1
|
Tsoukalas D, Sarandi E, Fragoulakis V, Xenidis S, Mhliopoulou M, Charta M, Paramera E, Papakonstantinou E, Tsatsakis A. Metabolomics-based treatment for chronic diseases: results from a multidisciplinary clinical study. BMJ Nutr Prev Health 2024; 7:e000883. [PMID: 39882279 PMCID: PMC11773651 DOI: 10.1136/bmjnph-2024-000883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 11/20/2024] [Indexed: 01/31/2025] Open
Abstract
Background Non-communicable diseases (NCDs), known as chronic diseases, significantly impact patients' quality of life (QoL) and increase medical expenses. The majority of risk factors are modifiable, and metabolomics has been suggested as a promising strategy for their evaluation, though real-world data are scarce. This study evaluated the QoL improvement and cost-effectiveness of a metabolomics-based treatment for NCDs, aiming to restore metabolic dysfunctions and nutritional deficiencies. Methods We performed a pre-post intervention analysis using clinical, metabolomics, QoL and economic data obtained from the electronic health records of 765 patients visiting a private practice. The intervention consisted of personalised treatment to restore metabolic dysfunctions and nutritional deficiencies identified by metabolomics alongside the standard treatment for their condition. The mean intervention duration was 401 days. Results Significant improvement was identified in energy levels, sleep quality, gastrointestinal function and physical activity (p<0.001). 67.9% of participants reported significant improvement in the overall QoL, and the average quality-adjusted life-years (QALYs) increased by 0.064 (95% uncertainty interval 0.050 to 0.078) post-treatment. The incremental cost-effectiveness ratio was estimated at €49.774/QALY (95% CI €40.110 to €61.433). Metabolic profiling demonstrated that 16/35 organic acids and 11/24 total fatty acids were significantly changed post-treatment (p<0.001), participating in key pathways such as energy metabolism, microbiome and neurotransmitter turnover. Vitamin D and 5-methyltetrahydrofolate insufficiency was significantly restored (p=0.036). Conclusion This is the first study providing evidence that the integration of metabolomics in clinical practice can have a clinical benefit for patients' QoL and may be a cost-effective method.
Collapse
Affiliation(s)
- Dimitris Tsoukalas
- European Institute of Molecular Medicine, Rome, Italy
- Metabolomic Medicine, Athens, Greece
| | - Evangelia Sarandi
- Metabolomic Medicine, Athens, Greece
- Laboratory of Toxicology and Forensic Sciences, Medical School of the University of Crete, Crete, Greece
| | - Vassilleios Fragoulakis
- The Golden Helix Foundation, London, UK
- Laboratory of Health Economics and Management (LabHEM), Economics Department, University of Piraeus, Athens, Greece
| | | | | | | | | | | | - Aristidis Tsatsakis
- Laboratory of Toxicology and Forensic Sciences, Medical School of the University of Crete, Crete, Greece
| |
Collapse
|
2
|
Sarandi E, Krueger-Krasagakis S, Tsoukalas D, Sidiropoulou P, Evangelou G, Sifaki M, Rudofsky G, Drakoulis N, Tsatsakis A. Psoriasis immunometabolism: progress on metabolic biomarkers and targeted therapy. Front Mol Biosci 2023; 10:1201912. [PMID: 37405259 PMCID: PMC10317015 DOI: 10.3389/fmolb.2023.1201912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/05/2023] [Indexed: 07/06/2023] Open
Abstract
Psoriasis is a common inflammatory disease that affects mainly the skin. However, the moderate to severe forms have been associated with several comorbidities, such as psoriatic arthritis, Crohn's disease, metabolic syndrome and cardiovascular disease. Keratinocytes and T helper cells are the dominant cell types involved in psoriasis development via a complex crosstalk between epithelial cells, peripheral immune cells and immune cells residing in the skin. Immunometabolism has emerged as a potent mechanism elucidating the aetiopathogenesis of psoriasis, offering novel specific targets to diagnose and treat psoriasis early. The present article discusses the metabolic reprogramming of activated T cells, tissue-resident memory T cells and keratinocytes in psoriatic skin, presenting associated metabolic biomarkers and therapeutic targets. In psoriatic phenotype, keratinocytes and activated T cells are glycolysis dependent and are characterized by disruptions in the TCA cycle, the amino acid metabolism and the fatty acid metabolism. Upregulation of the mammalian target of rapamycin (mTOR) results in hyperproliferation and cytokine secretion by immune cells and keratinocytes. Metabolic reprogramming through the inhibition of affected metabolic pathways and the dietary restoration of metabolic imbalances may thus present a potent therapeutic opportunity to achieve long-term management of psoriasis and improved quality of life with minimum adverse effects.
Collapse
Affiliation(s)
- Evangelia Sarandi
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, Heraklion, Greece
- Metabolomic Medicine, Health Clinics for Autoimmune and Chronic Diseases, Athens, Greece
| | | | - Dimitris Tsoukalas
- Metabolomic Medicine, Health Clinics for Autoimmune and Chronic Diseases, Athens, Greece
- European Institute of Molecular Medicine, Rome, Italy
| | - Polytimi Sidiropoulou
- 1st Department of Dermatology-Venereology, Faculty of Medicine, “A. Sygros” Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - George Evangelou
- Dermatology Department, University Hospital of Heraklion, Heraklion, Greece
| | - Maria Sifaki
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Gottfried Rudofsky
- Clinic of Endocrinology and Metabolic Disorders, Cantonal Hospital Olten, Olten, Switzerland
| | - Nikolaos Drakoulis
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Aristidis Tsatsakis
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, Heraklion, Greece
| |
Collapse
|
3
|
Guerrero-Romero F, Micke O, Simental-Mendía LE, Rodríguez-Morán M, Vormann J, Iotti S, Banjanin N, Rosanoff A, Baniasadi S, Pourdowlat G, Nechifor M. Importance of Magnesium Status in COVID-19. BIOLOGY 2023; 12:735. [PMID: 37237547 PMCID: PMC10215232 DOI: 10.3390/biology12050735] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/17/2023] [Accepted: 05/01/2023] [Indexed: 05/28/2023]
Abstract
A large amount of published research points to the interesting concept (hypothesis) that magnesium (Mg) status may have relevance for the outcome of COVID-19 and that Mg could be protective during the COVID disease course. As an essential element, Mg plays basic biochemical, cellular, and physiological roles required for cardiovascular, immunological, respiratory, and neurological functions. Both low serum and dietary Mg have been associated with the severity of COVID-19 outcomes, including mortality; both are also associated with COVID-19 risk factors such as older age, obesity, type 2 diabetes, kidney disease, cardiovascular disease, hypertension, and asthma. In addition, populations with high rates of COVID-19 mortality and hospitalization tend to consume diets high in modern processed foods, which are generally low in Mg. In this review, we review the research to describe and consider the possible impact of Mg and Mg status on COVID-19 showing that (1) serum Mg between 2.19 and 2.26 mg/dL and dietary Mg intakes > 329 mg/day could be protective during the disease course and (2) inhaled Mg may improve oxygenation of hypoxic COVID-19 patients. In spite of such promise, oral Mg for COVID-19 has thus far been studied only in combination with other nutrients. Mg deficiency is involved in the occurrence and aggravation of neuropsychiatric complications of COVID-19, including memory loss, cognition, loss of taste and smell, ataxia, confusion, dizziness, and headache. Potential of zinc and/or Mg as useful for increasing drug therapy effectiveness or reducing adverse effect of anti-COVID-19 drugs is reviewed. Oral Mg trials of patients with COVID-19 are warranted.
Collapse
Affiliation(s)
- Fernando Guerrero-Romero
- Biomedical Research Unit, Mexican Social Security Institute, Durango 34067, Mexico; (F.G.-R.); (L.E.S.-M.); (M.R.-M.)
| | - Oliver Micke
- Department of Radiation Therapy and Radiation Oncology, Franziskus Hospital, 33615 Bielefeld, Germany;
| | - Luis E. Simental-Mendía
- Biomedical Research Unit, Mexican Social Security Institute, Durango 34067, Mexico; (F.G.-R.); (L.E.S.-M.); (M.R.-M.)
| | - Martha Rodríguez-Morán
- Biomedical Research Unit, Mexican Social Security Institute, Durango 34067, Mexico; (F.G.-R.); (L.E.S.-M.); (M.R.-M.)
| | - Juergen Vormann
- Institute for Prevention and Nutrition, 85737 Ismaning, Germany;
| | - Stefano Iotti
- Department of Pharmacy and Biotechnology, Universita di Bologna, 40126 Bologna, Italy;
- National Institute of Biostructures and Biosystems, 00136 Rome, Italy
| | - Nikolina Banjanin
- Institute of Hygiene and Medical Ecology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Andrea Rosanoff
- CMER Center for Magnesium Education & Research, Pahoa, HI 96778, USA
| | - Shadi Baniasadi
- Tracheal Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran 198396-3113, Iran;
| | - Guitti Pourdowlat
- Chronic Respiratory Diseases Research Centre, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran 198396-3113, Iran;
| | - Mihai Nechifor
- Department of Pharmacology, Gr. T Popa University of Medicine and Pharmacy, 700115 Iasi, Romania;
| |
Collapse
|
4
|
Karu N, Kindt A, van Gammeren AJ, Ermens AAM, Harms AC, Portengen L, Vermeulen RCH, Dik WA, Langerak AW, van der Velden VHJ, Hankemeier T. Severe COVID-19 Is Characterised by Perturbations in Plasma Amines Correlated with Immune Response Markers, and Linked to Inflammation and Oxidative Stress. Metabolites 2022; 12:618. [PMID: 35888742 PMCID: PMC9321395 DOI: 10.3390/metabo12070618] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 02/01/2023] Open
Abstract
The COVID-19 pandemic raised a need to characterise the biochemical response to SARS-CoV-2 infection and find biological markers to identify therapeutic targets. In support of these aims, we applied a range of LC-MS platforms to analyse over 100 plasma samples from patients with varying COVID-19 severity and with detailed clinical information on inflammatory responses (>30 immune markers). The first publication in a series reports the results of quantitative LC-MS/MS profiling of 56 amino acids and derivatives. A comparison between samples taken from ICU and ward patients revealed a notable increase in ten post-translationally modified amino acids that correlated with markers indicative of an excessive immune response: TNF-alpha, neutrophils, markers for macrophage, and leukocyte activation. Severe patients also had increased kynurenine, positively correlated with CRP and cytokines that induce its production. ICU and ward patients with high IL-6 showed decreased levels of 22 immune-supporting and anti-oxidative amino acids and derivatives (e.g., glutathione, GABA). These negatively correlated with CRP and IL-6 and positively correlated with markers indicative of adaptive immune activation. Including corresponding alterations in convalescing ward patients, the overall metabolic picture of severe COVID-19 reflected enhanced metabolic demands to maintain cell proliferation and redox balance, alongside increased inflammation and oxidative stress.
Collapse
Affiliation(s)
- Naama Karu
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands; (A.K.); (A.C.H.)
| | - Alida Kindt
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands; (A.K.); (A.C.H.)
| | - Adriaan J. van Gammeren
- Department of Clinical Chemistry and Hematology, Amphia Hospital, 4818 CK Breda, The Netherlands; (A.J.v.G.); (A.A.M.E.)
| | - Anton A. M. Ermens
- Department of Clinical Chemistry and Hematology, Amphia Hospital, 4818 CK Breda, The Netherlands; (A.J.v.G.); (A.A.M.E.)
| | - Amy C. Harms
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands; (A.K.); (A.C.H.)
| | - Lutzen Portengen
- Department of Population Health Sciences, Institute for Risk Assessment Sciences, University Utrecht, 3584 CK Utrecht, The Netherlands; (L.P.); (R.C.H.V.)
| | - Roel C. H. Vermeulen
- Department of Population Health Sciences, Institute for Risk Assessment Sciences, University Utrecht, 3584 CK Utrecht, The Netherlands; (L.P.); (R.C.H.V.)
| | - Willem A. Dik
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (W.A.D.); (A.W.L.); (V.H.J.v.d.V.)
| | - Anton W. Langerak
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (W.A.D.); (A.W.L.); (V.H.J.v.d.V.)
| | - Vincent H. J. van der Velden
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (W.A.D.); (A.W.L.); (V.H.J.v.d.V.)
| | - Thomas Hankemeier
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands; (A.K.); (A.C.H.)
| |
Collapse
|
5
|
Ziyaei K, Ataie Z, Mokhtari M, Adrah K, Daneshmehr MA. An insight to the therapeutic potential of algae-derived sulfated polysaccharides and polyunsaturated fatty acids: Focusing on the COVID-19. Int J Biol Macromol 2022; 209:244-257. [PMID: 35306019 PMCID: PMC8924028 DOI: 10.1016/j.ijbiomac.2022.03.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 01/07/2023]
Abstract
Covid-19 pandemic severely affected human health worldwide. The rapidly increasing COVID-19 cases and successive mutations of the virus have made it a major challenge for scientists to find the best and efficient drug/vaccine/strategy to counteract the virus pathogenesis. As a result of research in scientific databases, regulating the immune system and its responses with nutrients and nutritional interventions is the most critical solution to prevent and combat this infection. Also, modulating other organs such as the intestine with these compounds can lead to the vaccines' effectiveness. Marine resources, mainly algae, are rich sources of nutrients and bioactive compounds with known immunomodulatory properties and the gut microbiome regulations. According to the purpose of the review, algae-derived bioactive compounds with immunomodulatory activities, sulfated polysaccharides, and polyunsaturated fatty acids have a good effect on the immune system. In addition, they have probiotic/prebiotic properties in the intestine and modulate the gut microbiomes; therefore, they can increase the effectiveness of vaccines produced. Thus, they with respectable safety, immune regulation, and modulation of microbiota have potential therapeutic against infections, especially COVID-19. They can also be employed as promising candidates for the prevention and treatment of viral infections, such as COVID-19.
Collapse
Affiliation(s)
- Kobra Ziyaei
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Zahra Ataie
- Evidence-based Phytotherapy & Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran,Department of Pharmaceutics, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Majid Mokhtari
- Department of Medical Bioinformatics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran,Laboratory of System Biology and Bioinformatics (LBB), Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran
| | - Kelvin Adrah
- Food and Nutritional Sciences Program, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| | - Mohammad Ali Daneshmehr
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Huang S, Zhang C, Xu T, Shaukat A, He Y, Chen P, Lin L, Yue K, Cao Q, Tong X. Integrated Fecal Microbiome and Metabolomics Reveals a Novel Potential Biomarker for Predicting Tibial Dyschondroplasia in Chickens. Front Physiol 2022; 13:887207. [PMID: 35634144 PMCID: PMC9133743 DOI: 10.3389/fphys.2022.887207] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
Tibial dyschondroplasia (TD) is a metabolic tibial-tarsal disorder occurring in fast-growing poultry, and its diagnosis is mainly based on an invasive method. Here, we profiled the fecal gut microbiome and metabolome of broilers with and without TD to identify potential non-invasive and non-stress biomarkers of TD. First, TD broilers with the most pronounced clinical signs during the experiment were screened and faecal samples were collected for integrated microbiome and metabolomics analysis. Moreover, the diagnostic potential of identified biomarkers was further validated throughout the experiment. It was noted that the microbial and metabolic signatures of TD broilers differed from those of normal broilers. TD broilers were characterized by enriched bacterial OTUs of the genus Klebsiella, and depleted genera [Ruminococcus], Dorea, Ruminococcus, Oscillospira, Ochrobactrum, and Sediminibacterium. In addition, a total of 189 fecal differential metabolites were identified, mainly enriched in the purine, vitamin and amino acid metabolism, which were closely associated with differential microbiota and tibia-related indicators. Furthermore, three fecal metabolites were screened, including 4-hydroxybenzaldehyde, which distinguished TD from normal broilers with extremely high specificity and was superior to serum bone markers. These results indicated that gut microbiota equilibrium might influence the pathogenesis of TD by modulating host metabolism, and the identified fecal metabolite 4-hydroxybenzaldehyde might be a potential and non-invasive biomarker for predicting TD in chickens.
Collapse
Affiliation(s)
- Shucheng Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Shucheng Huang,
| | - Chaodong Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Tingting Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Aftab Shaukat
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan, China
| | - Yanfeng He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Pan Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Luxi Lin
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Ke Yue
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Qinqin Cao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xishuai Tong
- Institutes of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China)/College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
7
|
Santinelli L, Laghi L, Innocenti GP, Pinacchio C, Vassalini P, Celani L, Lazzaro A, Borrazzo C, Marazzato M, Tarsitani L, Koukopoulos AE, Mastroianni CM, d'Ettorre G, Ceccarelli G. Oral Bacteriotherapy Reduces the Occurrence of Chronic Fatigue in COVID-19 Patients. Front Nutr 2022; 8:756177. [PMID: 35096923 PMCID: PMC8790565 DOI: 10.3389/fnut.2021.756177] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/29/2021] [Indexed: 12/22/2022] Open
Abstract
Long COVID refers to patients with symptoms as fatigue, “brain fog,” pain, suggesting the chronic involvement of the central nervous system (CNS) in COVID-19. The supplementation with probiotic (OB) would have a positive effect on metabolic homeostasis, negatively impacting the occurrence of symptoms related to the CNS after hospital discharge. On a total of 58 patients hospitalized for COVID-19, 24 (41.4%) received OB during hospitalization (OB+) while 34 (58.6%) taken only the standard treatment (OB–). Serum metabolomic profiling of patients has been performed at both hospital acceptance (T0) and discharge (T1). Six months after discharge, fatigue perceived by participants was assessed by administrating the Fatigue Assessment Scale. 70.7% of participants reported fatigue while 29.3% were negative for such condition. The OB+ group showed a significantly lower proportion of subjects reporting fatigue than the OB– one (p < 0.01). Furthermore, OB+ subjects were characterized by significantly increased concentrations of serum Arginine, Asparagine, Lactate opposite to lower levels of 3-Hydroxyisobutirate than those not treated with probiotics. Our results strongly suggest that in COVID-19, the administration of probiotics during hospitalization may prevent the development of chronic fatigue by impacting key metabolites involved in the utilization of glucose as well as in energy pathways.
Collapse
Affiliation(s)
- Letizia Santinelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Luca Laghi
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy.,Interdepartmental Centre for Agri-Food Industrial Research, University of Bologna, Bologna, Italy
| | | | - Claudia Pinacchio
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Paolo Vassalini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Luigi Celani
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Alessandro Lazzaro
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Cristian Borrazzo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Massimiliano Marazzato
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Lorenzo Tarsitani
- Department of Human Neurosciences, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Alexia E Koukopoulos
- Department of Human Neurosciences, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Claudio M Mastroianni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Gabriella d'Ettorre
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
8
|
Moos WH, Faller DV, Glavas IP, Harpp DN, Kamperi N, Kanara I, Kodukula K, Mavrakis AN, Pernokas J, Pernokas M, Pinkert CA, Powers WR, Steliou K, Tamvakopoulos C, Vavvas DG, Zamboni RJ, Sampani K. Pathogenic mitochondrial dysfunction and metabolic abnormalities. Biochem Pharmacol 2021; 193:114809. [PMID: 34673016 DOI: 10.1016/j.bcp.2021.114809] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 02/07/2023]
Abstract
Herein we trace links between biochemical pathways, pathogenesis, and metabolic diseases to set the stage for new therapeutic advances. Cellular and acellular microorganisms including bacteria and viruses are primary pathogenic drivers that cause disease. Missing from this statement are subcellular compartments, importantly mitochondria, which can be pathogenic by themselves, also serving as key metabolic disease intermediaries. The breakdown of food molecules provides chemical energy to power cellular processes, with mitochondria as powerhouses and ATP as the principal energy carrying molecule. Most animal cell ATP is produced by mitochondrial synthase; its central role in metabolism has been known for >80 years. Metabolic disorders involving many organ systems are prevalent in all age groups. Progressive pathogenic mitochondrial dysfunction is a hallmark of genetic mitochondrial diseases, the most common phenotypic expression of inherited metabolic disorders. Confluent genetic, metabolic, and mitochondrial axes surface in diabetes, heart failure, neurodegenerative disease, and even in the ongoing coronavirus pandemic.
Collapse
Affiliation(s)
- Walter H Moos
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, CA, USA.
| | - Douglas V Faller
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Cancer Research Center, Boston University School of Medicine, Boston, MA, USA
| | - Ioannis P Glavas
- Department of Ophthalmology, New York University School of Medicine, New York, NY, USA
| | - David N Harpp
- Department of Chemistry, McGill University, Montreal, QC, Canada
| | - Natalia Kamperi
- Center for Clinical, Experimental Surgery and Translational Research Pharmacology-Pharmacotechnology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | | | | | - Anastasios N Mavrakis
- Department of Medicine, Tufts University School of Medicine, St. Elizabeth's Medical Center, Boston, MA, USA
| | - Julie Pernokas
- Advanced Dental Associates of New England, Woburn, MA, USA
| | - Mark Pernokas
- Advanced Dental Associates of New England, Woburn, MA, USA
| | - Carl A Pinkert
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Whitney R Powers
- Department of Health Sciences, Boston University, Boston, MA, USA; Department of Anatomy, Boston University School of Medicine, Boston, MA, USA
| | - Kosta Steliou
- Cancer Research Center, Boston University School of Medicine, Boston, MA, USA; PhenoMatriX, Inc., Natick, MA, USA
| | - Constantin Tamvakopoulos
- Center for Clinical, Experimental Surgery and Translational Research Pharmacology-Pharmacotechnology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Demetrios G Vavvas
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Robert J Zamboni
- Department of Chemistry, McGill University, Montreal, QC, Canada
| | - Konstantina Sampani
- Beetham Eye Institute, Joslin Diabetes Center, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|