1
|
Briassoulis G, Ilia S, Briassouli E. Personalized Nutrition in the Pediatric ICU: Steering the Shift from Acute Stress to Metabolic Recovery and Rehabilitation. Nutrients 2024; 16:3523. [PMID: 39458517 PMCID: PMC11509937 DOI: 10.3390/nu16203523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/03/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Nutrition significantly impacts the outcomes of critically ill children in intensive care units (ICUs). Due to the evolving metabolic, neuroendocrine, and immunological disorders associated with severe illness or trauma, there are dynamically changing phases of energy needs requiring tailored macronutrient intake. OBJECTIVES This study aims to assess the changing dietary needs from the acute phase through recovery, provide recommendations for implementing evidence-based strategies to ensure adequate energy and nutrient provision in pediatric ICUs, and optimize patient outcomes. METHODS A comprehensive search of the MEDLINE-PubMed database was conducted, focusing on randomized controlled trials, meta-analyses, and systematic reviews related to the nutrition of critically ill children. The study highlights recent guidelines using the GRADE approach, supplemented by relevant adult studies, current clinical practices, challenges, gaps in knowledge, and future directions for research aimed at improving nutritional interventions. RESULTS Early personalized, incremental enteral feeding helps mitigate the negative energy balance during the acute phase, aids organ function restoration in the stabilization phase, and supports growth during the recovery phase and beyond. Conversely, early full nutritional support, high protein doses, or isolated micronutrient administration have not demonstrated benefits due to anabolic resistance in these patients. Moreover, early parenteral nutrition during the acute phase may suppress autophagy and lead to worse outcomes. Accurate assessment of nutritional status and monitoring of daily energy and protein needs are crucial. CONCLUSIONS Strong evidence supports the establishment of a dedicated nutritional team and the implementation of individualized nutritional protocols in the ICU to reduce morbidity and mortality in critically ill children.
Collapse
Affiliation(s)
- George Briassoulis
- Postgraduate Program “Emergency and Intensive Care in Children Adolescents and Young Adults”, School of Medicine, University of Crete, Section 6D (Delta), Office 03, Voutes, 71003 Heraklion, Greece;
- Paediatric Intensive Care Unit, University Hospital, School of Medicine, University of Crete, 71110 Heraklion, Greece
| | - Stavroula Ilia
- Postgraduate Program “Emergency and Intensive Care in Children Adolescents and Young Adults”, School of Medicine, University of Crete, Section 6D (Delta), Office 03, Voutes, 71003 Heraklion, Greece;
- Paediatric Intensive Care Unit, University Hospital, School of Medicine, University of Crete, 71110 Heraklion, Greece
| | - Efrossini Briassouli
- Infectious Diseases Department “MAKKA”, “Aghia Sophia” Children’s Hospital, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
2
|
Gilholm P, Ergetu E, Gelbart B, Raman S, Festa M, Schlapbach LJ, Long D, Gibbons KS. Adaptive Clinical Trials in Pediatric Critical Care: A Systematic Review. Pediatr Crit Care Med 2023; 24:738-749. [PMID: 37195182 DOI: 10.1097/pcc.0000000000003273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
OBJECTIVES This systematic review investigates the use of adaptive designs in randomized controlled trials (RCTs) in pediatric critical care. DATA SOURCES PICU RCTs, published between 1986 and 2020, stored in the www.PICUtrials.net database and MEDLINE, EMBASE, CENTRAL, and LILACS databases were searched (March 9, 2022) to identify RCTs published in 2021. PICU RCTs using adaptive designs were identified through an automated full-text screening algorithm. STUDY SELECTION All RCTs involving children (< 18 yr old) cared for in a PICU were included. There were no restrictions to disease cohort, intervention, or outcome. Interim monitoring by a Data and Safety Monitoring Board that was not prespecified to change the trial design or implementation of the study was not considered adaptive. DATA EXTRACTION We extracted the type of adaptive design, the justification for the design, and the stopping rule used. Characteristics of the trial were also extracted, and the results summarized through narrative synthesis. Risk of bias was assessed using the Cochrane Risk of Bias Tool 2. DATA SYNTHESIS Sixteen of 528 PICU RCTs (3%) used adaptive designs with two types of adaptations used; group sequential design and sample size reestimation. Of the 11 trials that used a group sequential adaptive design, seven stopped early due to futility and one stopped early due to efficacy. Of the seven trials that performed a sample size reestimation, the estimated sample size decreased in three trials and increased in one trial. CONCLUSIONS Little evidence of the use of adaptive designs was found, with only 3% of PICU RCTs incorporating an adaptive design and only two types of adaptations used. Identifying the barriers to adoption of more complex adaptive trial designs is needed.
Collapse
Affiliation(s)
- Patricia Gilholm
- Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Endrias Ergetu
- Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Ben Gelbart
- Paediatric Intensive Care Unit, Royal Children's Hospital Melbourne, Parkville, VIC, Australia
| | - Sainath Raman
- Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Paediatric Intensive Care Unit, Queensland Children's Hospital, Brisbane, QLD, Australia
| | - Marino Festa
- Kids Critical Care Research, Paediatric Intensive Care Unit, Children's Hospital at Westmead, Westmead, NSW, Australia
- Sydney Children's Hospital Network, Sydney, NSW, Australia
| | - Luregn J Schlapbach
- Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Department of Intensive Care and Neonatology, and Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Debbie Long
- Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- School of Nursing, Centre for Healthcare Transformation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kristen S Gibbons
- Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
3
|
Ex Vivo Evaluation of Glutamine Treatment in Sepsis and Trauma in a Human Peripheral Blood Mononuclear Cells Model. Nutrients 2023; 15:nu15010252. [PMID: 36615909 PMCID: PMC9824313 DOI: 10.3390/nu15010252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/21/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
We aimed to assess the lipopolysaccharide (LPS), or heat shock (HS) induction, and glutamine-modulating effects on heat shock protein-90α (HSP90α) and cytokines in an ex vivo model using peripheral blood mononuclear cells (PBMCs). The PBMCs of patients with septic shock, trauma-related systemic inflammatory response syndrome (SIRS), and healthy subjects were incubated with 1 μg/mL LPS at 43 °C (HS). Glutamine 10 mM was added 1 hour before or after induction or not at all. We measured mRNA HSP90α, monocyte (m) and lymphocyte (l) HSP90α proteins, interleukin (IL)-1b, -6, -8, -10, tumor necrosis factor-α (TNF-α), and monocyte chemoattractant protein-1 (MCP-1) supernatant levels. Heat shock increased the HSP90α mRNA and mHSP90α in all groups (10-fold in sepsis, p < 0.001 and p = 0.047, respectively). LPS induced the mHSP90α and lHSP90α in healthy (p < 0.001) and mHSP90α in SIRS (p = 0.004) but not in sepsis. LPS induced the cytokines at 24 and 48 h in all groups, especially in trauma (p < 0.001); HS only induced the IL-8 in healthy (p = 0.003) and septic subjects (p = 0.05). Glutamine at 10 mM before or after stimulation did not alter any induction effect of LPS or HS on HSP90α mRNA and mHSP90α protein in sepsis. In SIRS, glutamine before LPS decreased the mHSP90α but increased it when given after HS (p = 0.018). Before or after LPS (p = 0.049) and before HS (p = 0.018), glutamine decreased the lHSP90α expression in sepsis but increased it in SIRS when given after HS (p = 0.003). Regarding cytokines, glutamine enhanced the LPS-induced MCP-1 at 48 h in healthy (p = 0.011), SIRS (p < 0.001), and sepsis (p = 0.006). In conclusion, glutamine at 10 mM, before or after LPS and HS, modulates mHSP90α and lHSP90α in sepsis and SIRS differently and unpredictably. Although it does not alter the stimulation effect on interleukins, glutamine enhances the LPS induction effect on supernatant MCP-1 in all groups. Future research should seek to elucidate better the impact of glutamine and temperature modulation on HSP90α and MCP-1 pathways in sepsis and trauma.
Collapse
|
4
|
Ullah H, De Filippis A, Baldi A, Dacrema M, Esposito C, Garzarella EU, Santarcangelo C, Tantipongpiradet A, Daglia M. Beneficial Effects of Plant Extracts and Bioactive Food Components in Childhood Supplementation. Nutrients 2021; 13:3157. [PMID: 34579034 PMCID: PMC8464764 DOI: 10.3390/nu13093157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023] Open
Abstract
The pivotal role of childhood nutrition has always roused a growing interest from the scientific community. Plant extracts and bioactive dietary components play a significant role in the maintenance of human health and wellness, with the potential to modulate risk factors and manage symptoms for a large number of common childhood disorders such as memory impairment, respiratory illnesses, gastrointestinal disorders, metabolic derangements, and pathologies related to the oral cavity. This review is designed to highlight the health benefits of botanical extracts and bioactive dietary components in children as evidenced by clinical trials, considering their safety with regards to childhood sensibilities. The supplementation of children with the herbal extracts or bioactive components mentioned in this review leads to the conclusion that they are useful for treating various ailments, with no serious adverse events being reported. However, for the limited number of investigations specifically focused on the safety of such products in children, time is needed to expand the literature data covering the safety of childhood supplementation with botanical extract and bioactive food components.
Collapse
Affiliation(s)
- Hammad Ullah
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (M.D.); (C.E.); (E.U.G.); (C.S.); (A.T.)
| | - Anna De Filippis
- Department of Experimental Medicine, Section of Microbiology and Virology, University of Campania “L. Vanvitelli”, 80138 Naples, Italy;
| | - Alessandra Baldi
- Tefarco Innova, National Inter-University Consortium of Innovative Pharmaceutical Technologies—Parma, 43124 Parma, Italy;
| | - Marco Dacrema
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (M.D.); (C.E.); (E.U.G.); (C.S.); (A.T.)
| | - Cristina Esposito
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (M.D.); (C.E.); (E.U.G.); (C.S.); (A.T.)
| | - Emanuele Ugo Garzarella
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (M.D.); (C.E.); (E.U.G.); (C.S.); (A.T.)
| | - Cristina Santarcangelo
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (M.D.); (C.E.); (E.U.G.); (C.S.); (A.T.)
| | - Ariyawan Tantipongpiradet
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (M.D.); (C.E.); (E.U.G.); (C.S.); (A.T.)
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (M.D.); (C.E.); (E.U.G.); (C.S.); (A.T.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
5
|
Gholamalizadeh M, Tabrizi R, Rezaei S, Badeli M, Shadnoush M, Jarrahi AM, Doaei S. Effect of glutamine supplementation on inflammatory markers in critically ill patients supported with enteral or parenteral feeding. JPEN J Parenter Enteral Nutr 2021; 46:61-68. [PMID: 34213769 DOI: 10.1002/jpen.2217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Glutamine plays an important role in acute catabolic conditions in critically ill patients. This meta-analysis aimed to investigate the effect of glutamine supplementation on inflammatory markers in critically ill patients supported with enteral feeding (EN) or parenteral feeding (PN). METHODS PubMed, Web of Science, Scopus, and Embase were explored to identify the studies investigating the effect of glutamine on serum inflammatory markers in intensive care unit patients. All randomized clinical trials that assessed the effect of glutamine supplementation on "inflammatory markers" in EN or PN were included in the study. Because a small number of studies were included, SE was adjusted for overall effect size by using the Knapp-Hartung method. RESULTS In this study, 2728 eligible studies were initially included, and 10 eligible case-control studies were finally enrolled for further investigations. There was a statistical reduction between preintervention and postintervention CRP levels (standardized mean difference [SMD] = -0.38 mg/L; 95% CI, -0.72 to -0.03). No significant association was found between L-glutamine supplementation in the EN/PN and interleukin 6 (IL-6) (SMD = -0.58 pg/ml; 95% CI, -2.15 to 0.99) and tumor necrosis factor alpha (TNF-α) (SMD = 2.69 pg/ml; 95% CI, -9.66 to 15.03) compared with the control group. CONCLUSIONS This study identified that glutamine supplementation might have an important effect on CRP in acute conditions and no significant effect on IL-6 and TNF-α in acute conditions.
Collapse
Affiliation(s)
- Maryam Gholamalizadeh
- Student Research Committee, Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Tabrizi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Shahla Rezaei
- Department of Clinical Nutrition, Student Research Committee, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.,Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mostafa Badeli
- Department of Nutrition, Urmia University of Medical Science, Urmia, Iran
| | - Mahdi Shadnoush
- Department of Clinical Nutrition, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Saeid Doaei
- Reproductive Health Research Center, Department of Obstetrics & Gynecology, Al-zahra hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
6
|
Daily Supplementation of L-Glutamine in Atrial Fibrillation Patients: The Effect on Heat Shock Proteins and Metabolites. Cells 2020; 9:cells9071729. [PMID: 32698370 PMCID: PMC7408381 DOI: 10.3390/cells9071729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
Pharmaco-therapeutic strategies of atrial fibrillation (AF) are moderately effective and do not prevent AF onset and progression. Therefore, there is an urgent need to develop novel therapies. Previous studies revealed heat shock protein (HSP)-inducing compounds to mitigate AF onset and progression. Such an HSP inducing compound is L-glutamine. In the current study we investigate the effect of L-glutamine supplementation on serum HSP27 and HSP70 levels and metabolite levels in patients with AF patients (n = 21). Hereto, HSP27 and HSP70 levels were determined by ELISAs and metabolites with LC-mass spectrometry. HSP27 levels significantly decreased after 3-months of L-glutamine supplementation [540.39 (250.97–1315.63) to 380.69 (185.68–915.03), p = 0.004] and normalized to baseline levels after 6-months of L-glutamine supplementation [634.96 (139.57–3103.61), p < 0.001]. For HSP70, levels decreased after 3-months of L-glutamine supplementation [548.86 (31.50–1564.51) to 353.65 (110.58–752.50), p = 0.045] and remained low after 6-months of L-glutamine supplementation [309.30 (118.29–1744.19), p = 0.517]. Patients with high HSP27 levels at baseline showed normalization of several metabolites related to the carbohydrates, nucleotides, amino acids, vitamins and cofactors metabolic pathways after 3-months L-glutamine supplementation. In conclusion, L-glutamine supplementation reduces the serum levels of HSP27 and HSP70 within 3-months and normalizes metabolite levels. This knowledge may fuel future clinical studies on L-glutamine to improve cardioprotective effects that may attenuate AF episodes.
Collapse
|
7
|
Chien CC, Lin TY, Chi CC, Liu CH. Probiotic, Bacillus subtilis E20 alters the immunity of white shrimp, Litopenaeus vannamei via glutamine metabolism and hexosamine biosynthetic pathway. FISH & SHELLFISH IMMUNOLOGY 2020; 98:176-185. [PMID: 31926292 DOI: 10.1016/j.fsi.2020.01.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 01/02/2020] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
The purpose of this study was to profile the mechanisms of action of probiotic, Bacillus subtilis E20 in activating the immunity of white shrimp, Litopenaeus vannamei. Two groups of shrimp were studied. One group was fed a control diet without probiotic supplementation and the other was fed a probiotic-containing diet at a level of 109 cfu kg diet-1. After the 8-week feeding regimen, the metabolite composition in the hepatopancreas of shrimp were investigated using 1H nuclear magnetic resonance (1H NMR) based metabolomic analysis. Results from the 1H NMR analysis revealed that 16 hepatopancreatic metabolites were matched and identified among groups, of which 2 metabolites, creatinine and glutamine were significantly higher in probiotic group than in the control group. This result was confirmed by the reverse-phase high-performance liquid chromatography (RP-HPLC) and spectrophotometric analysis. Transcriptome analysis indicated the expressions of 10 genes associated with antioxidant enzymes, pattern recognition proteins and antimicrobial molecules, more active expression in the shrimp fed a diet supplemented with probiotic as compared to that of shrimp in control. In addition, the expressions of 4 genes involved with hexosamine biosynthesis pathway (HBP) and UDP-N-acetylglucosamine-peptide N-acetylglucosaminyltransferase for protein O-glycosylation were also higher in hepatopancreas of probiotic-treated shrimp than in shrimp fed a control diet. Western blot and enzyme-linked immunosorbent assay showed that heat shock factor 1, heat shock protein 70, and protein O-glycosylation in hepatopancreas were higher in probiotic group than the control group. These findings suggest that probiotic, B. subtilis E20 promotes the digestibility of glutamine in the diet, and that the increased glutamine in shrimp can be used as fuel for immune cells or may be used to regulate immune molecule expressions and protein O-glycosylation via the HBP to increase protein O-glycosylation, thereby improving the health of shrimp.
Collapse
Affiliation(s)
- Chin-Cheng Chien
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan
| | - Tzu-Yung Lin
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung, 811, Taiwan
| | - Chia-Chun Chi
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan
| | - Chun-Hung Liu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan; Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan.
| |
Collapse
|
8
|
Tume LN, Valla FV, Joosten K, Jotterand Chaparro C, Latten L, Marino LV, Macleod I, Moullet C, Pathan N, Rooze S, van Rosmalen J, Verbruggen SCAT. Nutritional support for children during critical illness: European Society of Pediatric and Neonatal Intensive Care (ESPNIC) metabolism, endocrine and nutrition section position statement and clinical recommendations. Intensive Care Med 2020; 46:411-425. [PMID: 32077997 PMCID: PMC7067708 DOI: 10.1007/s00134-019-05922-5] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 12/28/2019] [Indexed: 01/09/2023]
Abstract
Background Nutritional support is considered essential for the outcome of paediatric critical illness. There is a lack of methodologically sound trials to provide evidence-based guidelines leading to diverse practices in PICUs worldwide. Acknowledging these limitations, we aimed to summarize the available literature and provide practical guidance for the paediatric critical care clinicians around important clinical questions many of which are not covered by previous guidelines. Objective To provide an ESPNIC position statement and make clinical recommendations for the assessment and nutritional support in critically ill infants and children. Design The metabolism, endocrine and nutrition (MEN) section of the European Society of Pediatric and Neonatal Intensive Care (ESPNIC) generated 15 clinical questions regarding different aspects of nutrition in critically ill children. After a systematic literature search, the Scottish Intercollegiate Guidelines Network (SIGN) grading system was applied to assess the quality of the evidence, conducting meta-analyses where possible, to generate statements and clinical recommendations, which were then voted on electronically. Strong consensus (> 95% agreement) and consensus (> 75% agreement) on these statements and recommendations was measured through modified Delphi voting rounds. Results The final 15 clinical questions generated a total of 7261 abstracts, of which 142 publications were identified relevant to develop 32 recommendations. A strong consensus was reached in 21 (66%) and consensus was reached in 11 (34%) of the recommendations. Only 11 meta-analyses could be performed on 5 questions. Conclusions We present a position statement and clinical practice recommendations. The general level of evidence of the available literature was low. We have summarised this and provided a practical guidance for the paediatric critical care clinicians around important clinical questions. Electronic supplementary material The online version of this article (10.1007/s00134-019-05922-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lyvonne N Tume
- Faculty of Health and Society, University of Salford, Manchester, M6 6PU, UK. .,Pediatric Intensive Care Unit, Alder Hey Children's NHS Foundation Trust, East Prescot Road, Liverpool, L12 2AP, UK.
| | - Frederic V Valla
- Pediatric Intensive Care Unit, Hôpital Femme Mère Enfant, CarMEN INSERM UMR, 1060 Hospices Civils de Lyon, Lyon-Bron, France
| | - Koen Joosten
- Intensive Care, Department of Pediatrics and Pediatric Surgery, Erasmus Medical Centre, Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Corinne Jotterand Chaparro
- Geneva School of Health Sciences, HES-SO University of Applied Sciences and Arts Western Switzerland, Delémont, Switzerland.,Pediatric Intensive Care Unit, University Hospital of Lausanne, Lausanne, Switzerland
| | - Lynne Latten
- Nutrition and Dietetics, Alder Hey Children's Hospital Liverpool, Liverpool, UK
| | - Luise V Marino
- Department of Dietetics/Speech and Language Therapy, NIHR Biomedical Research Centre Southampton, University Hospital Southampton, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Isobel Macleod
- Pediatric Intensive Care Unit, Royal Hospital for Children, Glasgow, UK
| | - Clémence Moullet
- Geneva School of Health Sciences, HES-SO University of Applied Sciences and Arts Western Switzerland, Delémont, Switzerland.,Pediatric Intensive Care Unit, University Hospital of Lausanne, Lausanne, Switzerland
| | - Nazima Pathan
- Department of Pediatrics, University of Cambridge, Hills Road, Cambridge, UK
| | - Shancy Rooze
- Pediatric Intensive Care Unit, Queen Fabiola Children's University Hospital, Brussels, Belgium
| | - Joost van Rosmalen
- Department of Biostatistics, Erasmus Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Sascha C A T Verbruggen
- Intensive Care, Department of Pediatrics and Pediatric Surgery, Erasmus Medical Centre, Sophia Children's Hospital, Rotterdam, The Netherlands
| |
Collapse
|
9
|
Gadhvi KR, Valla FV, Tume LN. Review of Outcomes Used in Nutrition Trials in Pediatric Critical Care. JPEN J Parenter Enteral Nutr 2020; 44:1210-1219. [PMID: 32010996 DOI: 10.1002/jpen.1765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 12/04/2019] [Indexed: 11/09/2022]
Abstract
BACKGROUND Generating robust evidence within pediatric intensive care (PIC) can be challenging because of low patient numbers and patient heterogeneity. Systematic reviews may overcome small study biases but are limited by lack of standardization in outcome measures and their definition. Trials of nutrition interventions in PIC are increasing; thus, we wanted to examine the outcome measures being used in these trials. OBJECTIVE Our objective was to systematically describe outcome measures used when a nutrition intervention has been evaluated in a PIC randomized controlled trial. METHODS A systematic literature review of all studies involving a PIC trial of a nutrition intervention was undertaken from January 1, 1996, until February 20, 2018. RESULTS Twenty-nine trials met the criteria and were reviewed. They included a total of 3226 patients across all trials. Thirty-seven primary outcomes and 83 secondary outcomes were found. These were categorized into PIC-related outcomes (infection, intensive care dependency, organ dysfunction, and mortality) and nutrition outcomes (energy targets, nutrition parameters, and feeding tolerance). We found large variation in the outcome measures used. Outcome domains of energy targets, feeding tolerance, and infection were not adequately defined. CONCLUSIONS Considerable variation in the outcome measures chosen and their definitions exist within PIC nutrition trials. Optimal nutrition outcomes for PIC must be agreed upon and defined, specifically domains of nutrition efficiency, nutrition tolerance, and non-nutrition PIC outcomes. The next step is to conduct an international Delphi study to gain expert consensus and develop a core outcome set to be reported in future pediatric nutrition trials.
Collapse
Affiliation(s)
- Kunal R Gadhvi
- Bristol Royal Hospital for Children, Bristol, UK.,Faculty of Health and Applied Sciences, The University of the West of England, Stapleton, Bristol, UK
| | - Frédéric V Valla
- Faculty of Health and Applied Sciences, The University of the West of England, Stapleton, Bristol, UK.,Pediatric Intensive Care Unit, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, CarMEN INSERM UMR 1060, Lyon-Bron, France
| | - Lyvonne N Tume
- Bristol Royal Hospital for Children, Bristol, UK.,Faculty of Health and Applied Sciences, The University of the West of England, Stapleton, Bristol, UK
| |
Collapse
|
10
|
Weiss SL, Peters MJ, Alhazzani W, Agus MSD, Flori HR, Inwald DP, Nadel S, Schlapbach LJ, Tasker RC, Argent AC, Brierley J, Carcillo J, Carrol ED, Carroll CL, Cheifetz IM, Choong K, Cies JJ, Cruz AT, De Luca D, Deep A, Faust SN, De Oliveira CF, Hall MW, Ishimine P, Javouhey E, Joosten KFM, Joshi P, Karam O, Kneyber MCJ, Lemson J, MacLaren G, Mehta NM, Møller MH, Newth CJL, Nguyen TC, Nishisaki A, Nunnally ME, Parker MM, Paul RM, Randolph AG, Ranjit S, Romer LH, Scott HF, Tume LN, Verger JT, Williams EA, Wolf J, Wong HR, Zimmerman JJ, Kissoon N, Tissieres P. Surviving sepsis campaign international guidelines for the management of septic shock and sepsis-associated organ dysfunction in children. Intensive Care Med 2020; 46:10-67. [PMID: 32030529 PMCID: PMC7095013 DOI: 10.1007/s00134-019-05878-6] [Citation(s) in RCA: 313] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVES To develop evidence-based recommendations for clinicians caring for children (including infants, school-aged children, and adolescents) with septic shock and other sepsis-associated organ dysfunction. DESIGN A panel of 49 international experts, representing 12 international organizations, as well as three methodologists and three public members was convened. Panel members assembled at key international meetings (for those panel members attending the conference), and a stand-alone meeting was held for all panel members in November 2018. A formal conflict-of-interest policy was developed at the onset of the process and enforced throughout. Teleconferences and electronic-based discussion among the chairs, co-chairs, methodologists, and group heads, as well as within subgroups, served as an integral part of the guideline development process. METHODS The panel consisted of six subgroups: recognition and management of infection, hemodynamics and resuscitation, ventilation, endocrine and metabolic therapies, adjunctive therapies, and research priorities. We conducted a systematic review for each Population, Intervention, Control, and Outcomes question to identify the best available evidence, statistically summarized the evidence, and then assessed the quality of evidence using the Grading of Recommendations Assessment, Development, and Evaluation approach. We used the evidence-to-decision framework to formulate recommendations as strong or weak, or as a best practice statement. In addition, "in our practice" statements were included when evidence was inconclusive to issue a recommendation, but the panel felt that some guidance based on practice patterns may be appropriate. RESULTS The panel provided 77 statements on the management and resuscitation of children with septic shock and other sepsis-associated organ dysfunction. Overall, six were strong recommendations, 49 were weak recommendations, and nine were best-practice statements. For 13 questions, no recommendations could be made; but, for 10 of these, "in our practice" statements were provided. In addition, 52 research priorities were identified. CONCLUSIONS A large cohort of international experts was able to achieve consensus regarding many recommendations for the best care of children with sepsis, acknowledging that most aspects of care had relatively low quality of evidence resulting in the frequent issuance of weak recommendations. Despite this challenge, these recommendations regarding the management of children with septic shock and other sepsis-associated organ dysfunction provide a foundation for consistent care to improve outcomes and inform future research.
Collapse
Affiliation(s)
- Scott L Weiss
- Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Mark J Peters
- Great Ormond Street Hospital for Children, London, UK
| | - Waleed Alhazzani
- Department of Medicine, Division of Critical Care, McMaster University, Hamilton, ON, Canada
- Department of Health Research Methods and Impact, McMaster University, Hamilton, ON, Canada
| | - Michael S D Agus
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | | | - Luregn J Schlapbach
- Paediatric Critical Care Research Group, The University of Queensland and Queensland Children's Hospital, Brisbane, QLD, Australia
| | - Robert C Tasker
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrew C Argent
- Red Cross War Memorial Children's Hospital and University of Cape Town, Cape Town, South Africa
| | - Joe Brierley
- Great Ormond Street Hospital for Children, London, UK
| | | | | | | | | | - Karen Choong
- Department of Medicine, Division of Critical Care, McMaster University, Hamilton, ON, Canada
- Department of Health Research Methods and Impact, McMaster University, Hamilton, ON, Canada
| | - Jeffry J Cies
- St. Christopher's Hospital for Children, Philadelphia, PA, USA
| | | | - Daniele De Luca
- Paris South University Hospitals-Assistance Publique Hopitaux de Paris, Paris, France
- Physiopathology and Therapeutic Innovation Unit-INSERM U999, South Paris-Saclay University, Paris, France
| | | | - Saul N Faust
- University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | | | - Mark W Hall
- Nationwide Children's Hospital, Columbus, OH, USA
| | | | | | | | - Poonam Joshi
- All India Institute of Medical Sciences, New Delhi, India
| | - Oliver Karam
- Children's Hospital of Richmond at VCU, Richmond, VA, USA
| | | | - Joris Lemson
- Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Graeme MacLaren
- National University Health System, Singapore, Singapore
- Royal Children's Hospital, Melbourne, VIC, Australia
| | - Nilesh M Mehta
- Department of Anesthesiology, Critical Care and Pain, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | | | - Akira Nishisaki
- Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mark E Nunnally
- New York University Langone Medical Center, New York, NY, USA
| | | | - Raina M Paul
- Advocate Children's Hospital, Park Ridge, IL, USA
| | - Adrienne G Randolph
- Department of Anesthesiology, Critical Care and Pain, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | | | | | - Judy T Verger
- Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- College of Nursing, University of Iowa, Iowa City, IA, USA
| | | | - Joshua Wolf
- St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | | | | | - Pierre Tissieres
- Paris South University Hospitals-Assistance Publique Hopitaux de Paris, Paris, France
- Institute of Integrative Biology of the Cell-CNRS, CEA, Univ Paris Sud, Gif-Sur-Yvette, France
| |
Collapse
|
11
|
Weiss SL, Peters MJ, Alhazzani W, Agus MSD, Flori HR, Inwald DP, Nadel S, Schlapbach LJ, Tasker RC, Argent AC, Brierley J, Carcillo J, Carrol ED, Carroll CL, Cheifetz IM, Choong K, Cies JJ, Cruz AT, De Luca D, Deep A, Faust SN, De Oliveira CF, Hall MW, Ishimine P, Javouhey E, Joosten KFM, Joshi P, Karam O, Kneyber MCJ, Lemson J, MacLaren G, Mehta NM, Møller MH, Newth CJL, Nguyen TC, Nishisaki A, Nunnally ME, Parker MM, Paul RM, Randolph AG, Ranjit S, Romer LH, Scott HF, Tume LN, Verger JT, Williams EA, Wolf J, Wong HR, Zimmerman JJ, Kissoon N, Tissieres P. Surviving Sepsis Campaign International Guidelines for the Management of Septic Shock and Sepsis-Associated Organ Dysfunction in Children. Pediatr Crit Care Med 2020; 21:e52-e106. [PMID: 32032273 DOI: 10.1097/pcc.0000000000002198] [Citation(s) in RCA: 545] [Impact Index Per Article: 109.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVES To develop evidence-based recommendations for clinicians caring for children (including infants, school-aged children, and adolescents) with septic shock and other sepsis-associated organ dysfunction. DESIGN A panel of 49 international experts, representing 12 international organizations, as well as three methodologists and three public members was convened. Panel members assembled at key international meetings (for those panel members attending the conference), and a stand-alone meeting was held for all panel members in November 2018. A formal conflict-of-interest policy was developed at the onset of the process and enforced throughout. Teleconferences and electronic-based discussion among the chairs, co-chairs, methodologists, and group heads, as well as within subgroups, served as an integral part of the guideline development process. METHODS The panel consisted of six subgroups: recognition and management of infection, hemodynamics and resuscitation, ventilation, endocrine and metabolic therapies, adjunctive therapies, and research priorities. We conducted a systematic review for each Population, Intervention, Control, and Outcomes question to identify the best available evidence, statistically summarized the evidence, and then assessed the quality of evidence using the Grading of Recommendations Assessment, Development, and Evaluation approach. We used the evidence-to-decision framework to formulate recommendations as strong or weak, or as a best practice statement. In addition, "in our practice" statements were included when evidence was inconclusive to issue a recommendation, but the panel felt that some guidance based on practice patterns may be appropriate. RESULTS The panel provided 77 statements on the management and resuscitation of children with septic shock and other sepsis-associated organ dysfunction. Overall, six were strong recommendations, 52 were weak recommendations, and nine were best-practice statements. For 13 questions, no recommendations could be made; but, for 10 of these, "in our practice" statements were provided. In addition, 49 research priorities were identified. CONCLUSIONS A large cohort of international experts was able to achieve consensus regarding many recommendations for the best care of children with sepsis, acknowledging that most aspects of care had relatively low quality of evidence resulting in the frequent issuance of weak recommendations. Despite this challenge, these recommendations regarding the management of children with septic shock and other sepsis-associated organ dysfunction provide a foundation for consistent care to improve outcomes and inform future research.
Collapse
Affiliation(s)
- Scott L Weiss
- Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Mark J Peters
- Great Ormond Street Hospital for Children, London, United Kingdom
| | - Waleed Alhazzani
- Department of Medicine, Division of Critical Care, and Department of Health Research Methods and Impact, McMaster University, Hamilton, ON, Canada
| | - Michael S D Agus
- Department of Pediatrics (to Dr. Agus), Department of Anesthesiology, Critical Care and Pain (to Drs. Mehta and Randolph), Boston Children's Hospital and Harvard Medical School, Boston, MA
| | | | | | | | - Luregn J Schlapbach
- Paediatric Critical Care Research Group, The University of Queensland and Queensland Children's Hospital, Brisbane, QLD, Australia
| | - Robert C Tasker
- Department of Pediatrics (to Dr. Agus), Department of Anesthesiology, Critical Care and Pain (to Drs. Mehta and Randolph), Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Andrew C Argent
- Red Cross War Memorial Children's Hospital and University of Cape Town, Cape Town, South Africa
| | - Joe Brierley
- Great Ormond Street Hospital for Children, London, United Kingdom
| | | | | | | | | | - Karen Choong
- Department of Medicine, Division of Critical Care, and Department of Health Research Methods and Impact, McMaster University, Hamilton, ON, Canada
| | - Jeffry J Cies
- St. Christopher's Hospital for Children, Philadelphia, PA
| | | | - Daniele De Luca
- Paris South University Hospitals-Assistance Publique Hopitaux de Paris, Paris, France.,Physiopathology and Therapeutic Innovation Unit-INSERM U999, South Paris-Saclay University, Paris, France
| | - Akash Deep
- King's College Hospital, London, United Kingdom
| | - Saul N Faust
- University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, United Kingdom
| | | | - Mark W Hall
- Nationwide Children's Hospital, Columbus, OH
| | | | | | | | - Poonam Joshi
- All India Institute of Medical Sciences, New Delhi, India
| | - Oliver Karam
- Children's Hospital of Richmond at VCU, Richmond, VA
| | | | - Joris Lemson
- Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Graeme MacLaren
- National University Health System, Singapore, and Royal Children's Hospital, Melbourne, VIC, Australia
| | - Nilesh M Mehta
- Department of Pediatrics (to Dr. Agus), Department of Anesthesiology, Critical Care and Pain (to Drs. Mehta and Randolph), Boston Children's Hospital and Harvard Medical School, Boston, MA
| | | | | | | | - Akira Nishisaki
- Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | | | | | | | - Adrienne G Randolph
- Department of Pediatrics (to Dr. Agus), Department of Anesthesiology, Critical Care and Pain (to Drs. Mehta and Randolph), Boston Children's Hospital and Harvard Medical School, Boston, MA
| | | | | | | | - Lyvonne N Tume
- University of the West of England, Bristol, United Kingdom
| | - Judy T Verger
- Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA.,College of Nursing, University of Iowa, Iowa City, IA
| | | | - Joshua Wolf
- St. Jude Children's Research Hospital, Memphis, TN
| | | | | | - Niranjan Kissoon
- British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| | - Pierre Tissieres
- Paris South University Hospitals-Assistance Publique Hopitaux de Paris, Paris, France.,Institute of Integrative Biology of the Cell-CNRS, CEA, Univ Paris Sud, Gif-sur-Yvette, France
| |
Collapse
|
12
|
Glutamine Metabolism Is Essential for Stemness of Bone Marrow Mesenchymal Stem Cells and Bone Homeostasis. Stem Cells Int 2019; 2019:8928934. [PMID: 31611919 PMCID: PMC6757285 DOI: 10.1155/2019/8928934] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023] Open
Abstract
Skeleton has emerged as an endocrine organ which is both capable of regulating energy metabolism and being a target for it. Glutamine is the most bountiful and flexible amino acid in the body which provides adenosine 5′-triphosphate (ATP) demands for cells. Emerging evidences support that glutamine which acts as the second metabolic regulator after glucose exerts crucial roles in bone homeostasis at cellular level, including the lineage allocation and proliferation of bone mesenchymal stem cells (BMSCs), the matrix mineralization of osteoblasts, and the biosynthesis in chondrocytes. The integrated mechanism consisting of WNT, mammalian target of rapamycin (mTOR), and reactive oxygen species (ROS) signaling pathway in a glutamine-dependent pattern is responsible to regulate the complex intrinsic biological process, despite more extensive molecules are deserved to be elucidated in glutamine metabolism further. Indeed, dysfunctional glutamine metabolism enhances the development of degenerative bone diseases, such as osteoporosis and osteoarthritis, and glutamine or glutamine progenitor supplementation can partially restore bone defects which may promote treatment of bone diseases, although the mechanisms are not quite clear. In this review, we will summarize and update the latest research findings and clinical trials on the crucial regulatory roles of glutamine metabolism in BMSCs and BMSC-derived bone cells, also followed with the osteoclasts which are important in bone resorption.
Collapse
|
13
|
Cruzat V, Macedo Rogero M, Noel Keane K, Curi R, Newsholme P. Glutamine: Metabolism and Immune Function, Supplementation and Clinical Translation. Nutrients 2018; 10:nu10111564. [PMID: 30360490 PMCID: PMC6266414 DOI: 10.3390/nu10111564] [Citation(s) in RCA: 630] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 10/13/2018] [Accepted: 10/16/2018] [Indexed: 02/07/2023] Open
Abstract
Glutamine is the most abundant and versatile amino acid in the body. In health and disease, the rate of glutamine consumption by immune cells is similar or greater than glucose. For instance, in vitro and in vivo studies have determined that glutamine is an essential nutrient for lymphocyte proliferation and cytokine production, macrophage phagocytic plus secretory activities, and neutrophil bacterial killing. Glutamine release to the circulation and availability is mainly controlled by key metabolic organs, such as the gut, liver, and skeletal muscles. During catabolic/hypercatabolic situations glutamine can become essential for metabolic function, but its availability may be compromised due to the impairment of homeostasis in the inter-tissue metabolism of amino acids. For this reason, glutamine is currently part of clinical nutrition supplementation protocols and/or recommended for immune suppressed individuals. However, in a wide range of catabolic/hypercatabolic situations (e.g., ill/critically ill, post-trauma, sepsis, exhausted athletes), it is currently difficult to determine whether glutamine supplementation (oral/enteral or parenteral) should be recommended based on the amino acid plasma/bloodstream concentration (also known as glutaminemia). Although the beneficial immune-based effects of glutamine supplementation are already established, many questions and evidence for positive in vivo outcomes still remain to be presented. Therefore, this paper provides an integrated review of how glutamine metabolism in key organs is important to cells of the immune system. We also discuss glutamine metabolism and action, and important issues related to the effects of glutamine supplementation in catabolic situations.
Collapse
Affiliation(s)
- Vinicius Cruzat
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Biosciences, Curtin University, Perth 6102, Australia.
- Faculty of Health, Torrens University, Melbourne 3065, Australia.
| | - Marcelo Macedo Rogero
- Department of Nutrition, Faculty of Public Health, University of São Paulo, Avenida Doutor Arnaldo 715, São Paulo 01246-904, Brazil.
| | - Kevin Noel Keane
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Biosciences, Curtin University, Perth 6102, Australia.
| | - Rui Curi
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, Brazil.
| | - Philip Newsholme
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Biosciences, Curtin University, Perth 6102, Australia.
| |
Collapse
|
14
|
Cruzat V, Macedo Rogero M, Noel Keane K, Curi R, Newsholme P. Glutamine: Metabolism and Immune Function, Supplementation and Clinical Translation. Nutrients 2018. [PMID: 30360490 DOI: 10.20944/preprints201809.0459.v1] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Glutamine is the most abundant and versatile amino acid in the body. In health and disease, the rate of glutamine consumption by immune cells is similar or greater than glucose. For instance, in vitro and in vivo studies have determined that glutamine is an essential nutrient for lymphocyte proliferation and cytokine production, macrophage phagocytic plus secretory activities, and neutrophil bacterial killing. Glutamine release to the circulation and availability is mainly controlled by key metabolic organs, such as the gut, liver, and skeletal muscles. During catabolic/hypercatabolic situations glutamine can become essential for metabolic function, but its availability may be compromised due to the impairment of homeostasis in the inter-tissue metabolism of amino acids. For this reason, glutamine is currently part of clinical nutrition supplementation protocols and/or recommended for immune suppressed individuals. However, in a wide range of catabolic/hypercatabolic situations (e.g., ill/critically ill, post-trauma, sepsis, exhausted athletes), it is currently difficult to determine whether glutamine supplementation (oral/enteral or parenteral) should be recommended based on the amino acid plasma/bloodstream concentration (also known as glutaminemia). Although the beneficial immune-based effects of glutamine supplementation are already established, many questions and evidence for positive in vivo outcomes still remain to be presented. Therefore, this paper provides an integrated review of how glutamine metabolism in key organs is important to cells of the immune system. We also discuss glutamine metabolism and action, and important issues related to the effects of glutamine supplementation in catabolic situations.
Collapse
Affiliation(s)
- Vinicius Cruzat
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Biosciences, Curtin University, Perth 6102, Australia. .,Faculty of Health, Torrens University, Melbourne 3065, Australia.
| | - Marcelo Macedo Rogero
- Department of Nutrition, Faculty of Public Health, University of São Paulo, Avenida Doutor Arnaldo 715, São Paulo 01246-904, Brazil.
| | - Kevin Noel Keane
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Biosciences, Curtin University, Perth 6102, Australia.
| | - Rui Curi
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, Brazil.
| | - Philip Newsholme
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Biosciences, Curtin University, Perth 6102, Australia.
| |
Collapse
|
15
|
Chinese guidelines for the assessment and provision of nutrition support therapy in critically ill children. World J Pediatr 2018; 14:419-428. [PMID: 30155618 DOI: 10.1007/s12519-018-0175-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 07/11/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND This document represents the first evidence-based guidelines to describe best practices in nutrition therapy in critically ill children (> 1 month and < 18 years), who are expected to require a length of stay more than 2 or 3 days in a Pediatric Intensive Care Unit admitting medical patients domain. METHODS A total of 25,673 articles were scanned for relevance. After careful review, 88 studies appeared to answer the pre-identified questions for the guidelines. We used the grading of recommendations, assessment, development and evaluation criteria to adjust the evidence grade based on the quality of design and execution of each study. RESULTS The guidelines emphasise the importance of nutritional assessment, particularly the detection of malnourished patients. Indirect calorimetry (IC) is recommended to estimate energy expenditure and there is a creative value in energy expenditure, 50 kcal/kg/day for children aged 1-8 years during acute phase if IC is unfeasible. Enteral nutrition (EN) and early enteral nutrition remain the preferred routes for nutrient delivery. A minimum protein intake of 1.5 g/kg/day is suggested for this patient population. The role of supplemental parenteral nutrition (PN) has been highlighted in patients with low nutritional risk, and a delayed approach appears to be beneficial in this group of patients. Immune-enhancing cannot be currently recommended neither in EN nor PN. CONCLUSION Overall, the pediatric critically ill population is heterogeneous, and an individualized nutrition support with the aim of improving clinical outcomes is necessary and important.
Collapse
|
16
|
Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Pediatric Critically Ill Patient: Society of Critical Care Medicine and American Society for Parenteral and Enteral Nutrition. Pediatr Crit Care Med 2017; 18:675-715. [PMID: 28691958 DOI: 10.1097/pcc.0000000000001134] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This document represents the first collaboration between two organizations, American Society of Parenteral and Enteral Nutrition and the Society of Critical Care Medicine, to describe best practices in nutrition therapy in critically ill children. The target of these guidelines is intended to be the pediatric (> 1 mo and < 18 yr) critically ill patient expected to require a length of stay greater than 2 or 3 days in a PICU admitting medical, surgical, and cardiac patients. In total, 2,032 citations were scanned for relevance. The PubMed/Medline search resulted in 960 citations for clinical trials and 925 citations for cohort studies. The EMBASE search for clinical trials culled 1,661 citations. In total, the search for clinical trials yielded 1,107 citations, whereas the cohort search yielded 925. After careful review, 16 randomized controlled trials and 37 cohort studies appeared to answer one of the eight preidentified question groups for this guideline. We used the Grading of Recommendations, Assessment, Development and Evaluation criteria to adjust the evidence grade based on assessment of the quality of study design and execution. These guidelines are not intended for neonates or adult patients. The guidelines reiterate the importance of nutritional assessment, particularly the detection of malnourished patients who are most vulnerable and therefore potentially may benefit from timely intervention. There is a need for renewed focus on accurate estimation of energy needs and attention to optimizing protein intake. Indirect calorimetry, where feasible, and cautious use of estimating equations and increased surveillance for unintended caloric underfeeding and overfeeding are recommended. Optimal protein intake and its correlation with clinical outcomes are areas of great interest. The optimal route and timing of nutrient delivery is an area of intense debate and investigations. Enteral nutrition remains the preferred route for nutrient delivery. Several strategies to optimize enteral nutrition during critical illness have emerged. The role of supplemental parenteral nutrition has been highlighted, and a delayed approach appears to be beneficial. Immunonutrition cannot be currently recommended. Overall, the pediatric critical care population is heterogeneous, and a nuanced approach to individualizing nutrition support with the aim of improving clinical outcomes is necessary.
Collapse
|
17
|
Mehta NM, Skillman HE, Irving SY, Coss-Bu JA, Vermilyea S, Farrington EA, McKeever L, Hall AM, Goday PS, Braunschweig C. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Pediatric Critically Ill Patient: Society of Critical Care Medicine and American Society for Parenteral and Enteral Nutrition. JPEN J Parenter Enteral Nutr 2017; 41:706-742. [DOI: 10.1177/0148607117711387] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Nilesh M. Mehta
- Division of Critical Care Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Heather E. Skillman
- Clinical Nutrition Department, Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Sharon Y. Irving
- Division of Critical Care, Children’s Hospital of Philadelphia, University of Pennsylvania School of Nursing, Philadelphia, Pennsylvania, USA
| | - Jorge A. Coss-Bu
- Section of Critical Care, Department of Pediatrics, Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Sarah Vermilyea
- Division of Nutrition Therapy, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Elizabeth Anne Farrington
- Department of Pharmacy, Betty H. Cameron Women’s and Children’s Hospital, New Hanover Regional Medical Center, Wilmington, North Carolina, USA
| | - Liam McKeever
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Amber M. Hall
- Biostatistics, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Praveen S. Goday
- Pediatric Gastroenterology and Nutrition, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Carol Braunschweig
- Division of Epidemiology and Biostatistics, Department of Kinesiology and Nutrition, University of Illinois, Chicago, Illinois, USA
| |
Collapse
|
18
|
Fivez T, Kerklaan D, Mesotten D, Verbruggen S, Joosten K, Van den Berghe G. Evidence for the use of parenteral nutrition in the pediatric intensive care unit. Clin Nutr 2015; 36:218-223. [PMID: 26646358 DOI: 10.1016/j.clnu.2015.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 10/30/2015] [Accepted: 11/04/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND AIMS During hospitalization in a pediatric intensive care unit (PICU), critically ill children are fed artificially. Administered via the preferred enteral route, caloric targets are often not reached. Hence, parenteral nutrition is given to this patient population. In this review we analyzed the available evidence from randomized controlled trials (RCTs) that supports the use of parenteral nutrition in children during critical illness. METHODS A search strategy in Ovid MEDLINE and Ovid EMBASE was created and trial registries were screened to identify the relevant RCTs. Studies were included if they were randomized controlled trials, involved pediatric patients admitted to PICU, and compared different dosing/compositions of parenteral nutrition. Descriptive studies and reviews were excluded. RESULTS Of the 584 articles identified by the search strategy, only 114 articles were retained after title screening. Further abstract and full text screening identified 6 small RCTs that compared two dosing/composition strategies of parenteral nutrition. These trials reported differences in surrogate endpoints without an effect on hard clinical endpoints. The RCTs observed improvements in these surrogate endpoints with the use of more calories or when parenteral glutamine or fish oil was added. CONCLUSIONS The few RCTs suggest that surrogate endpoints can be affected by providing parenteral nutrition to critically ill children, but the studies were not statistically powered to draw meaningful clinical conclusions. Large RCTs with clinically relevant outcome measures are urgently needed to support the current nutritional guidelines that advise the use of parenteral nutrition in the PICU.
Collapse
Affiliation(s)
- Tom Fivez
- Clinical Division and Laboratory of Intensive Care Medicine, Department Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| | - Dorian Kerklaan
- Intensive Care Unit, Department of Paediatrics and Pediatric Surgery, Erasmus Medical Centre, Sophia Children's Hospital, Rotterdam, The Netherlands.
| | - Dieter Mesotten
- Clinical Division and Laboratory of Intensive Care Medicine, Department Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| | - Sascha Verbruggen
- Intensive Care Unit, Department of Paediatrics and Pediatric Surgery, Erasmus Medical Centre, Sophia Children's Hospital, Rotterdam, The Netherlands.
| | - Koen Joosten
- Intensive Care Unit, Department of Paediatrics and Pediatric Surgery, Erasmus Medical Centre, Sophia Children's Hospital, Rotterdam, The Netherlands.
| | - Greet Van den Berghe
- Clinical Division and Laboratory of Intensive Care Medicine, Department Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
19
|
Qu B, Jia Y, Liu Y, Wang H, Ren G, Wang H. The detection and role of heat shock protein 70 in various nondisease conditions and disease conditions: a literature review. Cell Stress Chaperones 2015; 20:885-92. [PMID: 26139132 PMCID: PMC4595429 DOI: 10.1007/s12192-015-0618-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/08/2015] [Accepted: 06/23/2015] [Indexed: 12/26/2022] Open
Abstract
As an intracellular polypeptide, heat shock protein 70 (HSP70) can be exposed on the plasma membrane and/or released into the circulation. However, the role of HSP70 in various nondisease and disease conditions remains unknown. Quantitative methods for the detection of HSP70 have been used in clinical studies, revealing that an increase in circulating HSP70 is associated with various types of exercise, elderly patients presenting with inflammation, mobile phones, inflammation, sepsis, chronic obstructive pulmonary disease, asthma, carotid intima-media thickness, glutamine-treated ill patients, mortality, diabetes mellitus, active chronic glomerulonephritis, and cancers. Circulating HSP70 decreases with age in humans and in obstructive sleep apnea, arteriosclerosis, atrial fibrillation (AF) following coronary artery bypass surgery, nonalcoholic fatty liver disease, moderate-to-severe alcoholic fatty liver disease, hepatic steatosis, and Helicobacter pylori infection. In conclusion, quantitative methods can be used to detect HSP70, particularly in determining circulating HSP70 levels, using more convenient and rapid screening methods. Studies have shown that changes in HSP70 are associated with various nondisease and disease conditions; thus, HSP70 might be a novel potential biomarker reflecting various nondisease conditions and also the severity of disease conditions. However, the reliability and accuracy, as well as the underlying mechanism, of this relationship remain poorly understood, and large-sample clinical research must be performed to verify the role.
Collapse
Affiliation(s)
- Baoge Qu
- Internal Medicine, Taishan Hospital, No. 3 Tianwaicun Street, Taian City, Shandong, 271000, People's Republic of China.
| | - Yiguo Jia
- Internal Medicine, Taishan Hospital, No. 3 Tianwaicun Street, Taian City, Shandong, 271000, People's Republic of China
| | - Yuanxun Liu
- Internal Medicine, Taishan Hospital, No. 3 Tianwaicun Street, Taian City, Shandong, 271000, People's Republic of China
| | - Hui Wang
- Internal Medicine, Taishan Hospital, No. 3 Tianwaicun Street, Taian City, Shandong, 271000, People's Republic of China
| | - Guangying Ren
- Internal Medicine, Taishan Hospital, No. 3 Tianwaicun Street, Taian City, Shandong, 271000, People's Republic of China
| | - Hong Wang
- Internal Medicine, Taishan Hospital, No. 3 Tianwaicun Street, Taian City, Shandong, 271000, People's Republic of China
| |
Collapse
|