1
|
Bagiyal M, Parsad R, Ahlawat S, Gera R, Chhabra P, Sharma U, Arora R, Sharma R. Review on camel genetic diversity: ecological and economic perspectives. Mamm Genome 2024; 35:621-632. [PMID: 39075281 DOI: 10.1007/s00335-024-10054-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024]
Abstract
Camels, known as the "Ship of the Desert," play a vital role in the ecosystems and economies of arid and semi-arid regions. They provide meat, milk, transportation, and other essential services, and their resilience to harsh environments makes them invaluable. Despite their similarities, camel breeds exhibit notable differences in size, color, and structure, with over 40 million camels worldwide. This number is projected to increase, underscoring their growing significance. Economically, camels are crucial for food production, tourism, and trade, with camel racing being particularly significant in Arab countries. Their unique physiological traits, such as low disease susceptibility and efficient water conservation, further enhance their value. Camel products, especially meat and milk, offer substantial nutritional and therapeutic benefits, contributing to their high demand. Genetic diversity studies have advanced our understanding of camels' adaptation to extreme environments. Functional genomics and whole-genome sequencing have identified genes responsible for these adaptations, aiding breeding programs and conservation efforts. High-throughput sequencing has revealed genetic markers linked to traits like milk production and disease resistance. The development of SNP chips has revolutionized genetic studies by providing a cost-effective alternative to whole-genome sequencing. These tools facilitate large-scale genotyping, essential for conserving genetic diversity and improving breeding strategies. To prevent the depletion of camel genetic diversity, it is crucial to streamline in situ and ex situ conservation efforts to maintain their ecological and economic value. A comprehensive approach to camel conservation and genetic preservation, involving advanced genomic technologies, reproductive biotechniques, and sustainable management practices, will ensure their continued contribution to human societies.
Collapse
Affiliation(s)
- Meena Bagiyal
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Ram Parsad
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Sonika Ahlawat
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India.
| | - Ritika Gera
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Pooja Chhabra
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Upasna Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Reena Arora
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Rekha Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| |
Collapse
|
2
|
Seyiti S, Kelimu A, Yusufu G. Bactrian Camel Milk: Chemical Composition, Bioactivities, Processing Techniques, and Economic Potential in China. Molecules 2024; 29:4680. [PMID: 39407609 PMCID: PMC11478162 DOI: 10.3390/molecules29194680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Bactrian camel (BC) milk has gained increasing attention due to its unique nutritional profile and potential bioactivities. This comprehensive review explores the chemical composition, bioactivities, processing techniques, and economic potential of BC milk in China. The distinctive chemical composition of BC milk, including protein, lipid, carbohydrate, vitamin, and mineral content, is discussed, emphasizing its differences from other mammalian milk. The review highlights the various bioactivities of BC milk, such as anti-inflammatory, antidiabetic, lipid-lowering, and anticancer properties, as well as its modulatory effects on intestinal microbiota. The technological properties of BC milk, focusing on its heat stability, coagulation behavior, and potential for product development, are examined. The review also addresses current processing techniques and their impact on milk quality. Finally, the economic potential and future perspectives of BC milk in China are evaluated. This review provides valuable insights into the multifaceted aspects of BC milk, serving as a foundation for future research and development in this emerging field. The motivation for this review stems from the growing interest in BC milk as a functional food and the need for a comprehensive understanding of its properties, applications, and market potential to guide future research and industry development.
Collapse
Affiliation(s)
- Shamila Seyiti
- School of Economics and Management, Xinjiang University, Shengli Road 666, Urumqi 830046, China;
| | - Abulimiti Kelimu
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Nongda East Road 311, Urumqi 830052, China
| | - Gulinaer Yusufu
- School of Economics and Management, Xinjiang University, Shengli Road 666, Urumqi 830046, China;
| |
Collapse
|
3
|
Yao H, Dou Z, Zhao Z, Liang X, Yue H, Ma W, Su Z, Wang Y, Hao Z, Yan H, Wu Z, Wang L, Chen G, Yang J. Transcriptome analysis of the Bactrian camel (Camelus bactrianus) reveals candidate genes affecting milk production traits. BMC Genomics 2023; 24:660. [PMID: 37919661 PMCID: PMC10621195 DOI: 10.1186/s12864-023-09703-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 09/27/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Milk production traits are complex traits with vital economic importance in the camel industry. However, the genetic mechanisms regulating milk production traits in camels remain poorly understood. Therefore, we aimed to identify candidate genes and metabolic pathways that affect milk production traits in Bactrian camels. METHODS We classified camels (fourth parity) as low- or high-yield, examined pregnant camels using B-mode ultrasonography, observed the microscopic changes in the mammary gland using hematoxylin and eosin (HE) staining, and used RNA sequencing to identify differentially expressed genes (DEGs) and pathways. RESULTS The average standard milk yield over the 300 days during parity was recorded as 470.18 ± 9.75 and 978.34 ± 3.80 kg in low- and high-performance camels, respectively. Nine female Junggar Bactrian camels were subjected to transcriptome sequencing, and 609 and 393 DEGs were identified in the low-yield vs. high-yield (WDL vs. WGH) and pregnancy versus colostrum period (RSQ vs. CRQ) comparison groups, respectively. The DEGs were compared with genes associated with milk production traits in the Animal Quantitative Trait Loci database and in Alashan Bactrian camels, and 65 and 46 overlapping candidate genes were obtained, respectively. Functional enrichment and protein-protein interaction network analyses of the DEGs and candidate genes were conducted. After comparing our results with those of other livestock studies, we identified 16 signaling pathways and 27 core candidate genes associated with maternal parturition, estrogen regulation, initiation of lactation, and milk production traits. The pathways suggest that emerged milk production involves the regulation of multiple complex metabolic and cellular developmental processes in camels. Finally, the RNA sequencing results were validated using quantitative real-time PCR; the 15 selected genes exhibited consistent expression changes. CONCLUSIONS This study identified DEGs and metabolic pathways affecting maternal parturition and milk production traits. The results provides a theoretical foundation for further research on the molecular mechanism of genes related to milk production traits in camels. Furthermore, these findings will help improve breeding strategies to achieve the desired milk yield in camels.
Collapse
Affiliation(s)
- Huaibing Yao
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, 777 Huarui Street, Urumqi, 830017, Xinjiang, PR China
- Xinjiang Camel Industry Engineering Technology Research Center, Urumqi, 830017, China
| | - Zhihua Dou
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, 777 Huarui Street, Urumqi, 830017, Xinjiang, PR China
- Xinjiang Camel Industry Engineering Technology Research Center, Urumqi, 830017, China
| | - Zhongkai Zhao
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, 777 Huarui Street, Urumqi, 830017, Xinjiang, PR China
- Xinjiang Camel Industry Engineering Technology Research Center, Urumqi, 830017, China
| | - Xiaorui Liang
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, 777 Huarui Street, Urumqi, 830017, Xinjiang, PR China
- Xinjiang Camel Industry Engineering Technology Research Center, Urumqi, 830017, China
| | - Haitao Yue
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, 777 Huarui Street, Urumqi, 830017, Xinjiang, PR China
- Xinjiang Camel Industry Engineering Technology Research Center, Urumqi, 830017, China
| | - Wanpeng Ma
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Zhanqiang Su
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Yuzhuo Wang
- Xinjiang Altai Regional Animal Husbandry Veterinary Station, Altay, 836500, Xinjiang, China
| | - Zelin Hao
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, 777 Huarui Street, Urumqi, 830017, Xinjiang, PR China
- Xinjiang Camel Industry Engineering Technology Research Center, Urumqi, 830017, China
| | - Hui Yan
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, 777 Huarui Street, Urumqi, 830017, Xinjiang, PR China
- Xinjiang Camel Industry Engineering Technology Research Center, Urumqi, 830017, China
| | - Zhuangyuan Wu
- Xinjiang Altai Regional Animal Husbandry Veterinary Station, Altay, 836500, Xinjiang, China
| | - Liang Wang
- Xinjiang Camel Industry Engineering Technology Research Center, Urumqi, 830017, China
- Bactrian Camel Academy of Xinjiang, Xinjiang Wangyuan Camel Milk Limited Company, Altay, 836500, Xinjiang, China
| | - Gangliang Chen
- Xinjiang Camel Industry Engineering Technology Research Center, Urumqi, 830017, China
- Bactrian Camel Academy of Xinjiang, Xinjiang Wangyuan Camel Milk Limited Company, Altay, 836500, Xinjiang, China
| | - Jie Yang
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, 777 Huarui Street, Urumqi, 830017, Xinjiang, PR China.
- Xinjiang Camel Industry Engineering Technology Research Center, Urumqi, 830017, China.
| |
Collapse
|
4
|
Raj A, Shuklan P, Madan P, Chauhan K, Phogat J, Rani S. Comparative Attenuating Impact of Camel Milk and Insulin in Streptozotocin-Induced Diabetic Albino Rats. ACS OMEGA 2023; 8:29270-29280. [PMID: 37599985 PMCID: PMC10433336 DOI: 10.1021/acsomega.3c02626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023]
Abstract
In this study, albino Wistar rats that have developed diabetes as a result of the drug streptozotocin (STZ) were treated with camel milk and insulin. For this, 36 rats were divided into six different (n = 6) groups: control, control + camel milk, diabetic control, insulin, camel milk, and combined camel milk + insulin. A 50 mg/kg intraperitoneal injection of STZ was used to induce diabetes. Rats with blood glucose levels exceeding 250 mg/dL after the induction of diabetes were taken into consideration for the study. The diabetic rats were treated with camel milk (50 mL/rat/day), insulin (6 units kg-1 b·wt/day), or their combination daily for 30 days. Throughout the course of the study, the rats' glucose levels and body weight were checked. In the diabetic control rats, a reduction in body weight and hyperglycemic condition was seen. Improvements in glycemic levels and weight gain were seen in the camel milk, insulin, and combined treatment groups compared to the diabetic control group; however, the combined treated group did not show the same degree of improvement as the alone treated group. Hematological changes in the diabetic control group included reductions in lymphocytes, platelets, total leukocyte count (TLC), and red blood cell (RBC) indices (mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), packed cell volume (PCV), and mean cell hemoglobin concentration (MCHC)). Each group that got insulin and camel milk separately and combined showed improvement in these changes. The liver, kidney, and pancreas in the diabetic control group had worsened morphological alterations. These histopathological alternations were significantly improved in the treatment groups. Hence, this study demonstrates the antidiabetic effects of camel milk in comparison to insulin. These findings highlight the potential of camel milk as an alternative therapy for diabetes, although further research is warranted to fully understand its mechanisms of action and long-term effects.
Collapse
Affiliation(s)
- Anshu Raj
- Department
of Zoology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Priyanka Shuklan
- Department
of Zoology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Preety Madan
- Department
of Zoology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Khushboo Chauhan
- Department
of Zoology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Jatin Phogat
- Department
of Biochemistry, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Sudesh Rani
- Department
of Zoology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| |
Collapse
|
5
|
Tao W, Aniwar L, ZuliPicar A, Tulafu H, Zhang R, Liu B, Wu W, Huang J. Analysis of Genetic Diversity and Population Structure of Tarim and Junggar Bactrian Camels Based on Simplified GBS Genome Sequencing. Animals (Basel) 2023; 13:2349. [PMID: 37508126 PMCID: PMC10376019 DOI: 10.3390/ani13142349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
In view of the severe reduction in Bactrian camel germplasm resources, scientific evaluation, protection, and utilization is particularly important. Therefore, it is necessary to investigate the genetic diversity and genetic structure of this species, and identify the genes that have played important roles in its evolution. In this study, 21,971 SNPs were identified in 118 domestic Bactrian camels from the Tarim (n = 60) and Junggar (n = 58) populations using simplified GBS genome sequencing. The results show that Tarim and Junggar Bactrian camels have high nucleotide diversity. A phylogenetic tree constructed using structural analysis, principal component analysis (PCA), and the adjacency method (NJ) showed that Tarim and Junggar Bactrian camels were clustered together. The selection signals revealed that the Tarim and Junggar Bactrian camels shared 108 genes under positive selection, including WNT1, WNT10B, CD14, SEC61A2, DPAGT1, FOXO6, etc. These selected genes were widely involved in the immune system, embryonic development, lipid metabolism, and other processes. From a genomic analysis perspective, the genetic relationship between TLM and ZGE camels is close, with an average Fst of 0.048 and a relatively low average differentiation coefficient between the two populations. In addition, shared selected genes in the long-term depression pathway were significantly enriched in Tarim and Junggar. These findings will offer support and assistance for the exploration of genetic resource preservation, economically significant traits, and the mechanisms underlying biological characteristics, molecular breeding, and disease.
Collapse
Affiliation(s)
- Weikun Tao
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi 830000, China
| | - Lazat Aniwar
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi 830000, China
| | - Azat ZuliPicar
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi 830000, China
| | - Hanikzi Tulafu
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi 830000, China
| | - Rongyin Zhang
- Institute of Quality Standards, Xinjiang Academy of Animal Husbandry Sciences, Urumqi 830000, China
| | - Bo Liu
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi 830000, China
| | - Weiwei Wu
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi 830000, China
| | - Juncheng Huang
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi 830000, China
| |
Collapse
|
6
|
Yao H, Liang X, Dou Z, Zhao Z, Ma W, Hao Z, Yan H, Wang Y, Wu Z, Chen G, Yang J. Transcriptome analysis to identify candidate genes related to mammary gland development of Bactrian camel ( Camelus bactrianus). Front Vet Sci 2023; 10:1196950. [PMID: 37342620 PMCID: PMC10277799 DOI: 10.3389/fvets.2023.1196950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/19/2023] [Indexed: 06/23/2023] Open
Abstract
Introduction The demand for camel milk, which has unique therapeutic properties, is increasing. The mammary gland is the organ in mammals responsible for the production and quality of milk. However, few studies have investigated the genes or pathways related to mammary gland growth and development in Bactrian camels. This study aimed to compare the morphological changes in mammary gland tissue and transcriptome expression profiles between young and adult female Bactrian camels and to explore the potential candidate genes and signaling pathways related to mammary gland development. Methods Three 2 years-old female camels and three 5 years-old adult female camels were maintained in the same environment. The parenchyma of the mammary gland tissue was sampled from the camels using percutaneous needle biopsy. Morphological changes were observed using hematoxylin-eosin staining. High-throughput RNA sequencing was performed using the Illumina HiSeq platform to analyze changes in the transcriptome between young and adult camels. Functional enrichment, pathway enrichment, and protein-protein interaction networks were also analyzed. Gene expression was verified using quantitative real-time polymerase chain reaction (qRT-PCR). Results Histomorphological analysis showed that the mammary ducts and mammary epithelial cells in adult female camels were greatly developed and differentiated from those in young camels. Transcriptome analysis showed that 2,851 differentially expressed genes were obtained in the adult camel group compared to the young camel group, of which 1,420 were upregulated, 1,431 were downregulated, and 2,419 encoded proteins. Functional enrichment analysis revealed that the upregulated genes were significantly enriched for 24 pathways, including the Hedgehog signaling pathway which is closely related to mammary gland development. The downregulated genes were significantly enriched for seven pathways, among these the Wnt signaling pathway was significantly related to mammary gland development. The protein-protein interaction network sorted the nodes according to the degree of gene interaction and identified nine candidate genes: PRKAB2, PRKAG3, PLCB4, BTRC, GLI1, WIF1, DKK2, FZD3, and WNT4. The expression of fifteen genes randomly detected by qRT-PCR showed results consistent with those of the transcriptome analysis. Discussion Preliminary findings indicate that the Hedgehog, Wnt, oxytocin, insulin, and steroid biosynthesis signaling pathways have important effects on mammary gland development in dairy camels. Given the importance of these pathways and the interconnections of the involved genes, the genes in these pathways should be considered potential candidate genes. This study provides a theoretical basis for elucidating the molecular mechanisms associated with mammary gland development and milk production in Bactrian camels.
Collapse
Affiliation(s)
- Huaibing Yao
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, China
- Xinjiang Camel Industry Engineering Technology Research Center, Ürümqi, China
| | - Xiaorui Liang
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, China
- Xinjiang Camel Industry Engineering Technology Research Center, Ürümqi, China
| | - Zhihua Dou
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, China
- Xinjiang Camel Industry Engineering Technology Research Center, Ürümqi, China
| | - Zhongkai Zhao
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, China
- Xinjiang Camel Industry Engineering Technology Research Center, Ürümqi, China
| | - Wanpeng Ma
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, China
| | - Zelin Hao
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, China
- Xinjiang Camel Industry Engineering Technology Research Center, Ürümqi, China
| | - Hui Yan
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, China
- Xinjiang Camel Industry Engineering Technology Research Center, Ürümqi, China
| | - Yuzhuo Wang
- Xinjiang Altai Regional Animal Husbandry Veterinary Station, Altay, China
| | - Zhuangyuan Wu
- Xinjiang Altai Regional Animal Husbandry Veterinary Station, Altay, China
| | - Gangliang Chen
- Xinjiang Camel Industry Engineering Technology Research Center, Ürümqi, China
- Bactrian Camel Academy of Xinjiang, Wangyuan Camel Milk Limited Company, Altay, China
| | - Jie Yang
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, China
- Xinjiang Camel Industry Engineering Technology Research Center, Ürümqi, China
| |
Collapse
|
7
|
An J, An S, Choi M, Jung JH, Kim B. Natural Products for Esophageal Cancer Therapy: From Traditional Medicine to Modern Drug Discovery. Int J Mol Sci 2022; 23:13558. [PMID: 36362345 PMCID: PMC9657766 DOI: 10.3390/ijms232113558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 02/02/2024] Open
Abstract
Esophageal cancer (EC) is one of the most malignant types of cancer worldwide and has a high incidence and mortality rate in Asian countries. When it comes to treating EC, although primary methods such as chemotherapy and surgery exist, the prognosis remains poor. The purpose of this current research is to review the range of effects that natural products have on cancer by analyzing studies conducted on EC. Fifty-seven studies were categorized into four anti-cancer mechanisms, as well as clinical trials. The studies that were scrutinized in this research were all reported within five years. The majority of the substances reviewed induced apoptosis in EC, acting on a variety of mechanisms. Taken together, this study supports the fact that natural products have the potential to act as a candidate for treating EC.
Collapse
Affiliation(s)
| | | | | | | | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
8
|
Abstract
Abstract
Exosomes (EXOs) are naturally occurring tiny extracellular nanovesicles, which emancipate into the extracellular environment by exocytosis. By moving vital biological molecules (DNA, mRNA proteins, etc), EXOs contribute to intercellular communications. Camel milk (CM) as a valuable food, is rich of EXO. Nowadays, EXOs are promising delivery agents for several diseases therapy. Camel milk exosomes (CMEXOs) have unique ingredients in comparison to other animal milks. It is documented that CMEXOs reduce the growth of cancer cells through inducing apoptosis, inhibation of oxidative stress and inflammation occurance. By inhibation of inflammatory, and apoptosis pathways, CMEXOs could inhibit numerous of pathways, leading to adverse effects, due to drug levels over the therapeutic window. Moreover, CMEXOs exhibited a prominent property in improving the antioxidant capability in both in vitro and in vivo experiments. Moreover, the anti-angiogenesis property of CMEXOs was illustrated via decrease in expression of the angiogenesis-related gene; vascular endothelial growth factor (VEGF). It is expected that exosomal lactoferrin (LF) and kappa casein (KC) mRNAs are crucial parts of CMEXOs mediating their anticancer effects. The immunomodulatory effect of CMEXOs may be attributed to their high contents of LF and KC. According to previous works, CMEXOs are favorable elements in developing new therapeutic methods to remedy innumerable diseases. This review aims to provide an overview on the isolation, characterization and biological activities of the exosomes derived from camel milk for address their possible use in therapeutics.
Collapse
|
9
|
Khan FB, Ansari MA, Uddin S, Palakott AR, Anwar I, Almatroudi A, Alomary MN, Alrumaihi F, Aba Alkhayl FF, Alghamdi S, Muhammad K, Huang CY, Daddam JR, Khan H, Maqsood S, Ayoub MA. Prospective Role of Bioactive Molecules and Exosomes in the Therapeutic Potential of Camel Milk against Human Diseases: An Updated Perspective. Life (Basel) 2022; 12:life12070990. [PMID: 35888080 PMCID: PMC9318805 DOI: 10.3390/life12070990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 05/28/2023] Open
Abstract
Camel milk (CM) constitutes an important dietary source in the hot and arid regions of the world. CM is a colloidal mixture of nutritional components (proteins, carbohydrates, lipids, vitamins, and minerals) and non-nutritional components (hormones, growth factors, cytokines, immunoglobulins, and exosomes). Although the majority of previous research has been focused on the nutritional components of CM; there has been immense interest in the non-nutritional components in the recent past. Reckoning with these, in this review, we have provided a glimpse of the recent trends in CM research endeavors and attempted to provide our perspective on the therapeutic efficacy of the nutritional and non-nutritional components of CM. Interestingly, with concerted efforts from the research fraternities, convincing evidence for the better understanding of the claimed traditional health benefits of CM can be foreseen with great enthusiasm and is indeed eagerly anticipated.
Collapse
Affiliation(s)
- Farheen Badrealam Khan
- Department of Biology, College of Science, The United Arab Emirates University, Al Ain 15551, United Arab Emirates; (A.R.P.); (I.A.); (K.M.)
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institutes for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar;
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
- Laboratory of Animal Center, Qatar University, Doha 2731, Qatar
| | - Abdul Rasheed Palakott
- Department of Biology, College of Science, The United Arab Emirates University, Al Ain 15551, United Arab Emirates; (A.R.P.); (I.A.); (K.M.)
| | - Irfa Anwar
- Department of Biology, College of Science, The United Arab Emirates University, Al Ain 15551, United Arab Emirates; (A.R.P.); (I.A.); (K.M.)
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia; (A.A.); (F.A.); (F.F.A.A.)
| | - Mohammad N. Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia;
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia; (A.A.); (F.A.); (F.F.A.A.)
| | - Faris F. Aba Alkhayl
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia; (A.A.); (F.A.); (F.F.A.A.)
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Dentistry and Pharmacy, Buraydah Colleges, Buraydah 52571, Saudi Arabia
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Khalid Muhammad
- Department of Biology, College of Science, The United Arab Emirates University, Al Ain 15551, United Arab Emirates; (A.R.P.); (I.A.); (K.M.)
| | - Chih-Yang Huang
- Department of Biotechnology, Asia University, Taichung 404, Taiwan;
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Centre of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
| | - Jayasimha Rayalu Daddam
- Department of Ruminant Science, Institute of Animal Sciences, Agriculture Research Organization, Volcani Center, Rishon Lezion 7505101, Israel;
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates;
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Mohammed Akli Ayoub
- Department of Biology, College of Science, The United Arab Emirates University, Al Ain 15551, United Arab Emirates; (A.R.P.); (I.A.); (K.M.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| |
Collapse
|
10
|
The Relationship between MACC1/c-Met/Cyclin D1 Axis Expression and Prognosis in ESCC. Anal Cell Pathol 2022; 2022:9651503. [PMID: 35242498 PMCID: PMC8888107 DOI: 10.1155/2022/9651503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/29/2022] [Accepted: 02/03/2022] [Indexed: 12/24/2022] Open
Abstract
Background Esophageal cancer is one of the most common malignant tumors of the digestive system, with high incidence and mortality. Methods Immunohistochemical method was used to detect the expression of MACC1, c-Met, and cyclin D1 in ESCC and its adjacent tissues. Statistical analysis was done by SPSS 23.0. Results The high expression of MACC1 and cyclin D1 was significantly correlated with tumor size. High c-Met expression was associated with patient ethnicity. MACC1 expression was positively correlated with both c-Met and cyclin D1. c-Met expression was also positively correlated with cyclin D1. Patients with high expression of MACC1 and c-Met had worse OS; patients with high c-Met expression also had worse PFS. Conclusion MACC1, c-Met, and cyclin D1 proteins are closely related to the occurrence and development of esophageal squamous cell carcinoma. MACC1 may affect the prognosis of ESCC by regulating the expression of the c-Met/cyclin D1 axis.
Collapse
|
11
|
Muthukumaran MS, Mudgil P, Baba WN, Ayoub MA, Maqsood S. A comprehensive review on health benefits, nutritional composition and processed products of camel milk. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2008953] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- M. Selva Muthukumaran
- Department of Food Technology, Hindustan Institute of Technology and Science, Chennai, India
| | - Priti Mudgil
- Department of Food Science, College of Agriculture and Veterinary Medicine United Arab Emirates University, UAE
| | - Waqas N Baba
- Department of Food Science, College of Agriculture and Veterinary Medicine United Arab Emirates University, UAE
| | - Mohammed Akli Ayoub
- Department of Biology, College of Science, United Arab Emirates University, UAE
- Zayed Center for Health Sciences, The United Arab Emirates University, UAE
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine United Arab Emirates University, UAE
- Zayed Center for Health Sciences, The United Arab Emirates University, UAE
| |
Collapse
|
12
|
Shi Z, Gao Y, Feng L, Tian W, Dou Z, Liu C, Liu J, Xu Y, Wang Y, Yan J, Wu Q, Li J, Yang L, Zhang Z, Yang J, Qi Z. TR35 Exerts Anti-tumor Effects by Modulating Mitogen-Activated Protein Kinase and STAT3 Signaling in Lung Cancer Cells. Front Cell Dev Biol 2021; 9:723346. [PMID: 34760885 PMCID: PMC8573214 DOI: 10.3389/fcell.2021.723346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/05/2021] [Indexed: 11/20/2022] Open
Abstract
Cancer is a complex disease extremely dependent on its microenvironment and is highly regulated by a variety of stimuli inside and outside the cell. Evidence suggests that active camel whey fraction (TR35) confer anti-tumor effects in non-small cell lung cancer (NSCLC). However, its exact mechanisms remain elusive. Here, we investigated the mechanisms underlying suppression of NSCLC cell growth and proliferation by TR35. Treatment of A549 and H1299 cells with TR35 suppressed their growth and enhanced apoptosis, as revealed by CCK-8, colony formation and flow cytometric analyses. We find that TR35 suppresses tumor growth in a xenograft nude mouse model without losses in body weight. RNA-seq and KEGG pathway analyses showed that the DEGs were enriched in mitogen-activated protein kinase (MAPK) and Jak-STAT signaling pathways. After test the key factors’ activity associated with these pathways by Immunohistochemical (IHC) staining and western blotting, the activation of JNK phosphorylation and inhibition of p38 and STAT3 phosphorylation was observed both in TR35 treated lung cancer cell and tumor tissue. Taken together, these results showed that TR35 play a significant role in the NSCLC progression in the tumor microenvironment via MAPK and Jak-STAT signaling, highlighting TR35 as a potential therapeutic agent against lung cancer.
Collapse
Affiliation(s)
- Zhiyong Shi
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Yang Gao
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Lifeng Feng
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Wencong Tian
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Zhihua Dou
- Department of Bioengineering, College of Life Science and Technology, Xinjiang University, Ürümqi, China
| | - Chen Liu
- Department of Bioengineering, College of Life Science and Technology, Xinjiang University, Ürümqi, China
| | - Jie Liu
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Yang Xu
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Yachen Wang
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Jie Yan
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Qiang Wu
- Key Laboratory of Emergency and Trauma of Ministry of Education, Research Unit of Island Emergency Medicine, School of Tropical Medicine and Laboratory Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, China
| | - Jing Li
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Liang Yang
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Zhaocai Zhang
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Zhaocai Zhang,
| | - Jie Yang
- Department of Bioengineering, College of Life Science and Technology, Xinjiang University, Ürümqi, China
- Jie Yang,
| | - Zhi Qi
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
- Zhi Qi,
| |
Collapse
|
13
|
Li L, Wang J, Li M, Yang Y, Wang Z, Miao J, Zhao Z, Yang J. Detection of the adulteration of camel milk powder with cow milk by ultra-high performance liquid chromatography (UPLC). Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Research Development on Anti-Microbial and Antioxidant Properties of Camel Milk and Its Role as an Anti-Cancer and Anti-Hepatitis Agent. Antioxidants (Basel) 2021; 10:antiox10050788. [PMID: 34067516 PMCID: PMC8156492 DOI: 10.3390/antiox10050788] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/09/2021] [Accepted: 05/13/2021] [Indexed: 01/01/2023] Open
Abstract
Camel milk is a rich source of vitamin C, lactic acid bacteria (LAB), beta-caseins and milk whey proteins, including lactoferrin, lysozyme, lactoperoxidase, alpha-lactalbumin and immunoglobulin. The lactoferrin plays a key role in several physiological functions, such as conferring antioxidant, anti-microbial and anti-inflammatory functions in cells. Similarly, the camel milk alpha-lactalbumin has shown greater antioxidative activity because of its higher antioxidant amino acid residues. The antioxidant properties of camel milk have also been ascribed to the structural conformation of its beta-caseins. Upon hydrolysis, the beta-caseins lead to some bioactive peptides having antioxidant activities. Consequently, the vitamin C in camel milk has a significant antioxidant effect and can be used as a source of vitamin C when the climate is harsh. Furthermore, the lysozyme and immunoglobulins in camel milk have anti-microbial and immune regulatory properties. The LAB isolated from camel milk have a protective role against both Gram-positive and -negative bacteria. Moreover, the LAB can be used as a probiotic and may restore the oxidative status caused by various pathogenic bacterial infections. Various diseases such as cancer and hepatitis have been associated with oxidative stress. Camel milk could increase antiproliferative effects and regulate antioxidant genes during cancer and hepatitis, hence ameliorating oxidative stress. In the current review, we have illustrated the anti-microbial and antioxidant properties of camel milk in detail. In addition, the anti-cancer and anti-hepatitis properties of camel milk have also been discussed.
Collapse
|
15
|
Hussain H, Wattoo FH, Wattoo MHS, Gulfraz M, Masud T, Shah I, Ali S, Alavi SE. Camel milk as an alternative treatment regimen for diabetes therapy. Food Sci Nutr 2021; 9:1347-1356. [PMID: 33747450 PMCID: PMC7958562 DOI: 10.1002/fsn3.2078] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 12/16/2022] Open
Abstract
Camel milk is a valuable source of nutrition with a wide range of therapeutic effects. Its unique composition helps to regulate the blood glucose level. The current study is aimed to evaluate the antidiabetic and hepatoprotective effects, as well as lipid profile restoration of camel milk in the diabetic mouse model. This innovative study evaluates the therapeutic effects of camel milk in diabetic mice by simultaneous measurement of blood glucose, HbA1c, ALT, AST, TG, cholesterol, and histopathological studies. The results showed that camel milk has significantly reduced blood glucose, HbA1c (p < .001), aspartate transaminase (AST), alanine transaminase (ALT) (p < .01), triglyceride (TG), and cholesterol (p < .01), compared to that in the diabetic control group. Also, the therapeutic effects of camel milk were completely comparable with the antidiabetic drug glibenclamide. The results of this study suggest that camel milk could be used as a proper alternative treatment regimen for diabetes therapy.
Collapse
Affiliation(s)
- Humaira Hussain
- University Institute of Biochemistry and BiotechnologyPMAS ‐ Arid Agriculture UniversityRawalpindiPakistan
| | - Feroza Hamid Wattoo
- University Institute of Biochemistry and BiotechnologyPMAS ‐ Arid Agriculture UniversityRawalpindiPakistan
| | | | - Muhammad Gulfraz
- University Institute of Biochemistry and BiotechnologyPMAS ‐ Arid Agriculture UniversityRawalpindiPakistan
| | - Tariq Masud
- Department of Food TechnologyPMAS ‐ Arid Agriculture UniversityRawalpindiPakistan
| | - Imam Shah
- National Veterinary LaboratoriesIslamabadPakistan
| | - Sakhawat Ali
- National Veterinary LaboratoriesIslamabadPakistan
| | | |
Collapse
|
16
|
|
17
|
Shan Q, Chen N, Liu W, Qu F, Chen A. Exposure to 2,3,3',4,4',5-hexachlorobiphenyl promotes nonalcoholic fatty liver disease development in C57BL/6 mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114563. [PMID: 32304952 DOI: 10.1016/j.envpol.2020.114563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/23/2020] [Accepted: 04/06/2020] [Indexed: 05/20/2023]
Abstract
Previous in vitro studies have indicated that 2,3,3',4,4',5-hexachlorobiphenyl (PCB 156) may be a new contributor to metabolic disruption and may further cause the occurrence of nonalcoholic fatty liver disease (NAFLD). However, no study has clarified the specific contributions of PCB 156 to NAFLD progression by constructing an in vivo model. Herein, we evaluated the effects of PCB 156 treatment (55 mg/kg, i.p.) on the livers of C57BL/6 mice fed a control diet (CD) or a high-fat diet (HFD). The results showed that PCB 156 administration increased intra-abdominal fat mass, hepatic lipid levels and dyslipidemia in the CD-fed group and aggravated NAFLD in HFD-fed group. By using transcriptomics studies and biological methods, we found that the genes expression involved in lipid metabolism pathways, such as lipogenesis, lipid accumulation and lipid β-oxidation, was greatly altered in liver tissues exposed to PCB 156. In addition, the cytochrome P450 pathway, peroxisome proliferator-activated receptors (PPARs) and the glutathione metabolism pathway were significantly activated following exposure to PCB 156. Furthermore, PCB 156 exposure increased serum transaminase levels and lipid peroxidation, and the redox-related genes were significantly dysregulated in liver tissue. In conclusion, our data suggested that PCB 156 could promote NAFLD development by altering the expression of genes related to lipid metabolism and inducing oxidative stress.
Collapse
Affiliation(s)
- Qiuli Shan
- College of Biological Science and Technology, University of Jinan, Jinan, 250022, China; State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Ningning Chen
- College of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Wei Liu
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Fan Qu
- College of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Anhui Chen
- Jiangsu Key Laboratory of Food Resource Development and Quality Safe, Xuzhou University of Technology, Xuzhou, China
| |
Collapse
|
18
|
Wei XM, Wumaier G, Zhu N, Dong L, Li CW, Xia JW, Zhang YZ, Zhang P, Zhang XJ, Zhang YY, Li SQ. Protein tyrosine phosphatase L1 represses endothelial-mesenchymal transition by inhibiting IL-1β/NF-κB/Snail signaling. Acta Pharmacol Sin 2020; 41:1102-1110. [PMID: 32152438 PMCID: PMC7470836 DOI: 10.1038/s41401-020-0374-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 02/04/2020] [Indexed: 12/21/2022] Open
Abstract
Endothelial-mesenchymal transition (EnMT) plays a pivotal role in various diseases, including pulmonary hypertension (PH), and transcription factors like Snail are key regulators of EnMT. In this study we investigated how these factors were regulated by PH risk factors (e.g. inflammation and hypoxia) in human umbilical vein endothelial cells (HUVECs). We showed that treatment with interleukin 1β (IL-1β) induced EnMT of HUVECs via activation of NF-κB/Snail pathway, which was further exacerbated by knockdown of protein tyrosine phosphatase L1 (PTPL1). We demonstrated that PTPL1 inhibited NF-κB/Snail through dephosphorylating and stabilizing IκBα. IL-1β or hypoxia could downregulate PTPL1 expression in HUVECs. The deregulation of PTPL1/NF-κB signaling was validated in a monocrotaline-induced rat PH (MCT-PH) model and clinical PH specimens. Our findings provide novel insights into the regulatory mechanisms of EnMT, and have implications for identifying new therapeutic targets for clinical PH.
Collapse
|
19
|
Detection of the Bovine Milk Adulterated in Camel, Horse, and Goat Milk Using Duplex PCR. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01678-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Tang Y, Zhang J, Li J, Lei X, Xu D, Wang Y, Li C, Li X, Mao Y. Turnover of bile acids in liver, serum and caecal content by high-fat diet feeding affects hepatic steatosis in rats. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1293-1304. [DOI: 10.1016/j.bbalip.2019.05.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/22/2019] [Accepted: 05/30/2019] [Indexed: 12/12/2022]
|
21
|
Nutritional and therapeutic perspectives of camel milk and its protein hydrolysates: A review on versatile biofunctional properties. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103441] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
22
|
Chinak OA, Shernyukov AV, Ovcherenko SS, Sviridov EA, Golyshev VM, Fomin AS, Pyshnaya IA, Kuligina EV, Richter VA, Bagryanskaya EG. Structural and Aggregation Features of a Human κ-Casein Fragment with Antitumor and Cell-Penetrating Properties. Molecules 2019; 24:E2919. [PMID: 31408975 PMCID: PMC6721048 DOI: 10.3390/molecules24162919] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/06/2019] [Accepted: 08/09/2019] [Indexed: 11/23/2022] Open
Abstract
Intrinsically disordered proteins play a central role in dynamic regulatory and assembly processes in the cell. Recently, a human κ-casein proteolytic fragment called lactaptin (8.6 kDa) was found to induce apoptosis of human breast adenocarcinoma MCF-7 and MDA-MB-231 cells with no cytotoxic activity toward normal cells. Earlier, we had designed some recombinant analogs of lactaptin and compared their biological activity. Among these analogs, RL2 has the highest antitumor activity, but the amino acid residues and secondary structures that are responsible for RL2's activity remain unclear. To elucidate the structure-activity relations of RL2, we studied the structural and aggregation features of this fairly large intrinsically disordered fragment of human milk κ-casein by a combination of physicochemical methods: NMR, paramagnetic relaxation enhancement (PRE), Electron Paramagnetic Resonance (EPR), circular dichroism, dynamic light scattering, atomic force microscopy, and a cytotoxic activity assay. It was found that in solution, RL2 exists as stand-alone monomeric particles and large aggregates. Whereas the disulfide-bonded homodimer turned out to be more prone to assembly into large aggregates, the monomer predominantly forms single particles. NMR relaxation analysis of spin-labeled RL2 showed that the RL2 N-terminal region, which is essential not only for multimerization of the peptide but also for its proapoptotic action on cancer cells, is more ordered than its C-terminal counterpart and contains a site with a propensity for α-helical secondary structure.
Collapse
Affiliation(s)
- Olga A Chinak
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Andrey V Shernyukov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, 1 Pirogova Str., Novosibirsk 630090, Russia
| | - Sergey S Ovcherenko
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, 1 Pirogova Str., Novosibirsk 630090, Russia
| | - Evgeniy A Sviridov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, 1 Pirogova Str., Novosibirsk 630090, Russia
| | - Victor M Golyshev
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Alexander S Fomin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Inna A Pyshnaya
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Elena V Kuligina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Vladimir A Richter
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Elena G Bagryanskaya
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk 630090, Russia.
- Department of Natural Sciences, Novosibirsk State University, 1 Pirogova Str., Novosibirsk 630090, Russia.
| |
Collapse
|