1
|
Zaghloul MS, Hunter A, Mostafa AG, Parkes J. Re-irradiation for recurrent/progressive pediatric brain tumors: from radiobiology to clinical outcomes. Expert Rev Anticancer Ther 2023; 23:709-717. [PMID: 37194207 DOI: 10.1080/14737140.2023.2215439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/15/2023] [Indexed: 05/18/2023]
Abstract
INTRODUCTION Brain tumors are the most common solid tumors in children. Neurosurgical excision, radiotherapy, and/or chemotherapy represent the standard of care in most histopathological types of pediatric central nervous system (CNS) tumors. Even though the successful cure rate is reasonable, some patients may develop recurrence locally or within the neuroaxis. AREA COVERED The management of these recurrences is not easy; however, significant advances in neurosurgery, radiation techniques, radiobiology, and the introduction of newer biological therapies, have improved the results of their salvage treatment. In many cases, salvage re-irradiation is feasible and has achieved encouraging results. The results of re-irradiation depend upon several factors. These factors include tumor type, extent of the second surgery, tumor volume, location of the recurrence, time that elapses between the initial treatment, the combination with other treatment agents, relapse, and the initial response to radiotherapy. EXPERT OPINION Reviewing the radiobiological basis and clinical outcome of pediatric brain re-irradiation revealed that re-irradiation is safe, feasible, and indicated for recurrent/progressive different tumor types such as; ependymoma, medulloblastoma, diffuse intrinsic pontine glioma (DIPG) and glioblastoma. It is now considered part of the treatment armamentarium for these patients. The challenges and clinical results in treating recurrent pediatric brain tumors were highly documented.
Collapse
Affiliation(s)
- Mohamed S Zaghloul
- Radiation Oncology department. National Cancer Institute, Cairo University & Children's Cancer Hospital, Cairo, Egypt
| | - Alistair Hunter
- Division of Radiobiology, Radiation Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Ayatullah G Mostafa
- Department of Radiology, Faculty of Medicine, Egypt and Department of Diagnostic Imaging, Cairo University, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jeannette Parkes
- Radiation Oncology Department, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
3
|
Slevin F, Aitken K, Alongi F, Arcangeli S, Chadwick E, Chang AR, Cheung P, Crane C, Guckenberger M, Jereczek-Fossa BA, Kamran SC, Kinj R, Loi M, Mahadevan A, Massaccesi M, Mendez LC, Muirhead R, Pasquier D, Pontoriero A, Spratt DE, Tsang YM, Zelefsky MJ, Lilley J, Dickinson P, Hawkins MA, Henry AM, Murray LJ. An international Delphi consensus for pelvic stereotactic ablative radiotherapy re-irradiation. Radiother Oncol 2021; 164:104-114. [PMID: 34560186 DOI: 10.1016/j.radonc.2021.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/08/2021] [Accepted: 09/12/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Stereotactic Ablative Radiotherapy (SABR) is increasingly used to treat metastatic oligorecurrence and locoregional recurrences but limited evidence/guidance exists in the setting of pelvic re-irradiation. An international Delphi study was performed to develop statements to guide practice regarding patient selection, pre-treatment investigations, treatment planning, delivery and cumulative organs at risk (OARs) constraints. MATERIALS AND METHODS Forty-one radiation oncologists were invited to participate in three online surveys. In Round 1, information and opinion was sought regarding participants' practice. Guidance statements were developed using this information and in Round 2 participants were asked to indicate their level of agreement with each statement. Consensus was defined as ≥75% agreement. In Round 3, any statements without consensus were re-presented unmodified, alongside a summary of comments from Round 2. RESULTS Twenty-three radiation oncologists participated in Round 1 and, of these, 21 (91%) and 22 (96%) completed Rounds 2 and 3 respectively. Twenty-nine of 44 statements (66%) achieved consensus in Round 2. The remaining 15 statements (34%) did not achieve further consensus in Round 3. Consensus was achieved for 10 of 17 statements (59%) regarding patient selection/pre-treatment investigations; 12 of 13 statements (92%) concerning treatment planning and delivery; and 7 of 14 statements (50%) relating to OARs. Lack of agreement remained regarding the minimum time interval between irradiation courses, the number/size of pelvic lesions that can be treated and the most appropriate cumulative OAR constraints. CONCLUSIONS This study has established consensus, where possible, in areas of patient selection, pre-treatment investigations, treatment planning and delivery for pelvic SABR re-irradiation for metastatic oligorecurrence and locoregional recurrences. Further research into this technique is required, especially regarding aspects of practice where consensus was not achieved.
Collapse
Affiliation(s)
- Finbar Slevin
- Leeds Teaching Hospitals NHS Trust, UK; University of Leeds, UK.
| | - Katharine Aitken
- The Royal Marsden NHS Foundation Trust, London, UK; The Institute of Cancer Research, London, UK.
| | - Filippo Alongi
- IRCCS Ospedale Sacro Cuore Don Calabria, Negrar, Italy; University of Brescia, Italy.
| | - Stefano Arcangeli
- School of Medicine and Surgery, University of Milan Bicocca, Monza, Italy.
| | | | - Ah Ram Chang
- Department of Radiation Oncology, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Republic of Korea.
| | | | - Christopher Crane
- Department of Radiation Oncology, Memorial Sloane Kettering Cancer Centre, New York, USA.
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Switzerland.
| | - Barbara Alicja Jereczek-Fossa
- Department of Oncology and Hemato-oncology, University of Milan, Italy; Division of Radiotherapy, IEO European Institute of Oncology, IRCCS, Milan, Italy.
| | - Sophia C Kamran
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, USA.
| | - Rémy Kinj
- Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Switzerland.
| | - Mauro Loi
- Radiation Oncology, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Italy.
| | - Anand Mahadevan
- Geisinger Medical Center - Radiation Oncology, Danville, USA.
| | - Mariangela Massaccesi
- Dipartimento Diagnostica per Immagini, Radioterapia Oncologica e Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli, Roma, Italy.
| | - Lucas C Mendez
- Division of Radiation Oncology, London Health Sciences Centre, Canada.
| | | | - David Pasquier
- Academic Department of Radiation Oncology, Centre Oscar Lambret, Lille, France; CRIStAL, UMR 9181, Lille University, Lille, France.
| | - Antonio Pontoriero
- Department of BIOMORF, Radiation Oncology Unit, University of Messina, Italy.
| | - Daniel E Spratt
- Department of Radiation Oncology, University Hospitals Seidman Cancer Centre, Cleveland, USA.
| | | | - Michael J Zelefsky
- Department of Radiation Oncology, Memorial Sloane Kettering Cancer Centre, New York, USA.
| | | | | | - Maria A Hawkins
- Medical Physics and Biochemical Engineering, University College London, UK.
| | - Ann M Henry
- Leeds Teaching Hospitals NHS Trust, UK; University of Leeds, UK.
| | - Louise J Murray
- Leeds Teaching Hospitals NHS Trust, UK; University of Leeds, UK.
| |
Collapse
|
4
|
Moore JW, Woolley TE, Hopewell JW, Jones B. Further development of spinal cord retreatment dose estimation: including radiotherapy with protons and light ions. Int J Radiat Biol 2021; 97:1657-1666. [PMID: 34524068 DOI: 10.1080/09553002.2021.1981554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE A graphical user interface (GUI) was developed to aid in the assessment of changes in the radiation tolerance of spinal cord/similar central nervous system tissues with time between two individual treatment courses. METHODS The GUI allows any combination of photons, protons (or ions) to be used as the initial, or retreatment, radiotherapy courses. Allowances for clinical circumstances, of reduced tolerance, can also be made. The radiobiological model was published previously and has been incorporated with additional checks and safety features, to be as safe to use as possible. The proton option includes use of a fixed RBE of 1.1 (set as the default), or a variable RBE, the latter depending on the proton linear energy transfer (LET) for organs at risk. This second LET-based approach can also be used for ions, by changing the LET parameters. RESULTS GUI screenshots are used to show the input and output parameters for different clinical situations used in worked examples. The results from the GUI are in agreement with manual calculations, but the results are now rapidly available without tedious and error-prone manual computations. The software outputs provide a maximum dose limit boundary, which should not be exceeded. Clinicians may also choose to further lower the number of treatment fractions, whilst using the same dose per fraction (or conversely a lower dose per fraction but with the same number of fractions) in order to achieve the intended clinical benefit as safely as possible. CONCLUSIONS The new GUI will allow scientific-based estimations of time related radiation tolerance changes in the spinal cord and similar central nervous tissues (optic chiasm, brainstem), which can be used to guide the choice of retreatment dose fractionation schedules, with either photons, protons or ions.
Collapse
Affiliation(s)
- Joshua W Moore
- Cardiff School of Mathematics, Cardiff University, Cardiff, UK
| | | | | | - Bleddyn Jones
- Green Templeton College, University of Oxford, Oxford, UK.,Gray Laboratory, Department of Oncology, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Piras A, Sanfratello A, Boldrini L, La Vecchia M, Venuti V, Amari ML, Orlando M, Zichichi L, Angileri T, Daidone A. Paget's disease of scrotum and penis case report of a re-irradiation and review of the literature. Dermatol Ther 2020; 33:e13890. [PMID: 32584449 DOI: 10.1111/dth.13890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 06/21/2020] [Indexed: 12/19/2022]
Abstract
Extramammary Paget's disease (EMPD) is a rare cutaneous adenocarcinoma generally arising in the anogenital region. Surgery is still considered the treatment of choice for patients with EMPD, while Radiotherapy is a common alternative for inoperable cases and it's necessary in case of lack of surgical radicality. In this article, we described our experience and a review of the literature, with a particular focus on radiation-induced toxicity and on the feasibility of re-irradiation. A 70-year-old patient with EPMD underwent adjuvant radiotherapy in 2015. After 28 months for recurrence another radiant treatment was performed. No G3 (CTCAE v4) toxicity were recorded. In the last follow-up visit at 18 months, no signs of relapse were reported. A search strategy of the bibliographic database PubMed was performed. The inclusion criteria for the articles were case report, clinical prospective, or retrospective studies with histological confirmation of EMPD of scrotum and penis; studies with patients undergoing RT; studies in the past 30 years. In most of the 14 reported studies, RT was overall well tolerated. The major observed toxicity was G3 skin toxicity in one study. To our knowledge, there are no other cases of EPMD re-irradiation in literature. Our patient showed an excellent response and tolerated very well the high doses of both the radiation treatments. This suggests that the tolerance of skin to re-irradiation following a long period between the two treatments may be comparable to the normal constraints.
Collapse
Affiliation(s)
- Antonio Piras
- Villa Santa Teresa, Radioterapia Oncologica, Palermo, Italy
| | | | - Luca Boldrini
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Roma, Italy
| | - Maria La Vecchia
- Radioterapia Oncologica, Università degli Studi di, Palermo, Italy
| | - Valeria Venuti
- Radioterapia Oncologica, Università degli Studi di, Palermo, Italy
| | | | - Marzia Orlando
- Villa Santa Teresa, Radioterapia Oncologica, Palermo, Italy
| | - Leonardo Zichichi
- U.O.C. Dermatologia e Venerologia, Ospedale San Antonio Abate, Trapani, Italy
| | | | | |
Collapse
|