1
|
Li X, Wu Y, Duan R, Yu H, Liu S, Bao Y. Research Progress in the Extraction, Structural Characteristics, Bioactivity, and Commercial Applications of Oat β-Glucan: A Review. Foods 2024; 13:4160. [PMID: 39767105 PMCID: PMC11675617 DOI: 10.3390/foods13244160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/15/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Oats (Avena sativa L.) are an important cereal crop with diverse applications in both food and forage. Oat β-glucan has gained attention for its beneficial biological activities, such as reducing cardiovascular risk, preventing diabetes, and enhancing intestinal health. Despite its potential, more comprehensive research is required to explore its preparation, modification, bioactivities, and applications. This review highlights recent advancements in the determination and preparation of oat β-glucan, explores its biological activities and mechanisms, and examines the impact of food processing techniques on its properties. This review is intended to provide a theoretical foundation and reference for the development and application of oat β-glucan in the functional food industry.
Collapse
Affiliation(s)
- Xiaolu Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yicheng Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ruilin Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haoran Yu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Siyao Liu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Yulong Bao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
2
|
Kussie HC, Hahn W, Sivaraj D, Quintero F, Knochel A, Alfsharif AM, Yasmeh JP, Fischer K, Mojadidi S, Hostler A, Granoski M, McKenna E, Henn D, Litmanovich B, Miller AA, Schurr DK, Li VW, Li WW, Gurtner GC, Chen K. Avenanthramide and β-Glucan Therapeutics Accelerate Wound Healing Via Distinct and Nonoverlapping Mechanisms. Adv Wound Care (New Rochelle) 2024; 13:155-166. [PMID: 38299969 DOI: 10.1089/wound.2023.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Abstract
Objective: Given the significant economic, health care, and personal burden of acute and chronic wounds, we investigated the dose dependent wound healing mechanisms of two Avena sativa derived compounds: avenanthramide (AVN) and β-Glucan. Approach: We utilized a splinted excisional wound model that mimics human-like wound healing and performed subcutaneous AVN and β-Glucan injections in 15-week-old C57BL/6 mice. Histologic and immunohistochemical analysis was performed on the explanted scar tissue to assess changes in collagen architecture and cellular responses. Results: AVN and β-Glucan treatment provided therapeutic benefits at a 1% dose by weight in a phosphate-buffered saline vehicle, including accelerated healing time, beneficial cellular recruitment, and improved tissue architecture of healed scars. One percent AVN treatment promoted an extracellular matrix (ECM) architecture similar to unwounded skin, with shorter, more randomly aligned collagen fibers and reduced inflammatory cell presence in the healed tissue. One percent β-Glucan treatment promoted a tissue architecture characterized by long, thick bundles of collagen with increased blood vessel density. Innovation: AVN and β-Glucan have previously shown promise in promoting wound healing, although the therapeutic efficacies and mechanisms of these bioactive compounds remain incompletely understood. Furthermore, the healed ECM architecture of these wounds has not been characterized. Conclusions: AVN and β-Glucan accelerated wound closure compared to controls through distinct mechanisms. AVN-treated scars displayed a more regenerative tissue architecture with reduced inflammatory cell recruitment, while β-Glucan demonstrated increased angiogenesis with more highly aligned tissue architecture more indicative of fibrosis. A deeper understanding of the mechanisms driving healing in these two naturally derived therapeutics will be important for translation to human use.
Collapse
Affiliation(s)
- Hudson C Kussie
- Department of Surgery, University of Arizona, College of Medicine, Tucson, Arizona, USA
| | - William Hahn
- Department of Surgery, University of Arizona, College of Medicine, Tucson, Arizona, USA
| | - Dharshan Sivaraj
- Department of Surgery, University of Arizona, College of Medicine, Tucson, Arizona, USA
| | - Filiberto Quintero
- Department of Surgery, University of Arizona, College of Medicine, Tucson, Arizona, USA
| | - Amelia Knochel
- Department of Surgery, University of Arizona, College of Medicine, Tucson, Arizona, USA
| | | | - Jonathan P Yasmeh
- Department of Surgery, University of Arizona, College of Medicine, Tucson, Arizona, USA
| | - Katharina Fischer
- Department of Surgery, University of Arizona, College of Medicine, Tucson, Arizona, USA
| | - Sultana Mojadidi
- Department of Surgery, University of Arizona, College of Medicine, Tucson, Arizona, USA
| | - Andrew Hostler
- Department of Surgery, University of Arizona, College of Medicine, Tucson, Arizona, USA
| | - Maia Granoski
- Department of Surgery, University of Arizona, College of Medicine, Tucson, Arizona, USA
| | - Eamonn McKenna
- Department of Surgery, University of Arizona, College of Medicine, Tucson, Arizona, USA
| | - Dominic Henn
- Department of Surgery, University of Arizona, College of Medicine, Tucson, Arizona, USA
| | - Ben Litmanovich
- Department of Surgery, University of Arizona, College of Medicine, Tucson, Arizona, USA
| | | | | | - Vincent W Li
- The Angiogenesis Foundation, Cambridge, Massachusetts, USA
| | - William W Li
- The Angiogenesis Foundation, Cambridge, Massachusetts, USA
| | - Geoffrey C Gurtner
- Department of Surgery, University of Arizona, College of Medicine, Tucson, Arizona, USA
- Department of Biomedical Engineering, University of Arizona, College of Medicine, Tucson, Arizona, USA
| | - Kellen Chen
- Department of Surgery, University of Arizona, College of Medicine, Tucson, Arizona, USA
- Department of Biomedical Engineering, University of Arizona, College of Medicine, Tucson, Arizona, USA
| |
Collapse
|
3
|
Canaan MM, Reis-Canaan JC, Zangerônimo MG, Andrade EF, Gonçalves TMSV, Pereira MCA, Lima RR, Pardi V, Murata RM, Pereira LJ. Yeast Beta-Glucans Ingestion Does Not Influence Body Weight: A Systematic Review and Meta-Analysis of Pre-Clinical Studies. Nutrients 2021; 13:nu13124250. [PMID: 34959802 PMCID: PMC8707765 DOI: 10.3390/nu13124250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 12/09/2022] Open
Abstract
Dietary fiber supplementation has been studied as a promising strategy in the treatment of obesity and its comorbidities. A systematic review and meta-analysis were performed to verify whether the consumption of yeast beta-glucan (BG) favors weight loss in obese and non-obese rodents. The PICO strategy was employed, investigating rodents (Population), subjected to the oral administration of yeast BG (Intervention) compared to animals receiving placebo (Comparison), evaluating body weight changes (Outcome), and based on preclinical studies (Study design). Two reviewers searched six databases and the grey literature. We followed the PRISMA 2020 guidelines, and the protocol was registered on PROSPERO (CRD42021267788). The search returned 2467 articles. Thirty articles were selected for full-text evaluation, and seven studies remained based on the eligibility criteria. The effects of BG intake on body weight were analyzed based on obese (n = 4 studies) and non-obese animals (n = 4 studies). Even though most studies on obese rodents (75%) indicated a reduction in body weight (qualitative analysis), the meta-analysis showed this was not significant (mean difference −1.35 g—95% CI −5.14:2.45). No effects were also observed for non-obese animals. We concluded that the ingestion of yeast BG barely affects the body weight of obese and non-obese animals.
Collapse
Affiliation(s)
- Marcelo M. Canaan
- Health Sciences Department, Universidade Federal de Lavras (UFLA), Lavras BR-37200-000, Brazil; (M.M.C.); (J.C.R.-C.); (E.F.A.)
| | - Juliana C. Reis-Canaan
- Health Sciences Department, Universidade Federal de Lavras (UFLA), Lavras BR-37200-000, Brazil; (M.M.C.); (J.C.R.-C.); (E.F.A.)
| | - Márcio G. Zangerônimo
- Veterinary Science Department, Universidade Federal de Lavras (UFLA), Lavras BR-37200-000, Brazil;
| | - Eric F. Andrade
- Health Sciences Department, Universidade Federal de Lavras (UFLA), Lavras BR-37200-000, Brazil; (M.M.C.); (J.C.R.-C.); (E.F.A.)
- Agrarian Sciences Institute, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Unaí BR-38610-000, Brazil
| | - Thais M. S. V. Gonçalves
- Dentistry Department, Universidade Federal de Santa Catarina (UFSC), Florianópolis BR-88040-900, Brazil;
| | - Michel C. A. Pereira
- Department of Nutrition, Universidade Federal de Lavras (UFLA), Lavras BR-37200-000, Brazil;
| | - Renato R. Lima
- Department of Statistics, Universidade Federal de Lavras (UFLA), Lavras BR-37200-000, Brazil;
| | - Vanessa Pardi
- Department of Foundational Sciences, School of Dental Medicine, East Carolina University (ECU), Greenville, NC 27834, USA;
| | - Ramiro M. Murata
- Department of Foundational Sciences, School of Dental Medicine, East Carolina University (ECU), Greenville, NC 27834, USA;
- Correspondence: (R.M.M.); (L.J.P.); Tel.: +1-252-737-6960 (R.M.M.); +55-35-3829-5211 (L.J.P.)
| | - Luciano J. Pereira
- Health Sciences Department, Universidade Federal de Lavras (UFLA), Lavras BR-37200-000, Brazil; (M.M.C.); (J.C.R.-C.); (E.F.A.)
- Correspondence: (R.M.M.); (L.J.P.); Tel.: +1-252-737-6960 (R.M.M.); +55-35-3829-5211 (L.J.P.)
| |
Collapse
|
4
|
Guo W, Zhu S, Li S, Feng Y, Wu H, Zeng M. Microalgae polysaccharides ameliorates obesity in association with modulation of lipid metabolism and gut microbiota in high-fat-diet fed C57BL/6 mice. Int J Biol Macromol 2021; 182:1371-1383. [PMID: 34004199 DOI: 10.1016/j.ijbiomac.2021.05.067] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022]
Abstract
Microalgae are emerging as a good source of natural nutraceuticals and medicines. This study aims at evaluating the anti-obesity effects of two microalgae polysaccharides (CPS from Chlorella pyrenoidosa and SPS from Spirulina platensis) in high-fat diet (HFD)-induced obese C57BL/6 mice, with β-glucan as a positive control polysaccharide. CPS, SPS and β-glucan were daily administered intragastrically during 10-week HFD feeding, and conferred equally effective protection against overweight, energy imbalance, glucose tolerance impairment, systemic inflammation, dyslipidemia, and fat deposition in the liver and epididymal white adipose tissues. By western blotting analysis of CPT-1, PPARγ and SREBP-1c, those polysaccharides increased lipolysis and decreased lipogenesis in the liver. According to high-throughput sequencing of fecal 16S rRNA, CPS, SPS and β-glucan corrected the HFD-induced gut dysbiosis similarly by increasing beneficial bacteria especially Clostridia, Bacterioidia and Mollicutes and decreasing unfavorable bacteria especially Actinobacteria and Verrucomicrobia and, as revealed by PICRUSt functional analysis, they restored the HFD-induced perturbations in many gut bacterial enzymes and pathways involved in the metabolism of SCFAs, secondary bile acids and trimethylamine, implicating a possible anti-obesity mechanism through gut microbiome-mediated modulation of host lipid metabolism. Microalgae polysaccharides can thus serve as potent alternative food ingredients to improve disease conditions in obese patients.
Collapse
Affiliation(s)
- Wei Guo
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| | - Suqin Zhu
- Institute of Nutrition and Health, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266021, China
| | - Shiyang Li
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| | - Yinong Feng
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| | - Haohao Wu
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China.
| | - Mingyong Zeng
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China.
| |
Collapse
|
5
|
Zhong K, Liu Z, Lu Y, Xu X. Effects of yeast β-glucans for the prevention and treatment of upper respiratory tract infection in healthy subjects: a systematic review and meta-analysis. Eur J Nutr 2021; 60:4175-4187. [PMID: 33900466 DOI: 10.1007/s00394-021-02566-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/16/2021] [Indexed: 01/10/2023]
Abstract
PURPOSE Yeast β-glucans are known for their immune-modulating effects; however, their effects on human upper respiratory tract infections (URTIs) remain unclear. The aim of the present study was to use a systematic review and meta-analysis approach to investigate the effects of yeast β-glucans for the prevention and treatment of URTIs in healthy subjects. METHODS Databases including Pubmed, Web of Science, EMBASE and the Cochrane Library were searched and 13 RCTs investigating the effects of yeast β-glucans on the incidence, duration, and severity of URTIs in healthy subjects were included. RESULTS The results showed that compared to the placebo group, yeast β-glucan could significantly reduce the incidence of URTIs (OR = 0.345, 95% CI = 0.192 to 0.620, p < 0.001), decrease the average number of URTI episodes (SMD = - 0.315, 95% CI = - 0.500 to - 0.130, p < 0.05), and decrease the duration of URTIs (SMD = - 0.312, 95% CI = - 0.561 to - 0.064, p < 0.001). Improved severity of symptoms was found in yeast β-glucan group compared to the placebo group in the majority of included studies. In addition, yeast β-glucan was well tolerated and safe in general. CONCLUSION These findings suggest a positive effect of yeast β-glucans on human URTIs. However, due to the high heterogeneity and small number of included studies, more high-quality research and clinical trials are warranted.
Collapse
Affiliation(s)
- Kunxia Zhong
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, People's Republic of China
| | - Zhiqin Liu
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, People's Republic of China
| | - Yao Lu
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, People's Republic of China
| | - Xi Xu
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, People's Republic of China.
| |
Collapse
|
6
|
Steimbach L, Borgmann AV, Gomar GG, Hoffmann LV, Rutckeviski R, de Andrade DP, Smiderle FR. Fungal beta-glucans as adjuvants for treating cancer patients - A systematic review of clinical trials. Clin Nutr 2020; 40:3104-3113. [PMID: 33309412 DOI: 10.1016/j.clnu.2020.11.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND & AIMS Fungal β-glucans have been considered as biological response modifiers (BRMs) promoting stimulation of immune system according to numerous scientific publications performed in vitro and in vivo. Some clinical trials involving such compounds started to be published since 1980's. This systematic review aimed to compile and compare clinical studies using these β-glucans as adjuvants on patients undergoing cancer treatment. Healthy subjects and β-glucans from other sources were excluded. METHODS It was developed according to PRISMA-P guidelines (PROSPERO registered n. CRD42020151539), using PICO criteria and the following databases: PubMed, Scielo and LILACS. RESULTS We found 1018 articles and after removing duplicated records, select by title/abstract and full-text, only 9 studies remained and 7 more were manually added, totalizing 16 trials involving 1650 patients, with arm sizes varying from 9 until 200 patients. The selected studies (published since 1992-2018) included subjects with diagnosis of 9 types of cancer. The studies used different sources of β-glucans, such as yeast (Saccharomyces cerevisiae), mushrooms (Lentinula edodes and Schizophyllum commune) and non-described fungal sources. CONCLUSIONS It was observed that the administration of β-glucan is safe and well-tolerated. Most of the trials pointed that concomitant administration of β-glucan with chemo or radiotherapy reduced the immune depression caused by such treatments and/or accelerated the recovery of white blood cells counts. However, some articles also commented that no statistical difference was encountered between β-glucan treated vs. control groups, which gives a controversial conclusion about the β-glucan effects. The great diversity among the methodology studies and insufficient information was an impeditive for achieving profound statistical analysis, therefore a narrative report of the included studies was performed indicating that further evidences are required to determine the efficacy of this adjuvant in the cancer treatment.
Collapse
Affiliation(s)
- Laiza Steimbach
- Faculdades Pequeno Príncipe, CEP 80230-020, Curitiba, PR, Brazil
| | | | | | | | - Renata Rutckeviski
- Faculdades Pequeno Príncipe, CEP 80230-020, Curitiba, PR, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, CEP 80240-020, Curitiba, PR, Brazil
| | | | - Fhernanda Ribeiro Smiderle
- Faculdades Pequeno Príncipe, CEP 80230-020, Curitiba, PR, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, CEP 80240-020, Curitiba, PR, Brazil.
| |
Collapse
|
7
|
Genoprotective Properties and Metabolites of β-Glucan-Rich Edible Mushrooms Following Their In Vitro Fermentation by Human Faecal Microbiota. Molecules 2020; 25:molecules25153554. [PMID: 32759726 PMCID: PMC7435999 DOI: 10.3390/molecules25153554] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 12/11/2022] Open
Abstract
A variety of bioactive compounds, constituents of edible mushrooms, in particular β-glucans, i.e., a group of β-d-glucose polysaccharides abundant in the fungal cell walls, have been linked to immunomodulating, anticancer and prebiotic activities. The aim of the study was the investigation of the genoprotective effects of edible mushrooms produced by Pleurotus eryngii, Pleurotus ostreatus and Cyclocybe cylindracea (Basidiomycota). Mushrooms from selected strains of the species mentioned above were fermented in vitro using faecal inocula from healthy volunteers. The cytotoxic and anti-genotoxic properties of the fermentation supernatants (FSs) were investigated in Caco-2 human colon adenocarcinoma cells. The FSs were cytotoxic in a dose-dependent manner. Non-cytotoxic concentrations were used for the genotoxicity studies, which revealed that mushrooms’ FSs have the ability to protect Caco-2 cells against tert-butyl hydroperoxide (t-BOOH), a known genotoxic agent. Their global metabolic profiling was assessed by 1H-NMR spectroscopy. A total of 37 metabolites were identified with the use of two-dimensional (2D) homo- and hetero-nuclear NMR experiments. Multivariate data analysis monitored the metabolic variability of gut microbiota and probed to biomarkers potentially associated with the health-promoting effects of edible mushrooms.
Collapse
|
8
|
Beta Glucan: Supplement or Drug? From Laboratory to Clinical Trials. Molecules 2019; 24:molecules24071251. [PMID: 30935016 PMCID: PMC6479769 DOI: 10.3390/molecules24071251] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 03/28/2019] [Indexed: 11/16/2022] Open
Abstract
Glucans are part of a group of biologically active natural molecules and are steadily gaining strong attention not only as an important food supplement, but also as an immunostimulant and potential drug. This paper represents an up-to-date review of glucans (β-1,3-glucans) and their role in various immune reactions and the treatment of cancer. With more than 80 clinical trials evaluating their biological effects, the question is not if glucans will move from food supplement to widely accepted drug, but how soon.
Collapse
|