1
|
Salari E, Wang J, Wynne JF, Chang C, Wu Y, Yang X. Artificial intelligence-based motion tracking in cancer radiotherapy: A review. J Appl Clin Med Phys 2024; 25:e14500. [PMID: 39194360 PMCID: PMC11540048 DOI: 10.1002/acm2.14500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 07/13/2024] [Accepted: 07/27/2024] [Indexed: 08/29/2024] Open
Abstract
Radiotherapy aims to deliver a prescribed dose to the tumor while sparing neighboring organs at risk (OARs). Increasingly complex treatment techniques such as volumetric modulated arc therapy (VMAT), stereotactic radiosurgery (SRS), stereotactic body radiotherapy (SBRT), and proton therapy have been developed to deliver doses more precisely to the target. While such technologies have improved dose delivery, the implementation of intra-fraction motion management to verify tumor position at the time of treatment has become increasingly relevant. Artificial intelligence (AI) has recently demonstrated great potential for real-time tracking of tumors during treatment. However, AI-based motion management faces several challenges, including bias in training data, poor transparency, difficult data collection, complex workflows and quality assurance, and limited sample sizes. This review presents the AI algorithms used for chest, abdomen, and pelvic tumor motion management/tracking for radiotherapy and provides a literature summary on the topic. We will also discuss the limitations of these AI-based studies and propose potential improvements.
Collapse
Affiliation(s)
- Elahheh Salari
- Department of Radiation OncologyEmory UniversityAtlantaGeorgiaUSA
| | - Jing Wang
- Radiation OncologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | | | - Chih‐Wei Chang
- Department of Radiation OncologyEmory UniversityAtlantaGeorgiaUSA
| | - Yizhou Wu
- School of Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Xiaofeng Yang
- Department of Radiation OncologyEmory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
2
|
Park JB, Lee JH, Chang JH, Son J, Kwon S, Choi SY, Shin HW, Yu T, Kim HJ. Optimizing target and diaphragmatic configuration, and dosimetric benefits using continuous positive airway pressure in stereotactic ablative radiotherapy for lung tumors. Radiat Oncol J 2024; 42:200-209. [PMID: 39354823 PMCID: PMC11467486 DOI: 10.3857/roj.2024.00101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/07/2024] [Indexed: 10/03/2024] Open
Abstract
PURPOSE This study aimed to evaluate the impact of facilitating target delineation of continuous positive airway pressure (CPAP) in patients undergoing stereotactic ablative radiation therapy (SABR) for lung tumors by lung expansion and respiratory motion management. MATERIALS AND METHODS We performed a prospective single-institutional trial of patients who were diagnosed with either primary lung cancer or lung metastases and received SABR with a dose of 40 to 60 Gy in 4 fractions. Four-dimensional computed tomography simulations were conducted for each patient: once without CPAP and again with CPAP. RESULTS Thirty-two patients with 39 tumors were analyzed, after the withdrawal of five patients due to discomfort. For 26 tumors separated from the diaphragm, CPAP significantly increased the superoinferior distance between the tumor and the diaphragm (5.96 cm vs. 8.06 cm; p < 0.001). For 13 tumors located adjacent to the diaphragm, CPAP decreased the overlap of planning target volume (PTV) with the diaphragm significantly (6.32 cm3 vs. 4.09 cm3; p = 0.002). PTV showed a significant reduction with CPAP (25.06 cm3 vs. 22.52 cm3, p = 0.017). In dosimetric analyses, CPAP expanded lung volume by 58.4% with a significant reduction in mean dose and V5 to V40. No more than grade 2 adverse events were reported. CONCLUSION This trial demonstrated significant improvement of CPAP in target delineation uncertainties for lung SABR, with dosimetric benefits, a favorable safety profile and tolerability. Further investigation is warranted to explore the role of CPAP as a novel strategy for respiratory motion management.
Collapse
Affiliation(s)
- Jung Bin Park
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Joo Ho Lee
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ji Hyun Chang
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jaeman Son
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seho Kwon
- Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Su Yun Choi
- Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyun-Woo Shin
- Obstructive Upper Airway Research Laboratory, Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Tosol Yu
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Radiation Oncology, Dongnam Institute of Radiological & Medical Sciences, Busan, Republic of Korea
| | - Hak Jae Kim
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
3
|
Alfaifi S, Pareek V, Kim J, Rathod S, Hunter W, Leylek A, Ahmed N, Venkataraman S, Venugopal N, Chowdhury A, Dubey A, Kakumanu S, Bashir B. Moving towards single fraction peripheral lung stereotactic body radiation therapy: patient care during and after the global COVID-19 pandemic. Lung Cancer Manag 2024:2367369. [PMID: 39883102 DOI: 10.1080/17581966.2024.2367369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/31/2024] [Indexed: 01/31/2025] Open
Abstract
Aim/objectives: Single-fraction stereotactic body radiation therapy (SF-SBRT) for peripheral lung tumors was reviewed. Materials & methods: Medically inoperable peripheral lung tumors eligible for SF-SBRT 34 Gray were treated. Patient characteristics, treatment and toxicity parameters were retrospectively collected, and toxicities were evaluated. Results: A total of 26 patients were assessed with median age of 74 years. Ninety-six percent had early-stage cancer and 35% were treated as per the SABR-BRIDGE protocol. Twenty-six peripheral lesions were treated (median maximal dimension 1.7 cm). Sixty-five percent had grade ≤2 toxicities with radiation pneumonitis (42.3%) and chest wall pain (35%). Radiation pneumonitis and chest wall pain rates were higher in patients with tumor diameters more than 1.5 cm. Conclusion: SF-SBRT is practical and effective treatment technique.
Collapse
Affiliation(s)
- Salem Alfaifi
- Department of Radiation Oncology, University of Manitoba, Winnipeg, MB, Canada
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - Vibhay Pareek
- Department of Radiation Oncology, University of Manitoba, Winnipeg, MB, Canada
| | - Julian Kim
- Department of Radiation Oncology, University of Manitoba, Winnipeg, MB, Canada
| | - Shrinivas Rathod
- Department of Radiation Oncology, University of Manitoba, Winnipeg, MB, Canada
| | - William Hunter
- Department of Radiation Oncology, University of Manitoba, Winnipeg, MB, Canada
| | - Ahmet Leylek
- Department of Radiation Oncology, University of Manitoba, Winnipeg, MB, Canada
| | - Naseer Ahmed
- Department of Radiation Oncology, University of Manitoba, Winnipeg, MB, Canada
| | | | - Niranjan Venugopal
- Department of Medical Physics, University of Manitoba, Winnipeg, MB, Canada
| | - Amitava Chowdhury
- Department of Radiation Oncology, University of Manitoba, Winnipeg, MB, Canada
| | - Arbind Dubey
- Department of Radiation Oncology, University of Manitoba, Winnipeg, MB, Canada
| | - Saranya Kakumanu
- Department of Radiation Oncology, University of Manitoba, Winnipeg, MB, Canada
| | - Bashir Bashir
- Department of Radiation Oncology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
4
|
Liang Z, Zhang M, Shi C, Huang ZR. Real-time respiratory motion prediction using photonic reservoir computing. Sci Rep 2023; 13:5718. [PMID: 37029184 PMCID: PMC10082218 DOI: 10.1038/s41598-023-31296-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 03/09/2023] [Indexed: 04/09/2023] Open
Abstract
Respiration induced motion is a well-recognized challenge in many clinical practices including upper body imaging, lung tumor motion tracking and radiation therapy. In this work, we present a recurrent neural network algorithm that was implemented in a photonic delay-line reservoir computer (RC) for real-time respiratory motion prediction. The respiratory motion signals are quasi-periodic waveforms subject to a variety of non-linear distortions. In this work, we demonstrated for the first time that RC can be effective in predicting short to medium range of respiratory motions within practical timescales. A double-sliding window technology is explored to enable the real-time establishment of an individually trained model for each patient and the real-time processing of live-streamed respiratory motion data. A breathing dataset from a total of 76 patients with breathing speeds ranging from 3 to 20 breaths per minute (BPM) is studied. Motion prediction of look-ahead times of 66.6, 166.6, and 333 ms are investigated. With a 333 ms look-ahead time, the real-time RC model achieves an average normalized mean square error (NMSE) of 0.025, an average mean absolute error (MAE) of 0.34 mm, an average root mean square error (RMSE) of 0.45 mm, an average therapeutic beam efficiency (TBE) of 94.14% for an absolute error (AE) < 1 mm, and 99.89% for AE < 3 mm. This study demonstrates that real-time RC is an efficient computing framework for high precision respiratory motion prediction.
Collapse
Affiliation(s)
- Zhizhuo Liang
- Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Meng Zhang
- Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Chengyu Shi
- City of Hope Medical Center, Duarte, CA, 91010, USA
| | - Z Rena Huang
- Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| |
Collapse
|
5
|
Appel S, Lawrence YR, Bar J, Jacobson G, Marom EM, Katzman T, Ben-Ayun M, Dubinski S, Haisraely O, Weizman N, Davidson T, Weiss I, Mansano A, Goldstein JD, Symon Z. Deep inspiratory breath hold assisted by continuous positive airway pressure ventilation for lung stereotactic body radiotherapy. Cancer Radiother 2023; 27:23-30. [PMID: 36057519 DOI: 10.1016/j.canrad.2022.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/14/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023]
Abstract
PURPOSE Continuous positive airway pressure (CPAP) ventilation hyperinflates the lungs and reduces diaphragmatic motion. We hypothesized that CPAP could be safely combined with deep inspiratory breath hold (CPAP-DIBH) during lung stereotactic radiotherapy (SBRT). MATERIAL AND METHODS Patients with stage-1 lung cancer or lung metastasis treated with CPAP-DIBH SBRT between 3/2017-5/2021 were analyzed retrospectively. Patient characteristics, treatment parameters, duration of breath holds in all sessions and tolerance to CPAP-DIBH were recorded. Local control (LC) was assessed from CT or PET-CT imaging. The distances between the tumor and mediastinal organs at risk (OAR) in centrally located tumors using either free breathing (FB) or CPAP-DIBH were compared. Toxicity was graded retrospectively. RESULTS Forty-five patients with 71 lesions were treated with CPAP-DIBH SBRT. Indications for CPAP-DIBH were prior radiation (35/71, 65%), lower lobe location (34/71, 48%), multiple lesions (26/71, 36.6%) and proximity to mediastinal OAR (7/71, 10%). Patient characteristics were: F:M 43%: 57%; mean gross tumor volume 4.5cm3 (SD 7.9), mean planning target volume 20cm3 (SD 27), primary: metastatic lesions (7%:93%). Mean radiation dose was 52.5 Gray (SD3.5). Mean lung volume was 5292cm3 (SD 1106). Mean duration of CPAP-DIBH was 41.3s (IQR 31-46.8). LC at 2 years was 89.5% (95% CI 76-95.5). In patients with central lesions, the distance between the tumor and mediastinal OAR increased from 0.84cm (SD 0.65) with FB to 1.23cm (SD 0.8) with CPAP-DIBH (p=0.002). Most patients tolerated CPAP well and completed all treatments after starting therapy. Three patients did not receive treatment: 2 were unable to tolerate CPAP and 1 had syncope (pre-existing). Toxicity was grade 2 in 4/65 (6%) and grade 3 in 1/65 (1.5%). There was no grade 2 or higher esophageal or tracheal toxicities. CONCLUSION CPAP-DIBH assisted lung SBRT was tolerated well and was associated with minimal toxicity and favorable LC. This technique may be considered when treating multiple lung lesions, lesions located in the lower lobes or adjacent to mediastinal OAR.
Collapse
Affiliation(s)
- Sarit Appel
- Department of Radiation Oncology, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Yaacov Richard Lawrence
- Department of Radiation Oncology, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jair Bar
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Institute of Oncology, Sheba Medical Center, Tel Hashomer, Israel
| | - Galia Jacobson
- Department of Radiation Oncology, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Edith M Marom
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Radiology, Sheba Medical Center, Tel Hashomer, Israel
| | - Tamar Katzman
- Department of Radiation Oncology, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Maoz Ben-Ayun
- Department of Radiation Oncology, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sergei Dubinski
- Department of Radiation Oncology, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ory Haisraely
- Department of Radiation Oncology, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Noam Weizman
- Department of Radiation Oncology, Hadassah Medical Center, Jerusalem, Israel
| | - Tima Davidson
- Nuclear Medicine, Sheba Medical Center, Tel Hashomer, Israel
| | - Ilana Weiss
- Department of Radiation Oncology, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anat Mansano
- Department of Radiation Oncology, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Zvi Symon
- Department of Radiation Oncology, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
6
|
Leong KX, Sharma D, Czarnota GJ. Focused Ultrasound and Ultrasound Stimulated Microbubbles in Radiotherapy Enhancement for Cancer Treatment. Technol Cancer Res Treat 2023; 22:15330338231176376. [PMID: 37192751 DOI: 10.1177/15330338231176376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023] Open
Abstract
Radiation therapy (RT) has been the standard of care for treating a multitude of cancer types. However, ionizing radiation has adverse short and long-term side effects which have resulted in treatment complications for decades. Thus, advances in enhancing the effects of RT have been the primary focus of research in radiation oncology. To avoid the usage of high radiation doses, treatment modalities such as high-intensity focused ultrasound can be implemented to reduce the radiation doses required to destroy cancer cells. In the past few years, the use of focused ultrasound (FUS) has demonstrated immense success in a number of applications as it capitalizes on spatial specificity. It allows ultrasound energy to be delivered to a targeted focal area without harming the surrounding tissue. FUS combined with RT has specifically demonstrated experimental evidence in its application resulting in enhanced cell death and tumor cure. Ultrasound-stimulated microbubbles have recently proved to be a novel way of enhancing RT as a radioenhancing agent on its own, or as a delivery vector for radiosensitizing agents such as oxygen. In this mini-review article, we discuss the bio-effects of FUS and RT in various preclinical models and highlight the applicability of this combined therapy in clinical settings.
Collapse
Affiliation(s)
- Kai Xuan Leong
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Deepa Sharma
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Gregory J Czarnota
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Ginsenoside Rg3 enhances the radiosensitivity of lung cancer A549 and H1299 cells via the PI3K/AKT signaling pathway. In Vitro Cell Dev Biol Anim 2023; 59:19-30. [PMID: 36790693 DOI: 10.1007/s11626-023-00749-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023]
Abstract
Lung cancer is one of the most common cancers and the leading cause of cancer-related deaths in the world. Radiation is widely used for the treatment of lung cancer. However, radioresistance and toxicity limit its effectiveness. Ginsenoside Rg3 (Rg3) is a positive monomer extracted from ginseng and has been shown to the anti-cancer ability on many tumors. The aim of the present study was to ascertain whether Rg3 is able to enhance the radiosensitivity of lung cancer cells and investigate the underlying mechanisms. The effect of Rg3 on cell proliferation was examined by Cell Counting Kit-8 (CCK-8) and radiosensitivity was measured by colony formation assay. Flow cytometry, transwell, and wound healing assay were used to determine apoptosis, cell cycle, and metastasis. Western blot was used to detect the main protein levels of the PI3K/AKT signaling pathway. We found that Rg3 inhibited cell proliferation, promoted apoptosis, and suppressed migration and invasion in radio-induced lung cancer cells. In addition, Rg3 increased the proportion of G2/M phase cells and inhibited the formation of cell colonies. Moreover, Rg3 decreased the expression levels of PI3K, p-AKT, and PDK1 in radio-induced cells. These findings indicate that Rg3 may be able to enhance the radiosensitivity in lung cancer cells by the PI3K/AKT signaling pathway. These results demonstrate the therapeutic potential of Rg3 as a radiosensitizer for lung cancer.
Collapse
|
8
|
Kitamura K, Takayama K, Yamazaki R, Ueda Y, Nishiki S. A new method for assessing lung tumor motion in radiotherapy using dynamic chest radiography. J Appl Clin Med Phys 2022; 23:e13736. [PMID: 35930373 PMCID: PMC9588259 DOI: 10.1002/acm2.13736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/17/2022] [Accepted: 07/07/2022] [Indexed: 11/15/2022] Open
Abstract
Dynamic chest radiography (DCR) is a recent advanced modality to acquire dynamic and functional images. We developed a new method using DCR and the free analysis software, Kinovea, to assess lung tumor motion. This study aimed to demonstrate the usefulness of our method. Phantom and clinical studies were performed. In the phantom study, dynamic images of a moving lead sphere were acquired using DCR, and the motion of the phantom was tracked using Kinovea in a DCR video. The amplitude of phantom motion was measured and compared with a predetermined baseline amplitude. In a clinical study, DCR and respiratory‐gated four‐dimensional computed tomography (4D‐CT) were performed on 15 patients who underwent stereotactic body radiation therapy for lung tumors. The amplitudes of tumor motion in DCR and 4D‐CT were measured in the superior‐inferior (SI), left‐right (LR), and anterior‐posterior (AP) directions, and the square root of the sum of squares (SRSS) of the amplitude was calculated in all directions. Spearman's rank correlation and the Wilcoxon signed‐rank test were performed to determine the correlations of the amplitudes of tumor motion obtained using DCR and 4D‐CT. In the phantom study, the absolute mean error between the measured and predetermined amplitudes was 0.60 mm (range: 0.061.53 mm). In the clinical study, the amplitudes of tumor motion obtained using DCR correlated significantly with those of 4D‐CT in the SI and LR directions, as did the SRSS values. The median amplitudes for DCR were significantly higher than those for 4D‐CT in all (SI, LR, and AP) directions, as were the SRSS values. Our proposed method based on DCR and Kinovea is useful for assessing lung tumor motion, visually and quantitatively. Therefore, DCR has potential as a new modality for evaluating lung tumor motion in radiotherapy.
Collapse
Affiliation(s)
| | - Kenji Takayama
- Department of Radiation Oncology, Tenri Hospital, Tenri, Japan
| | - Ryo Yamazaki
- Department of Radiology, Tenri Hospital, Tenri, Japan
| | - Yukihiro Ueda
- Department of Radiology, Tenri Hospital, Tenri, Japan
| | - Shigeo Nishiki
- Japanese Society of Radiological Technology, Shimogyo-ku, Japan
| |
Collapse
|
9
|
Ma J, Yu DH, Zhao D, Huang T, Dong M, Wang T, Yin HT. Poly-Lactide-Co-Glycolide-Polyethylene Glycol-Ginsenoside Rg3-Ag Exerts a Radio-Sensitization Effect in Non-Small Cell Lung Cancer. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Radiotherapy is an effective anti-cancer therapy for patients with non-small cell lung cancer (NSCLC), however, the prognosis is unsatisfactory owing to radio-resistance and toxicity. It is crucial to improve radiotherapy efficacy. Ag nanoparticles (NPs) and ginsenoside Rg3 (Rg3) exerted
antitumor and radio-sensitization effects. Therefore, we investigated whether poly-lactide-co-glycolide-polyethylene glycol (PLGA-PEG)-Rg3-Ag will function as a noninvasive, tracing, radiotherapy sensitizer. The morphology of NPs was visualized with transmission electron microscopy (TEM).
The drug loading content, encapsulation efficiency, and cumulative drug release of Rg3 was determined by HPLC. Cellular uptake of NPs in A549 and SPCA-1 was measured by immunostaining. The radio-sensitization effect of PLGA-PEG-Rg3-Ag in vitro was determined in A549 by detecting proliferation,
colony formation, and apoptosis with CCK-8, clonogenic survival assay, and flow cytometry, while in vivo was determined in nude mice by testing the body weight and tumor volume. PLGA-PEG-Rg3-Ag exerted radio-sensitization effect by reducing cell proliferation and colony formation while
enhancing cell apoptosis in A549; reduced tumor volume in nude mice. PLGA-PEG-Rg3-Ag exhibits radio-sensitization effects in NSCLC.
Collapse
Affiliation(s)
- Jun Ma
- Radiotherapy Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Da-Hai Yu
- Radiotherapy Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Di Zhao
- Radiotherapy Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Teng Huang
- Radiotherapy Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Min Dong
- Radiotherapy Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Ting Wang
- Radiotherapy Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Hai-Tao Yin
- Radiotherapy Department, Xuzhou Central Hospital, Xuzhou, 221000, Jiangsu Province, China
| |
Collapse
|
10
|
Walls GM, Giacometti V, Apte A, Thor M, McCann C, Hanna GG, O'Connor J, Deasy JO, Hounsell AR, Butterworth KT, Cole AJ, Jain S, McGarry CK. Validation of an established deep learning auto-segmentation tool for cardiac substructures in 4D radiotherapy planning scans. Phys Imaging Radiat Oncol 2022; 23:118-126. [PMID: 35941861 PMCID: PMC9356270 DOI: 10.1016/j.phro.2022.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/10/2022] Open
Abstract
Cardiotoxicity is a common complication of lung cancer radiotherapy. Segmentation of cardiac substructures is time-consuming and challenging. Deep learning segmentation tools can perform this task in 3D and 4D scans. Performance is high when assessed geometrically, dosimetrically and clinically. Auto-segmentation tools may accelerate clinical workflows and enable research.
Background Emerging data suggest that dose-sparing several key cardiac regions is prognostically beneficial in lung cancer radiotherapy. The cardiac substructures are challenging to contour due to their complex geometry, poor soft tissue definition on computed tomography (CT) and cardiorespiratory motion artefact. A neural network was previously trained to generate the cardiac substructures using three-dimensional radiotherapy planning CT scans (3D-CT). In this study, the performance of that tool on the average intensity projection from four-dimensional (4D) CT scans (4D-AVE), now commonly used in lung radiotherapy, was evaluated. Materials and Methods The 4D-AVE of n=20 patients completing radiotherapy for lung cancer 2015–2020 underwent manual and automated cardiac substructure segmentation. Manual and automated substructures were compared geometrically and dosimetrically. Two senior clinicians also qualitatively assessed the auto-segmentation tool’s output. Results Geometric comparison of the automated and manual segmentations exhibited high levels of similarity across parameters, including volume difference (11.8% overall) and Dice similarity coefficient (0.85 overall), and were consistent with 3D-CT performance. Differences in mean (median 0.2 Gy, range −1.6–0.3 Gy) and maximum (median 0.4 Gy, range −2.2–0.9 Gy) doses to substructures were generally small. Nearly all structures (99.5 %) were deemed to be appropriate for clinical use without further editing. Conclusions Cardiac substructure auto-segmentation using a deep learning-based tool trained on a 3D-CT dataset was feasible on the 4D-AVE scan, meaning this tool is suitable for use on 4D-CT radiotherapy planning scans. Application of this tool would increase the practicality of routine clinical cardiac substructure delineation, and enable further cardiac radiation effects research.
Collapse
|
11
|
Rodríguez De Dios N, Navarro-Martin A, Cigarral C, Chicas-Sett R, García R, Garcia V, Gonzalez JA, Gonzalo S, Murcia-Mejía M, Robaina R, Sotoca A, Vallejo C, Valtueña G, Couñago F. GOECP/SEOR radiotheraphy guidelines for non-small-cell lung cancer. World J Clin Oncol 2022; 13:237-266. [PMID: 35582651 PMCID: PMC9052073 DOI: 10.5306/wjco.v13.i4.237] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 08/27/2021] [Accepted: 04/09/2022] [Indexed: 02/06/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is a heterogeneous disease accounting for approximately 85% of all lung cancers. Only 17% of patients are diagnosed at an early stage. Treatment is multidisciplinary and radiotherapy plays a key role in all stages of the disease. More than 50% of patients with NSCLC are treated with radiotherapy (curative-intent or palliative). Technological advances-including highly conformal radiotherapy techniques, new immobilization and respiratory control systems, and precision image verification systems-allow clinicians to individualize treatment to maximize tumor control while minimizing treatment-related toxicity. Novel therapeutic regimens such as moderate hypofractionation and advanced techniques such as stereotactic body radiotherapy (SBRT) have reduced the number of radiotherapy sessions. The integration of SBRT into routine clinical practice has radically altered treatment of early-stage disease. SBRT also plays an increasingly important role in oligometastatic disease. The aim of the present guidelines is to review the role of radiotherapy in the treatment of localized, locally-advanced, and metastatic NSCLC. We review the main radiotherapy techniques and clarify the role of radiotherapy in routine clinical practice. These guidelines are based on the best available evidence. The level and grade of evidence supporting each recommendation is provided.
Collapse
Affiliation(s)
- Núria Rodríguez De Dios
- Department of Radiation Oncology, Hospital del Mar, Barcelona 08003, Spain
- Radiation Oncology Research Group, Hospital Del Mar Medical Research Institution, Barcelona 08003, Spain
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona 08003, Spain
| | - Arturo Navarro-Martin
- Department of Radiation Oncology, Thoracic Malignancies Unit, Hospital Duran i Reynals. ICO, L´Hospitalet de L, Lobregat 08908, Spain
| | - Cristina Cigarral
- Department of Radiation Oncology, Hospital Clínico de Salamanca, Salamanca 37007, Spain
| | - Rodolfo Chicas-Sett
- Department of Radiation Oncology, ASCIRES Grupo Biomédico, Valencia 46004, Spain
| | - Rafael García
- Department of Radiation Oncology, Hospital Ruber Internacional, Madrid 28034, Spain
| | - Virginia Garcia
- Department of Radiation Oncology, Hospital Universitario Arnau de Vilanova, Lleida 25198, Spain
| | | | - Susana Gonzalo
- Department of Radiation Oncology, Hospital Universitario La Princesa, Madrid 28006, Spain
| | - Mauricio Murcia-Mejía
- Department of Radiation Oncology, Hospital Universitario Sant Joan de Reus, Reus 43204, Tarragona, Spain
| | - Rogelio Robaina
- Department of Radiation Oncology, Hospital Universitario Arnau de Vilanova, Lleida 25198, Spain
| | - Amalia Sotoca
- Department of Radiation Oncology, Hospital Ruber Internacional, Madrid 28034, Spain
| | - Carmen Vallejo
- Department of Radiation Oncology, Hospital Universitario Ramón y Cajal, Madrid 28034, Spain
| | - German Valtueña
- Department of Radiation Oncology, Hospital Clínico Universitario Lozano Blesa, Zaragoza 50009, Spain
| | - Felipe Couñago
- Department of Radiation Oncology, Hospital Universitario Quirónsalud, Madrid 28223, Spain
- Department of Radiation Oncology, Hospital La Luz, Madrid 28003, Spain
- Department of Clinical, Universidad Europea, Madrid 28670, Spain
| |
Collapse
|
12
|
Evaluation of patient-specific motion management for radiotherapy planning computed tomography using a statistical method. Med Dosim 2022; 47:e13-e18. [PMID: 34991966 DOI: 10.1016/j.meddos.2021.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/11/2021] [Accepted: 12/02/2021] [Indexed: 12/25/2022]
Abstract
We evaluated the probabilistic randomness of predictions by using individual numerical data based on general data for treatment planning computed tomography (CT) and evaluated the importance of patient-specific management through statistical analysis of our facility's data in lung stereotactic body radiotherapy (SBRT) and prostate volumetric modulated arc therapy (VMAT). The subjects were 30 patients who underwent lung SBRT with fiducial markers and 24 patients who underwent prostate VMAT. The average 3-dimensional (3D) displacement error between the fiducial marker and lung mass in 4DCT of lung SBRT was calculated and then compared with the 3D displacement error between the upper-lobe group (UG) and middle- or lower-lobe group (LG). The duty cycles between the lung tumor and fiducial marker at the <2-mm3 ambush area were compared between the UG and LG. In the prostate VMAT, the Shewhart control chart was analyzed by comparing multiple acquisition planning CT (MPCT) and cone-beam CT (CBCT) during the treatment period. The average 3D displacement errors in 4DCT for the lung tumor and fiducial marker were significantly different between the UG and middle- or lower-lobe group, but there was no correlation with the duty cycle. The Shewhart control chart for 3D displacement errors of the prostate for MPCT and CBCT showed that errors of >8 mm exceeded the control limit. In lung SBRT and prostate VMAT, overall statistical data from planning CT showed probabilistic randomness in predictions during the treatment period, and patient-specific motion management was needed to increase accuracy. A radiotherapy planning CT report showing a statistical analysis graph would be useful to objective share with staff.
Collapse
|
13
|
Dupic G, Huertas A, Nassef M, Cosset JM. Place des Linacs dans la radiothérapie stéréotaxique extra crânienne : sont-ils désormais non inférieurs au Cyberknife® ? Bull Cancer 2022; 109:338-345. [DOI: 10.1016/j.bulcan.2021.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/25/2022]
|
14
|
Crockett C, Salem A, Thippu Jayaprakash K. Shooting the Star: Mitigating Respiratory Motion in Lung Cancer Radiotherapy. Clin Oncol (R Coll Radiol) 2021; 34:160-163. [PMID: 34893390 DOI: 10.1016/j.clon.2021.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/03/2021] [Accepted: 11/18/2021] [Indexed: 11/30/2022]
Affiliation(s)
- C Crockett
- Radiotherapy Related Research, The Christie NHS Foundation Trust, Manchester, UK.
| | - A Salem
- Radiotherapy Related Research, The Christie NHS Foundation Trust, Manchester, UK; Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - K Thippu Jayaprakash
- Oncology Centre, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; Department of Oncology, The Queen Elizabeth Hospital King's Lynn NHS Foundation Trust, King's Lynn, UK
| |
Collapse
|
15
|
Potential Morbidity Reduction for Lung Stereotactic Body Radiation Therapy Using Respiratory Gating. Cancers (Basel) 2021; 13:cancers13205092. [PMID: 34680240 PMCID: PMC8533802 DOI: 10.3390/cancers13205092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Lung stereotactic body radiotherapy (SBRT) is the standard of care for early-stage lung cancer and oligometastases. For SBRT, motion has to be considered to avoid misdosage. Respiratory phase gating, meaning to irradiate the target volume only in a predefined gating motion phase window, can be applied to mitigate motion-induced effects. The aim of this study was to exploit the clinical benefit of gating for lung SBRT. For the majority of 14 lung tumor patients and various gating windows, we could prove a reduced dose to normal tissue by gating simulation. A normal tissue complication probability (NTCP) model analysis revealed a major reduction of normal tissue toxicity for moderate gating window sizes. The most beneficial effect of gating was found for those patients with the highest prior toxicity risk. The presented results are useful for personalized risk assessment prior to treatment and may help to select patients and optimal gating windows. Abstract We investigated the potential of respiratory gating to mitigate the motion-caused misdosage in lung stereotactic body radiotherapy (SBRT). For fourteen patients with lung tumors, we investigated treatment plans for a gating window (GW) including three breathing phases around the maximum exhalation phase, GW40–60. For a subset of six patients, we also assessed a preceding three-phase GW20–40 and six-phase GW20–70. We analyzed the target volume, lung, esophagus, and heart doses. Using normal tissue complication probability (NTCP) models, we estimated radiation pneumonitis and esophagitis risks. Compared to plans without gating, GW40–60 significantly reduced doses to organs at risk without impairing the tumor doses. On average, the mean lung dose decreased by 0.6 Gy (p < 0.001), treated lung V20Gy by 2.4% (p = 0.003), esophageal dose to 5cc by 2.0 Gy (p = 0.003), and maximum heart dose by 3.2 Gy (p = 0.009). The model-estimated mean risks of 11% for pneumonitis and 12% for esophagitis without gating decreased upon GW40–60 to 7% and 9%, respectively. For the highest-risk patient, gating reduced the pneumonitis risk from 43% to 32%. Gating is most beneficial for patients with high-toxicity risks. Pre-treatment toxicity risk assessment may help optimize patient selection for gating, as well as GW selection for individual patients.
Collapse
|
16
|
Kumar K, Chawla R. Nanocarriers-mediated therapeutics as a promising approach for treatment and diagnosis of lung cancer. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Savanović M, Jaroš D, Foulquier JN. Comparison of Phase-Gated and Amplitude-Gated Dose Delivery to a Moving Target using Gafchromic EBT3 Film. J Med Phys 2021; 46:73-79. [PMID: 34566286 PMCID: PMC8415247 DOI: 10.4103/jmp.jmp_81_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 11/18/2022] Open
Abstract
Introduction: This study compared phase-gated and amplitude-gated dose deliveries to the moving gross tumor volume (GTV) in lung stereotactic body radiation therapy (SBRT) using Gafchromic External Beam Therapy (EBT3) dosimetry film. Materials and Methods: Eighty treatment plans using two techniques (40 phase gated and 40 amplitude gated) were delivered using dynamic conformal arc therapy (DCAT). The GTV motion, breathing amplitude, and period were taken from 40 lung SBRT patients who performed regular breathing. These parameters were re-simulated using a modified Varian breathing mini phantom. The dosimetric accuracy of the phase- and amplitude-gated treatment plans was analyzed using Gafchromic EBT3 dosimetry film. The treatment delivery efficacy was analyzed for gantry rotation, number of monitor unit (MU), and target position per triggering window. The time required to deliver the phase- and amplitude-gated treatment techniques was also evaluated. Results: The mean dose (range) per fraction was 16.11 ± 0.91 Gy (13.04–17.50 Gy) versus 16.26 ± 0.83 Gy (13.82–17.99 Gy) (P < 0.0001) for phase- and amplitude-gated delivery. The greater difference in the gamma passing rate was 1.2% ±0.4% in the amplitude-gated compared to the phase gated. The gantry rotation per triggering time (tt) was 2° ±1° (1.2°–3°) versus 5° ±1° (3°–6°) (P < 0.0001) and MU per tt was 10 ± 3 MU (6–13 MU) versus 24 ± 7 MU (12–32 MU) (P < 0.0001), for phase- versus amplitude-gated techniques. A 90 beam interruption in the phase-gated technique impacted the treatment delivery efficacy, increasing the treatment delivery time in the phase gated for 1664 ± 202 s 1353–1942 s) compared to 36 interruptions in the amplitude gated 823 ± 79 s (712–926 s) (P < 0.0001). Conclusion: Amplitude-gated DCAT allows for better dosimetric accuracy over phase-gated treatment patients with regular breathing patterns.
Collapse
Affiliation(s)
- Milovan Savanović
- Faculty of Medicine, University of Paris-Saclay, Le Kremlin-Bicêtre, Paris, France.,Department of Radiation Oncology, Tenon Hospital, APHP, Sorbonne University, Paris, France
| | - Dražan Jaroš
- Center for Radiation Therapy, International Medical Centers, Affidea, Banja Luka, Bosnia and Herzegovina
| | | |
Collapse
|
18
|
Mah D, Yorke E, Zemanaj E, Han Z, Liu H, George J, Lambiase J, Czmielewski C, Lovelock DM, Rimner A, Shepherd AF. A Planning Comparison of IMRT vs. Pencil Beam Scanning for Deep Inspiration Breath Hold Lung Cancers. Med Dosim 2021; 47:26-31. [PMID: 34426041 DOI: 10.1016/j.meddos.2021.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/09/2021] [Accepted: 07/20/2021] [Indexed: 12/25/2022]
Abstract
Deep inspiration breath hold (DIBH) has dosimetric advantages for lung cancer patients treated with external beam therapy, but is difficult for many patients to perform. Proton therapy permits sparing of the downstream organs at risk (OAR). We compared conventionally fractionated proton (p) and photon(x) plans on both free breathing (FB) and DIBH planning CTs to determine the effect of DIBH with proton therapy. We evaluated 24 plans from 6 lung cancer patients treated with photon DIBH on a prospective protocol. All patients were re-planned using pencil beam scanning (PBS) proton therapy. New plans were generated for FB datasets with both modalities. All plans were renormalized to 60 Gy. We evaluated dosimetric parameters for heart, lung and esophagus. We also compared FBp to DIBHx parameters to quantify how FBp plans compare to DIBHx plans. Significant differences were found for lung metrics V20 and mean lung dose between FB and DIBH plans regardless of treatment modality. Furthermore, lung metrics for FBp were comparable or superior to DIBHx, suggesting that FB protons may be a viable alternative for those patients that cannot perform DIBH with IMRT. The heart dose metrics were significantly different for the 5 out of 6 patients where the PTV overlapped the heart as DIBH moved heart out of the high dose volume. Heart dose metrics were further reduced by proton therapy. DIBH offers similar relative advantages for lung sparing for PBS as it does for IMRT but the magnitude of the DIBH related gains in OAR sparing were smaller for PBS than IMRT. FBp plans offer similar or better lung and heart sparing compared to DIBHx plans. For IMRT patients who have difficulty performing DIBH, FB protons may offer an alternative.
Collapse
Affiliation(s)
- Dennis Mah
- Department of Medical Physics, ProCure Proton Therapy Center, Somerset NJ 08873, USA.
| | - Ellen Yorke
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Entela Zemanaj
- Department of Medical Physics, ProCure Proton Therapy Center, Somerset NJ 08873, USA
| | - Zhiqiang Han
- Department of Medical Physics, ProCure Proton Therapy Center, Somerset NJ 08873, USA
| | - Haoyang Liu
- Department of Medical Physics, ProCure Proton Therapy Center, Somerset NJ 08873, USA
| | - Jobin George
- Department of Medical Physics, ProCure Proton Therapy Center, Somerset NJ 08873, USA
| | - Jason Lambiase
- Department of Medical Physics, ProCure Proton Therapy Center, Somerset NJ 08873, USA
| | - Christian Czmielewski
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - D Michael Lovelock
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andreas Rimner
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Annemarie F Shepherd
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
19
|
Kim JS, Park CR, Yoon SH, Lee JA, Kim TY, Yang HJ. Improvement of image quality using amplitude-based respiratory gating in PET-computed tomography scanning. Nucl Med Commun 2021; 42:553-565. [PMID: 33625179 DOI: 10.1097/mnm.0000000000001368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES This study sought to provide data supporting the expanded clinical use of respiratory gating by assessing the diagnostic accuracy of breathing motion correction using amplitude-based respiratory gating. METHODS A respiratory movement tracking device was attached to a PET-computed tomography scanner, and images were obtained in respiratory gating mode using a motion phantom that was capable of sensing vertical motion. Specifically, after setting amplitude changes and intervals according to the movement cycle using a total of nine combinations of three waveforms and three amplitude ranges, respiratory motion-corrected images were reconstructed using the filtered back projection method. After defining areas of interest in the acquired images in the same image planes, statistical analyses were performed to compare differences in standardized uptake value (SUV), lesion volume, full width at half maximum (FWHM), signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). RESULTS SUVmax increased by 89.9%, and lesion volume decreased by 27.9%. Full width at half maximum decreased by 53.9%, signal-to-noise ratio increased by 11% and contrast-to-noise ratio increased by 16.3%. Optimal results were obtained when using a rest waveform and 35% duty cycle, in which the change in amplitude in the respiratory phase signal was low, and a constant level of long breaths was maintained. CONCLUSIONS These results demonstrate that respiratory-gated PET-CT imaging can be used to accurately correct for SUV changes and image distortion caused by respiratory motion, thereby providing excellent imaging information and quality.
Collapse
Affiliation(s)
- Jung-Soo Kim
- Department of Radiological Technology, Dongnam Health University, Suwon
- Department of Biomedical Science, The Korea University, Sejong
| | - Chan-Rok Park
- Department of Biomedical Science, The Korea University, Sejong
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul
| | - Seok-Hwan Yoon
- Department of Biomedical Science, The Korea University, Sejong
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul
| | - Joo-Ah Lee
- Department of Biomedical Science, The Korea University, Sejong
- Department of Radiation Oncology, Catholic University Incheon St. Mary's Hospital, Incheon
| | - Tae-Yoon Kim
- Department of Radiation Oncology, Catholic University Incheon St. Mary's Hospital, Incheon
- Department of Radiation Oncology, National Cancer Center, Goyang
| | - Hyung-Jin Yang
- Department of Radiation Oncology, Catholic University Incheon St. Mary's Hospital, Incheon
- Department of Physics, The Korea University, Sejong, Korea
| |
Collapse
|
20
|
Wu JK, Chen SH, Hsu FM, Liao SH, Wang YJ. Design of a motion simulation system to assist respiratory gating for radiation therapy. Med Dosim 2021; 46:360-363. [PMID: 33903006 DOI: 10.1016/j.meddos.2021.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 02/21/2021] [Accepted: 03/22/2021] [Indexed: 11/15/2022]
Abstract
Stereotactic ablative radiotherapy (SABR) aims to deliver high doses of radiation to kill cancer cells and shrink tumors in less than or equal to 6 fractions. However, organ motion during treatment is a challenging issue for this kind of technique. We develop a control system via Bluetooth technology to simulate and correct body motion during SABR. METHODS Radiation doses were analyzed, and the radiation damage protection capability was checked by external beam therapy 3 (EBT3) films irradiated by a linear accelerator. A wireless signal test was also performed. A validation was performed with 8 previously treated patient respiratory pattern records and 8 healthy volunteers. RESULTS The homemade simulation system consisted of 2 linear actuators, one movable stage with a maximal moving distance of 6.5 cm × 12.5 cm × 5 cm to simulate the respiratory pattern of 8 patients precisely with a median error of 0.36 mm and a maximal motion difference of 1.17 mm, and 3.17 and chipset transited signals to display them as a waveform. From the test with 8 volunteers, the chip could detect deep respiratory movement up to 3 cm. The effect of the chip on a radiation dose of 400 monitor units (MUs) by 6 MV photons and 200 MUs by 10 MV photons showed high penetration rates of 98.8% and 98.6%, respectively. CONCLUSIONS We invented a tubeless and wireless respiratory gating detection chip. The chip has minimal interference with the treatment angles, good noise immunity and the capability to easily penetrate a variety of materials. The simulation system consisting of linear actuators also successfully simulates the respiratory pattern of real patients.
Collapse
Affiliation(s)
- Jian-Kuen Wu
- Division of Radiation Oncology, Departments of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Shih-Han Chen
- Institute of Electro-Optical Science and Technology, National Taiwan Normal University, Taipei, Taiwan
| | - Feng-Ming Hsu
- Division of Radiation Oncology, Departments of Oncology, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shu-Hsien Liao
- Institute of Electro-Optical Science and Technology, National Taiwan Normal University, Taipei, Taiwan
| | - Yu-Jen Wang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan; Department of Radiation Oncology, Fu Jen Catholic University Hospital, New Taipei City, Taiwan; School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
21
|
Mercieca S, Belderbos JSA, van Herk M. Challenges in the target volume definition of lung cancer radiotherapy. Transl Lung Cancer Res 2021; 10:1983-1998. [PMID: 34012808 PMCID: PMC8107734 DOI: 10.21037/tlcr-20-627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Radiotherapy, with or without systemic treatment has an important role in the management of lung cancer. In order to deliver the treatment accurately, the clinician must precisely outline the gross tumour volume (GTV), mostly on computed tomography (CT) images. However, due to the limited contrast between tumour and non-malignant changes in the lung tissue, it can be difficult to distinguish the tumour boundaries on CT images leading to large interobserver variation and differences in interpretation. Therefore the definition of the GTV has often been described as the weakest link in radiotherapy with its inaccuracy potentially leading to missing the tumour or unnecessarily irradiating normal tissue. In this article, we review the various techniques that can be used to reduce delineation uncertainties in lung cancer.
Collapse
Affiliation(s)
- Susan Mercieca
- Faculty of Health Science, University of Malta, Msida, Malta.,The University of Amsterdam, Amsterdam, The Netherlands
| | - José S A Belderbos
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marcel van Herk
- University of Manchester, Manchester Academic Health Centre, The Christie NHS Foundation Trust, Manchester, UK
| |
Collapse
|
22
|
Botticella A, Levy A, Auzac G, Chabert I, Berthold C, Le Pechoux C. Tumour motion management in lung cancer: a narrative review. Transl Lung Cancer Res 2021; 10:2011-2017. [PMID: 34012810 PMCID: PMC8107759 DOI: 10.21037/tlcr-20-856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Respiratory motion is one of the geometrical uncertainties that may affect the accuracy of thoracic radiotherapy in the treatment of lung cancer. Accounting for tumour motion may allow reducing treatment volumes, irradiated healthy tissue and possibly toxicity, and finally enabling dose escalation. Historically, large population-based margins were used to encompass tumour motion. A paradigmatic change happened in the last decades led to the development of modern imaging techniques during the simulation and the delivery, such as the 4-dimensional (4D) computed tomography (CT) or the 4D-cone beam CT scan, has contributed to a better understanding of lung tumour motion and to the widespread use of individualised margins (with either an internal tumour volume approach or a mid-position/ventilation approach). Moreover, recent technological advances in the delivery of radiotherapy treatments (with a variety of commercial solution allowing tumour tracking, gating or treatments in deep-inspiration breath-hold) conjugate the necessity of minimising treatment volumes while maximizing the patient comfort with less invasive techniques. In this narrative review, we provided an introduction on the intra-fraction tumour motion (in both lung tumours and mediastinal lymph-nodes), and summarized the principal motion management strategies (in both the imaging and the treatment delivery) in thoracic radiotherapy for lung cancer, with an eye on the clinical outcomes.
Collapse
Affiliation(s)
- Angela Botticella
- Department of Radiation Oncology, Institut d'Oncologie Thoracique (IOT), Gustave Roussy, F-94805, Villejuif, France
| | - Antonin Levy
- Department of Radiation Oncology, Institut d'Oncologie Thoracique (IOT), Gustave Roussy, F-94805, Villejuif, France.,Univ Paris Sud, Université Paris-Saclay, F-94270, Le Kremlin-Bicêtre, France.,INSERM U1030, Molecular Radiotherapy, Gustave Roussy, Université Paris-Saclay, F-94805, Villejuif, France
| | - Guillaume Auzac
- Department of Radiation Oncology, Institut d'Oncologie Thoracique (IOT), Gustave Roussy, F-94805, Villejuif, France
| | - Isabelle Chabert
- Department of Radiation Oncology, Institut d'Oncologie Thoracique (IOT), Gustave Roussy, F-94805, Villejuif, France
| | - Céline Berthold
- Department of Radiation Oncology, Institut d'Oncologie Thoracique (IOT), Gustave Roussy, F-94805, Villejuif, France
| | - Cécile Le Pechoux
- Department of Radiation Oncology, Institut d'Oncologie Thoracique (IOT), Gustave Roussy, F-94805, Villejuif, France
| |
Collapse
|
23
|
Kraus KM, Oechsner M, Wilkens JJ, Kessel KA, Münch S, Combs SE. Patient individual phase gating for stereotactic radiation therapy of early stage non-small cell lung cancer (NSCLC). Sci Rep 2021; 11:5870. [PMID: 33712667 PMCID: PMC7955128 DOI: 10.1038/s41598-021-85031-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 02/23/2021] [Indexed: 12/25/2022] Open
Abstract
Stereotactic body radiotherapy (SBRT) applies high doses and requires advanced techniques to spare surrounding tissue in the presence of organ motion. In this work patient individual phase gating is investigated. We studied peripheral and central primary lung tumors. The internal target volume (ITV) was defined including different numbers of phases picked from a 4D Computed tomography (CT) defining the gating window (gw). Planning target volume (PTV) reductions depending on the gw were analyzed. A treatment plan was calculated on a reference phase CT (rCT) and the dose for each breathing phase was calculated and accumulated on the rCT. We compared the dosimetric results with the dose calculated when all breathing phases were included for ITV definition. GWs including 1 to 10 breathing phases were analyzed. We found PTV reductions up to 38.4%. The mean reduction of the lung volume receiving 20 Gy due to gating was found to be 25.7% for peripheral tumors and 16.7% for central tumors. Gating considerably reduced esophageal doses. However, we found that simple reduction of the gw does not necessarily influence the dose in a clinically relevant range. Thus, we suggest a patient individual definition of the breathing phases included within the gw.
Collapse
Affiliation(s)
- K M Kraus
- School of Medicine and Klinikum Rechts Der Isar, Department of Radiation Oncology, Technichal University of Munich (TUM), Munich, Germany.
| | - M Oechsner
- School of Medicine and Klinikum Rechts Der Isar, Department of Radiation Oncology, Technichal University of Munich (TUM), Munich, Germany
| | - J J Wilkens
- School of Medicine and Klinikum Rechts Der Isar, Department of Radiation Oncology, Technichal University of Munich (TUM), Munich, Germany
| | - K A Kessel
- School of Medicine and Klinikum Rechts Der Isar, Department of Radiation Oncology, Technichal University of Munich (TUM), Munich, Germany.,Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München (HMGU), Neuherberg, Germany.,Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, Munich, Germany
| | - S Münch
- School of Medicine and Klinikum Rechts Der Isar, Department of Radiation Oncology, Technichal University of Munich (TUM), Munich, Germany
| | - S E Combs
- School of Medicine and Klinikum Rechts Der Isar, Department of Radiation Oncology, Technichal University of Munich (TUM), Munich, Germany.,Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München (HMGU), Neuherberg, Germany.,Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, Munich, Germany
| |
Collapse
|
24
|
Storey CL, Hanna GG, Greystoke A. Practical implications to contemplate when considering radical therapy for stage III non-small-cell lung cancer. Br J Cancer 2020; 123:28-35. [PMID: 33293673 PMCID: PMC7735214 DOI: 10.1038/s41416-020-01072-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The type of patients with stage III non-small-cell lung cancer (NSCLC) selected for concurrent chemoradiotherapy (cCRT) varies between and within countries, with higher-volume centres treating patients with more co-morbidities and higher-stage disease. However, in spite of these disease characteristics, these patients have improved overall survival, suggesting that there are additional approaches that should be optimised and potentially standardised. This paper aims to review the current knowledge and best practices surrounding treatment for patients eligible for cCRT. Initially, this includes timely acquisition of the full diagnostic workup for the multidisciplinary team to comprehensively assess a patient for treatment, as well as imaging scans, patient history, lung function and genetic tests. Such information can provide prognostic information on how a patient will tolerate their cCRT regimen, and to perhaps limit the use of additional supportive care, such as steroids, which could impact on further treatments, such as immunotherapy. Furthermore, knowledge of the safety profile of individual double-platinum chemotherapy regimens and the technological advances in radiotherapy could aid in optimising patients for cCRT treatment, improving its efficacy whilst minimising its toxicities. Finally, providing patients with preparatory and ongoing support with input from dieticians, palliative care professionals, respiratory and care-of-the-elderly physicians during treatment may also help in more effective treatment delivery, allowing patients to achieve the maximum potential from their treatments.
Collapse
Affiliation(s)
- Claire L Storey
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Gerard G Hanna
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Alastair Greystoke
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
- Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
25
|
Sonier M, Vangenderen B, Visagie D, Appeldoorn C, Chiang T(A, Mathew L, Reinsberg S, Rose J, Ramaseshan R. Commissioning a four‐dimensional Computed Tomography Simulator for minimum target size due to motion in the Anterior–Posterior direction: a procedure and treatment planning recommendations. J Appl Clin Med Phys 2020; 21:116-123. [PMID: 32667132 PMCID: PMC7497911 DOI: 10.1002/acm2.12980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/14/2020] [Accepted: 06/21/2020] [Indexed: 11/21/2022] Open
Abstract
The purpose of this work is to develop a procedure for commissioning four‐dimensional computed tomography (4DCT) algorithms for minimum target reconstruction size, to quantify the effect of anterior–posterior (AP) motion artifacts on known object reconstruction for periodic and irregular breathing patterns, and to provide treatment planning recommendations for target sizes below a minimum threshold. A mechanical platform enabled AP motion of a rod and lung phantom during 4DCT acquisition. Static, artifact‐free scans of the phantoms were first acquired. AP sinusoidal and patient breathing motion was applied to obtain 4DCT images. 4DCT reconstruction artifacts were assessed by measuring the apparent width and angle of the rod. Comparison of known tumor diameters and volumes between the static image parameters with the 4DCT image sets was used to quantify the extent of AP reconstruction artifact and contour deformation. Examination of the rod width, under sinusoidal motion, found it was best represented during the inhale and exhale phases for all periods and ranges of motion. From the gradient phases, the apparent width of the rod decreased with increasing amplitude and decreasing period. The rod angle appeared larger on the reconstructed images due to the presence of motion artifact. The apparent diameters of the spherical tumors on the gradient phases were larger/equivalent than the true values in the AP/LR direction, respectively, while the exhale phase consistently displayed the spheres at the approximately correct diameter. The Eclipse calculated diameter matched closely with the true diameter on the exhale phase and was found to be larger on the inhale, MIP, and Avg scans. The procedure detailed here may be used during the acceptance and commissioning period of a computed tomography simulator or retroactively when implementing a SBRT program to determine the minimum target size that can be reliably reconstructed.
Collapse
Affiliation(s)
- Marcus Sonier
- Department of Medical Physics BC Cancer –Abbotsford Centre Abbotsford BC Canada
- Department of Physics University of British Columbia Vancouver BC Canada
| | - Brandon Vangenderen
- Department of Medical Physics BC Cancer –Abbotsford Centre Abbotsford BC Canada
| | - Dallas Visagie
- Department of Medical Physics BC Cancer –Abbotsford Centre Abbotsford BC Canada
| | - Cameron Appeldoorn
- Department of Medical Physics BC Cancer –Abbotsford Centre Abbotsford BC Canada
| | | | - Lindsay Mathew
- Department of Medical Physics BC Cancer –Abbotsford Centre Abbotsford BC Canada
| | - Stefan Reinsberg
- Department of Physics University of British Columbia Vancouver BC Canada
| | - Jim Rose
- Department of Medical Physics BC Cancer –Abbotsford Centre Abbotsford BC Canada
| | - Ramani Ramaseshan
- Department of Medical Physics BC Cancer –Abbotsford Centre Abbotsford BC Canada
- Department of Physics University of British Columbia Vancouver BC Canada
| |
Collapse
|
26
|
Comparison of different methods for lung immobilization in an animal model. Radiother Oncol 2020; 150:151-158. [PMID: 32580000 DOI: 10.1016/j.radonc.2020.06.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/28/2020] [Accepted: 06/17/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE Respiratory-induced motion introduces uncertainties in the delivery of dose in radiotherapy treatments. Various methods are used clinically, e.g. breath-holding, while there is limited experience with other methods such as apneic oxygenation and high frequency jet ventilation (HFJV). This study aims to compare the latter approaches for lung immobilization and their clinical impact on gas exchange in an animal model. MATERIALS AND METHODS Two radiopaque tumor surrogate markers (TSM) were placed in the central (cTSM) and peripheral (dTSM) regions of the lungs in 9 anesthetized and muscle relaxed pigs undergoing 3 ventilatory interventions (1) HFJV at rates of 200 (JV200), 300 (JV300) and 400 (JV400) min-1; (2) apnea at continuous positive airway pressure (CPAP) levels of 0, 8 and 16 cmH2O; (3) conventional mechanical ventilation (CMV) as reference mode. cTSM and dTSM were visualized using fluoroscopy and their coordinates were computed. The ventilatory pattern was registered, and oxygen and carbon dioxide (pCO2) partial pressures were measured. RESULTS The highest range of TSM motion, and ventilation was found during CMV, the lowest during apnea. During HFJV the amount of motion varied inversely with increasing frequency. The reduction of TSM motion at JV300, JV400 and all CPAP levels came at the cost of increased pCO2, however the relatively low frequency of 200 min-1 for HFJV was the only ventilatory setting that enabled adequate CO2 removal. CONCLUSION In this model, HFJV at 200 min-1 was the best compromise between immobilization and gas exchange for sessions of 10-min duration.
Collapse
|
27
|
Skouboe S, Poulsen PR, Muurholm CG, Worm E, Hansen R, Høyer M, Ravkilde T. Simulated real‐time dose reconstruction for moving tumors in stereotactic liver radiotherapy. Med Phys 2019; 46:4738-4748. [DOI: 10.1002/mp.13792] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/13/2019] [Accepted: 08/19/2019] [Indexed: 12/21/2022] Open
Affiliation(s)
- Simon Skouboe
- Department of Oncology Aarhus University Hospital Aarhus N 8200Denmark
| | - Per Rugaard Poulsen
- Department of Oncology Aarhus University Hospital Aarhus N 8200Denmark
- Danish Center for Particle Therapy Aarhus University Hospital Aarhus N 8200 Denmark
| | | | - Esben Worm
- Department of Medical Physics Aarhus University Hospital Aarhus N 8200Denmark
| | - Rune Hansen
- Department of Medical Physics Aarhus University Hospital Aarhus N 8200Denmark
| | - Morten Høyer
- Danish Center for Particle Therapy Aarhus University Hospital Aarhus N 8200 Denmark
| | - Thomas Ravkilde
- Department of Medical Physics Aarhus University Hospital Aarhus N 8200Denmark
| |
Collapse
|
28
|
Baker S, Sharma A, Antonisse I, Cornelissen R, Moelker A, Nuyttens JJ. Endovascular Coils as Lung Tumor Fiducial Markers for Real-Time Tumor Tracking in Stereotactic Body Radiotherapy: Comparison of Complication Rates with Transthoracic Fiducial Marker Placement. J Vasc Interv Radiol 2019; 30:1901-1907. [PMID: 31530487 DOI: 10.1016/j.jvir.2019.04.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 04/11/2019] [Accepted: 04/22/2019] [Indexed: 12/25/2022] Open
Abstract
PURPOSE To evaluate safety of endovascular coil fiducial placement and compare complication rates with transthoracic fiducial placement in patients with peripheral early-stage lung cancer receiving fiducial markers for stereotactic body radiotherapy (SBRT). MATERIALS AND METHODS This retrospective study included consecutive patients who received endovascular coils (n = 416 patients, n = 1,335 coils) or transthoracic fiducials (n = 30 patients, n = 80 fiducials) for SBRT between August 2005 and January 2017. During the first 3 years of the study period, patients preferentially received cylindrical platinum fiducial markers by percutaneous transthoracic placement; only patients with contraindications received endovascular coils. Thereafter, patients received endovascular fiducials as the first-line procedure. Endovascular embolization coils were placed via the femoral vein into subsegmental pulmonary artery branches near the tumor. Complications were scored by SIR criteria. RESULTS The success rate of endovascular coil placement was 99.8%. One patient developed grade 2 hemoptysis requiring procedure discontinuation. Following placement, 1 patient (0.2%) developed grade 3 cardiac arrhythmia. A total of 36 patients (9%) developed grade 1 complications: mild hemoptysis (n = 4; 1%), small asymptomatic pulmonary infarction or hemorrhage (n = 30; 7%), hypoglycemia (n = 1; 0.2%), and vasovagal episode (n = 1; 0.2%). Following transthoracic marker placement, 4 patients (13%) developed a pneumothorax requiring hospital admission and chest tube (grade 2), 6 patients (20%) developed pneumothorax requiring no intervention (grade 1), 2 patients (7%) experienced asymptomatic pulmonary bleeding, and 1 patient (3%) developed persistent pain. CONCLUSIONS Endovascular coil fiducial placement for lung SBRT is associated with high procedural success rates and lower rates of clinically relevant complications than transthoracic marker placement.
Collapse
Affiliation(s)
- Sarah Baker
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Dr. Molenwaterplein 40, Rotterdam 3015 GD, The Netherlands.
| | - Aman Sharma
- Department of Radiotherapy and Oncology, Regional Cancer Centre, Indira Gandhi Medical College, Shimla, India
| | - Imogeen Antonisse
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Dr. Molenwaterplein 40, Rotterdam 3015 GD, The Netherlands
| | - Robin Cornelissen
- Department of Pulmonary Medicine, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Adriaan Moelker
- Department of Radiology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Joost Jan Nuyttens
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Dr. Molenwaterplein 40, Rotterdam 3015 GD, The Netherlands
| |
Collapse
|
29
|
Kanzaki R, Araki F, Kawamura S. Image-guidance technique comparison on respiratory reproducibility and dose indexes for stereotactic body radiotherapy in lung tumor. Med Dosim 2019; 44:385-393. [PMID: 30857654 DOI: 10.1016/j.meddos.2019.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 01/19/2019] [Accepted: 02/13/2019] [Indexed: 11/17/2022]
Abstract
We investigated respiratory reproducibility from position errors of gold internal fiducial markers for breath-hold (BH) and real-time tumor tracking (RTT) techniques for stereotactic body radiotherapy in lung tumors. The relationship between position errors and dose indexes was checked for both techniques. The stereotactic body radiotherapy plan in lung tumors was planned for 29 patients. The tumor positioning was arranged using 1.5 mm diameter gold internal fiducial markers. First, CT images were acquired to analyze position errors of gold markers for BH and RTT techniques. The offset plans for both techniques were calculated by displacing the mean position errors. The dose indexes (D98, D95, D2, mean dose) in a planning target volume were evaluated from dose volume histograms for the original plan, BH, and RTT offset plans. The relationship between position errors and dose indexes was analyzed using the root mean square (RMS) for both techniques. For the BH, the RMS was 3.29 mm at the lower lobe. Similarly, it was 1.34 mm for the RTT. The difference for D98 by position error for BH was -7.0 ± 10.8% at the lower lobe and the difference of all dose indexes for the RTT was less than 1%. The D2 and mean dose for both techniques were nearly the same as those of the original plan. In conclusion, the adaptation of the BH technique should be ≤2 mm RMS. If the position error is >2 mm RMS, the RTT technique should be used instead of the BH technique.
Collapse
Affiliation(s)
- Ryuji Kanzaki
- Department of Radiological Technology, Yamaguchi University Hospital, Ube City, Yamaguchi, Japan; Graduate School of Health Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Fujio Araki
- Department of Health Sciences, Faculty of Life Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan.
| | - Shinji Kawamura
- Graduate School of Health Sciences, Teikyo University, Omuta, Fukuoka, Japan
| |
Collapse
|
30
|
Giacometti V, King RB, Agnew CE, Irvine DM, Jain S, Hounsell AR, McGarry CK. An evaluation of techniques for dose calculation on cone beam computed tomography. Br J Radiol 2019; 92:20180383. [PMID: 30433821 DOI: 10.1259/bjr.20180383] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE: To assess the accuracy and efficiency of four different techniques, thus determining the optimum method for recalculating dose on cone beam CT (CBCT) images acquired during radiotherapy treatments. METHODS: Four established techniques were investigated and their accuracy assessed via dose calculations: (1) applying a standard planning CT (pCT) calibration curve, (2) applying a CBCT site-specific calibration curve, (3) performing a density override and (4) using deformable registration. Each technique was applied to 15 patients receiving volumetric modulated arc therapy to one of three treatment sites, head and neck, lung and prostate. Differences between pCT and CBCT recalculations were determined with dose volume histogram metrics and 2.0%/0.1 mm gamma analysis using the pCT dose distribution as a reference. RESULTS: Dose volume histogram analysis indicated that all techniques yielded differences from expected results between 0.0 and 2.3% for both target volumes and organs at risk. With volumetric gamma analysis, the dose recalculation on deformed images yielded the highest pass-rates. The median pass-rate ranges at 50% threshold were 99.6-99.9%, 94.6-96.0%, and 94.8.0-96.0% for prostate, head and neck and lung patients, respectively. CONCLUSION: Deformable registration, HU override and site-specific calibration curves were all identified as dosimetrically accurate and efficient methods for dose calculation on CBCT images. ADVANCES IN KNOWLEDGE: With the increasing adoption of CBCT, this study provides clinical radiotherapy departments with invaluable information regarding the comparison of dose reconstruction methods, enabling a more accurate representation of a patient's treatment. It can also integrate studies in which CBCT is used in image-guided radiation therapy and for adaptive radiotherapy planning processes.
Collapse
Affiliation(s)
- Valentina Giacometti
- 1 Centre for Cancer Research and Cell Biology, Queen's University Belfast , Belfast , UK
| | - Raymond B King
- 1 Centre for Cancer Research and Cell Biology, Queen's University Belfast , Belfast , UK.,2 Radiotherapy Physics, Northern Ireland Cancer Centre , Belfast , UK
| | - Christina E Agnew
- 2 Radiotherapy Physics, Northern Ireland Cancer Centre , Belfast , UK
| | - Denise M Irvine
- 2 Radiotherapy Physics, Northern Ireland Cancer Centre , Belfast , UK
| | - Suneil Jain
- 1 Centre for Cancer Research and Cell Biology, Queen's University Belfast , Belfast , UK.,2 Radiotherapy Physics, Northern Ireland Cancer Centre , Belfast , UK
| | - Alan R Hounsell
- 1 Centre for Cancer Research and Cell Biology, Queen's University Belfast , Belfast , UK.,2 Radiotherapy Physics, Northern Ireland Cancer Centre , Belfast , UK
| | - Conor K McGarry
- 1 Centre for Cancer Research and Cell Biology, Queen's University Belfast , Belfast , UK.,2 Radiotherapy Physics, Northern Ireland Cancer Centre , Belfast , UK
| |
Collapse
|
31
|
Tian S, Switchenko JM, Cassidy RJ, Escott CE, Castillo R, Patel PR, Curran WJ, Higgins KA. Predictors of pneumonitis-free survival following lung stereotactic body radiation therapy. Transl Lung Cancer Res 2019; 8:15-23. [PMID: 30788231 DOI: 10.21037/tlcr.2018.10.11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background Radiation pneumonitis is a common toxicity following lung stereotactic body radiation therapy (SBRT). We explored whether motion management technique, in conjunction with patient and treatment characteristics, is a predictor of radiation pneumonitis-free survival (PNFS). Methods A single institution multi-center lung SBRT database was retrospectively reviewed. PNFS was defined as time to earliest onset of radiation pneumonitis or last clinical follow-up. Patients were simulated using a 4-dimensional approach, and those with 1 cm or greater tumor motion were selected for respiratory-gated treatment. Real-time Position Management and phase-based gating were employed. Univariate and multivariable Cox proportional hazard models were fit for relevant covariates to determine the impact of free-breathing versus respiratory-gated treatment on PNFS. Results The initial treatment courses of 208 patients were included, with a median follow-up length of 23 months. The median age at treatment was 71 years. About 91.8% of patient had early stage (T1-2) non-small cell lung cancer and were treated with common regimens including 10 Gy ×5, 12 Gy ×4 and 18 Gy ×3; 26.4% underwent respiratory-gated SBRT. The overall rate of grade 3 or higher radiation pneumonitis was 10.1%. PNFS was not significantly different between patients treated with respiratory-gated versus free-breathing SBRT (HR =0.88; P=0.707); tumor location and fractionation were predictors of PNFS in the multivariate setting. Conclusions The method of motion management does not appear to impact PNFS when the tolerance for tumor displacement is 1 cm or less for free-breathing treatment planning and delivery. This approach may be appropriate when selecting patients for respiratory gating.
Collapse
Affiliation(s)
- Sibo Tian
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Jeffrey M Switchenko
- Department of Biostatistics and Bioinformatics, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Richard J Cassidy
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Chase E Escott
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Richard Castillo
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Pretesh R Patel
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Walter J Curran
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Kristin A Higgins
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
32
|
Wu VWC, Ng APL, Cheung EKW. Intrafractional motion management in external beam radiotherapy. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2019; 27:1071-1086. [PMID: 31476194 DOI: 10.3233/xst-180472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The recent advancements in radiotherapy technologies have made delivery of the highly conformal dose to the target volume possible. With the increasing popularity of delivering high dose per fraction in modern radiotherapy schemes such as in stereotactic body radiotherapy and stereotactic body ablative therapy, high degree of treatment precision is essential. In order to achieve this, we have to overcome the potential difficulties caused by patient instability due to immobilization problems; patient anxiety and random motion due to prolonged treatment time; tumor deformation and baseline shift during a treatment course. This is even challenging for patients receiving radiotherapy in the chest and abdominal regions because it is affected by the patient's respiration which inevitably leads to tumor motion. Therefore, monitoring of intrafractional motion has become increasingly important in modern radiotherapy. Major intrafractional motion management strategies including integration of respiratory motion in treatment planning; breath-hold technique; forced shallow breathing with abdominal compression; respiratory gating and dynamic real-time tumor tracking have been developed. Successful intrafractional motion management is able to reduce the planning target margin and ensures planned dose delivery to the target and organs at risk. Meanwhile, the emergency of MRI-linear accelerator has facilitated radiation-free real-time monitoring of soft tissue during treatment and could be the future modality in motion management. This review article summarizes the various approaches that deal with intrafractional target, organs or patient motion with discussion of their advantages and limitations. In addition, the potential future advancements including MRI-based tumor tracking are also discussed.
Collapse
Affiliation(s)
- Vincent W C Wu
- Department of Health Technology & Informatics, Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Amanda P L Ng
- Department of Health Technology & Informatics, Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Emily K W Cheung
- Department of Health Technology & Informatics, Hong Kong Polytechnic University, Hung Hom, Hong Kong
| |
Collapse
|
33
|
Hunt A, Hansen VN, Oelfke U, Nill S, Hafeez S. Adaptive Radiotherapy Enabled by MRI Guidance. Clin Oncol (R Coll Radiol) 2018; 30:711-719. [PMID: 30201276 DOI: 10.1016/j.clon.2018.08.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/10/2018] [Accepted: 08/20/2018] [Indexed: 12/11/2022]
Abstract
Adaptive radiotherapy (ART) strategies systematically monitor variations in target and neighbouring structures to inform treatment-plan modification during radiotherapy. This is necessary because a single plan designed before treatment is insufficient to capture the actual dose delivered to the target and adjacent critical structures during the course of radiotherapy. Magnetic resonance imaging (MRI) provides superior soft-tissue image contrast over current standard X-ray-based technologies without additional radiation exposure. With integrated MRI and radiotherapy platforms permitting motion monitoring during treatment delivery, it is possible that adaption can be informed by real-time anatomical imaging. This allows greater treatment accuracy in terms of dose delivered to target with smaller, individualised treatment margins. The use of functional MRI sequences would permit ART to be informed by imaging biomarkers, so allowing both personalised geometric and biological adaption. In this review, we discuss ART solutions enabled by MRI guidance and its potential gains for our patients across tumour types.
Collapse
Affiliation(s)
- A Hunt
- The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, London, UK
| | - V N Hansen
- The Institute of Cancer Research, London, UK; Joint Department of Physics, The Royal Marsden NHS Foundation Trust, London, UK
| | - U Oelfke
- The Institute of Cancer Research, London, UK; Joint Department of Physics, The Royal Marsden NHS Foundation Trust, London, UK
| | - S Nill
- The Institute of Cancer Research, London, UK; Joint Department of Physics, The Royal Marsden NHS Foundation Trust, London, UK
| | - S Hafeez
- The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, London, UK.
| |
Collapse
|
34
|
Aboudaram A, Khalifa J, Massabeau C, Simon L, Hadj Henni A, Thureau S. [Image-guided radiotherapy in lung cancer]. Cancer Radiother 2018; 22:602-607. [PMID: 30104150 DOI: 10.1016/j.canrad.2018.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 06/29/2018] [Indexed: 12/20/2022]
Abstract
Image-guided radiotherapy takes place at every step of the treatment in lung cancer, from treatment planning, with fusion imaging, to daily in-room repositioning. Managing tumoral and surrounding thoracic structures motion has been allowed since the routine use of 4D computed tomography (4DCT). The integration of respiratory motion has been made with "passive" techniques based on reconstruction images from 4DCT planning, or "active" techniques adapted to the patient's breathing. Daily repositioning is based on regular images, weekly or daily, low (kV) or high (MV) energy. MRI and functional imaging also play an important part in lung cancer radiation and open the way for adaptative radiotherapy.
Collapse
Affiliation(s)
- A Aboudaram
- Département de radiothérapie, institut universitaire du cancer de Toulouse-oncopôle, 1, avenue Irène-Joliot Curie, 31037 Toulouse, France.
| | - J Khalifa
- Département de radiothérapie, institut universitaire du cancer de Toulouse-oncopôle, 1, avenue Irène-Joliot Curie, 31037 Toulouse, France
| | - C Massabeau
- Département de radiothérapie, institut universitaire du cancer de Toulouse-oncopôle, 1, avenue Irène-Joliot Curie, 31037 Toulouse, France
| | - L Simon
- Département de radiothérapie, institut universitaire du cancer de Toulouse-oncopôle, 1, avenue Irène-Joliot Curie, 31037 Toulouse, France; CRCT UMR 1037 Inserm/UPS, 2, avenue Hubert-Curien, 31037 Toulouse, France
| | - A Hadj Henni
- Département de physique médicale, centre Henri-Becquerel, 1, rue d'Amiens, 76000 Rouen, France
| | - S Thureau
- Département de radiothérapie, centre Henri-Becquerel, 1, rue d'Amiens, 76000 Rouen, France; Laboratoire QuantIF, EA4108-Litis, FR CNRS 3638, 1, rue d'Amiens, 76000 Rouen, France; Département de médecine nucléaire, centre Henri-Becquerel, 1, rue d'Amiens, 76000 Rouen, France
| |
Collapse
|
35
|
Interobserver variability in the delineation of the primary lung cancer and lymph nodes on different four-dimensional computed tomography reconstructions. Radiother Oncol 2018; 126:325-332. [DOI: 10.1016/j.radonc.2017.11.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/31/2017] [Accepted: 11/22/2017] [Indexed: 12/25/2022]
|
36
|
Gong G, Guo Y, Sun X, Wang X, Yin Y, Feng DD. Study of an Oxygen Supply and Oxygen Saturation Monitoring System for Radiation Therapy Associated with the Active Breathing Coordinator. Sci Rep 2018; 8:1254. [PMID: 29352224 PMCID: PMC5775202 DOI: 10.1038/s41598-018-19576-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/04/2018] [Indexed: 12/25/2022] Open
Abstract
In this study, we designed an oxygen supply and oxygen saturation monitoring (OSOSM) system. This OSOSM system can provide a continuous supply of oxygen and monitor the peripheral capillary oxygen saturation (SpO2) of patients who accept radiotherapy and use an active breathing coordinator (ABC). A clinical test with 27 volunteers was conducted. The volunteers were divided into two groups based on the tendency of SpO2 decline in breath-holding without the OSOSM system: group A (12 cases) showed a decline in SpO2 of less than 2%, whereas the decline in SpO2 in group B (15 cases) was greater than 2% and reached up to 6% in some cases. The SpO2 of most volunteers declined during rest. The breath-holding time of group A without the OSOSM system was significantly longer than that of group B (p < 0.05) and was extended with the OSOSM system by 26.6% and 27.85% in groups A and B, respectively. The SpO2 recovery time was reduced by 36.1%, and the total rest time was reduced by 27.6% for all volunteers using the OSOSM system. In summary, SpO2 declines during breath-holding and rest time cannot be ignored while applying an ABC. This OSOSM system offers a simple and effective way to monitor SpO2 variation and overcome SpO2 decline, thereby lengthening breath-holding time and shortening rest time.
Collapse
Affiliation(s)
- Guanzhong Gong
- The Radiation Oncology Department of Shandong Cancer Hospital, Affiliated To Shandong University, Jiyan Road 440#, Jinan Shandong, 250117, China.,Biomedical And Multimedia Information Technology (BMIT) Research Group, School Of Information Technologies (SIT), The University Of Sydney, Sydney, Nsw, 2008, Australia
| | - Yujie Guo
- The Intensive Care Unit Of Shandong Cancer Hospital, Affiliated To Shandong University, Jiyan Road 440#, Jinan Shandong, China, 250117
| | - Xuemei Sun
- The Intensive Care Unit Of Shandong Cancer Hospital, Affiliated To Shandong University, Jiyan Road 440#, Jinan Shandong, China, 250117
| | - Xiuying Wang
- Biomedical And Multimedia Information Technology (BMIT) Research Group, School Of Information Technologies (SIT), The University Of Sydney, Sydney, Nsw, 2008, Australia.
| | - Yong Yin
- The Radiation Oncology Department of Shandong Cancer Hospital, Affiliated To Shandong University, Jiyan Road 440#, Jinan Shandong, 250117, China.
| | - David Dagan Feng
- Biomedical And Multimedia Information Technology (BMIT) Research Group, School Of Information Technologies (SIT), The University Of Sydney, Sydney, Nsw, 2008, Australia
| |
Collapse
|
37
|
Bainbridge H, Salem A, Tijssen RHN, Dubec M, Wetscherek A, Van Es C, Belderbos J, Faivre-Finn C, McDonald F. Magnetic resonance imaging in precision radiation therapy for lung cancer. Transl Lung Cancer Res 2017; 6:689-707. [PMID: 29218271 PMCID: PMC5709138 DOI: 10.21037/tlcr.2017.09.02] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 09/08/2017] [Indexed: 12/25/2022]
Abstract
Radiotherapy remains the cornerstone of curative treatment for inoperable locally advanced lung cancer, given concomitantly with platinum-based chemotherapy. With poor overall survival, research efforts continue to explore whether integration of advanced radiation techniques will assist safe treatment intensification with the potential for improving outcomes. One advance is the integration of magnetic resonance imaging (MRI) in the treatment pathway, providing anatomical and functional information with excellent soft tissue contrast without exposure of the patient to radiation. MRI may complement or improve the diagnostic staging accuracy of F-18 fluorodeoxyglucose position emission tomography and computerized tomography imaging, particularly in assessing local tumour invasion and is also effective for identification of nodal and distant metastatic disease. Incorporating anatomical MRI sequences into lung radiotherapy treatment planning is a novel application and may improve target volume and organs at risk delineation reproducibility. Furthermore, functional MRI may facilitate dose painting for heterogeneous target volumes and prediction of normal tissue toxicity to guide adaptive strategies. MRI sequences are rapidly developing and although the issue of intra-thoracic motion has historically hindered the quality of MRI due to the effect of motion, progress is being made in this field. Four-dimensional MRI has the potential to complement or supersede 4D CT and 4D F-18-FDG PET, by providing superior spatial resolution. A number of MR-guided radiotherapy delivery units are now available, combining a radiotherapy delivery machine (linear accelerator or cobalt-60 unit) with MRI at varying magnetic field strengths. This novel hybrid technology is evolving with many technical challenges to overcome. It is anticipated that the clinical benefits of MR-guided radiotherapy will be derived from the ability to adapt treatment on the fly for each fraction and in real-time, using 'beam-on' imaging. The lung tumour site group of the Atlantic MR-Linac consortium is working to generate a challenging MR-guided adaptive workflow for multi-institution treatment intensification trials in this patient group.
Collapse
Affiliation(s)
- Hannah Bainbridge
- The Institute of Cancer Research and The Royal Marsden Hospital NHS Foundation Trust, London, UK
| | - Ahmed Salem
- The University of Manchester and The Christie NHS Foundation Trust, Manchester, UK
| | | | - Michael Dubec
- The University of Manchester and The Christie NHS Foundation Trust, Manchester, UK
| | - Andreas Wetscherek
- The Institute of Cancer Research and The Royal Marsden Hospital NHS Foundation Trust, London, UK
| | - Corinne Van Es
- The University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jose Belderbos
- The Netherlands Cancer Institute and The Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Corinne Faivre-Finn
- The University of Manchester and The Christie NHS Foundation Trust, Manchester, UK
| | - Fiona McDonald
- The Institute of Cancer Research and The Royal Marsden Hospital NHS Foundation Trust, London, UK
| | | |
Collapse
|
38
|
Barrett S. On-Treatment Verification for Lung Stereotactic Ablative Radiation Therapy. J Med Imaging Radiat Sci 2017; 48:343-345. [PMID: 31047468 DOI: 10.1016/j.jmir.2017.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/12/2017] [Accepted: 09/12/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Sarah Barrett
- Applied Radiation Therapy Trinity Research Group, Trinity College Dublin, The University of Dublin, Dublin 8, Ireland.
| |
Collapse
|
39
|
Van Schil PE. Surgery compared to stereotactic body radiation therapy for early-stage non-small cell lung cancer: better, equivalent or worse? J Thorac Dis 2017; 9:4230-4232. [PMID: 29268479 DOI: 10.21037/jtd.2017.10.36] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Paul E Van Schil
- Department of Thoracic and Vascular Surgery, Antwerp University Hospital and Antwerp University, Edegem, Belgium
| |
Collapse
|
40
|
McDonald F, Hanna GG. Do protons have a role in the treatment of locally advanced NSCLC with radiotherapy? Lung Cancer 2017; 110:71-73. [PMID: 28624125 DOI: 10.1016/j.lungcan.2017.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Fiona McDonald
- The Royal Marsden NHS Foundation Trust Associate Honorary Faculty, UK; Centre for Cancer Research and Cell Biology, Queens University, UK.
| | - Gerard G Hanna
- The Royal Marsden NHS Foundation Trust Associate Honorary Faculty, UK; Centre for Cancer Research and Cell Biology, Queens University, UK
| |
Collapse
|
41
|
De Ruysscher D, Faivre-Finn C, Moeller D, Nestle U, Hurkmans CW, Le Péchoux C, Belderbos J, Guckenberger M, Senan S. European Organization for Research and Treatment of Cancer (EORTC) recommendations for planning and delivery of high-dose, high precision radiotherapy for lung cancer. Radiother Oncol 2017; 124:1-10. [PMID: 28666551 DOI: 10.1016/j.radonc.2017.06.003] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 04/25/2017] [Accepted: 06/05/2017] [Indexed: 12/23/2022]
Abstract
PURPOSE To update literature-based recommendations for techniques used in high-precision thoracic radiotherapy for lung cancer, in both routine practice and clinical trials. METHODS A literature search was performed to identify published articles that were considered clinically relevant and practical to use. Recommendations were categorised under the following headings: patient positioning and immobilisation, Tumour and nodal changes, CT and FDG-PET imaging, target volumes definition, radiotherapy treatment planning and treatment delivery. An adapted grading of evidence from the Infectious Disease Society of America, and for models the TRIPOD criteria, were used. RESULTS Recommendations were identified for each of the above categories. CONCLUSION Recommendations for the clinical implementation of high-precision conformal radiotherapy and stereotactic body radiotherapy for lung tumours were identified from the literature. Techniques that were considered investigational at present are highlighted.
Collapse
Affiliation(s)
- Dirk De Ruysscher
- Maastricht University Medical Center+, Department of Radiation Oncology (Maastro Clinic), GROW Research Institute, The Netherlands; KU Leuven, Radiation Oncology, Belgium.
| | - Corinne Faivre-Finn
- Division of Cancer Sciences University of Manchester, Christie NHS Foundation Trust, UK
| | - Ditte Moeller
- Aarhus University Hospital, Department of Oncology, Denmark
| | - Ursula Nestle
- Freiburg University Medical Center (DKTK partner site), Department of Radiation Oncology, Germany; Department of Radiation Oncology, Kliniken Maria Hilf, Moenchengladbach, Germany
| | - Coen W Hurkmans
- Catharina Hospital, Department of Radiation Oncology, Eindhoven, The Netherlands
| | | | - José Belderbos
- Netherlands Cancer Institute, Department of Radiation Oncology, Amsterdam, The Netherlands
| | | | - Suresh Senan
- VU University Medical Center, Department of Radiation Oncology, Amsterdam, The Netherlands
| |
Collapse
|
42
|
Iwata H, Ishikura S, Murai T, Iwabuchi M, Inoue M, Tatewaki K, Ohta S, Yokota N, Shibamoto Y. A phase I/II study on stereotactic body radiotherapy with real-time tumor tracking using CyberKnife based on the Monte Carlo algorithm for lung tumors. Int J Clin Oncol 2017; 22:706-714. [DOI: 10.1007/s10147-017-1123-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/05/2017] [Indexed: 12/25/2022]
|
43
|
Murray P, Franks K, Hanna GG. A systematic review of outcomes following stereotactic ablative radiotherapy in the treatment of early-stage primary lung cancer. Br J Radiol 2017; 90:20160732. [PMID: 27885858 PMCID: PMC5601509 DOI: 10.1259/bjr.20160732] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 11/15/2016] [Accepted: 11/21/2016] [Indexed: 12/25/2022] Open
Abstract
Stereotactic ablative body radiotherapy (SABR) describes a radiotherapy (RT) technique where high doses of radiation are precisely delivered to an extracranial target within the body, using either a single fraction of RT or using multiple small numbers of fractions. SABR has now become the standard of care treatment for patients with early-stage non-small-cell lung cancer (NSCLC) for whom surgery is not appropriate. This systematic review considers the evidence supporting the use of SABR in early-stage NSCLC, reported toxicity rates, the use of SABR in centrally located NSCLC, the use of SABR as salvage therapy following surgery or RT, and future potential drug combinations with SABR.
Collapse
Affiliation(s)
- Patrick Murray
- Leeds Cancer Centre, St James's University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Kevin Franks
- Leeds Cancer Centre, St James's University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Gerard G Hanna
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, Northern Ireland, UK
| |
Collapse
|
44
|
Analysis of Lung Tumor Motion in a Large Sample: Patterns and Factors Influencing Precise Delineation of Internal Target Volume. Int J Radiat Oncol Biol Phys 2016; 96:751-758. [DOI: 10.1016/j.ijrobp.2016.08.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/07/2016] [Accepted: 08/10/2016] [Indexed: 12/25/2022]
|
45
|
Silva SR, Surucu M, Steber J, Harkenrider MM, Choi M. Clinical Application of a Hybrid RapidArc Radiotherapy Technique for Locally Advanced Lung Cancer. Technol Cancer Res Treat 2016; 16:224-230. [PMID: 27680023 DOI: 10.1177/1533034616670273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE Radiation treatment planning for locally advanced lung cancer can be technically challenging, as delivery of ≥60 Gy to large volumes with concurrent chemotherapy is often associated with significant risk of normal tissue toxicity. We clinically implemented a novel hybrid RapidArc technique in patients with lung cancer and compared these plans with 3-dimensional conformal radiotherapy and RapidArc-only plans. MATERIALS/METHODS Hybrid RapidArc was used to treat 11 patients with locally advanced lung cancer having bulky mediastinal adenopathy. All 11 patients received concurrent chemotherapy. All underwent a 4-dimensional computed tomography planning scan. Hybrid RapidArc plans concurrently combined static (60%) and RapidArc (40%) beams. All cases were replanned using 3- to 5-field 3-dimensional conformal radiotherapy and RapidArc technique as controls. RESULTS Significant reductions in dose were observed in hybrid RapidArc plans compared to 3-dimensional conformal radiotherapy plans for total lung V20 and mean (-2% and -0.6 Gy); contralateral lung mean (-2.92 Gy); and esophagus V60 and mean (-16.0% and -2.2 Gy; all P < .05). Contralateral lung doses were significantly lower for hybrid RapidArc plans compared to RapidArc-only plans (all P < .05). Compared to 3-dimensional conformal radiotherapy, heart V60 and mean dose were significantly improved with hybrid RapidArc (3% vs 5%, P = .04 and 16.32 Gy vs 16.65 Gy, P = .03). However, heart V40 and V45 and maximum spinal cord dose were significantly lower with RapidArc plans compared to hybrid RapidArc plans. Conformity and homogeneity were significantly better with hybrid RapidArc plans compared to 3-dimensional conformal radiotherapy plans ( P < .05). Treatment was well tolerated, with no grade 3+ toxicities. CONCLUSION To our knowledge, this is the first report on the clinical application of hybrid RapidArc in patients with locally advanced lung cancer. Hybrid RapidArc permitted safe delivery of 60 to 66 Gy to large lung tumors with concurrent chemotherapy and demonstrated advantages for reduction in low-dose lung volumes, esophageal dose, and mean heart dose.
Collapse
Affiliation(s)
- Scott R Silva
- 1 Department of Radiation Oncology, Stritch School of Medicine, Loyola University Medical Center, Maywood, IL, USA
| | - Murat Surucu
- 1 Department of Radiation Oncology, Stritch School of Medicine, Loyola University Medical Center, Maywood, IL, USA
| | - Jennifer Steber
- 1 Department of Radiation Oncology, Stritch School of Medicine, Loyola University Medical Center, Maywood, IL, USA
| | - Matthew M Harkenrider
- 1 Department of Radiation Oncology, Stritch School of Medicine, Loyola University Medical Center, Maywood, IL, USA
| | - Mehee Choi
- 1 Department of Radiation Oncology, Stritch School of Medicine, Loyola University Medical Center, Maywood, IL, USA
| |
Collapse
|
46
|
Nasehi Tehrani J, Wang J. Mooney-Rivlin biomechanical modeling of lung with Inhomogeneous material. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:7897-900. [PMID: 26738123 DOI: 10.1109/embc.2015.7320223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this study, the Mooney-Rivlin material with hyperelastic strain energy was proposed for biomechanical modeling of the lung. We modeled the lung as an inhomogeneous Mooney-Rivlin material with uncoupled deviatoric and volumetric behavior. The proposed method was evaluated on the lungs of eight lung cancer patients. For each patient, the lung was segmented from the 4D-CT images and tetrahedral volume mesh of the lung in phase 50% was created by using the adaptive mesh generation toolkit. The demons deformable registration algorithm was used to extract the displacement vector fields (DVFs). The Jacobian of the deformation gradient was calculated from DVFs, and the lung strain energy function was optimized to improve the tumor center of mass (TCM) motion simulation accuracy between respiratory phase 50% and 0%. The average TCM motion simulation error for the proposed strategy is 1.95 mm for eight patients. We observed 13% improvement in the TCM position prediction compared with the homogeneous Mooney-Rivlin modeling.
Collapse
|
47
|
Tehrani JN, Yang Y, Werner R, Lu W, Low D, Guo X, Wang J. Sensitivity of tumor motion simulation accuracy to lung biomechanical modeling approaches and parameters. Phys Med Biol 2015; 60:8833-49. [PMID: 26531324 PMCID: PMC4652597 DOI: 10.1088/0031-9155/60/22/8833] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Finite element analysis (FEA)-based biomechanical modeling can be used to predict lung respiratory motion. In this technique, elastic models and biomechanical parameters are two important factors that determine modeling accuracy. We systematically evaluated the effects of lung and lung tumor biomechanical modeling approaches and related parameters to improve the accuracy of motion simulation of lung tumor center of mass (TCM) displacements. Experiments were conducted with four-dimensional computed tomography (4D-CT). A Quasi-Newton FEA was performed to simulate lung and related tumor displacements between end-expiration (phase 50%) and other respiration phases (0%, 10%, 20%, 30%, and 40%). Both linear isotropic and non-linear hyperelastic materials, including the neo-Hookean compressible and uncoupled Mooney-Rivlin models, were used to create a finite element model (FEM) of lung and tumors. Lung surface displacement vector fields (SDVFs) were obtained by registering the 50% phase CT to other respiration phases, using the non-rigid demons registration algorithm. The obtained SDVFs were used as lung surface displacement boundary conditions in FEM. The sensitivity of TCM displacement to lung and tumor biomechanical parameters was assessed in eight patients for all three models. Patient-specific optimal parameters were estimated by minimizing the TCM motion simulation errors between phase 50% and phase 0%. The uncoupled Mooney-Rivlin material model showed the highest TCM motion simulation accuracy. The average TCM motion simulation absolute errors for the Mooney-Rivlin material model along left-right, anterior-posterior, and superior-inferior directions were 0.80 mm, 0.86 mm, and 1.51 mm, respectively. The proposed strategy provides a reliable method to estimate patient-specific biomechanical parameters in FEM for lung tumor motion simulation.
Collapse
Affiliation(s)
| | - Yin Yang
- Department of Electrical and Computer Engineering, University of New Mexico
| | - Rene Werner
- Department of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wei Lu
- Department of Radiation Oncology, University of Maryland, Baltimore, MD
| | - Daniel Low
- Department of Radiation Oncology, University of California at Los Angles, Los Angeles, CA
| | - Xiaohu Guo
- Department of Computer Science, University of Texas, Dallas, TX
| | - Jing Wang
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
48
|
Alonzi R. Functional Radiotherapy Targeting using Focused Dose Escalation. Clin Oncol (R Coll Radiol) 2015; 27:601-17. [PMID: 26456478 DOI: 10.1016/j.clon.2015.06.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 06/17/2015] [Indexed: 12/12/2022]
Abstract
Various quantitative and semi-quantitative imaging biomarkers have been identified that may serve as valid surrogates for the risk of recurrence after radiotherapy. Tumour characteristics, such as hypoxia, vascularity, cellular proliferation and clonogen density, can be geographically mapped using biological imaging techniques. The potential gains in therapeutic ratio from the precision targeting of areas of intrinsic resistance makes focused dose escalation an exciting field of study. This overview will explore the issues surrounding biologically optimised radiotherapy, including its requirements, feasibility, technical considerations and potential applicability.
Collapse
Affiliation(s)
- R Alonzi
- Mount Vernon Cancer Centre, Northwood, UK.
| |
Collapse
|
49
|
Rooney KP, McAleese J, Crockett C, Harney J, Eakin RL, Young VAL, Dunn MA, Johnston RE, Hanna GG. The Impact of Colleague Peer Review on the Radiotherapy Treatment Planning Process in the Radical Treatment of Lung Cancer. Clin Oncol (R Coll Radiol) 2015; 27:514-8. [PMID: 26150375 DOI: 10.1016/j.clon.2015.05.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 05/14/2015] [Accepted: 05/28/2015] [Indexed: 12/25/2022]
Abstract
AIMS Modern radiotherapy uses techniques to reliably identify tumour and reduce target volume margins. However, this can potentially lead to an increased risk of geographic miss. One source of error is the accuracy of target volume delineation (TVD). Colleague peer review (CPR) of all curative-intent lung cancer plans has been mandatory in our institution since May 2013. At least two clinical oncologists review plans, checking treatment paradigm, TVD, prescription dose tumour and critical organ tolerances. We report the impact of CPR in our institution. MATERIALS AND METHODS Radiotherapy treatment plans of all patients receiving radical radiotherapy were presented at weekly CPR meetings after their target volumes were reviewed and signed off by the treating consultant. All cases and any resultant change to TVD (including organs at risk) or treatment intent were recorded in our prospective CPR database. The impact of CPR over a 13 month period from May 2013 to June 2014 is reported. RESULTS One hundred and twenty-two patients (63% non-small cell lung carcinoma, 17% small cell lung carcinoma and 20% 'clinical diagnosis') were analysed. On average, 3.2 cases were discussed per meeting (range 1-8). CPR resulted in a change in treatment paradigm in 3% (one patient proceeded to induction chemotherapy, two patients had high-dose palliative radiotherapy). Twenty-one (17%) had a change in TVD and one (1%) patient had a change in dose prescription. In total, 6% of patients had plan adjustment after review of dose volume histogram. CONCLUSION The introduction of CPR in our centre has resulted in a change in a component of the treatment plan for 27% of patients receiving curative-intent lung radiotherapy. We recommend CPR as a mandatory quality assurance step in the planning process of all radical lung plans.
Collapse
Affiliation(s)
- K P Rooney
- Cancer Centre, Belfast City Hospital, Belfast, UK.
| | - J McAleese
- Cancer Centre, Belfast City Hospital, Belfast, UK
| | - C Crockett
- Cancer Centre, Belfast City Hospital, Belfast, UK
| | - J Harney
- Cancer Centre, Belfast City Hospital, Belfast, UK
| | - R L Eakin
- Cancer Centre, Belfast City Hospital, Belfast, UK
| | - V A L Young
- Cancer Centre, Belfast City Hospital, Belfast, UK
| | - M A Dunn
- Cancer Centre, Belfast City Hospital, Belfast, UK
| | - R E Johnston
- Cancer Centre, Belfast City Hospital, Belfast, UK
| | - G G Hanna
- Cancer Centre, Belfast City Hospital, Belfast, UK; Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, UK
| |
Collapse
|
50
|
Tan K, Thomas R, Hardcastle N, Pham D, Kron T, Foroudi F, Ball D, te Marvelde L, Bressel M, Siva S. Predictors of Respiratory-induced Lung Tumour Motion Measured on Four-dimensional Computed Tomography. Clin Oncol (R Coll Radiol) 2015; 27:197-204. [DOI: 10.1016/j.clon.2014.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 11/05/2014] [Accepted: 12/03/2014] [Indexed: 12/25/2022]
|