] Open
Abstract
Precision medicine is becoming the standard of care in anti-cancer treatment. The personalized precision management of cancer patients highly relies on the improvement of new technology in next generation sequencing and high-throughput big data processing for biological and radiographic information. Systemic precision cancer therapy has been developed for years. However, the role of precision medicine in radiotherapy has not yet been fully implemented. Emerging evidence has shown that precision radiotherapy for cancer patients is possible with recent advances in new radiotherapy technologies, panomics, radiomics and dosiomics. This review focused on the role of precision radiotherapy in non-small cell lung cancer and demonstrated the current landscape.
Collapse
Affiliation(s)
- Wen-Chi Yang
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, No. 7, Chung-Shan South Rd, Taipei, Taiwan.,Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Feng-Ming Hsu
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, No. 7, Chung-Shan South Rd, Taipei, Taiwan. .,Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Pan-Chyr Yang
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan. .,Department of Internal Medicine, National Taiwan University Hospital, No.1 Sec 1, Jen-Ai Rd, Taipei, 100, Taiwan.
| |
Collapse
|
44
|
Isaksson LJ, Pepa M, Zaffaroni M, Marvaso G, Alterio D, Volpe S, Corrao G, Augugliaro M, Starzyńska A, Leonardi MC, Orecchia R, Jereczek-Fossa BA. Machine Learning-Based Models for Prediction of Toxicity Outcomes in Radiotherapy. Front Oncol 2020; 10:790. [PMID: 32582539 PMCID: PMC7289968 DOI: 10.3389/fonc.2020.00790] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/22/2020] [Indexed: 12/20/2022] Open
Abstract
In order to limit radiotherapy (RT)-related side effects, effective toxicity prediction and assessment schemes are essential. In recent years, the growing interest toward artificial intelligence and machine learning (ML) within the science community has led to the implementation of innovative tools in RT. Several researchers have demonstrated the high performance of ML-based models in predicting toxicity, but the application of these approaches in clinics is still lagging, partly due to their low interpretability. Therefore, an overview of contemporary research is needed in order to familiarize practitioners with common methods and strategies. Here, we present a review of ML-based models for predicting and classifying RT-induced complications from both a methodological and a clinical standpoint, focusing on the type of features considered, the ML methods used, and the main results achieved. Our work overviews published research in multiple cancer sites, including brain, breast, esophagus, gynecological, head and neck, liver, lung, and prostate cancers. The aim is to define the current state of the art and main achievements within the field for both researchers and clinicians.
Collapse
Affiliation(s)
- Lars J Isaksson
- Division of Radiotherapy, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Matteo Pepa
- Division of Radiotherapy, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Mattia Zaffaroni
- Division of Radiotherapy, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Giulia Marvaso
- Division of Radiotherapy, IEO European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Daniela Alterio
- Division of Radiotherapy, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Stefania Volpe
- Division of Radiotherapy, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Giulia Corrao
- Division of Radiotherapy, IEO European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Matteo Augugliaro
- Division of Radiotherapy, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Anna Starzyńska
- Department of Oral Surgery, Medical University of Gdańsk, Gdańsk, Poland
| | - Maria C Leonardi
- Division of Radiotherapy, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Roberto Orecchia
- Scientific Directorate, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Barbara A Jereczek-Fossa
- Division of Radiotherapy, IEO European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
45
|
Fornacon-Wood I, Faivre-Finn C, O'Connor JPB, Price GJ. Radiomics as a personalized medicine tool in lung cancer: Separating the hope from the hype. Lung Cancer 2020; 146:197-208. [PMID: 32563015 PMCID: PMC7383235 DOI: 10.1016/j.lungcan.2020.05.028] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/18/2020] [Accepted: 05/23/2020] [Indexed: 12/24/2022]
Abstract
Radiomics has become a popular image analysis method in the last few years. Its key hypothesis is that medical images harbor biological, prognostic and predictive information that is not revealed upon visual inspection. In contrast to previous work with a priori defined imaging biomarkers, radiomics instead calculates image features at scale and uses statistical methods to identify those most strongly associated to outcome. This builds on years of research into computer aided diagnosis and pattern recognition. While the potential of radiomics to aid personalized medicine is widely recognized, several technical limitations exist which hinder biomarker translation. Aspects of the radiomic workflow lack repeatability or reproducibility under particular circumstances, which is a key requirement for the translation of imaging biomarkers into clinical practice. One of the most commonly studied uses of radiomics is for personalized medicine applications in Non-Small Cell Lung Cancer (NSCLC). In this review, we summarize reported methodological limitations in CT based radiomic analyses together with suggested solutions. We then evaluate the current NSCLC radiomics literature to assess the risk associated with accepting the published conclusions with respect to these limitations. We review different complementary scoring systems and initiatives that can be used to critically appraise data from radiomics studies. Wider awareness should improve the quality of ongoing and future radiomics studies and advance their potential as clinically relevant biomarkers for personalized medicine in patients with NSCLC.
Collapse
Affiliation(s)
| | - Corinne Faivre-Finn
- Division of Cancer Sciences, University of Manchester, Manchester, UK; Department of Radiation Oncology, The Christie Hospital NHS Foundation Trust, Manchester, UK
| | - James P B O'Connor
- Division of Cancer Sciences, University of Manchester, Manchester, UK; Department of Radiology, The Christie Hospital NHS Foundation Trust, Manchester, UK
| | - Gareth J Price
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
46
|
Li Q, Liu Y, Su B, Zhao H, Lin Q, Zhu Y, Zhang L, Weng D, Gong X, Sun X, Xu Y. The CT appearance pattern of radiation-induced lung injury and tumor recurrence after stereotactic body radiation therapy in early stage non-small cell lung cancer. Transl Lung Cancer Res 2020; 9:713-721. [PMID: 32676333 PMCID: PMC7354147 DOI: 10.21037/tlcr-20-609] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background Radiographic changes after stereotactic body radiation therapy (SBRT) have not been well studied. The purpose of this study was to investigate the computed tomography (CT) appearance pattern of radiation-induced lung injury (RILI) and recurrence after SBRT in patients with early stage non-small cell lung cancer (NSCLC). Methods We retrospectively analyzed clinical data of inoperable early stage NSCLC patients undergoing SBRT treatment from February 2012 to June 2018. All patients had undergone serial CT scanning before SBRT and after completion of SBRT. An experienced radiation oncologist and radiologist reviewed all CT images, and identified the RILI and CT high-risk features (HRFs). Results A total of 60 patients were enrolled in this study; 55 patients had RILI (91.67%) and 7 patients had local failure. In the early CT findings of observers 1 and 2, there were diffuse ground glass opacities (GGOs) in 3 and 4 patients, diffuse consolidation in 10 and 12 patients, patchy consolidation in 22 and 15 patients, patchy GGOs in 19 and 24 patients, and no changes in 5 and 4 patients, respectively (kappa =0.706). In the late CT findings of observer 1 and 2, there were modified conventional patterns in 37 and 37 patients, mass-like patterns in 10 and 9 patients, scar-like patterns in 7 and 8 patients, and no changes in 5 and 5 patients, respectively (kappa =0.726). In the results of the CT-based HRFs of disease local failure, there were ≥1 HRFs in 7 patients, ≥2 HRFs in 7 patients, ≥3 HRFs in 6 patients, ≥4 HRFs in 5 patients, and ≥5 HRFs in 3 patients, respectively. Patients with only 1 HRF showed high sensitivity (100%) and low specificity (52.80%), with the specificity increasing and the sensitivity decreasing as the number of HRFs increased. Conclusions The agreement of the CT appearance on RILI between 2 observers was good. Regular follow-up and attention to HRFs are vital for better identifying RILI and local disease failure.
Collapse
Affiliation(s)
- Qian Li
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu Liu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bin Su
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hongguang Zhao
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qingren Lin
- Department of Radiation Oncology, Cancer Hospital of University of Chinese Academy of Sciences, Hangzhou, China
| | - Yaoyao Zhu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lingnan Zhang
- Department of Radiology, Cancer Hospital of University of Chinese Academy of Sciences, Hangzhou, China
| | - Denghu Weng
- Department of Radiation Oncology, Cancer Hospital of University of Chinese Academy of Sciences, Hangzhou, China
| | - Xiaomei Gong
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaojiang Sun
- Department of Radiation Oncology, Cancer Hospital of University of Chinese Academy of Sciences, Hangzhou, China
| | - Yaping Xu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
47
|
Frerker B, Hildebrandt G. <p>Distinguishing Radiation Pneumonitis from Local Tumour Recurrence Following SBRT for Lung Cancer</p>. REPORTS IN MEDICAL IMAGING 2020. [DOI: 10.2147/rmi.s176901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
48
|
Avanzo M, Stancanello J, Pirrone G, Sartor G. Radiomics and deep learning in lung cancer. Strahlenther Onkol 2020; 196:879-887. [PMID: 32367456 DOI: 10.1007/s00066-020-01625-9] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
Abstract
Lung malignancies have been extensively characterized through radiomics and deep learning. By providing a three-dimensional characterization of the lesion, models based on radiomic features from computed tomography (CT) and positron-emission tomography (PET) have been developed to detect nodules, distinguish malignant from benign lesions, characterize their histology, stage, and genotype. Deep learning models have been applied to automatically segment organs at risk in lung cancer radiotherapy, stratify patients according to the risk for local and distant recurrence, and identify patients candidate for molecular targeted therapy and immunotherapy. Moreover, radiomics has also been applied successfully to predict side effects such as radiation- and immunotherapy-induced pneumonitis and differentiate lung injury from recurrence. Radiomics could also untap the potential for further use of the cone beam CT acquired for treatment image guidance, four-dimensional CT, and dose-volume data from radiotherapy treatment plans. Radiomics is expected to increasingly affect the clinical practice of treatment of lung tumors, optimizing the end-to-end diagnosis-treatment-follow-up chain. The main goal of this article is to provide an update on the current status of lung cancer radiomics.
Collapse
Affiliation(s)
- Michele Avanzo
- Department of Medical Physics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via F. Gallini 2, 33081, Aviano, PN, Italy.
| | | | - Giovanni Pirrone
- Department of Medical Physics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via F. Gallini 2, 33081, Aviano, PN, Italy
| | - Giovanna Sartor
- Department of Medical Physics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via F. Gallini 2, 33081, Aviano, PN, Italy
| |
Collapse
|
49
|
Avanzo M, Pirrone G, Vinante L, Caroli A, Stancanello J, Drigo A, Massarut S, Mileto M, Urbani M, Trovo M, El Naqa I, De Paoli A, Sartor G. Electron Density and Biologically Effective Dose (BED) Radiomics-Based Machine Learning Models to Predict Late Radiation-Induced Subcutaneous Fibrosis. Front Oncol 2020; 10:490. [PMID: 32373520 PMCID: PMC7186445 DOI: 10.3389/fonc.2020.00490] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/18/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose: to predict the occurrence of late subcutaneous radiation induced fibrosis (RIF) after partial breast irradiation (PBI) for breast carcinoma by using machine learning (ML) models and radiomic features from 3D Biologically Effective Dose (3D-BED) and Relative Electron Density (3D-RED). Methods: 165 patients underwent external PBI following a hypo-fractionation protocol consisting of 40 Gy/10 fractions, 35 Gy/7 fractions, and 28 Gy/4 fractions, for 73, 60, and 32 patients, respectively. Physicians evaluated toxicity at regular intervals by the Common Terminology Adverse Events (CTAE) version 4.0. RIF was assessed every 3 months after the completion of radiation course and scored prospectively. RIF was experienced by 41 (24.8%) patients after average 5 years of follow up. The Hounsfield Units (HU) of the CT-images were converted into relative electron density (3D-RED) and Dose maps into Biologically Effective Dose (3D-BED), respectively. Shape, first-order and textural features of 3D-RED and 3D-BED were calculated in the planning target volume (PTV) and breast. Clinical and demographic variables were also considered (954 features in total). Imbalance of the dataset was addressed by data augmentation using ADASYN technique. A subset of non-redundant features that best predict the data was identified by sequential feature selection. Support Vector Machines (SVM), ensemble machine learning (EML) using various aggregation algorithms and Naive Bayes (NB) classifiers were trained on patient dataset to predict RIF occurrence. Models were assessed using sensitivity and specificity of the ML classifiers and the area under the receiver operator characteristic curve (AUC) of the score functions in repeated 5-fold cross validation on the augmented dataset. Results: The SVM model with seven features was preferred for RIF prediction and scored sensitivity 0.83 (95% CI 0.80-0.86), specificity 0.75 (95% CI 0.71-0.77) and AUC of the score function 0.86 (0.85-0.88) on cross-validation. The selected features included cluster shade and Run Length Non-uniformity of breast 3D-BED, kurtosis and cluster shade from PTV 3D-RED, and 10th percentile of PTV 3D-BED. Conclusion: Textures extracted from 3D-BED and 3D-RED in the breast and PTV can predict late RIF and may help better select patient candidates to exclusive PBI.
Collapse
Affiliation(s)
- Michele Avanzo
- Department of Medical Physics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Giovanni Pirrone
- Department of Medical Physics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Lorenzo Vinante
- Department of Radiation Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Angela Caroli
- Department of Radiation Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | | | - Annalisa Drigo
- Department of Medical Physics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Samuele Massarut
- Breast Surgery Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Mario Mileto
- Breast Surgery Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Martina Urbani
- Department of Radiology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Marco Trovo
- Department of Radiation Oncology, Udine General Hospital, Udine, Italy
| | - Issam El Naqa
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
| | - Antonino De Paoli
- Department of Radiation Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Giovanna Sartor
- Department of Medical Physics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| |
Collapse
|
50
|
Vaugier L, Ferrer L, Mengue L, Jouglar E. Radiomics for radiation oncologists: are we ready to go? BJR Open 2020; 2:20190046. [PMID: 33178967 PMCID: PMC7594896 DOI: 10.1259/bjro.20190046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/19/2022] Open
Abstract
Radiomics have emerged as an exciting field of research over the past few years, with very wide potential applications in personalised and precision medicine of the future. Radiomics-based approaches are still however limited in daily clinical practice in oncology. This review focus on how radiomics could be incorporated into the radiation therapy pipeline, and globally help the radiation oncologist, from the tumour diagnosis to follow-up after treatment. Radiomics could impact on all steps of the treatment pipeline, once the limitations in terms of robustness and reproducibility are overcome. Major ongoing efforts should be made to collect and share data in the most standardised manner possible.
Collapse
Affiliation(s)
- Loïg Vaugier
- Department of Radiation Oncology, Institut de Cancérologie de l'Ouest, Nantes - Saint Herblain, France
| | - Ludovic Ferrer
- Department of Medical Physics, Institut de Cancérologie de l'Ouest, Nantes - Saint Herblain, France
| | - Laurence Mengue
- Department of Radiation Oncology, Institut de Cancérologie de l'Ouest, Nantes - Saint Herblain, France
| | - Emmanuel Jouglar
- Department of Radiation Oncology, Institut de Cancérologie de l'Ouest, Nantes - Saint Herblain, France
| |
Collapse
|