1
|
Liu J, Yin D, Zhang W, Wang X, James TD, Li P, Tang B. A multifunctional "three-in-one" fluorescent theranostic system for hepatic ischemia-reperfusion injury. Chem Sci 2024; 15:19820-19833. [PMID: 39568886 PMCID: PMC11575585 DOI: 10.1039/d4sc04962d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/01/2024] [Indexed: 11/22/2024] Open
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is the main cause of postoperative liver dysfunction and liver failure. Traditional separation of HIRI diagnosis and therapy confers several disadvantages, including the inability to visualize the therapeutic and asynchronous action. However, developing a versatile material with integrated diagnosis and treatment for HIRI remains a great challenge. Given that hypochlorous acid (HOCl) plays a crucial oxidative role in HIRI, we developed a single-component multifunctional fluorescent theranostic platform (MB-Gly) with a "three-in-one" molecular design incorporating a near-infrared fluorophore methylene blue, glycine and a HOCl-response unit, which could not only provide real-time visualization of HIRI but also boost targeted drug delivery. Using MB-Gly, we were able to achieve real-time and dynamic monitoring of HOCl during HIRI in hepatocytes and mouse livers and reduce the liver damage in hepatocytes and mice. RNA sequencing illustrated the therapeutic role of MB-Gly associated with changes in gene expression related to apoptosis, oxidative stress, metabolism and inflammation. To the best of our knowledge, this is the first multifunctional fluorescent theranostic system for HIRI reported to date. Our smart "three-in-one" approach shines light on the etiology and pathogenesis of HIRI, providing profound insights into the development of potential therapeutic targets.
Collapse
Affiliation(s)
- Jihong Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University China
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 People's Republic of China
| | - Dongni Yin
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University China
| | - Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University China
| | - Xin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University China
| | - Tony D James
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University China
- Department of Chemistry, University of Bath Bath BA2 7AY UK
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang 453007 People's Republic of China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University China
- College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 People's Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University China
- Laoshan Laboratory Qingdao 266237 People's Republic of China
| |
Collapse
|
2
|
Yan Y, Chen Q, Dai X, Xiang Z, Long Z, Wu Y, Jiang H, Zou J, Wang M, Zhu Z. Amino acid metabolomics and machine learning for assessment of post-hepatectomy liver regeneration. Front Pharmacol 2024; 15:1345099. [PMID: 38855741 PMCID: PMC11157015 DOI: 10.3389/fphar.2024.1345099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/06/2024] [Indexed: 06/11/2024] Open
Abstract
Objective Amino acid (AA) metabolism plays a vital role in liver regeneration. However, its measuring utility for post-hepatectomy liver regeneration under different conditions remains unclear. We aimed to combine machine learning (ML) models with AA metabolomics to assess liver regeneration in health and non-alcoholic steatohepatitis (NASH). Methods The liver index (liver weight/body weight) was calculated following 70% hepatectomy in healthy and NASH mice. The serum levels of 39 amino acids were measured using ultra-high performance liquid chromatography-tandem mass spectrometry analysis. We used orthogonal partial least squares discriminant analysis to determine differential AAs and disturbed metabolic pathways during liver regeneration. The SHapley Additive exPlanations algorithm was performed to identify potential AA signatures, and five ML models including least absolute shrinkage and selection operator, random forest, K-nearest neighbor (KNN), support vector regression, and extreme gradient boosting were utilized to assess the liver index. Results Eleven and twenty-two differential AAs were identified in the healthy and NASH groups, respectively. Among these metabolites, arginine and proline metabolism were commonly disturbed metabolic pathways related to liver regeneration in both groups. Five AA signatures were identified, including hydroxylysine, L-serine, 3-methylhistidine, L-tyrosine, and homocitrulline in healthy group, and L-arginine, 2-aminobutyric acid, sarcosine, beta-alanine, and L-cysteine in NASH group. The KNN model demonstrated the best evaluation performance with mean absolute error, root mean square error, and coefficient of determination values of 0.0037, 0.0047, 0.79 and 0.0028, 0.0034, 0.71 for the healthy and NASH groups, respectively. Conclusion The KNN model based on five AA signatures performed best, which suggests that it may be a valuable tool for assessing post-hepatectomy liver regeneration in health and NASH.
Collapse
Affiliation(s)
- Yuqing Yan
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Department of Clinical Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qianping Chen
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Department of Clinical Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaoming Dai
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhiqiang Xiang
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhangtao Long
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yachen Wu
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Hui Jiang
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jianjun Zou
- Department of Clinical Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
| | - Mu Wang
- The NanHua Affiliated Hospital, Clinical Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhu Zhu
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
3
|
Wang X, Liu J, Hui X, Song Y. Metabolomics Applied to Cord Serum in Preeclampsia Newborns: Implications for Neonatal Outcomes. Front Pediatr 2022; 10:869381. [PMID: 35547553 PMCID: PMC9082809 DOI: 10.3389/fped.2022.869381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/11/2022] [Indexed: 11/17/2022] Open
Abstract
Preeclampsia (PE) is one of the leading causes of maternal and perinatal morbidity and mortality. However, it is still uncertain how PE affects neonate metabolism. We conducted an untargeted metabolomics analysis of cord blood to explore the metabolic changes in PE neonates. Umbilical cord serum samples from neonates with preeclampsia (n = 29) and non-preeclampsia (non-PE) (n = 32) pregnancies were analyzed using the UHPLC-QE-MS metabolomic platform. Different metabolites were screened, and pathway analysis was conducted. A subgroup analysis was performed among PE neonates to compare the metabolome between appropriate-for-gestational-age infants (n = 21) and small-for-gestational-age (SGA) infants (n = 8). A total of 159 different metabolites were detected in PE and non-PE neonates. Creatinine, N4-acetylcytidine, sphingomyelin (D18:1/16:0), pseudouridine, uric acid, and indolelactic acid were the most significant differential metabolites in the cord serum of PE neonates. Differential metabolite levels were elevated in PE neonates and were involved in the following metabolic pathways: glycine, serine, and threonine metabolism; sphingolipid, glyoxylate, and dicarboxylate metabolism; and arginine biosynthesis. In PE neonates, SGA neonates showed increased levels of hexacosanoyl carnitine and decreased abundance of 3-hydroxybutyric acid and 3-sulfinoalanine. Taurine-related metabolism and ketone body-related pathways were mainly affected. Based on the UHPLC-QE-MS metabolomics analysis, we identified the metabolic profiles of PE and SGA neonates. The abundance of metabolites related to certain amino acid, sphingolipid, and energy metabolism increased in the umbilical cord serum of PE neonates.
Collapse
Affiliation(s)
- Xiaoxu Wang
- Department of Obstetrics and Gynecology, National Clinical Research Centre for Obstetric and Gynecologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jieying Liu
- State Key Laboratory of Complex Severe and Rare Diseases, Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiangyi Hui
- State Key Laboratory of Complex Severe and Rare Diseases, Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yingna Song
- Department of Obstetrics and Gynecology, National Clinical Research Centre for Obstetric and Gynecologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Chupradit S, Bokov D, Zamanian MY, Heidari M, Hakimizadeh E. Hepatoprotective and therapeutic effects of resveratrol: A focus on anti-inflammatory and anti- oxidative activities. Fundam Clin Pharmacol 2021; 36:468-485. [PMID: 34935193 DOI: 10.1111/fcp.12746] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/16/2021] [Accepted: 12/17/2021] [Indexed: 11/26/2022]
Abstract
Being the most essential organ in the body, the liver performs critical functions. Hepatic disorders, such as alcoholic liver disease, hepatic steatosis, liver fibrosis, non-alcoholic fatty liver disease, hepatocellular carcinoma and hepatic failure, have an impact on the biochemical and physiological functions of the body. The main representative of the flavonoid subgroup of flavones, Resveratrol (RES), exhibits suitable pharmacological activities for treating various liver diseases, such as fatty hepatitis, liver steatosis, liver cancer and liver fibrosis. According to various studies, grapes and red wine are good sources of RES. RES has various health properties; it is anti-inflammatory, anti-apoptotic, anti-oxidative and hepatoprotective against several hepatic diseases and hepatoxicity. Therefore, we performed a thorough research and created a summary of the distinct targets of RES in various stages of liver diseases. We concluded that RES inhibited liver inflammation essentially by causing a significant decrease in the expression of various pro-inflammatory cytokines like TNF-α, IL-1α, IL-1β, and IL-6. It also inhibits the transcription factor nuclear NF-κB that brings about the inflammatory cascade. RES also inhibits the PI3K/Akt/mTOR pathway to induce apoptosis. Additionally, it reduces oxidative stress in hepatic tissue by markedly reducing MDA and NO contents, and significantly increasing the levels of CAT, SOD and reduced GSH, in addition to AST and ALT, against toxic chemicals like CC14, As2O3 and TTA. Due to its anti-oxidant, anti-inflammatory and anti-fibrotic properties, RES reduces liver injury markers. RES is safe natural antioxidant that provides pharmacological rectification of the hepatoxicity of toxic chemicals.
Collapse
Affiliation(s)
- Supat Chupradit
- Department of Occupational Therapy, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Dmitry Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russian Federation.,Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr, Moscow, Russian Federation
| | - Mohammad Yassin Zamanian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.,School of Nahavand Paramedical, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahsa Heidari
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Elham Hakimizadeh
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
5
|
Gan Z, Zhang M, Xie D, Wu X, Hong C, Fu J, Fan L, Wang S, Han S. Glycinergic Signaling in Macrophages and Its Application in Macrophage-Associated Diseases. Front Immunol 2021; 12:762564. [PMID: 34675940 PMCID: PMC8523992 DOI: 10.3389/fimmu.2021.762564] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022] Open
Abstract
Accumulating evidences support that amino acids direct the fate decision of immune cells. Glycine is a simple structural amino acid acting as an inhibitory neurotransmitter. Besides, glycine receptors as well as glycine transporters are found in macrophages, indicating that glycine alters the functions of macrophages besides as an inhibitory neurotransmitter. Mechanistically, glycine shapes macrophage polarization via cellular signaling pathways (e.g., NF-κB, NRF2, and Akt) and microRNAs. Moreover, glycine has beneficial effects in preventing and/or treating macrophage-associated diseases such as colitis, NAFLD and ischemia-reperfusion injury. Collectively, this review highlights the conceivable role of glycinergic signaling for macrophage polarization and indicates the potential application of glycine supplementation as an adjuvant therapy in macrophage-associated diseases.
Collapse
Affiliation(s)
- Zhending Gan
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Meiyu Zhang
- College of Animal Science and Technology, Guangdong Polytechnic of Science and Trade, Guangzhou, China
| | - Donghui Xie
- Nanchang Academy of Agricultural Sciences, Nanchang, China
| | - Xiaoyan Wu
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Science, Lanzhou, China
| | - Changming Hong
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jian Fu
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Lijuan Fan
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shengyi Wang
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Science, Lanzhou, China
| | - Sufang Han
- College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
6
|
Glycine protects partial liver grafts from Kupffer cell-dependent ischemia-reperfusion injury without negative effect on regeneration. Amino Acids 2019; 51:903-911. [PMID: 30941574 DOI: 10.1007/s00726-019-02722-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 03/08/2019] [Indexed: 01/27/2023]
Abstract
Donor preconditioning with glycine prevents Kupffer cell-dependent reperfusion injury to liver grafts. Partial liver grafts need to regenerate and grow in size after transplantation; however, glycine inactivates Kupffer cells, which are important for hepatic regeneration. Thus, this study was designed to evaluate the impact of donor preconditioning with glycine after partial liver transplantation (pLTx). PLTx was performed in 28 female Sprague-Dawley rats. Glycine (1.5 ml, 300 mM; i.v.) was given to 14 live donors before organ procurement. Liver enzymes and histology were investigated 8 h after reperfusion to index liver injury and leukocyte infiltration. Hepatic microperfusion and leukocyte-endothelium interaction were assessed using the in vivo fluorescence microscopy method. Ki-67 and TNF-α were detected by immunohistochemistry for regeneration and Kupffer cell activation. Glycine significantly increased survival from 0% in controls to 40%, while both liver enzyme levels and necrosis were decreased to about 50% of controls (p < 0.05). Sinusoidal blood flow increased by 40-80%, while leukocyte-endothelium interaction decreased to 30% of control values (p < 0.05). While Kupffer cell-derived TNF-α decreased to 70% of controls, there was no difference between groups in Ki-67 expression. Data presented here clearly demonstrate that glycine protects partial liver grafts from reperfusion injury without effects on regeneration.
Collapse
|
7
|
Weinberg JM, Bienholz A, Venkatachalam MA. The role of glycine in regulated cell death. Cell Mol Life Sci 2016; 73:2285-308. [PMID: 27066896 PMCID: PMC4955867 DOI: 10.1007/s00018-016-2201-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 01/22/2023]
Abstract
The cytoprotective effects of glycine against cell death have been recognized for over 28 years. They are expressed in multiple cell types and injury settings that lead to necrosis, but are still not widely appreciated or considered in the conceptualization of cell death pathways. In this paper, we review the available data on the expression of this phenomenon, its relationship to major pathophysiologic pathways that lead to cell death and immunomodulatory effects, the hypothesis that it involves suppression by glycine of the development of a hydrophilic death channel of molecular dimensions in the plasma membrane, and evidence for its impact on disease processes in vivo.
Collapse
Affiliation(s)
- Joel M Weinberg
- Division of Nephrology, Department of Internal Medicine, Veterans Affairs Ann Arbor Healthcare System and University of Michigan, Room 1560, MSRB II, Ann Arbor, MI, 48109-0676, USA.
| | - Anja Bienholz
- Department of Nephrology, University Duisburg-Essen, 45122, Essen, Germany
| | - M A Venkatachalam
- Department of Pathology, University of Texas Health Science Center, San Antonio, TX, 78234, USA
| |
Collapse
|
8
|
Wu Y, Cao D, Wang F, Ma L, Gao G, Chen L. Synthesis and Evaluation of Millepachine Amino Acid Prodrugs With Enhanced Solubility as Antitumor Agents. Chem Biol Drug Des 2015; 86:559-67. [PMID: 25643726 DOI: 10.1111/cbdd.12507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 12/15/2014] [Indexed: 02/05/2023]
Affiliation(s)
- Yuzhe Wu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education; College of Chemistry; Sichuan University; 29 Wangjiang Road Chengdu 610064 China
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy; West China Hospital; Sichuan University; Chengdu Sichuan 610041 China
| | - Dong Cao
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy; West China Hospital; Sichuan University; Chengdu Sichuan 610041 China
| | - Fang Wang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy; West China Hospital; Sichuan University; Chengdu Sichuan 610041 China
| | - Liang Ma
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy; West China Hospital; Sichuan University; Chengdu Sichuan 610041 China
| | - Ge Gao
- Key Laboratory of Green Chemistry and Technology of Ministry of Education; College of Chemistry; Sichuan University; 29 Wangjiang Road Chengdu 610064 China
| | - Lijuan Chen
- Key Laboratory of Green Chemistry and Technology of Ministry of Education; College of Chemistry; Sichuan University; 29 Wangjiang Road Chengdu 610064 China
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy; West China Hospital; Sichuan University; Chengdu Sichuan 610041 China
| |
Collapse
|
9
|
Zhang M, Li W, Yu L, Wu S. The suppressive effect of resveratrol on HIF-1α and VEGF expression after warm ischemia and reperfusion in rat liver. PLoS One 2014; 9:e109589. [PMID: 25295523 PMCID: PMC4190191 DOI: 10.1371/journal.pone.0109589] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 09/02/2014] [Indexed: 12/21/2022] Open
Abstract
Background Hypoxia-inducible factor-1α (HIF-1α) is overexpressed in many human tumors and their metastases, and is closely associated with a more aggressive tumor phenotype. The aim of the present study was to investigate the effect of resveratrol (RES) on the expression of ischemic-induced HIF-1α and vascular endothelial growth factor (VEGF) in rat liver. Methods Twenty-four rats were randomized into Sham, ischemia/reperfusion (I/R), and RES preconditioning groups. I/R was induced by portal pedicle clamping for 60 minutes followed by reperfusion for 60 minutes. The rats in RES group underwent the same surgical procedure as I/R group, and received 20 mg/kg resveratrol intravenously 30 min prior to ischemia. Blood and liver tissue samples were collected and subjected to biochemical assays, RT-PCR, and Western blot assays. Results I/R resulted in a significant (P<0.05) increase in liver HIF-1α and VEGF at both mRNA and protein levels 60 minutes after reperfusion. The mRNA and protein expressions of HIF-1α and VEGF decreased significantly in RES group when compared to I/R group (P<0.05). Conclusion The inhibiting effect of RES on the expressions of HIF-1α and VEGF induced by I/R in rat liver suggested that HIF-1α/VEGF could be a promising drug target for RES in the development of an effective anticancer therapy for the prevention of hepatic tumor growth and metastasis.
Collapse
Affiliation(s)
- Mei Zhang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Wujun Li
- Department of General Surgery, the First Affiliated Hospital of Xi'an Medical University, Xi'an, P.R. China
| | - Liang Yu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Shengli Wu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
- * E-mail:
| |
Collapse
|
10
|
Glycine metabolism in animals and humans: implications for nutrition and health. Amino Acids 2013; 45:463-77. [PMID: 23615880 DOI: 10.1007/s00726-013-1493-1] [Citation(s) in RCA: 484] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 04/02/2013] [Indexed: 01/01/2023]
Abstract
Glycine is a major amino acid in mammals and other animals. It is synthesized from serine, threonine, choline, and hydroxyproline via inter-organ metabolism involving primarily the liver and kidneys. Under normal feeding conditions, glycine is not adequately synthesized in birds or in other animals, particularly in a diseased state. Glycine degradation occurs through three pathways: the glycine cleavage system (GCS), serine hydroxymethyltransferase, and conversion to glyoxylate by peroxisomal D-amino acid oxidase. Among these pathways, GCS is the major enzyme to initiate glycine degradation to form ammonia and CO2 in animals. In addition, glycine is utilized for the biosynthesis of glutathione, heme, creatine, nucleic acids, and uric acid. Furthermore, glycine is a significant component of bile acids secreted into the lumen of the small intestine that is necessary for the digestion of dietary fat and the absorption of long-chain fatty acids. Glycine plays an important role in metabolic regulation, anti-oxidative reactions, and neurological function. Thus, this nutrient has been used to: (1) prevent tissue injury; (2) enhance anti-oxidative capacity; (3) promote protein synthesis and wound healing; (4) improve immunity; and (5) treat metabolic disorders in obesity, diabetes, cardiovascular disease, ischemia-reperfusion injuries, cancers, and various inflammatory diseases. These multiple beneficial effects of glycine, coupled with its insufficient de novo synthesis, support the notion that it is a conditionally essential and also a functional amino acid for mammals (including pigs and humans).
Collapse
|
11
|
Petrat F, Boengler K, Schulz R, de Groot H. Glycine, a simple physiological compound protecting by yet puzzling mechanism(s) against ischaemia-reperfusion injury: current knowledge. Br J Pharmacol 2012; 165:2059-72. [PMID: 22044190 DOI: 10.1111/j.1476-5381.2011.01711.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ischaemia is amongst the leading causes of death. Despite this importance, there are only a few therapeutic approaches to protect from ischaemia-reperfusion injury (IRI). In experimental studies, the amino acid glycine effectively protected from IRI. In the prevention of IRI by glycine in cells and isolated perfused or cold-stored organs (tissues), direct cytoprotection plays a crucial role, most likely by prevention of the formation of pathological plasma membrane pores. Under in vivo conditions, the mechanism of protection by glycine is less clear, partly due to the physiological presence of the amino acid. Here, inhibition of the inflammatory response in the injured tissue is considered to contribute decisively to the glycine-induced reduction of IRI. However, attenuation of IRI recently achieved in experimental animals by low-dose glycine treatment regimens suggests additional/other (unknown) protective mechanisms. Despite the convincing experimental evidence and the large therapeutic width of glycine, there are only a few clinical trials on the protection from IRI by glycine with ambivalent results. Thus, both the mechanism(s) behind the protection of glycine against IRI in vivo and its true clinical potential remain to be addressed in future experimental studies/clinical trials.
Collapse
Affiliation(s)
- Frank Petrat
- Institut für Physiologische Chemie, Universitätsklinikum Essen, Essen, Germany
| | | | | | | |
Collapse
|
12
|
Zhong X, Li X, Qian L, Xu Y, Lu Y, Zhang J, Li N, Zhu X, Ben J, Yang Q, Chen Q. Glycine attenuates myocardial ischemia-reperfusion injury by inhibiting myocardial apoptosis in rats. J Biomed Res 2012; 26:346-54. [PMID: 23554770 PMCID: PMC3613731 DOI: 10.7555/jbr.26.20110124] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 11/23/2011] [Accepted: 02/21/2012] [Indexed: 11/03/2022] Open
Abstract
Glycine is a well-documented cytoprotective agent. However, whether it has a protective effect against myocardial ischemia-reperfusion injury in vivo is still unknown. By using an open-chest anesthetized rat model, we found that glycine reduced the infarct size by 21% in ischemia-reperfusion injury rats compared with that in the vehicle-treated MI/R rats. The left ventricular ejection fraction and fractional shortening were increased by 19.11% and 30.98%, respectively, in glycine-treated rats. The plasma creatine kinase levels in ischemia-reperfusion injury rats decreased following glycine treatment. Importantly, administration of glycine significantly inhibited apoptosis in post-ischemia-reperfusion myocardium, which was accompanied by suppression of phosphorylated p38 mitogen-activated protein kinase and c-Jun NH2-terminal kinase, as well as the Fas ligand. These results suggest that glycine attenuates myocardial ischemia-reperfusion injury in vivo by inhibiting cardiomyocytes apoptosis.
Collapse
Affiliation(s)
- Xiaozheng Zhong
- Atherosclerosis Research Center, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Hong IH, Han SY, Ki MR, Moon YM, Park JK, You SY, Lee EM, Kim AY, Lee EJ, Jeong JH, Kang KS, Jeong KS. Inhibition of kupffer cell activity improves transplantation of human adipose-derived stem cells and liver functions. Cell Transplant 2012; 22:447-59. [PMID: 22546493 DOI: 10.3727/096368912x640583] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Numerous approaches to cell transplantation of the hepatic or the extrahepatic origin into liver tissue have been developed; however, the efficiency of cell transplantation remains low and liver functions are not well corrected. The liver is a highly immunoreactive organ that contains many resident macrophages known as Kupffer cells. Here, we show that the inhibition of Kupffer cell activity improves stem cell transplantation into liver tissue and corrects some of the liver functions under conditions of liver injury. We found that, when Kupffer cells were inhibited by glycine, numerous adipose-derived stem cells (ASCs) were successfully transplanted into livers, and these transplanted cells showed hepatoprotective effects, including decrease of liver injury factors, increase of liver regeneration, and albumin production. On the contrary, injected ASCs without glycine recruited numerous Kupffer cells, not lymphocytes, and showed low transplantation efficiency. Intriguingly, successfully transplanted ASCs in liver tissue modulated Kupffer cell activity to inhibit tumor necrosis factor-α secretion. Thus, our data show that Kupffer cell inactivation is an important step in order to improve ASC transplantation efficiency and therapeutic potential in liver injuries. In addition, the hepatoprotective function of glycine has synergic effects on liver protection and the engraftment of ASCs.
Collapse
Affiliation(s)
- Il-Hwa Hong
- College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
TNF-α, HGF and TGF-β1 are Involved in Liver Regeneration Following Partial Hepatectomy Using Portal Vein Arterializations. J Med Biochem 2012. [DOI: 10.2478/v10011-011-0052-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TNF-α, HGF and TGF-β1 are Involved in Liver Regeneration Following Partial Hepatectomy Using Portal Vein ArterializationsExperiments on liver regeneration after partial hepatectomy have shown that TNF-α, HGF and TGF-β1 and other cytokines play important roles in the different stages of liver regeneration, however, the effect of portal vein arterialization (PVA) on the expressions of these cytokines during liver regeneration is not clear. Sprague Dawley rats were randomly divided into the PVA group and control groups, and blood was collected for the detection of ALT using an automatic biochemical analyzer. The expressions of TNF-α, HGF and TGF-β1 in liver tissues were detected by quantitative RT-PCR. The ALT levels in both groups in the early period after surgery were significantly higher than those before operation, and gradually returned to normal at 7 days after surgery. At 12 h and 24 h after operation, the TNF-α expression in the PVA group was significantly higher than that in the control group (P<0.05), but no significant difference at 7 days after surgery was observed between the two groups. At 12 h, the HGF expression in the PVA group was similar to that in the control group, but significantly higher than in the control group at 24 h (P<0.05). At 24 h, the TGF-β1 expression in the PVA group was significantly lower than that in the control group (P <0.05), but no significant difference was found at 48 h after surgery between the two groups. The promotive effects on the portal vein arterialization at the early stage of liver regeneration were associated with the changes in the expressions of TNF-α, HGF and TGF-β1.
Collapse
|
15
|
|
16
|
Surya Prakash Rao H, Geetha K, Kamalraj M. Synthesis of lactones of ortho-tyrosine, DOPA isomers and tryptophan-ortho-tyrosine hybrid amino acids. RSC Adv 2011. [DOI: 10.1039/c1ra00461a] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
17
|
Sheth H, Hafez T, Glantzounis GK, Seifalian AM, Fuller B, Davidson BR. Glycine maintains mitochondrial activity and bile composition following warm liver ischemia-reperfusion injury. J Gastroenterol Hepatol 2011; 26:194-200. [PMID: 21175814 DOI: 10.1111/j.1440-1746.2010.06323.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIM Experimental studies have shown protective effect by the non-essential amino acid glycine to liver ischemia-reperfusion (I/R) injury but the mechanism of action is unknown. METHODS A rabbit model of hepatic lobar I/R was used. Three groups of animals (n=6) were studied: Sham group (laparotomy alone), ischemia reperfusion (I/R) group (1 h of liver lobar ischemia and 6 h of reperfusion), and a glycine I/R group (intravenous glycine 5 mg/kg prior to the I/R protocol). Systemic and hepatic hemodynamics, degree of liver injury (bile flow, transaminases), hepatic microcirculation, mitochondrial activity (redox state of cytochrome oxidase), bile composition and cytokines (tumor necrosis factor-α and interleukin-8) were measured during the experiment. RESULTS Glycine administration increased portal blood flow, bile production, hepatic microcirculation and maintained cytochrome oxidase activity as compared with the I/R group during reperfusion. Glycine also reduced bile lactate surge and stimulated acetoacetate release in bile during reperfusion versus the I/R group. Cytokine levels (tumor necrosis factor-α, interleukin-8) and hepatocellular injury (aspartate aminotransferase and alanine aminotransferase) were significantly reduced by glycine administration. CONCLUSION Intravenous glycine administration reduces liver warm I/R injury by reducing the systemic inflammatory response, and maintaining cellular energy production.
Collapse
Affiliation(s)
- Hemant Sheth
- Hepatopancreatobiliary and Liver Transplant Unit, University Department of Surgery, Royal Free Hospital and Royal Free and University College Medical School, London, UK
| | | | | | | | | | | |
Collapse
|
18
|
den Eynden JV, Ali SS, Horwood N, Carmans S, Brône B, Hellings N, Steels P, Harvey RJ, Rigo JM. Glycine and glycine receptor signalling in non-neuronal cells. Front Mol Neurosci 2009; 2:9. [PMID: 19738917 PMCID: PMC2737430 DOI: 10.3389/neuro.02.009.2009] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 07/23/2009] [Indexed: 11/13/2022] Open
Abstract
Glycine is an inhibitory neurotransmitter acting mainly in the caudal part of the central nervous system. Besides this neurotransmitter function, glycine has cytoprotective and modulatory effects in different non-neuronal cell types. Modulatory effects were mainly described in immune cells, endothelial cells and macroglial cells, where glycine modulates proliferation, differentiation, migration and cytokine production. Activation of glycine receptors (GlyRs) causes membrane potential changes that in turn modulate calcium flux and downstream effects in these cells. Cytoprotective effects were mainly described in renal cells, hepatocytes and endothelial cells, where glycine protects cells from ischemic cell death. In these cell types, glycine has been suggested to stabilize porous defects that develop in the plasma membranes of ischemic cells, leading to leakage of macromolecules and subsequent cell death. Although there is some evidence linking these effects to the activation of GlyRs, they seem to operate in an entirely different mode from classical neuronal subtypes.
Collapse
Affiliation(s)
- Jimmy Van den Eynden
- Institute of Biomedical Research, Hasselt University and transnationale Universiteit LimburgDiepenbeek, Belgium
| | - Sheen Saheb Ali
- Institute of Biomedical Research, Hasselt University and transnationale Universiteit LimburgDiepenbeek, Belgium
| | - Nikki Horwood
- Kennedy Institute of Rheumatology Division, Faculty of Medicine, Imperial College London, Charing Cross CampusLondon, UK
| | - Sofie Carmans
- Institute of Biomedical Research, Hasselt University and transnationale Universiteit LimburgDiepenbeek, Belgium
| | - Bert Brône
- Institute of Biomedical Research, Hasselt University and transnationale Universiteit LimburgDiepenbeek, Belgium
| | - Niels Hellings
- Institute of Biomedical Research, Hasselt University and transnationale Universiteit LimburgDiepenbeek, Belgium
| | - Paul Steels
- Institute of Biomedical Research, Hasselt University and transnationale Universiteit LimburgDiepenbeek, Belgium
| | - Robert J. Harvey
- Department of Pharmacology, School of Pharmacy, University of LondonLondon, UK
| | - Jean-Michel Rigo
- Institute of Biomedical Research, Hasselt University and transnationale Universiteit LimburgDiepenbeek, Belgium
| |
Collapse
|
19
|
Gedik E, Girgin S, Ozturk H, Obay BD, Ozturk H, Buyukbayram H. Resveratrol attenuates oxidative stress and histological alterations induced by liver ischemia/reperfusion in rats. World J Gastroenterol 2008; 14:7101-6. [PMID: 19084917 PMCID: PMC2776840 DOI: 10.3748/wjg.14.7101] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effects of resveratrol on liver ischemia/reperfusion (I/R) injury in rats.
METHODS: A total of 40 male Sprague-Dawley rats weighing 240-290 g were randomized into four groups of ten: (1) controls: data from unmanipulated animals; (2) sham group: rats subjected to the surgical procedure, except for liver I/R, and given saline; (3) I/R group: rats underwent liver ischemia for 45 min followed by reperfusion for 45 min; (4) I-R/Resveratrol group: rats pretreated with resveratrol (10 μmol/L, iv). Liver tissues were obtained to determine antioxidant enzyme levels and for biochemical and histological evaluation.
RESULTS: Plasma aminotransferase activities were higher in the I/R group than in the I-R/Resveratrol group. Malondialdehyde levels and the hepatic injury score decreased, while superoxide dismutase, catalase, and glutathione peroxidase levels increased in group 4 compared to group 3. In group 4, histopathological changes were significantly attenuated in resveratrol-treated livers.
CONCLUSION: These results suggest that resveratrol has protective effects against hepatic I/R injury, and is a potential therapeutic drug for ischemia reperfusion-related liver injury.
Collapse
|